brainstate 0.1.8__py2.py3-none-any.whl → 0.1.10__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. brainstate/__init__.py +58 -51
  2. brainstate/_compatible_import.py +148 -148
  3. brainstate/_state.py +1605 -1663
  4. brainstate/_state_test.py +52 -52
  5. brainstate/_utils.py +47 -47
  6. brainstate/augment/__init__.py +30 -30
  7. brainstate/augment/_autograd.py +778 -778
  8. brainstate/augment/_autograd_test.py +1289 -1289
  9. brainstate/augment/_eval_shape.py +99 -99
  10. brainstate/augment/_eval_shape_test.py +38 -38
  11. brainstate/augment/_mapping.py +1060 -1060
  12. brainstate/augment/_mapping_test.py +597 -597
  13. brainstate/augment/_random.py +151 -151
  14. brainstate/compile/__init__.py +38 -38
  15. brainstate/compile/_ad_checkpoint.py +204 -204
  16. brainstate/compile/_ad_checkpoint_test.py +49 -49
  17. brainstate/compile/_conditions.py +256 -256
  18. brainstate/compile/_conditions_test.py +220 -220
  19. brainstate/compile/_error_if.py +92 -92
  20. brainstate/compile/_error_if_test.py +52 -52
  21. brainstate/compile/_jit.py +346 -346
  22. brainstate/compile/_jit_test.py +143 -143
  23. brainstate/compile/_loop_collect_return.py +536 -536
  24. brainstate/compile/_loop_collect_return_test.py +58 -58
  25. brainstate/compile/_loop_no_collection.py +184 -184
  26. brainstate/compile/_loop_no_collection_test.py +50 -50
  27. brainstate/compile/_make_jaxpr.py +888 -888
  28. brainstate/compile/_make_jaxpr_test.py +156 -156
  29. brainstate/compile/_progress_bar.py +202 -202
  30. brainstate/compile/_unvmap.py +159 -159
  31. brainstate/compile/_util.py +147 -147
  32. brainstate/environ.py +563 -563
  33. brainstate/environ_test.py +62 -62
  34. brainstate/functional/__init__.py +27 -26
  35. brainstate/graph/__init__.py +29 -29
  36. brainstate/graph/_graph_node.py +244 -244
  37. brainstate/graph/_graph_node_test.py +73 -73
  38. brainstate/graph/_graph_operation.py +1738 -1738
  39. brainstate/graph/_graph_operation_test.py +563 -563
  40. brainstate/init/__init__.py +26 -26
  41. brainstate/init/_base.py +52 -52
  42. brainstate/init/_generic.py +244 -244
  43. brainstate/init/_random_inits.py +553 -553
  44. brainstate/init/_random_inits_test.py +149 -149
  45. brainstate/init/_regular_inits.py +105 -105
  46. brainstate/init/_regular_inits_test.py +50 -50
  47. brainstate/mixin.py +365 -363
  48. brainstate/mixin_test.py +77 -73
  49. brainstate/nn/__init__.py +135 -131
  50. brainstate/{functional → nn}/_activations.py +808 -813
  51. brainstate/{functional → nn}/_activations_test.py +331 -331
  52. brainstate/nn/_collective_ops.py +514 -514
  53. brainstate/nn/_collective_ops_test.py +43 -43
  54. brainstate/nn/_common.py +178 -178
  55. brainstate/nn/_conv.py +501 -501
  56. brainstate/nn/_conv_test.py +238 -238
  57. brainstate/nn/_delay.py +588 -502
  58. brainstate/nn/_delay_test.py +238 -184
  59. brainstate/nn/_dropout.py +426 -426
  60. brainstate/nn/_dropout_test.py +100 -100
  61. brainstate/nn/_dynamics.py +1343 -1343
  62. brainstate/nn/_dynamics_test.py +78 -78
  63. brainstate/nn/_elementwise.py +1119 -1119
  64. brainstate/nn/_elementwise_test.py +169 -169
  65. brainstate/nn/_embedding.py +58 -58
  66. brainstate/nn/_exp_euler.py +92 -92
  67. brainstate/nn/_exp_euler_test.py +35 -35
  68. brainstate/nn/_fixedprob.py +239 -239
  69. brainstate/nn/_fixedprob_test.py +114 -114
  70. brainstate/nn/_inputs.py +608 -608
  71. brainstate/nn/_linear.py +424 -424
  72. brainstate/nn/_linear_mv.py +83 -83
  73. brainstate/nn/_linear_mv_test.py +120 -120
