brainstate 0.1.8__py2.py3-none-any.whl → 0.1.10__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +58 -51
- brainstate/_compatible_import.py +148 -148
- brainstate/_state.py +1605 -1663
- brainstate/_state_test.py +52 -52
- brainstate/_utils.py +47 -47
- brainstate/augment/__init__.py +30 -30
- brainstate/augment/_autograd.py +778 -778
- brainstate/augment/_autograd_test.py +1289 -1289
- brainstate/augment/_eval_shape.py +99 -99
- brainstate/augment/_eval_shape_test.py +38 -38
- brainstate/augment/_mapping.py +1060 -1060
- brainstate/augment/_mapping_test.py +597 -597
- brainstate/augment/_random.py +151 -151
- brainstate/compile/__init__.py +38 -38
- brainstate/compile/_ad_checkpoint.py +204 -204
- brainstate/compile/_ad_checkpoint_test.py +49 -49
- brainstate/compile/_conditions.py +256 -256
- brainstate/compile/_conditions_test.py +220 -220
- brainstate/compile/_error_if.py +92 -92
- brainstate/compile/_error_if_test.py +52 -52
- brainstate/compile/_jit.py +346 -346
- brainstate/compile/_jit_test.py +143 -143
- brainstate/compile/_loop_collect_return.py +536 -536
- brainstate/compile/_loop_collect_return_test.py +58 -58
- brainstate/compile/_loop_no_collection.py +184 -184
- brainstate/compile/_loop_no_collection_test.py +50 -50
- brainstate/compile/_make_jaxpr.py +888 -888
- brainstate/compile/_make_jaxpr_test.py +156 -156
- brainstate/compile/_progress_bar.py +202 -202
- brainstate/compile/_unvmap.py +159 -159
- brainstate/compile/_util.py +147 -147
- brainstate/environ.py +563 -563
- brainstate/environ_test.py +62 -62
- brainstate/functional/__init__.py +27 -26
- brainstate/graph/__init__.py +29 -29
- brainstate/graph/_graph_node.py +244 -244
- brainstate/graph/_graph_node_test.py +73 -73
- brainstate/graph/_graph_operation.py +1738 -1738
- brainstate/graph/_graph_operation_test.py +563 -563
- brainstate/init/__init__.py +26 -26
- brainstate/init/_base.py +52 -52
- brainstate/init/_generic.py +244 -244
- brainstate/init/_random_inits.py +553 -553
- brainstate/init/_random_inits_test.py +149 -149
- brainstate/init/_regular_inits.py +105 -105
- brainstate/init/_regular_inits_test.py +50 -50
- brainstate/mixin.py +365 -363
- brainstate/mixin_test.py +77 -73
- brainstate/nn/__init__.py +135 -131
- brainstate/{functional → nn}/_activations.py +808 -813
- brainstate/{functional → nn}/_activations_test.py +331 -331
- brainstate/nn/_collective_ops.py +514 -514
- brainstate/nn/_collective_ops_test.py +43 -43
- brainstate/nn/_common.py +178 -178
- brainstate/nn/_conv.py +501 -501
- brainstate/nn/_conv_test.py +238 -238
- brainstate/nn/_delay.py +588 -502
- brainstate/nn/_delay_test.py +238 -184
- brainstate/nn/_dropout.py +426 -426
- brainstate/nn/_dropout_test.py +100 -100
- brainstate/nn/_dynamics.py +1343 -1343
- brainstate/nn/_dynamics_test.py +78 -78
- brainstate/nn/_elementwise.py +1119 -1119
- brainstate/nn/_elementwise_test.py +169 -169
- brainstate/nn/_embedding.py +58 -58
- brainstate/nn/_exp_euler.py +92 -92
- brainstate/nn/_exp_euler_test.py +35 -35
- brainstate/nn/_fixedprob.py +239 -239
- brainstate/nn/_fixedprob_test.py +114 -114
- brainstate/nn/_inputs.py +608 -608
- brainstate/nn/_linear.py +424 -424
- brainstate/nn/_linear_mv.py +83 -83
- brainstate/nn/_linear_mv_test.py +120 -120
- brainstate/nn/_linear_test.py +107 -107
- brainstate/nn/_ltp.py +28 -28
- brainstate/nn/_module.py +377 -377
