brainstate 0.1.8__py2.py3-none-any.whl → 0.1.10__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. brainstate/__init__.py +58 -51
  2. brainstate/_compatible_import.py +148 -148
  3. brainstate/_state.py +1605 -1663
  4. brainstate/_state_test.py +52 -52
  5. brainstate/_utils.py +47 -47
  6. brainstate/augment/__init__.py +30 -30
  7. brainstate/augment/_autograd.py +778 -778
  8. brainstate/augment/_autograd_test.py +1289 -1289
  9. brainstate/augment/_eval_shape.py +99 -99
  10. brainstate/augment/_eval_shape_test.py +38 -38
  11. brainstate/augment/_mapping.py +1060 -1060
  12. brainstate/augment/_mapping_test.py +597 -597
  13. brainstate/augment/_random.py +151 -151
  14. brainstate/compile/__init__.py +38 -38
  15. brainstate/compile/_ad_checkpoint.py +204 -204
  16. brainstate/compile/_ad_checkpoint_test.py +49 -49
  17. brainstate/compile/_conditions.py +256 -256
  18. brainstate/compile/_conditions_test.py +220 -220
  19. brainstate/compile/_error_if.py +92 -92
  20. brainstate/compile/_error_if_test.py +52 -52
  21. brainstate/compile/_jit.py +346 -346
  22. brainstate/compile/_jit_test.py +143 -143
  23. brainstate/compile/_loop_collect_return.py +536 -536
  24. brainstate/compile/_loop_collect_return_test.py +58 -58
  25. brainstate/compile/_loop_no_collection.py +184 -184
  26. brainstate/compile/_loop_no_collection_test.py +50 -50
  27. brainstate/compile/_make_jaxpr.py +888 -888
  28. brainstate/compile/_make_jaxpr_test.py +156 -156
  29. brainstate/compile/_progress_bar.py +202 -202
  30. brainstate/compile/_unvmap.py +159 -159
  31. brainstate/compile/_util.py +147 -147
  32. brainstate/environ.py +563 -563
  33. brainstate/environ_test.py +62 -62
  34. brainstate/functional/__init__.py +27 -26
  35. brainstate/graph/__init__.py +29 -29
  36. brainstate/graph/_graph_node.py +244 -244
  37. brainstate/graph/_graph_node_test.py +73 -73
  38. brainstate/graph/_graph_operation.py +1738 -1738
  39. brainstate/graph/_graph_operation_test.py +563 -563
  40. brainstate/init/__init__.py +26 -26
  41. brainstate/init/_base.py +52 -52
  42. brainstate/init/_generic.py +244 -244
  43. brainstate/init/_random_inits.py +553 -553
  44. brainstate/init/_random_inits_test.py +149 -149
  45. brainstate/init/_regular_inits.py +105 -105
  46. brainstate/init/_regular_inits_test.py +50 -50
  47. brainstate/mixin.py +365 -363
  48. brainstate/mixin_test.py +77 -73
  49. brainstate/nn/__init__.py +135 -131
  50. brainstate/{functional → nn}/_activations.py +808 -813
  51. brainstate/{functional → nn}/_activations_test.py +331 -331
  52. brainstate/nn/_collective_ops.py +514 -514
  53. brainstate/nn/_collective_ops_test.py +43 -43
  54. brainstate/nn/_common.py +178 -178
  55. brainstate/nn/_conv.py +501 -501
  56. brainstate/nn/_conv_test.py +238 -238
  57. brainstate/nn/_delay.py +588 -502
  58. brainstate/nn/_delay_test.py +238 -184
  59. brainstate/nn/_dropout.py +426 -426
  60. brainstate/nn/_dropout_test.py +100 -100
  61. brainstate/nn/_dynamics.py +1343 -1343
  62. brainstate/nn/_dynamics_test.py +78 -78
  63. brainstate/nn/_elementwise.py +1119 -1119
  64. brainstate/nn/_elementwise_test.py +169 -169
  65. brainstate/nn/_embedding.py +58 -58
  66. brainstate/nn/_exp_euler.py +92 -92
  67. brainstate/nn/_exp_euler_test.py +35 -35
  68. brainstate/nn/_fixedprob.py +239 -239
  69. brainstate/nn/_fixedprob_test.py +114 -114
  70. brainstate/nn/_inputs.py +608 -608
  71. brainstate/nn/_linear.py +424 -424
  72. brainstate/nn/_linear_mv.py +83 -83
  73. brainstate/nn/_linear_mv_test.py +120 -120
