brainstate 0.1.8__py2.py3-none-any.whl → 0.1.10__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +58 -51
- brainstate/_compatible_import.py +148 -148
- brainstate/_state.py +1605 -1663
- brainstate/_state_test.py +52 -52
- brainstate/_utils.py +47 -47
- brainstate/augment/__init__.py +30 -30
- brainstate/augment/_autograd.py +778 -778
- brainstate/augment/_autograd_test.py +1289 -1289
- brainstate/augment/_eval_shape.py +99 -99
- brainstate/augment/_eval_shape_test.py +38 -38
- brainstate/augment/_mapping.py +1060 -1060
- brainstate/augment/_mapping_test.py +597 -597
- brainstate/augment/_random.py +151 -151
- brainstate/compile/__init__.py +38 -38
- brainstate/compile/_ad_checkpoint.py +204 -204
- brainstate/compile/_ad_checkpoint_test.py +49 -49
- brainstate/compile/_conditions.py +256 -256
- brainstate/compile/_conditions_test.py +220 -220
- brainstate/compile/_error_if.py +92 -92
- brainstate/compile/_error_if_test.py +52 -52
- brainstate/compile/_jit.py +346 -346
- brainstate/compile/_jit_test.py +143 -143
- brainstate/compile/_loop_collect_return.py +536 -536
- brainstate/compile/_loop_collect_return_test.py +58 -58
- brainstate/compile/_loop_no_collection.py +184 -184
- brainstate/compile/_loop_no_collection_test.py +50 -50
- brainstate/compile/_make_jaxpr.py +888 -888
- brainstate/compile/_make_jaxpr_test.py +156 -156
- brainstate/compile/_progress_bar.py +202 -202
- brainstate/compile/_unvmap.py +159 -159
- brainstate/compile/_util.py +147 -147
- brainstate/environ.py +563 -563
- brainstate/environ_test.py +62 -62
- brainstate/functional/__init__.py +27 -26
- brainstate/graph/__init__.py +29 -29
- brainstate/graph/_graph_node.py +244 -244
- brainstate/graph/_graph_node_test.py +73 -73
- brainstate/graph/_graph_operation.py +1738 -1738
- brainstate/graph/_graph_operation_test.py +563 -563
- brainstate/init/__init__.py +26 -26
- brainstate/init/_base.py +52 -52
- brainstate/init/_generic.py +244 -244
- brainstate/init/_random_inits.py +553 -553
- brainstate/init/_random_inits_test.py +149 -149
- brainstate/init/_regular_inits.py +105 -105
- brainstate/init/_regular_inits_test.py +50 -50
- brainstate/mixin.py +365 -363
- brainstate/mixin_test.py +77 -73
- brainstate/nn/__init__.py +135 -131
- brainstate/{functional → nn}/_activations.py +808 -813
- brainstate/{functional → nn}/_activations_test.py +331 -331
- brainstate/nn/_collective_ops.py +514 -514
- brainstate/nn/_collective_ops_test.py +43 -43
- brainstate/nn/_common.py +178 -178
- brainstate/nn/_conv.py +501 -501
- brainstate/nn/_conv_test.py +238 -238
- brainstate/nn/_delay.py +588 -502
- brainstate/nn/_delay_test.py +238 -184
- brainstate/nn/_dropout.py +426 -426
- brainstate/nn/_dropout_test.py +100 -100
- brainstate/nn/_dynamics.py +1343 -1343
- brainstate/nn/_dynamics_test.py +78 -78
- brainstate/nn/_elementwise.py +1119 -1119