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_neuron.py +705 -705
- brainstate/nn/_neuron_test.py +161 -161
- brainstate/nn/_normalizations.py +975 -918
- brainstate/nn/_normalizations_test.py +73 -73
- brainstate/{functional → nn}/_others.py +46 -46
- brainstate/nn/_poolings.py +1177 -1177
- brainstate/nn/_poolings_test.py +217 -217
- brainstate/nn/_projection.py +486 -486
- brainstate/nn/_rate_rnns.py +554 -554
- brainstate/nn/_rate_rnns_test.py +63 -63
- brainstate/nn/_readout.py +209 -209
- brainstate/nn/_readout_test.py +53 -53
- brainstate/nn/_stp.py +236 -236
- brainstate/nn/_synapse.py +505 -505
- brainstate/nn/_synapse_test.py +131 -131
- brainstate/nn/_synaptic_projection.py +423 -423
- brainstate/nn/_synouts.py +162 -162
- brainstate/nn/_synouts_test.py +57 -57
- brainstate/nn/_utils.py +89 -89
- brainstate/nn/metrics.py +388 -388
- brainstate/optim/__init__.py +38 -38
- brainstate/optim/_base.py +64 -64
- brainstate/optim/_lr_scheduler.py +448 -448
- brainstate/optim/_lr_scheduler_test.py +50 -50
- brainstate/optim/_optax_optimizer.py +152 -152
- brainstate/optim/_optax_optimizer_test.py +53 -53
- brainstate/optim/_sgd_optimizer.py +1104 -1104
- brainstate/random/__init__.py +24 -24
- brainstate/random/_rand_funs.py +3616 -3616
- brainstate/random/_rand_funs_test.py +567 -567
- brainstate/random/_rand_seed.py +210 -210
- brainstate/random/_rand_seed_test.py +48 -48
- brainstate/random/_rand_state.py +1409 -1409
- brainstate/random/_random_for_unit.py +52 -52
- brainstate/surrogate.py +1957 -1957
- brainstate/transform.py +23 -23
- brainstate/typing.py +304 -304
- brainstate/util/__init__.py +50 -50
- brainstate/util/caller.py +98 -98
- brainstate/util/error.py +55 -55
- brainstate/util/filter.py +469 -469
- brainstate/util/others.py +540 -540
- brainstate/util/pretty_pytree.py +945 -945
- brainstate/util/pretty_pytree_test.py +159 -159
- brainstate/util/pretty_repr.py +328 -328
- brainstate/util/pretty_table.py +2954 -2954
- brainstate/util/scaling.py +258 -258
- brainstate/util/struct.py +523 -523
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/METADATA +91 -99
- brainstate-0.1.10.dist-info/RECORD +130 -0
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/WHEEL +1 -1
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info/licenses}/LICENSE +202 -202
- brainstate/functional/_normalization.py +0 -81
- brainstate/functional/_spikes.py +0 -204
- brainstate-0.1.8.dist-info/RECORD +0 -132
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/top_level.txt +0 -0
brainstate/nn/_exp_euler_test.py
CHANGED
@@ -1,35 +1,35 @@
|
|
1
|
-
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
|
17
|
-
import unittest
|
18
|
-
|
19
|
-
import brainunit as u
|
20
|
-
|
21
|
-
import brainstate
|
22
|
-
|
23
|
-
|
24
|
-
class TestExpEuler(unittest.TestCase):
|
25
|
-
def test1(self):
|
26
|
-
def fun(x, tau):
|
27
|
-
return -x / tau
|
28
|
-
|
29
|
-
with brainstate.environ.context(dt=0.1):
|
30
|
-
with self.assertRaises(AssertionError):
|
31
|
-
r = brainstate.nn.exp_euler_step(fun, 1.0 * u.mV, 1. * u.ms)
|
32
|
-
|
33
|
-
with brainstate.environ.context(dt=1. * u.ms):
|
34
|
-
r = brainstate.nn.exp_euler_step(fun, 1.0 * u.mV, 1. * u.ms)
|
35
|
-
print(r)
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
|
17
|
+
import unittest
|
18
|
+
|
19
|
+
import brainunit as u