  74. brainstate/nn/_linear_test.py +107 -107
  75. brainstate/nn/_ltp.py +28 -28
  76. brainstate/nn/_module.py +377 -377
  77. brainstate/nn/_module_test.py +40 -40
  78. brainstate/nn/_neuron.py +705 -705
  79. brainstate/nn/_neuron_test.py +161 -161
  80. brainstate/nn/_normalizations.py +975 -918
  81. brainstate/nn/_normalizations_test.py +73 -73
  82. brainstate/{functional → nn}/_others.py +46 -46
  83. brainstate/nn/_poolings.py +1177 -1177
  84. brainstate/nn/_poolings_test.py +217 -217
  85. brainstate/nn/_projection.py +486 -486
  86. brainstate/nn/_rate_rnns.py +554 -554
  87. brainstate/nn/_rate_rnns_test.py +63 -63
  88. brainstate/nn/_readout.py +209 -209
  89. brainstate/nn/_readout_test.py +53 -53
  90. brainstate/nn/_stp.py +236 -236
  91. brainstate/nn/_synapse.py +505 -505
  92. brainstate/nn/_synapse_test.py +131 -131
  93. brainstate/nn/_synaptic_projection.py +423 -423
  94. brainstate/nn/_synouts.py +162 -162
  95. brainstate/nn/_synouts_test.py +57 -57
  96. brainstate/nn/_utils.py +89 -89
  97. brainstate/nn/metrics.py +388 -388
  98. brainstate/optim/__init__.py +38 -38
  99. brainstate/optim/_base.py +64 -64
  100. brainstate/optim/_lr_scheduler.py +448 -448
  101. brainstate/optim/_lr_scheduler_test.py +50 -50
  102. brainstate/optim/_optax_optimizer.py +152 -152
  103. brainstate/optim/_optax_optimizer_test.py +53 -53
  104. brainstate/optim/_sgd_optimizer.py +1104 -1104
  105. brainstate/random/__init__.py +24 -24
  106. brainstate/random/_rand_funs.py +3616 -3616
  107. brainstate/random/_rand_funs_test.py +567 -567
  108. brainstate/random/_rand_seed.py +210 -210
  109. brainstate/random/_rand_seed_test.py +48 -48
  110. brainstate/random/_rand_state.py +1409 -1409
  111. brainstate/random/_random_for_unit.py +52 -52
  112. brainstate/surrogate.py +1957 -1957
  113. brainstate/transform.py +23 -23
  114. brainstate/typing.py +304 -304
  115. brainstate/util/__init__.py +50 -50
  116. brainstate/util/caller.py +98 -98
  117. brainstate/util/error.py +55 -55
  118. brainstate/util/filter.py +469 -469
  119. brainstate/util/others.py +540 -540
  120. brainstate/util/pretty_pytree.py +945 -945
  121. brainstate/util/pretty_pytree_test.py +159 -159
  122. brainstate/util/pretty_repr.py +328 -328
  123. brainstate/util/pretty_table.py +2954 -2954
  124. brainstate/util/scaling.py +258 -258
  125. brainstate/util/struct.py +523 -523
  126. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/METADATA +91 -99
  127. brainstate-0.1.10.dist-info/RECORD +130 -0
  128. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/WHEEL +1 -1
  129. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info/licenses}/LICENSE +202 -202
  130. brainstate/functional/_normalization.py +0 -81
  131. brainstate/functional/_spikes.py +0 -204
  132. brainstate-0.1.8.dist-info/RECORD +0 -132
  133. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/top_level.txt +0 -0
brainstate/nn/_stp.py CHANGED
@@ -1,236 +1,236 @@
1
- # Copyright 2025 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- # -*- coding: utf-8 -*-
17
-
18
- from typing import Optional
19
-
20
- import brainunit as u
21
-
22
- from brainstate import init
23
- from brainstate._state import HiddenState
24
- from brainstate.typing import ArrayLike, Size
25
- from ._exp_euler import exp_euler_step
26
- from ._synapse import Synapse
27
-
28
- __all__ = [
29
- 'ShortTermPlasticity', 'STP', 'STD',
30
- ]
31
-
32
-
33
- class ShortTermPlasticity(Synapse):
34
- pass
35
-
36
-
37
- class STP(ShortTermPlasticity):
38
- r"""
39
- Synapse with short-term plasticity.