- brainstate/nn/_elementwise_test.py +169 -169
- brainstate/nn/_embedding.py +58 -58
- brainstate/nn/_exp_euler.py +92 -92
- brainstate/nn/_exp_euler_test.py +35 -35
- brainstate/nn/_fixedprob.py +239 -239
- brainstate/nn/_fixedprob_test.py +114 -114
- brainstate/nn/_inputs.py +608 -608
- brainstate/nn/_linear.py +424 -424
- brainstate/nn/_linear_mv.py +83 -83
- brainstate/nn/_linear_mv_test.py +120 -120
- brainstate/nn/_linear_test.py +107 -107
- brainstate/nn/_ltp.py +28 -28
- brainstate/nn/_module.py +377 -377
- brainstate/nn/_module_test.py +40 -40
- brainstate/nn/_neuron.py +705 -705
- brainstate/nn/_neuron_test.py +161 -161
- brainstate/nn/_normalizations.py +975 -918
- brainstate/nn/_normalizations_test.py +73 -73
- brainstate/{functional → nn}/_others.py +46 -46
- brainstate/nn/_poolings.py +1177 -1177
- brainstate/nn/_poolings_test.py +217 -217
- brainstate/nn/_projection.py +486 -486
- brainstate/nn/_rate_rnns.py +554 -554
- brainstate/nn/_rate_rnns_test.py +63 -63
- brainstate/nn/_readout.py +209 -209
- brainstate/nn/_readout_test.py +53 -53
- brainstate/nn/_stp.py +236 -236
- brainstate/nn/_synapse.py +505 -505
- brainstate/nn/_synapse_test.py +131 -131
- brainstate/nn/_synaptic_projection.py +423 -423
- brainstate/nn/_synouts.py +162 -162
- brainstate/nn/_synouts_test.py +57 -57
- brainstate/nn/_utils.py +89 -89
- brainstate/nn/metrics.py +388 -388
- brainstate/optim/__init__.py +38 -38
- brainstate/optim/_base.py +64 -64
- brainstate/optim/_lr_scheduler.py +448 -448
- brainstate/optim/_lr_scheduler_test.py +50 -50
- brainstate/optim/_optax_optimizer.py +152 -152
- brainstate/optim/_optax_optimizer_test.py +53 -53
- brainstate/optim/_sgd_optimizer.py +1104 -1104
- brainstate/random/__init__.py +24 -24
- brainstate/random/_rand_funs.py +3616 -3616
- brainstate/random/_rand_funs_test.py +567 -567
- brainstate/random/_rand_seed.py +210 -210
- brainstate/random/_rand_seed_test.py +48 -48
- brainstate/random/_rand_state.py +1409 -1409
- brainstate/random/_random_for_unit.py +52 -52
- brainstate/surrogate.py +1957 -1957
- brainstate/transform.py +23 -23
- brainstate/typing.py +304 -304
- brainstate/util/__init__.py +50 -50
- brainstate/util/caller.py +98 -98
- brainstate/util/error.py +55 -55
- brainstate/util/filter.py +469 -469
- brainstate/util/others.py +540 -540
- brainstate/util/pretty_pytree.py +945 -945
- brainstate/util/pretty_pytree_test.py +159 -159
- brainstate/util/pretty_repr.py +328 -328
- brainstate/util/pretty_table.py +2954 -2954
- brainstate/util/scaling.py +258 -258
- brainstate/util/struct.py +523 -523
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/METADATA +91 -99
- brainstate-0.1.10.dist-info/RECORD +130 -0
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/WHEEL +1 -1
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info/licenses}/LICENSE +202 -202