  74. brainstate/nn/_linear_test.py +107 -107
  75. brainstate/nn/_ltp.py +28 -28
  76. brainstate/nn/_module.py +377 -377
  77. brainstate/nn/_module_test.py +40 -40
  78. brainstate/nn/_neuron.py +705 -705
  79. brainstate/nn/_neuron_test.py +161 -161
  80. brainstate/nn/_normalizations.py +975 -918
  81. brainstate/nn/_normalizations_test.py +73 -73
  82. brainstate/{functional → nn}/_others.py +46 -46
  83. brainstate/nn/_poolings.py +1177 -1177
  84. brainstate/nn/_poolings_test.py +217 -217
  85. brainstate/nn/_projection.py +486 -486
  86. brainstate/nn/_rate_rnns.py +554 -554
  87. brainstate/nn/_rate_rnns_test.py +63 -63
  88. brainstate/nn/_readout.py +209 -209
  89. brainstate/nn/_readout_test.py +53 -53
  90. brainstate/nn/_stp.py +236 -236
  91. brainstate/nn/_synapse.py +505 -505
  92. brainstate/nn/_synapse_test.py +131 -131
  93. brainstate/nn/_synaptic_projection.py +423 -423
  94. brainstate/nn/_synouts.py +162 -162
  95. brainstate/nn/_synouts_test.py +57 -57
  96. brainstate/nn/_utils.py +89 -89
  97. brainstate/nn/metrics.py +388 -388
  98. brainstate/optim/__init__.py +38 -38
  99. brainstate/optim/_base.py +64 -64
  100. brainstate/optim/_lr_scheduler.py +448 -448
  101. brainstate/optim/_lr_scheduler_test.py +50 -50
  102. brainstate/optim/_optax_optimizer.py +152 -152
  103. brainstate/optim/_optax_optimizer_test.py +53 -53
  104. brainstate/optim/_sgd_optimizer.py +1104 -1104
  105. brainstate/random/__init__.py +24 -24
  106. brainstate/random/_rand_funs.py +3616 -3616
  107. brainstate/random/_rand_funs_test.py +567 -567
  108. brainstate/random/_rand_seed.py +210 -210
  109. brainstate/random/_rand_seed_test.py +48 -48
  110. brainstate/random/_rand_state.py +1409 -1409
  111. brainstate/random/_random_for_unit.py +52 -52
  112. brainstate/surrogate.py +1957 -1957
  113. brainstate/transform.py +23 -23
  114. brainstate/typing.py +304 -304
  115. brainstate/util/__init__.py +50 -50
  116. brainstate/util/caller.py +98 -98
  117. brainstate/util/error.py +55 -55
  118. brainstate/util/filter.py +469 -469
  119. brainstate/util/others.py +540 -540
  120. brainstate/util/pretty_pytree.py +945 -945
  121. brainstate/util/pretty_pytree_test.py +159 -159
  122. brainstate/util/pretty_repr.py +328 -328
  123. brainstate/util/pretty_table.py +2954 -2954
  124. brainstate/util/scaling.py +258 -258
  125. brainstate/util/struct.py +523 -523
  126. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/METADATA +91 -99
  127. brainstate-0.1.10.dist-info/RECORD +130 -0
  128. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/WHEEL +1 -1
  129. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info/licenses}/LICENSE +202 -202
  130. brainstate/functional/_normalization.py +0 -81
  131. brainstate/functional/_spikes.py +0 -204
  132. brainstate-0.1.8.dist-info/RECORD +0 -132
  133. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/top_level.txt +0 -0
@@ -1,99 +1,99 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- import functools
17
- from typing import Any, TypeVar, Callable, Sequence, Union
18
-
19
- import jax
20
-
21
- from brainstate import random
22
- from brainstate.graph import Node, flatten, unflatten
23
- from ._random import restore_rngs
24
-
25
- __all__ = [
26
- 'abstract_init',
27
- ]
28
-
29
- A = TypeVar('A')
30
-
31
-
32
- def abstract_init(
33
- fn: Callable[..., A],
34
- *args: Any,
35
- rngs: Union[random.RandomState, Sequence[random.RandomState]] = random.DEFAULT,
36
- **kwargs: Any,
37
- ) -> A:
38
- """
39
- Compute the shape/dtype of ``fn`` without any FLOPs.