|
20
|
+
|
21
|
+
import brainstate
|
22
|
+
|
23
|
+
|
24
|
+
class TestExpEuler(unittest.TestCase):
|
25
|
+
def test1(self):
|
26
|
+
def fun(x, tau):
|
27
|
+
return -x / tau
|
28
|
+
|
29
|
+
with brainstate.environ.context(dt=0.1):
|
30
|
+
with self.assertRaises(AssertionError):
|
31
|
+
r = brainstate.nn.exp_euler_step(fun, 1.0 * u.mV, 1. * u.ms)
|
32
|
+
|
33
|
+
with brainstate.environ.context(dt=1. * u.ms):
|
34
|
+
r = brainstate.nn.exp_euler_step(fun, 1.0 * u.mV, 1. * u.ms)
|
35
|
+
print(r)
|
brainstate/nn/_fixedprob.py
CHANGED
@@ -1,239 +1,239 @@
|
|
1
|
-
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
|
17
|
-
from typing import Union, Callable, Optional
|
18
|
-
|
19
|
-
import brainevent
|
20
|
-
import brainunit as u
|
21
|
-
import jax
|
22
|
-
import jax.numpy as jnp
|
23
|
-
import numpy as np
|
24
|
-
|
25
|
-
from brainstate import random, augment, environ, init
|
26
|
-
from brainstate._state import ParamState, FakeState
|
27
|
-
from brainstate.compile import for_loop
|
28
|
-
from brainstate.typing import Size, ArrayLike
|
29
|
-
from ._module import Module
|
30
|
-
|
31
|
-
__all__ = [
|
32
|
-
'FixedNumConn',
|
33
|
-
'EventFixedNumConn',
|
34
|
-
'EventFixedProb',
|
35
|
-
]
|
36
|
-
|
37
|
-
|
38
|
-
def init_indices_without_replace(
|
39
|
-
conn_num: int,
|
40
|
-
n_pre: int,
|
41
|
-
n_post: int,
|
42
|
-
seed: int | None,
|
43
|
-
method: str
|
44
|
-
):
|
45
|
-
rng = random.default_rng(seed)
|
46
|
-
|
47
|
-
if method == 'vmap':
|
48
|
-
@augment.vmap(axis_size=n_pre)
|
49
|
-
def rand_indices():
|
50
|
-
return rng.choice(n_post, size=(conn_num,), replace=False)
|
51
|
-
|
52
|
-
return rand_indices()
|
53
|
-
|
54
|
-
elif method == 'for_loop':
|
55
|
-
return for_loop(
|
56
|
-
lambda *args: rng.choice(n_post, size=(conn_num,), replace=False),
|
57
|
-
length=n_pre
|
58
|
-
)
|
59
|
-
|
60
|
-
else:
|
61
|
-
raise ValueError(f"Unknown method: {method}")
|
62
|
-
|
63
|
-
|
64
|
-
class FixedNumConn(Module):
|
65
|
-
"""
|
66
|
-
The ``FixedNumConn`` module implements a fixed probability connection with CSR sparse data structure.
|
67
|
-
|
68
|
-
Parameters
|
69
|
-
----------
|
70
|
-
in_size : Size
|
71
|
-
Number of pre-synaptic neurons, i.e., input size.
|
72
|
-
out_size : Size
|
73
|
-
Number of post-synaptic neurons, i.e., output size.
|
74
|
-
conn_num : float, int
|
75
|
-
If it is a float, representing the probability of connection, i.e., connection probability.
|
76
|
-
|
77
|
-
If it is an integer, representing the number of connections.
|
78
|
-
conn_weight : float or callable or jax.Array or brainunit.Quantity
|
79
|
-
Maximum synaptic conductance, i.e., synaptic weight.
|
80
|
-
efferent_target : str, optional
|
81
|
-
The target of the connection. Default is 'post', meaning that each pre-synaptic neuron connects to
|
82
|
-
a fixed number of post-synaptic neurons. The connection number is determined by the value of ``n_conn``.
|
83
|
-
|
84
|
-
If 'pre', each post-synaptic neuron connects to a fixed number of pre-synaptic neurons.
|
85
|
-
conn_init : str, optional
|
86
|
-
The initialization method of the connection weight. Default is 'vmap', meaning that the connection weight
|
87
|
-
is initialized by parallelized across multiple threads.
|
88
|
-
|
89
|
-
If 'for_loop', the connection weight is initialized by a for loop.