- brainstate/functional/_normalization.py +0 -81
- brainstate/functional/_spikes.py +0 -204
- brainstate-0.1.8.dist-info/RECORD +0 -132
- {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/top_level.txt +0 -0
brainstate/nn/_collective_ops.py
CHANGED
@@ -1,514 +1,514 @@
|
|
1
|
-
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
-
#
|
3
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
-
# you may not use this file except in compliance with the License.
|
5
|
-
# You may obtain a copy of the License at
|
6
|
-
#
|
7
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
-
#
|
9
|
-
# Unless required by applicable law or agreed to in writing, software
|
10
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
-
# See the License for the specific language governing permissions and
|
13
|
-
# limitations under the License.
|
14
|
-
# ==============================================================================
|
15
|
-
|
16
|
-
from collections import namedtuple
|
17
|
-
from typing import Callable, TypeVar, Tuple, Any, Dict
|
18
|
-
|
19
|
-
import jax
|
20
|
-
|
21
|
-
from brainstate._state import catch_new_states
|
22
|
-
from brainstate._utils import set_module_as
|
23
|
-
from brainstate.augment import vmap, vmap_new_states
|
24
|
-
from brainstate.graph import nodes
|
25
|
-
from brainstate.random import set_key, split_key
|
26
|
-
from brainstate.typing import Filter
|
27
|
-
from ._module import Module
|
28
|
-
|
29
|
-
# the maximum order
|
30
|
-
MAX_ORDER = 10
|
31
|
-
|
32
|
-
# State Load Results
|
33
|
-
StateLoadResult = namedtuple('StateLoadResult', ['missing_keys', 'unexpected_keys'])
|
34
|
-
|
35
|
-
T = TypeVar('T', bound=Module)
|
36
|
-
|
37
|
-
__all__ = [
|
38
|
-
'MAX_ORDER',
|
39
|
-
'call_order',
|
40
|
-
'call_all_functions',
|
41
|
-
'vmap_call_all_functions',
|
42
|
-
'init_all_states',
|
43
|
-
'vmap_init_all_states',
|
44
|
-
'reset_all_states',
|
45
|
-
'load_all_states',
|
46
|
-
'save_all_states',
|
47
|
-
'assign_state_values',
|
48
|
-
]
|
49
|
-
|
50
|
-
|
51
|
-
@set_module_as('brainstate.nn')
|
52
|
-
def call_order(level: int = 0, check_order_boundary: bool = True):
|
53
|
-
"""The decorator for indicating the resetting level.
|
54
|
-
|
55
|
-
The function takes an optional integer argument level with a default value of 0.
|
56
|
-
|
57
|
-
The lower the level, the earlier the function is called.
|
58
|
-
|
59
|
-
>>> import brainstate as brainstate
|
60
|
-
>>> brainstate.nn.call_order(0)
|
61
|
-
>>> brainstate.nn.call_order(-1)
|
62
|
-
>>> brainstate.nn.call_order(-2)
|
63
|
-
|
64
|
-
Parameters
|
65
|
-
----------
|
66
|
-
level: int
|
67
|
-
The call order level.
|
68
|
-
check_order_boundary: bool
|
69
|
-
Whether check the boundary of function call order. If True,
|
70
|
-
the order that not in [0, 10) will raise a ValueError.
|
71
|
-
|
72
|
-
Returns
|
73
|
-
-------
|
74
|
-
The function to warp.
|
75
|
-
"""
|
76
|
-
if check_order_boundary and (level < 0 or level >= MAX_ORDER):
|
77
|
-
raise ValueError(f'"call_order" must be an integer in [0, {MAX_ORDER}). but we got {level}.')
|
78
|
-
|
79
|
-
def wrap(fun: Callable):
|
80
|
-
fun.call_order = level
|
81
|
-
return fun
|
82
|
-
|
83
|
-
return wrap
|
84
|
-
|
85
|
-
|
86
|
-
@set_module_as('brainstate.nn')
|
87
|
-
def call_all_functions(
|
88
|
-
target: T,
|
89
|
-
fun_name: str,
|
90
|
-
args: Tuple[Any, ...] | Any = (),
|
91
|
-
kwargs: Dict[str, Any] | None = None,
|
92
|
-
node_to_exclude: Filter = None,
|
93
|
-
fun_if_not_exist: str = 'raise',
|
94
|
-
) -> T:
|
95
|
-
"""
|
96
|
-
Call a specified function on all nodes of a target module, respecting call order if defined.
|
97
|
-
|
98
|
-
This function iterates through all nodes of the target module, calling a specified function
|
99
|
-
on each node. It respects the call order of functions if defined, and provides options for
|
100
|
-
handling cases where the specified function does not exist on a node.
|
101
|
-
|
102
|
-
Parameters
|
103
|
-
-----------
|
104
|
-
target : T
|
105
|
-
The target module on which to call functions.
|
106
|
-
fun_name : str
|
107
|
-
The name of the function to call on each node.
|
108
|
-
args : Tuple[Any, ...] | Any, optional
|
109
|
-
Positional arguments to pass to the called function. Default is an empty tuple.