40
-
41
- This class implements a synapse model with short-term plasticity (STP), which captures
42
- activity-dependent changes in synaptic efficacy that occur over milliseconds to seconds.
43
- The model simultaneously accounts for both short-term facilitation and depression
44
- based on the formulation by Tsodyks & Markram (1998).
45
-
46
- The model is characterized by the following equations:
47
-
48
- $$
49
- \frac{du}{dt} = -\frac{u}{\tau_f} + U \cdot (1 - u) \cdot \delta(t - t_{spike})
50
- $$
51
-
52
- $$
53
- \frac{dx}{dt} = \frac{1 - x}{\tau_d} - u \cdot x \cdot \delta(t - t_{spike})
54
- $$
55
-
56
- $$
57
- g_{syn} = u \cdot x
58
- $$
59
-
60
- where:
61
- - $u$ represents the utilization of synaptic efficacy (facilitation variable)
62
- - $x$ represents the available synaptic resources (depression variable)
63
- - $\tau_f$ is the facilitation time constant
64
- - $\tau_d$ is the depression time constant
65
- - $U$ is the baseline utilization parameter
66
- - $\delta(t - t_{spike})$ is the Dirac delta function representing presynaptic spikes
67
- - $g_{syn}$ is the effective synaptic conductance
68
-
69
- Parameters
70
- ----------
71
- in_size : Size
72
- Size of the input.
73
- name : str, optional
74
- Name of the synapse instance.
75
- U : ArrayLike, default=0.15
76
- Baseline utilization parameter (fraction of resources used per action potential).
77
- tau_f : ArrayLike, default=1500.*u.ms
78
- Time constant of short-term facilitation in milliseconds.
79
- tau_d : ArrayLike, default=200.*u.ms
80
- Time constant of short-term depression (recovery of synaptic resources) in milliseconds.
81
-
82
- Attributes
83
- ----------
84
- u : HiddenState
85
- Utilization of synaptic efficacy (facilitation variable).
86
- x : HiddenState
87
- Available synaptic resources (depression variable).
88
-
89
- Notes
90
- -----
91
- - Larger values of tau_f produce stronger facilitation effects.
92
- - Larger values of tau_d lead to slower recovery from depression.
93
- - The parameter U controls the initial release probability.
94
- - The effective synaptic strength is the product of u and x.
95
-
96
- References
97
- ----------
98
- .. [1] Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
99
- pyramidal neurons depends on neurotransmitter release probability.
100
- Proceedings of the National Academy of Sciences, 94(2), 719-723.
101
- .. [2] Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic
102
- synapses. Neural computation, 10(4), 821-835.
103
- """
104
- __module__ = 'brainstate.nn'
105
-
106
- def __init__(
107
- self,
108
- in_size: Size,
109
- name: Optional[str] = None,
110
- U: ArrayLike = 0.15,
111
- tau_f: ArrayLike = 1500. * u.ms,
112
- tau_d: ArrayLike = 200. * u.ms,
113
- ):
114
- super().__init__(name=name, in_size=in_size)
115
-
116
- # parameters
117
- self.tau_f = init.param(tau_f, self.varshape)
118
- self.tau_d = init.param(tau_d, self.varshape)
119
- self.U = init.param(U, self.varshape)
120
-
121
- def init_state(self, batch_size: int = None, **kwargs):
122
- self.x = HiddenState(init.param(init.Constant(1.), self.varshape, batch_size))
123
- self.u = HiddenState(init.param(init.Constant(self.U), self.varshape, batch_size))
124
-
125
- def reset_state(self, batch_size: int = None, **kwargs):
126
- self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
127
- self.u.value = init.param(init.Constant(self.U), self.varshape, batch_size)
128
-
129
- def update(self, pre_spike):
130
- u = exp_euler_step(lambda u: - u / self.tau_f, self.u.value)
131
- x = exp_euler_step(lambda x: (1 - x) / self.tau_d, self.x.value)
132
-
133
- # --- original code:
134
- # if pre_spike.dtype == jax.numpy.bool_:
135
- # u = bm.where(pre_spike, u + self.U * (1 - self.u), u)
136
- # x = bm.where(pre_spike, x - u * self.x, x)
137
- # else:
138
- # u = pre_spike * (u + self.U * (1 - self.u)) + (1 - pre_spike) * u
139
- # x = pre_spike * (x - u * self.x) + (1 - pre_spike) * x
140
-
141
- # --- simplified code:
142
- u = u + pre_spike * self.U * (1 - self.u.value)
143
- x = x - pre_spike * u * self.x.value
144
-
145
- self.u.value = u
146
- self.x.value = x
147
- return u * x * pre_spike
148
-
149
-
150
- class STD(ShortTermPlasticity):
151
- r"""
152
- Synapse with short-term depression.