|
90
|
-
allow_multi_conn : bool, optional
|
91
|
-
Whether multiple connections are allowed from a single pre-synaptic neuron.
|
92
|
-
Default is True, meaning that a value of ``a`` can be selected multiple times.
|
93
|
-
seed: int, optional
|
94
|
-
Random seed. Default is None. If None, the default random seed will be used.
|
95
|
-
name : str, optional
|
96
|
-
Name of the module.
|
97
|
-
"""
|
98
|
-
|
99
|
-
__module__ = 'brainstate.nn'
|
100
|
-
|
101
|
-
def __init__(
|
102
|
-
self,
|
103
|
-
in_size: Size,
|
104
|
-
out_size: Size,
|
105
|
-
conn_num: Union[int, float],
|
106
|
-
conn_weight: Union[Callable, ArrayLike],
|
107
|
-
efferent_target: str = 'post', # 'pre' or 'post'
|
108
|
-
afferent_ratio: Union[int, float] = 1.,
|
109
|
-
allow_multi_conn: bool = True,
|
110
|
-
seed: Optional[int] = None,
|
111
|
-
name: Optional[str] = None,
|
112
|
-
conn_init: str = 'vmap', # 'vmap' or 'for_loop'
|
113
|
-
param_type: type = ParamState,
|
114
|
-
):
|
115
|
-
super().__init__(name=name)
|
116
|
-
|
117
|
-
# network parameters
|
118
|
-
self.in_size = in_size
|
119
|
-
self.out_size = out_size
|
120
|
-
self.efferent_target = efferent_target
|
121
|
-
assert efferent_target in ('pre', 'post'), 'The target of the connection must be either "pre" or "post".'
|
122
|
-
assert 0. <= afferent_ratio <= 1., 'Afferent ratio must be in [0, 1].'
|
123
|
-
if isinstance(conn_num, float):
|
124
|
-
assert 0. <= conn_num <= 1., 'Connection probability must be in [0, 1].'
|
125
|
-
conn_num = (int(self.out_size[-1] * conn_num)
|
126
|
-
if efferent_target == 'post' else
|
127
|
-
int(self.in_size[-1] * conn_num))
|
128
|
-
assert isinstance(conn_num, int), 'Connection number must be an integer.'
|
129
|
-
self.conn_num = conn_num
|
130
|
-
self.seed = seed
|
131
|
-
self.allow_multi_conn = allow_multi_conn
|
132
|
-
|
133
|
-
# connections
|
134
|
-
if self.conn_num >= 1:
|
135
|
-
if self.efferent_target == 'post':
|
136
|
-
n_post = self.out_size[-1]
|
137
|
-
n_pre = self.in_size[-1]
|
138
|
-
else:
|
139
|
-
n_post = self.in_size[-1]
|
140
|
-
n_pre = self.out_size[-1]
|
141
|
-
|
142
|
-
with jax.ensure_compile_time_eval():
|
143
|
-
if allow_multi_conn:
|
144
|
-
rng = np.random if seed is None else np.random.RandomState(seed)
|
145
|
-
indices = rng.randint(0, n_post, size=(n_pre, self.conn_num))
|
146
|
-
else:
|
147
|
-
indices = init_indices_without_replace(self.conn_num, n_pre, n_post, seed, conn_init)
|
148
|
-
indices = u.math.asarray(indices, dtype=environ.ditype())
|
149
|
-
|
150
|
-
if afferent_ratio == 1.:
|
151
|
-
conn_weight = u.math.asarray(init.param(conn_weight, (n_pre, self.conn_num), allow_none=False))
|
152
|
-
self.weight = param_type(conn_weight)
|
153
|
-
csr = (
|
154
|
-
brainevent.FixedPostNumConn((conn_weight, indices), shape=(n_pre, n_post))
|
155
|
-
if self.efferent_target == 'post' else
|
156
|
-
brainevent.FixedPreNumConn((conn_weight, indices), shape=(n_pre, n_post))
|
157
|
-
)
|
158
|
-
self.conn = csr
|
159
|
-
|
160
|
-
else:
|
161
|
-
self.pre_selected = np.random.random(n_pre) < afferent_ratio
|
162
|
-