|
110
|
-
kwargs : Dict[str, Any] | None, optional
|
111
|
-
Keyword arguments to pass to the called function. Default is None.
|
112
|
-
node_to_exclude : Filter, optional
|
113
|
-
A filter function to exclude certain nodes from the function call.
|
114
|
-
fun_if_not_exist : str, optional
|
115
|
-
Specifies behavior when the function doesn't exist on a node. Options are:
|
116
|
-
|
117
|
-
- 'raise': Raise an exception (default)
|
118
|
-
- 'pass' or 'none': Skip the node and continue
|
119
|
-
|
120
|
-
Returns
|
121
|
-
--------
|
122
|
-
T
|
123
|
-
The target module after calling the specified function on all applicable nodes.
|
124
|
-
|
125
|
-
Raises
|
126
|
-
-------
|
127
|
-
AssertionError
|
128
|
-
If fun_name is not a string or kwargs is not a dictionary.
|
129
|
-
ValueError
|
130
|
-
If fun_if_not_exist is not one of the allowed values.
|
131
|
-
AttributeError
|
132
|
-
If the specified function doesn't exist on a node and fun_if_not_exist is 'raise'.
|
133
|
-
"""
|
134
|
-
assert isinstance(fun_name, str), f'fun_name must be a string, but got {fun_name}.'
|
135
|
-
|
136
|
-
args = (args,) if not isinstance(args, tuple) else args
|
137
|
-
kwargs = kwargs or {}
|
138
|
-
assert isinstance(kwargs, dict), f'kwargs must be a dict, but got {kwargs}.'
|
139
|
-
|
140
|
-
all_nodes = nodes(target).filter(Module)
|
141
|
-
if node_to_exclude is not None:
|
142
|
-
all_nodes -= all_nodes.filter(node_to_exclude)
|
143
|
-
|
144
|
-
nodes_with_order = []
|
145
|
-
for node in all_nodes.values():
|
146
|
-
try:
|
147
|
-
fun = getattr(node, fun_name)
|
148
|
-
except AttributeError as e:
|
149
|
-
if fun_if_not_exist == 'raise':
|
150
|
-
raise
|
151
|
-
elif fun_if_not_exist in ('pass', 'none'):
|
152
|
-
continue
|
153
|
-
else:
|
154
|
-
raise ValueError(
|
155
|
-
f'fun_if_not_exist must be one of ["raise", "pass", "none"], but got {fun_if_not_exist}.')
|
156
|
-
|
157
|
-
assert callable(fun), f'{fun_name} must be a callable function, but got {fun}.'
|
158
|
-
if hasattr(fun, 'call_order'):
|
159
|
-
nodes_with_order.append(node)
|
160
|
-
else:
|
161
|
-
fun(*args, **kwargs)
|
162
|
-
|
163
|
-
for node in sorted(nodes_with_order, key=lambda x: getattr(x, fun_name).call_order):
|
164
|
-
getattr(node, fun_name)(*args, **kwargs)
|
165
|
-
|
166
|
-
return target
|
167
|
-
|
168
|
-
|
169
|
-
def vmap_call_all_functions(
|
170
|
-
target: T,
|
171
|
-
fun_name: str,
|
172
|
-
args: Tuple[Any, ...] | Any = (),
|
173
|
-
kwargs: Dict[str, Any] | None = None,
|
174
|
-
axis_size: int = None,
|
175
|
-
node_to_exclude: Filter = None,
|
176
|
-
tag: str | None = None,
|
177
|
-
fun_if_not_exist: str = 'raise',
|
178
|
-
) -> T:
|
179
|
-
"""
|
180
|
-
Apply vectorized mapping (vmap) to call a specified function on all nodes of a target module.
|
181
|
-
|
182
|
-
This function vectorizes the process of calling a specified function across multiple instances
|
183
|
-
of the target module, effectively batching the operation.
|
184
|
-
|
185
|
-
Parameters
|
186
|
-
-----------
|
187
|
-
target : T
|
188
|
-
The target module on which to call functions.