153
-
154
- This class implements a synapse model with short-term depression (STD), which captures
155
- activity-dependent reduction in synaptic efficacy, typically caused by depletion of
156
- neurotransmitter vesicles following repeated stimulation.
157
-
158
- The model is characterized by the following equation:
159
-
160
- $$
161
- \frac{dx}{dt} = \frac{1 - x}{\tau} - U \cdot x \cdot \delta(t - t_{spike})
162
- $$
163
-
164
- $$
165
- g_{syn} = x
166
- $$
167
-
168
- where:
169
- - $x$ represents the available synaptic resources (depression variable)
170
- - $\tau$ is the depression recovery time constant
171
- - $U$ is the utilization parameter (fraction of resources depleted per spike)
172
- - $\delta(t - t_{spike})$ is the Dirac delta function representing presynaptic spikes
173
- - $g_{syn}$ is the effective synaptic conductance
174
-
175
- Parameters
176
- ----------
177
- in_size : Size
178
- Size of the input.
179
- name : str, optional
180
- Name of the synapse instance.
181
- tau : ArrayLike, default=200.*u.ms
182
- Time constant governing recovery of synaptic resources in milliseconds.
183
- U : ArrayLike, default=0.07
184
- Utilization parameter (fraction of resources used per action potential).
185
-
186
- Attributes
187
- ----------
188
- x : HiddenState
189
- Available synaptic resources (depression variable).
190
-
191
- Notes
192
- -----
193
- - Larger values of tau lead to slower recovery from depression.
194
- - Larger values of U cause stronger depression with each spike.
195
- - This model is a simplified version of the STP model that only includes depression.
196
-
197
- References
198
- ----------
199
- .. [1] Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic
200
- depression and cortical gain control. Science, 275(5297), 220-224.
201
- .. [2] Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
202
- pyramidal neurons depends on neurotransmitter release probability.
203
- Proceedings of the National Academy of Sciences, 94(2), 719-723.
204
- """
205
- __module__ = 'brainstate.nn'
206
-
207
- def __init__(
208
- self,
209
- in_size: Size,
210
- name: Optional[str] = None,
211
- # synapse parameters
212
- tau: ArrayLike = 200. * u.ms,
213
- U: ArrayLike = 0.07,
214
- ):
215
- super().__init__(name=name, in_size=in_size)
216
-
217
- # parameters
218
- self.tau = init.param(tau, self.varshape)
219
- self.U = init.param(U, self.varshape)
220
-
221
- def init_state(self, batch_size: int = None, **kwargs):
222
- self.x = HiddenState(init.param(init.Constant(1.), self.varshape, batch_size))
223
-
224
- def reset_state(self, batch_size: int = None, **kwargs):
225
- self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
226
-
227
- def update(self, pre_spike):
228
- x = exp_euler_step(lambda x: (1 - x) / self.tau, self.x.value)
229
-
230
- # --- original code:
231
- # self.x.value = bm.where(pre_spike, x - self.U * self.x, x)
232
-
233
- # --- simplified code:
234
- self.x.value = x - pre_spike * self.U * self.x.value
235
-
236
- return self.x.value * pre_spike
1
+ # Copyright 2025 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # -*- coding: utf-8 -*-
17
+
18
+ from typing import Optional
19
+
20
+ import brainunit as u
21
+
22
+ from brainstate import init
23
+ from brainstate._state import HiddenState
24
+ from brainstate.typing import ArrayLike, Size
25
+ from ._exp_euler import exp_euler_step
26
+ from ._synapse import Synapse
27
+
28
+ __all__ = [
29
+ 'ShortTermPlasticity', 'STP', 'STD',
30
+ ]
31
+
32
+
33
+ class ShortTermPlasticity(Synapse):
34
+ pass
35
+
36
+
37
+ class STP(ShortTermPlasticity):
38
+ r"""
39
+ Synapse with short-term plasticity.