indices = indices[self.pre_selected].flatten()
|
163
|
-
conn_weight = u.math.asarray(init.param(conn_weight, (indices.size,), allow_none=False))
|
164
|
-
self.weight = param_type(conn_weight)
|
165
|
-
indptr = (jnp.arange(1, n_pre + 1) * self.conn_num -
|
166
|
-
jnp.cumsum(~self.pre_selected) * self.conn_num)
|
167
|
-
indptr = jnp.insert(indptr, 0, 0) # insert 0 at the beginning
|
168
|
-
csr = (
|
169
|
-
brainevent.CSR((conn_weight, indices, indptr), shape=(n_pre, n_post))
|
170
|
-
if self.efferent_target == 'post' else
|
171
|
-
brainevent.CSC((conn_weight, indices, indptr), shape=(n_pre, n_post))
|
172
|
-
)
|
173
|
-
self.conn = csr
|
174
|
-
|
175
|
-
else:
|
176
|
-
conn_weight = u.math.asarray(init.param(conn_weight, (), allow_none=False))
|
177
|
-
self.weight = FakeState(conn_weight)
|
178
|
-
|
179
|
-
def update(self, x: jax.Array) -> Union[jax.Array, u.Quantity]:
|
180
|
-
if self.conn_num >= 1:
|
181
|
-
csr = self.conn.with_data(self.weight.value)
|
182
|
-
return x @ csr
|
183
|
-
else:
|
184
|
-
weight = self.weight.value
|
185
|
-
r = u.math.zeros(x.shape[:-1] + (self.out_size[-1],), dtype=weight.dtype)
|
186
|
-
r = u.maybe_decimal(u.Quantity(r, unit=u.get_unit(weight)))
|
187
|
-
return u.math.asarray(r, dtype=environ.dftype())
|
188
|
-
|
189
|
-
|
190
|
-
class EventFixedNumConn(FixedNumConn):
|
191
|
-
"""
|
192
|
-
The FixedProb module implements a fixed probability connection with CSR sparse data structure.
|
193
|
-
|
194
|
-
Parameters
|
195
|
-
----------
|
196
|
-
in_size : Size
|
197
|
-
Number of pre-synaptic neurons, i.e., input size.
|
198
|
-
out_size : Size
|
199
|
-
Number of post-synaptic neurons, i.e., output size.
|
200
|
-
conn_num : float, int
|
201
|
-
If it is a float, representing the probability of connection, i.e., connection probability.
|
202
|
-
|
203
|
-
If it is an integer, representing the number of connections.
|
204
|
-
conn_weight : float or callable or jax.Array or brainunit.Quantity
|
205
|
-
Maximum synaptic conductance, i.e., synaptic weight.
|
206
|
-
conn_target : str, optional
|
207
|
-
The target of the connection. Default is 'post', meaning that each pre-synaptic neuron connects to
|
208
|
-
a fixed number of post-synaptic neurons. The connection number is determined by the value of ``n_conn``.
|
209
|
-
|
210
|
-
If 'pre', each post-synaptic neuron connects to a fixed number of pre-synaptic neurons.
|
211
|
-
conn_init : str, optional
|
212
|
-
The initialization method of the connection weight. Default is 'vmap', meaning that the connection weight
|
213
|
-
is initialized by parallelized across multiple threads.
|
214
|
-
|
215
|
-
If 'for_loop', the connection weight is initialized by a for loop.
|
216
|
-
allow_multi_conn : bool, optional
|
217
|
-
Whether multiple connections are allowed from a single pre-synaptic neuron.
|
218
|
-
Default is True, meaning that a value of ``a`` can be selected multiple times.
|
219
|
-
seed: int, optional
|
220
|
-
Random seed. Default is None. If None, the default random seed will be used.
|
221
|
-
name : str, optional
|
222
|
-
Name of the module.