|
189
|
-
fun_name : str
|
190
|
-
The name of the function to call on each node.
|
191
|
-
args : Tuple[Any, ...] | Any, optional
|
192
|
-
Positional arguments to pass to the called function. Default is an empty tuple.
|
193
|
-
kwargs : Dict[str, Any] | None, optional
|
194
|
-
Keyword arguments to pass to the called function. Default is None.
|
195
|
-
axis_size : int, optional
|
196
|
-
The size of the batch axis for vmap. Must be a positive integer.
|
197
|
-
node_to_exclude : Filter, optional
|
198
|
-
A filter function to exclude certain nodes from the function call.
|
199
|
-
tag : str | None, optional
|
200
|
-
A tag to be used for catching new states.
|
201
|
-
fun_if_not_exist : str, optional
|
202
|
-
Specifies behavior when the function doesn't exist on a node. Options are:
|
203
|
-
|
204
|
-
- 'raise': Raise an exception (default)
|
205
|
-
- 'pass' or 'none': Skip the node and continue
|
206
|
-
|
207
|
-
Returns
|
208
|
-
--------
|
209
|
-
T
|
210
|
-
The target module after applying the vectorized function call on all applicable nodes.
|
211
|
-
|
212
|
-
Raises
|
213
|
-
-------
|
214
|
-
AssertionError
|
215
|
-
If axis_size is not specified or is not a positive integer.
|
216
|
-
"""
|
217
|
-
assert axis_size is not None and axis_size > 0, f"axis_size must be a positive integer, got {axis_size}"
|
218
|
-
|
219
|
-
if not isinstance(args, tuple):
|
220
|
-
args = (args,)
|
221
|
-
kwargs = kwargs or {}
|
222
|
-
assert isinstance(kwargs, dict), f'kwargs must be a dict, but got {kwargs}.'
|
223
|
-
|
224
|
-
@vmap(out_axes=0, axis_size=axis_size)
|
225
|
-
def vmapped_fn(key):
|
226
|
-
set_key(key)
|
227
|
-
with catch_new_states(tag) as inner_catcher:
|
228
|
-
call_all_functions(
|
229
|
-
target,
|
230
|
-
fun_name=fun_name,
|
231
|
-
args=args,
|
232
|
-
kwargs=kwargs,
|
233
|
-
node_to_exclude=node_to_exclude,
|
234
|
-
fun_if_not_exist=fun_if_not_exist
|
235
|
-
)
|
236
|
-
values = inner_catcher.get_state_values()
|
237
|
-
return values
|
238
|
-
|
239
|
-
with catch_new_states(tag) as outer_catcher:
|
240
|
-
values = vmapped_fn(split_key(axis_size))
|
241
|
-
states = outer_catcher.get_states()
|
242
|
-
for state, value in zip(states, values):
|
243
|
-
state.value = value
|
244
|
-
|
245
|
-
return target
|
246
|
-
|
247
|
-
|
248
|
-
@set_module_as('brainstate.nn')
|
249
|
-
def init_all_states(
|
250
|
-
target: T,
|
251
|
-
*init_args,
|
252
|
-
node_to_exclude: Filter = None,
|
253
|
-
**init_kwargs,
|
254
|
-
) -> T:
|
255
|
-
"""
|
256
|
-
Initialize all states for the given target module and its submodules.
|
257
|
-
|
258
|
-
This function initializes the states of the target module and all its submodules,
|
259
|
-
respecting any call order decorators that may be present on the init_state methods.
|
260
|
-
|
261
|
-
Parameters
|
262
|
-
----------
|
263
|
-
target : T
|
264
|
-
The target module whose states are to be initialized.
|
265
|
-
init_args : Tuple[Any, ...] | Any, optional
|
266
|
-
Positional arguments to be passed to each init_state method.
|
267
|
-
If a single non-tuple argument is provided, it will be wrapped in a tuple.
|
268
|
-
init_kwargs : Dict[str, Any] | None, optional
|
269
|
-
Keyword arguments to be passed to each init_state method.
|
270
|
-
If None, an empty dictionary will be used.