40
+
41
+ This class implements a synapse model with short-term plasticity (STP), which captures
42
+ activity-dependent changes in synaptic efficacy that occur over milliseconds to seconds.
43
+ The model simultaneously accounts for both short-term facilitation and depression
44
+ based on the formulation by Tsodyks & Markram (1998).
45
+
46
+ The model is characterized by the following equations:
47
+
48
+ $$
49
+ \frac{du}{dt} = -\frac{u}{\tau_f} + U \cdot (1 - u) \cdot \delta(t - t_{spike})
50
+ $$
51
+
52
+ $$
53
+ \frac{dx}{dt} = \frac{1 - x}{\tau_d} - u \cdot x \cdot \delta(t - t_{spike})
54
+ $$
55
+
56
+ $$
57
+ g_{syn} = u \cdot x
58
+ $$
59
+
60
+ where:
61
+ - $u$ represents the utilization of synaptic efficacy (facilitation variable)
62
+ - $x$ represents the available synaptic resources (depression variable)
63
+ - $\tau_f$ is the facilitation time constant
64
+ - $\tau_d$ is the depression time constant
65
+ - $U$ is the baseline utilization parameter
66
+ - $\delta(t - t_{spike})$ is the Dirac delta function representing presynaptic spikes
67
+ - $g_{syn}$ is the effective synaptic conductance
68
+
69
+ Parameters
70
+ ----------
71
+ in_size : Size
72
+ Size of the input.
73
+ name : str, optional
74
+ Name of the synapse instance.
75
+ U : ArrayLike, default=0.15
76
+ Baseline utilization parameter (fraction of resources used per action potential).
77
+ tau_f : ArrayLike, default=1500.*u.ms
78
+ Time constant of short-term facilitation in milliseconds.
79
+ tau_d : ArrayLike, default=200.*u.ms
80
+ Time constant of short-term depression (recovery of synaptic resources) in milliseconds.
81
+
82
+ Attributes
83
+ ----------
84
+ u : HiddenState
85
+ Utilization of synaptic efficacy (facilitation variable).
86
+ x : HiddenState
87
+ Available synaptic resources (depression variable).
88
+
89
+ Notes
90
+ -----
91
+ - Larger values of tau_f produce stronger facilitation effects.
92
+ - Larger values of tau_d lead to slower recovery from depression.
93
+ - The parameter U controls the initial release probability.
94
+ - The effective synaptic strength is the product of u and x.
95
+
96
+ References
97
+ ----------
98
+ .. [1] Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
99
+ pyramidal neurons depends on neurotransmitter release probability.
100
+ Proceedings of the National Academy of Sciences, 94(2), 719-723.
101
+ .. [2] Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic
102
+ synapses. Neural computation, 10(4), 821-835.
103
+ """
104
+ __module__ = 'brainstate.nn'
105
+
106
+ def __init__(
107
+ self,
108
+ in_size: Size,
109
+ name: Optional[str] = None,
110
+ U: ArrayLike = 0.15,
111
+ tau_f: ArrayLike = 1500. * u.ms,
112
+ tau_d: ArrayLike = 200. * u.ms,
113
+ ):
114
+ super().__init__(name=name, in_size=in_size)
115
+
116
+ # parameters
117
+ self.tau_f = init.param(tau_f, self.varshape)
118
+ self.tau_d = init.param(tau_d, self.varshape)
119
+ self.U = init.param(U, self.varshape)
120
+
121
+ def init_state(self, batch_size: int = None, **kwargs):
122
+ self.x = HiddenState(init.param(init.Constant(1.), self.varshape, batch_size))
123
+ self.u = HiddenState(init.param(init.Constant(self.U), self.varshape, batch_size))
124
+
125
+ def reset_state(self, batch_size: int = None, **kwargs):
126
+ self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
127
+ self.u.value = init.param(init.Constant(self.U), self.varshape, batch_size)
128
+
129
+ def update(self, pre_spike):
130
+ u = exp_euler_step(lambda u: - u / self.tau_f, self.u.value)
131
+ x = exp_euler_step(lambda x: (1 - x) / self.tau_d, self.x.value)
132
+
133
+ # --- original code:
134
+ # if pre_spike.dtype == jax.numpy.bool_:
135
+ # u = bm.where(pre_spike, u + self.U * (1 - self.u), u)
136
+ # x = bm.where(pre_spike, x - u * self.x, x)
137
+ # else:
138
+ # u = pre_spike * (u + self.U * (1 - self.u)) + (1 - pre_spike) * u
139
+ # x = pre_spike * (x - u * self.x) + (1 - pre_spike) * x
140
+
141
+ # --- simplified code:
142
+ u = u + pre_spike * self.U * (1 - self.u.value)
143
+ x = x - pre_spike * u * self.x.value
144
+
145
+ self.u.value = u
146
+ self.x.value = x
147
+ return u * x * pre_spike
148
+
149
+
150
+ class STD(ShortTermPlasticity):
151
+ r"""
152
+ Synapse with short-term depression.