|
223
|
-
"""
|
224
|
-
|
225
|
-
__module__ = 'brainstate.nn'
|
226
|
-
|
227
|
-
def update(self, spk: jax.Array) -> Union[jax.Array, u.Quantity]:
|
228
|
-
if self.conn_num >= 1:
|
229
|
-
csr = self.conn.with_data(self.weight.value)
|
230
|
-
return brainevent.EventArray(spk) @ csr
|
231
|
-
else:
|
232
|
-
weight = self.weight.value
|
233
|
-
unit = u.get_unit(weight)
|
234
|
-
r = jnp.zeros(spk.shape[:-1] + (self.out_size[-1],), dtype=weight.dtype)
|
235
|
-
r = u.maybe_decimal(u.Quantity(r, unit=unit))
|
236
|
-
return u.math.asarray(r, dtype=environ.dftype())
|
237
|
-
|
238
|
-
|
239
|
-
EventFixedProb = EventFixedNumConn
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
|
17
|
+
from typing import Union, Callable, Optional
|
18
|
+
|
19
|
+
import brainevent
|
20
|
+
import brainunit as u
|
21
|
+
import jax
|
22
|
+
import jax.numpy as jnp
|
23
|
+
import numpy as np
|
24
|
+
|
25
|
+
from brainstate import random, augment, environ, init
|
26
|
+
from brainstate._state import ParamState, FakeState
|
27
|
+
from brainstate.compile import for_loop
|
28
|
+
from brainstate.typing import Size, ArrayLike
|
29
|
+
from ._module import Module
|
30
|
+
|
31
|
+
__all__ = [
|
32
|
+
'FixedNumConn',
|
33
|
+
'EventFixedNumConn',
|
34
|
+
'EventFixedProb',
|
35
|
+
]
|
36
|
+
|
37
|
+
|
38
|
+
def init_indices_without_replace(
|
39
|
+
conn_num: int,
|
40
|
+
n_pre: int,
|
41
|
+
n_post: int,
|
42
|
+
seed: int | None,
|
43
|
+
method: str
|
44
|
+
):
|
45
|
+
rng = random.default_rng(seed)
|
46
|
+
|
47
|
+
if method == 'vmap':
|
48
|
+
@augment.vmap(axis_size=n_pre)
|
49
|
+
def rand_indices():
|
50
|
+
return rng.choice(n_post, size=(conn_num,), replace=False)
|
51
|
+
|
52
|
+
return rand_indices()
|
53
|
+
|
54
|
+
elif method == 'for_loop':
|
55
|
+
return for_loop(
|
56
|
+
lambda *args: rng.choice(n_post, size=(conn_num,), replace=False),
|
57
|
+
length=n_pre
|
58
|
+
)
|
59
|
+
|
60
|
+
else:
|
61
|
+
raise ValueError(f"Unknown method: {method}")
|
62
|
+
|
63
|
+
|
64
|
+
class FixedNumConn(Module):
|
65
|
+
"""
|
66
|
+
The ``FixedNumConn`` module implements a fixed probability connection with CSR sparse data structure.
|
67
|
+
|
68
|
+
Parameters
|
69
|
+
----------
|
70
|
+
in_size : Size
|
71
|
+
Number of pre-synaptic neurons, i.e., input size.
|
72
|
+
out_size : Size
|
73
|
+
Number of post-synaptic neurons, i.e., output size.
|
74
|
+
conn_num : float, int
|
75
|
+
If it is a float, representing the probability of connection, i.e., connection probability.
|
76
|
+
|
77
|
+
If it is an integer, representing the number of connections.
|
78
|
+
conn_weight : float or callable or jax.Array or brainunit.Quantity
|
79
|
+
Maximum synaptic conductance, i.e., synaptic weight.
|
80
|
+
efferent_target : str, optional
|
81
|
+
The target of the connection. Default is 'post', meaning that each pre-synaptic neuron connects to
|
82
|
+
a fixed number of post-synaptic neurons. The connection number is determined by the value of ``n_conn``.
|
83
|
+
|
84
|
+
If 'pre', each post-synaptic neuron connects to a fixed number of pre-synaptic neurons.
|
85
|
+
conn_init : str, optional
|
86
|
+
The initialization method of the connection weight. Default is 'vmap', meaning that the connection weight
|
87
|
+
is initialized by parallelized across multiple threads.
|
88
|
+
|
89
|
+
If 'for_loop', the connection weight is initialized by a for loop.
|
90
|
+
allow_multi_conn : bool, optional
|
91
|
+
Whether multiple connections are allowed from a single pre-synaptic neuron.
|
92
|
+
Default is True, meaning that a value of ``a`` can be selected multiple times.
|
93
|
+
seed: int, optional
|
94
|
+
Random seed. Default is None. If None, the default random seed will be used.
|
95
|
+
name : str, optional
|
96
|
+
Name of the module.