|
271
|
-
node_to_exclude : Filter, optional
|
272
|
-
A filter function or predicate to exclude certain nodes from initialization.
|
273
|
-
|
274
|
-
Returns
|
275
|
-
-------
|
276
|
-
T
|
277
|
-
The target module with all states initialized.
|
278
|
-
|
279
|
-
Raises
|
280
|
-
------
|
281
|
-
AssertionError
|
282
|
-
If init_kwargs is provided but is not a dictionary.
|
283
|
-
"""
|
284
|
-
return call_all_functions(target, 'init_state', init_args, init_kwargs, node_to_exclude)
|
285
|
-
|
286
|
-
|
287
|
-
@set_module_as('brainstate.nn')
|
288
|
-
def vmap_init_all_states(
|
289
|
-
target: T,
|
290
|
-
*init_args: Tuple[Any, ...] | Any,
|
291
|
-
axis_size: int = None,
|
292
|
-
node_to_exclude: Filter = None,
|
293
|
-
state_to_exclude: Filter = None,
|
294
|
-
state_tag: str | None = None,
|
295
|
-
**init_kwargs: Dict[str, Any] | None
|
296
|
-
) -> T:
|
297
|
-
"""
|
298
|
-
Initialize all vmap states for the given target module.
|
299
|
-
|
300
|
-
This function applies vectorized mapping (vmap) to initialize states across multiple
|
301
|
-
instances of the target module, effectively batching the initialization process.
|
302
|
-
|
303
|
-
Parameters
|
304
|
-
-----------
|
305
|
-
target : T
|
306
|
-
The target module whose states are to be initialized.
|
307
|
-
init_args : Tuple[Any, ...] | Any, optional
|
308
|
-
Positional arguments to be passed to the init_all_states function. Default is an empty tuple.
|
309
|
-
init_kwargs : Dict[str, Any] | None, optional
|
310
|
-
Keyword arguments to be passed to the init_all_states function. Default is None.
|
311
|
-
axis_size : int, optional
|
312
|
-
The size of the batch axis for vmap. This must be specified and should be greater than 0.
|
313
|
-
node_to_exclude : Filter, optional
|
314
|
-
A filter to exclude certain nodes from initialization.
|
315
|
-
state_tag : str | None, optional
|
316
|
-
A tag to be used for catching new states.
|
317
|
-
|
318
|
-
Returns
|
319
|
-
--------
|
320
|
-
T
|
321
|
-
The target module with initialized states.
|
322
|
-
|
323
|
-
Raises
|
324
|
-
-------
|
325
|
-
AssertionError
|
326
|
-
If axis_size is not specified or is not greater than 0.
|
327
|
-
If init_kwargs is not a dictionary.
|
328
|
-
"""
|
329
|
-
|
330
|
-
# return vmap_call_all_functions(
|
331
|
-
# target,
|
332
|
-
# 'init_state',
|
333
|
-
# args=init_args,
|
334
|
-
# kwargs=init_kwargs,
|
335
|
-
# axis_size=axis_size,
|
336
|
-
# node_to_exclude=node_to_exclude,
|
337
|
-
# tag=tag,
|
338
|
-
# )
|
339
|
-
|
340
|
-
def init_fn():
|
341
|
-
init_all_states(
|
342
|
-
target,
|
343
|
-
*init_args,
|
344
|
-
**init_kwargs,
|
345
|
-
node_to_exclude=node_to_exclude,
|
346
|
-
)
|
347
|
-
return
|
348
|
-
|
349
|
-
vmap_new_states(init_fn, state_tag=state_tag, axis_size=axis_size, state_to_exclude=state_to_exclude)()
|
350
|
-
return target
|
351
|
-
|
352
|
-
|
353
|
-
@set_module_as('brainstate.nn')
|
354
|
-
def reset_all_states(
|
355
|
-
target: T,
|
356
|
-
reset_args: Tuple[Any, ...] | Any = (),
|
357
|
-
reset_kwargs: Dict[str, Any] | None = None,
|
358
|
-
node_to_exclude: Filter = None,
|
359
|
-
) -> T:
|
360
|
-
"""
|
361
|
-
Reset all states for the given target module and its submodules.