153
+
154
+ This class implements a synapse model with short-term depression (STD), which captures
155
+ activity-dependent reduction in synaptic efficacy, typically caused by depletion of
156
+ neurotransmitter vesicles following repeated stimulation.
157
+
158
+ The model is characterized by the following equation:
159
+
160
+ $$
161
+ \frac{dx}{dt} = \frac{1 - x}{\tau} - U \cdot x \cdot \delta(t - t_{spike})
162
+ $$
163
+
164
+ $$
165
+ g_{syn} = x
166
+ $$
167
+
168
+ where:
169
+ - $x$ represents the available synaptic resources (depression variable)
170
+ - $\tau$ is the depression recovery time constant
171
+ - $U$ is the utilization parameter (fraction of resources depleted per spike)
172
+ - $\delta(t - t_{spike})$ is the Dirac delta function representing presynaptic spikes
173
+ - $g_{syn}$ is the effective synaptic conductance
174
+
175
+ Parameters
176
+ ----------
177
+ in_size : Size
178
+ Size of the input.
179
+ name : str, optional
180
+ Name of the synapse instance.
181
+ tau : ArrayLike, default=200.*u.ms
182
+ Time constant governing recovery of synaptic resources in milliseconds.
183
+ U : ArrayLike, default=0.07
184
+ Utilization parameter (fraction of resources used per action potential).
185
+
186
+ Attributes
187
+ ----------
188
+ x : HiddenState
189
+ Available synaptic resources (depression variable).
190
+
191
+ Notes
192
+ -----
193
+ - Larger values of tau lead to slower recovery from depression.
194
+ - Larger values of U cause stronger depression with each spike.
195
+ - This model is a simplified version of the STP model that only includes depression.
196
+
197
+ References
198
+ ----------
199
+ .. [1] Abbott, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic
200
+ depression and cortical gain control. Science, 275(5297), 220-224.
201
+ .. [2] Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical
202
+ pyramidal neurons depends on neurotransmitter release probability.
203
+ Proceedings of the National Academy of Sciences, 94(2), 719-723.
204
+ """
205
+ __module__ = 'brainstate.nn'
206
+
207
+ def __init__(
208
+ self,
209
+ in_size: Size,
210
+ name: Optional[str] = None,
211
+ # synapse parameters
212
+ tau: ArrayLike = 200. * u.ms,
213
+ U: ArrayLike = 0.07,
214
+ ):
215
+ super().__init__(name=name, in_size=in_size)
216
+
217
+ # parameters
218
+ self.tau = init.param(tau, self.varshape)
219
+ self.U = init.param(U, self.varshape)
220
+
221
+ def init_state(self, batch_size: int = None, **kwargs):
222
+ self.x = HiddenState(init.param(init.Constant(1.), self.varshape, batch_size))
223
+
224
+ def reset_state(self, batch_size: int = None, **kwargs):
225
+ self.x.value = init.param(init.Constant(1.), self.varshape, batch_size)
226
+
227
+ def update(self, pre_spike):
228
+ x = exp_euler_step(lambda x: (1 - x) / self.tau, self.x.value)
229
+
230
+ # --- original code:
231
+ # self.x.value = bm.where(pre_spike, x - self.U * self.x, x)
232
+
233
+ # --- simplified code:
234
+ self.x.value = x - pre_spike * self.U * self.x.value
235
+
236
+ return self.x.value * pre_spike