40
-
41
- Here's an example::
42
-
43
- >>> import brainstate
44
- >>> class MLP:
45
- ... def __init__(self, n_in, n_mid, n_out):
46
- ... self.dense1 = brainstate.nn.Linear(n_in, n_mid)
47
- ... self.dense2 = brainstate.nn.Linear(n_mid, n_out)
48
-
49
- >>> r = brainstate.augment.abstract_init(lambda: MLP(1, 2, 3))
50
- >>> r
51
- MLP(
52
- dense1=Linear(
53
- in_size=(1,),
54
- out_size=(2,),
55
- w_mask=None,
56
- weight=ParamState(
57
- value={'bias': ShapeDtypeStruct(shape=(2,), dtype=float32), 'weight': ShapeDtypeStruct(shape=(1, 2), dtype=float32)}
58
- )
59
- ),
60
- dense2=Linear(
61
- in_size=(2,),
62
- out_size=(3,),
63
- w_mask=None,
64
- weight=ParamState(
65
- value={'bias': ShapeDtypeStruct(shape=(3,), dtype=float32), 'weight': ShapeDtypeStruct(shape=(2, 3), dtype=float32)}
66
- )
67
- )
68
- )
69
-
70
- Args:
71
- fn: The function whose output shape should be evaluated.
72
- *args: a positional argument tuple of arrays, scalars, or (nested) standard
73
- Python containers (tuples, lists, dicts, namedtuples, i.e. pytrees) of
74
- those types. Since only the ``shape`` and ``dtype`` attributes are
75
- accessed, one can use :class:`jax.ShapeDtypeStruct` or another container
76
- that duck-types as ndarrays (note however that duck-typed objects cannot
77
- be namedtuples because those are treated as standard Python containers).
78
- **kwargs: a keyword argument dict of arrays, scalars, or (nested) standard
79
- Python containers (pytrees) of those types. As in ``args``, array values
80
- need only be duck-typed to have ``shape`` and ``dtype`` attributes.
81
- rngs: a :class:`RandomState` or a sequence of :class:`RandomState` objects
82
- representing the random number generators to use. If not provided, the
83
- default random number generator will be used.
84
-
85
- Returns:
86
- out: a nested PyTree containing :class:`jax.ShapeDtypeStruct` objects as leaves.
87
-
88
- """
89
-
90
- @functools.wraps(fn)
91
- @restore_rngs(rngs=rngs)
92
- def _eval_shape_fn(*args_, **kwargs_):
93
- out = fn(*args_, **kwargs_)
94
- assert isinstance(out, Node), 'The output of the function must be Node'
95
- graph_def, treefy_states = flatten(out)
96
- return graph_def, treefy_states
97
-
98
- graph_def_, treefy_states_ = jax.eval_shape(_eval_shape_fn, *args, **kwargs)
99
- return unflatten(graph_def_, treefy_states_)
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import functools
17
+ from typing import Any, TypeVar, Callable, Sequence, Union
18
+
19
+ import jax
20
+
21
+ from brainstate import random
22
+ from brainstate.graph import Node, flatten, unflatten
23
+ from ._random import restore_rngs
24
+
25
+ __all__ = [
26
+ 'abstract_init',
27
+ ]
28
+
29
+ A = TypeVar('A')
30
+
31
+
32
+ def abstract_init(
33
+ fn: Callable[..., A],
34
+ *args: Any,
35
+ rngs: Union[random.RandomState, Sequence[random.RandomState]] = random.DEFAULT,
36
+ **kwargs: Any,
37
+ ) -> A:
38
+ """
39
+ Compute the shape/dtype of ``fn`` without any FLOPs.