|
97
|
+
"""
|
98
|
+
|
99
|
+
__module__ = 'brainstate.nn'
|
100
|
+
|
101
|
+
def __init__(
|
102
|
+
self,
|
103
|
+
in_size: Size,
|
104
|
+
out_size: Size,
|
105
|
+
conn_num: Union[int, float],
|
106
|
+
conn_weight: Union[Callable, ArrayLike],
|
107
|
+
efferent_target: str = 'post', # 'pre' or 'post'
|
108
|
+
afferent_ratio: Union[int, float] = 1.,
|
109
|
+
allow_multi_conn: bool = True,
|
110
|
+
seed: Optional[int] = None,
|
111
|
+
name: Optional[str] = None,
|
112
|
+
conn_init: str = 'vmap', # 'vmap' or 'for_loop'
|
113
|
+
param_type: type = ParamState,
|
114
|
+
):
|
115
|
+
super().__init__(name=name)
|
116
|
+
|
117
|
+
# network parameters
|
118
|
+
self.in_size = in_size
|
119
|
+
self.out_size = out_size
|
120
|
+
self.efferent_target = efferent_target
|
121
|
+
assert efferent_target in ('pre', 'post'), 'The target of the connection must be either "pre" or "post".'
|
122
|
+
assert 0. <= afferent_ratio <= 1., 'Afferent ratio must be in [0, 1].'
|
123
|
+
if isinstance(conn_num, float):
|
124
|
+
assert 0. <= conn_num <= 1., 'Connection probability must be in [0, 1].'
|
125
|
+
conn_num = (int(self.out_size[-1] * conn_num)
|
126
|
+
if efferent_target == 'post' else
|
127
|
+
int(self.in_size[-1] * conn_num))
|
128
|
+
assert isinstance(conn_num, int), 'Connection number must be an integer.'
|
129
|
+
self.conn_num = conn_num
|
130
|
+
self.seed = seed
|
131
|
+
self.allow_multi_conn = allow_multi_conn
|
132
|
+
|
133
|
+
# connections
|
134
|
+
if self.conn_num >= 1:
|
135
|
+
if self.efferent_target == 'post':
|
136
|
+
n_post = self.out_size[-1]
|
137
|
+
n_pre = self.in_size[-1]
|
138
|
+
else:
|
139
|
+
n_post = self.in_size[-1]
|
140
|
+
n_pre = self.out_size[-1]
|
141
|
+
|
142
|
+
with jax.ensure_compile_time_eval():
|
143
|
+
if allow_multi_conn:
|
144
|
+
rng = np.random if seed is None else np.random.RandomState(seed)
|
145
|
+
indices = rng.randint(0, n_post, size=(n_pre, self.conn_num))
|
146
|
+
else:
|
147
|
+
indices = init_indices_without_replace(self.conn_num, n_pre, n_post, seed, conn_init)
|
148
|
+
indices = u.math.asarray(indices, dtype=environ.ditype())
|
149
|
+
|
150
|
+
if afferent_ratio == 1.:
|
151
|
+
conn_weight = u.math.asarray(init.param(conn_weight, (n_pre, self.conn_num), allow_none=False))
|
152
|
+
self.weight = param_type(conn_weight)
|
153
|
+
csr = (
|
154
|
+
brainevent.FixedPostNumConn((conn_weight, indices), shape=(n_pre, n_post))
|
155
|
+
if self.efferent_target == 'post' else
|
156
|
+
brainevent.FixedPreNumConn((conn_weight, indices), shape=(n_pre, n_post))
|
157
|
+
)
|
158
|
+
self.conn = csr
|
159
|
+
|
160
|
+
else:
|
161
|
+
self.pre_selected = np.random.random(n_pre) < afferent_ratio
|
162
|
+
indices = indices[self.pre_selected].flatten()
|
163
|
+
conn_weight = u.math.asarray(init.param(conn_weight, (indices.size,), allow_none=False))
|
164
|
+
self.weight = param_type(conn_weight)
|
165
|
+
indptr = (jnp.arange(1, n_pre + 1) * self.conn_num -
|
166
|
+
jnp.cumsum(~self.pre_selected) * self.conn_num)
|
167
|
+
indptr = jnp.insert(indptr, 0, 0) # insert 0 at the beginning
|
168
|
+
csr = (
|
169
|
+
brainevent.CSR((conn_weight, indices, indptr), shape=(n_pre, n_post))
|
170
|
+
if self.efferent_target == 'post' else
|
171
|
+
brainevent.CSC((conn_weight, indices, indptr), shape=(n_pre, n_post))
|
172
|
+
)
|
173
|
+
self.conn = csr
|
174
|
+
|
175
|
+
else:
|
176
|
+
conn_weight = u.math.asarray(init.param(conn_weight, (), allow_none=False))
|
177
|
+
self.weight = FakeState(conn_weight)
|
178
|
+
|
179
|
+
def update(self, x: jax.Array) -> Union[jax.Array, u.Quantity]:
|
180
|
+
if self.conn_num >= 1:
|
181
|
+
csr = self.conn.with_data(self.weight.value)
|
182
|
+
return x @ csr
|
183
|
+
else:
|
184
|
+
weight = self.weight.value
|
185
|
+
r = u.math.zeros(x.shape[:-1] + (self.out_size[-1],), dtype=weight.dtype)
|
186
|
+
r = u.maybe_decimal(u.Quantity(r, unit=u.get_unit(weight)))
|
187
|
+
return u.math.asarray(r, dtype=environ.dftype())
|
188
|
+
|
189
|
+
|
190
|
+
class EventFixedNumConn(FixedNumConn):
|
191
|
+
"""
|
192
|
+
The FixedProb module implements a fixed probability connection with CSR sparse data structure.
|
193
|
+
|
194
|
+
Parameters
|
195
|
+
----------
|
196
|
+
in_size : Size
|
197
|
+
Number of pre-synaptic neurons, i.e., input size.
|
198
|
+
out_size : Size
|
199
|
+
Number of post-synaptic neurons, i.e., output size.
|
200
|
+
conn_num : float, int
|
201
|
+
If it is a float, representing the probability of connection, i.e., connection probability.
|
202
|
+
|
203
|
+
If it is an integer, representing the number of connections.
|
204
|
+
conn_weight : float or callable or jax.Array or brainunit.Quantity
|
205
|
+
Maximum synaptic conductance, i.e., synaptic weight.
|
206
|
+
conn_target : str, optional
|
207
|
+
The target of the connection. Default is 'post', meaning that each pre-synaptic neuron connects to
|
208
|
+
a fixed number of post-synaptic neurons. The connection number is determined by the value of ``n_conn``.
|
209
|
+
|
210
|
+
If 'pre', each post-synaptic neuron connects to a fixed number of pre-synaptic neurons.
|
211
|
+
conn_init : str, optional
|
212
|
+
The initialization method of the connection weight. Default is 'vmap', meaning that the connection weight
|
213
|
+
is initialized by parallelized across multiple threads.
|
214
|
+
|
215
|
+
If 'for_loop', the connection weight is initialized by a for loop.
|
216
|
+
allow_multi_conn : bool, optional
|
217
|
+
Whether multiple connections are allowed from a single pre-synaptic neuron.
|
218
|
+
Default is True, meaning that a value of ``a`` can be selected multiple times.
|
219
|
+
seed: int, optional
|
220
|
+
Random seed. Default is None. If None, the default random seed will be used.
|
221
|
+
name : str, optional
|
222
|
+
Name of the module.
|
223
|
+
"""
|
224
|
+
|
225
|
+
__module__ = 'brainstate.nn'
|
226
|
+
|
227
|
+
def update(self, spk: jax.Array) -> Union[jax.Array, u.Quantity]:
|
228
|
+
if self.conn_num >= 1:
|
229
|
+
csr = self.conn.with_data(self.weight.value)
|
230
|
+
return brainevent.EventArray(spk) @ csr
|
231
|
+
else:
|
232
|
+
weight = self.weight.value
|
233
|
+
unit = u.get_unit(weight)
|
234
|
+
r = jnp.zeros(spk.shape[:-1] + (self.out_size[-1],), dtype=weight.dtype)
|
235
|
+
r = u.maybe_decimal(u.Quantity(r, unit=unit))
|
236
|
+
return u.math.asarray(r, dtype=environ.dftype())
|
237
|
+
|
238
|
+
|
239
|
+
EventFixedProb = EventFixedNumConn
|