40
+
41
+ Here's an example::
42
+
43
+ >>> import brainstate
44
+ >>> class MLP:
45
+ ... def __init__(self, n_in, n_mid, n_out):
46
+ ... self.dense1 = brainstate.nn.Linear(n_in, n_mid)
47
+ ... self.dense2 = brainstate.nn.Linear(n_mid, n_out)
48
+
49
+ >>> r = brainstate.augment.abstract_init(lambda: MLP(1, 2, 3))
50
+ >>> r
51
+ MLP(
52
+ dense1=Linear(
53
+ in_size=(1,),
54
+ out_size=(2,),
55
+ w_mask=None,
56
+ weight=ParamState(
57
+ value={'bias': ShapeDtypeStruct(shape=(2,), dtype=float32), 'weight': ShapeDtypeStruct(shape=(1, 2), dtype=float32)}
58
+ )
59
+ ),
60
+ dense2=Linear(
61
+ in_size=(2,),
62
+ out_size=(3,),
63
+ w_mask=None,
64
+ weight=ParamState(
65
+ value={'bias': ShapeDtypeStruct(shape=(3,), dtype=float32), 'weight': ShapeDtypeStruct(shape=(2, 3), dtype=float32)}
66
+ )
67
+ )
68
+ )
69
+
70
+ Args:
71
+ fn: The function whose output shape should be evaluated.
72
+ *args: a positional argument tuple of arrays, scalars, or (nested) standard
73
+ Python containers (tuples, lists, dicts, namedtuples, i.e. pytrees) of
74
+ those types. Since only the ``shape`` and ``dtype`` attributes are
75
+ accessed, one can use :class:`jax.ShapeDtypeStruct` or another container
76
+ that duck-types as ndarrays (note however that duck-typed objects cannot
77
+ be namedtuples because those are treated as standard Python containers).
78
+ **kwargs: a keyword argument dict of arrays, scalars, or (nested) standard
79
+ Python containers (pytrees) of those types. As in ``args``, array values
80
+ need only be duck-typed to have ``shape`` and ``dtype`` attributes.
81
+ rngs: a :class:`RandomState` or a sequence of :class:`RandomState` objects
82
+ representing the random number generators to use. If not provided, the
83
+ default random number generator will be used.
84
+
85
+ Returns:
86
+ out: a nested PyTree containing :class:`jax.ShapeDtypeStruct` objects as leaves.
87
+
88
+ """
89
+
90
+ @functools.wraps(fn)
91
+ @restore_rngs(rngs=rngs)
92
+ def _eval_shape_fn(*args_, **kwargs_):
93
+ out = fn(*args_, **kwargs_)
94
+ assert isinstance(out, Node), 'The output of the function must be Node'
95
+ graph_def, treefy_states = flatten(out)
96
+ return graph_def, treefy_states
97
+
98
+ graph_def_, treefy_states_ = jax.eval_shape(_eval_shape_fn, *args, **kwargs)
99
+ return unflatten(graph_def_, treefy_states_)
@@ -1,38 +1,38 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import unittest
18
-
19
- import brainstate
20
-
21
-
22
- class TestEvalShape(unittest.TestCase):
23
- def test1(self):
24
- class MLP(brainstate.nn.Module):
25
- def __init__(self, n_in, n_mid, n_out):
26
- super().__init__()
27
- self.dense1 = brainstate.nn.Linear(n_in, n_mid)
28
- self.dense2 = brainstate.nn.Linear(n_mid, n_out)
29
-
30
- def __call__(self, x):
31
- x = self.dense1(x)
32
- x = brainstate.functional.relu(x)
33
- x = self.dense2(x)
34
- return x
35
-
36
- r = brainstate.augment.abstract_init(lambda: MLP(1, 2, 3))
37
- print(r)
38
- print(brainstate.random.DEFAULT)
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ import unittest
18
+
19
+ import brainstate
20
+
21
+
22
+ class TestEvalShape(unittest.TestCase):
23
+ def test1(self):
24
+ class MLP(brainstate.nn.Module):
25
+ def __init__(self, n_in, n_mid, n_out):
26
+ super().__init__()
27
+ self.dense1 = brainstate.nn.Linear(n_in, n_mid)
28
+ self.dense2 = brainstate.nn.Linear(n_mid, n_out)
29
+
30
+ def __call__(self, x):
31
+ x = self.dense1(x)
32
+ x = brainstate.functional.relu(x)
33
+ x = self.dense2(x)
34
+ return x
35
+
36
+ r = brainstate.augment.abstract_init(lambda: MLP(1, 2, 3))
37
+ print(r)
38
+ print(brainstate.random.DEFAULT)