|
362
|
-
|
363
|
-
This function resets the states of the target module and all its submodules,
|
364
|
-
respecting any call order decorators that may be present on the reset_state methods.
|
365
|
-
|
366
|
-
Parameters
|
367
|
-
----------
|
368
|
-
target : T
|
369
|
-
The target module whose states are to be reset.
|
370
|
-
reset_args : Tuple[Any, ...] | Any, optional
|
371
|
-
Positional arguments to be passed to each reset_state method.
|
372
|
-
If a single non-tuple argument is provided, it will be wrapped in a tuple.
|
373
|
-
reset_kwargs : Dict[str, Any] | None, optional
|
374
|
-
Keyword arguments to be passed to each reset_state method.
|
375
|
-
If None, an empty dictionary will be used.
|
376
|
-
node_to_exclude : Filter, optional
|
377
|
-
A filter function or predicate to exclude certain nodes from reset.
|
378
|
-
|
379
|
-
Returns
|
380
|
-
-------
|
381
|
-
T
|
382
|
-
The target module with all states reset.
|
383
|
-
|
384
|
-
Raises
|
385
|
-
------
|
386
|
-
AssertionError
|
387
|
-
If init_kwargs is provided but is not a dictionary.
|
388
|
-
"""
|
389
|
-
return call_all_functions(
|
390
|
-
target,
|
391
|
-
fun_name='reset_state',
|
392
|
-
args=reset_args,
|
393
|
-
kwargs=reset_kwargs,
|
394
|
-
node_to_exclude=node_to_exclude
|
395
|
-
)
|
396
|
-
|
397
|
-
|
398
|
-
def vmap_reset_all_states(
|
399
|
-
target: T,
|
400
|
-
reset_args: Tuple[Any, ...] | Any = (),
|
401
|
-
reset_kwargs: Dict[str, Any] | None = None,
|
402
|
-
axis_size: int = None,
|
403
|
-
node_to_exclude: Filter = None,
|
404
|
-
tag: str | None = None,
|
405
|
-
) -> T:
|
406
|
-
"""
|
407
|
-
Reset all vmap states for the given target module.
|
408
|
-
|
409
|
-
This function applies vectorized mapping (vmap) to reset states across multiple
|
410
|
-
instances of the target module, effectively batching the reset process.
|
411
|
-
|
412
|
-
Parameters
|
413
|
-
-----------
|
414
|
-
target : T
|
415
|
-
The target module whose states are to be reset.
|
416
|
-
reset_args : Tuple[Any, ...] | Any, optional
|
417
|
-
Positional arguments to be passed to the reset_all_states function. Default is an empty tuple.
|
418
|
-
reset_kwargs : Dict[str, Any] | None, optional
|
419
|
-
Keyword arguments to be passed to the reset_all_states function. Default is None.
|
420
|
-
axis_size : int, optional
|
421
|
-
The size of the batch axis for vmap. This must be specified and should be greater than 0.
|
422
|
-
node_to_exclude : Filter, optional
|
423
|
-
A filter to exclude certain nodes from reset.
|
424
|
-
tag : str | None, optional
|
425
|
-
A tag to be used for catching new states.
|
426
|
-
|
427
|
-
Returns
|
428
|
-
--------
|
429
|
-
T
|
430
|
-
The target module with reset states.
|
431
|
-
|
432
|
-
Raises
|
433
|
-
-------
|
434
|
-
AssertionError
|
435
|
-
If axis_size is not specified or is not greater than 0.
|
436
|
-
If reset_kwargs is not a dictionary.
|
437
|
-
"""
|
438
|
-
return vmap_call_all_functions(
|
439
|
-
target,
|
440
|
-
fun_name='reset_state',
|
441
|
-
args=reset_args,
|
442
|
-
kwargs=reset_kwargs,
|
443
|
-
axis_size=axis_size,
|
444
|
-
node_to_exclude=node_to_exclude,
|
445
|
-
tag=tag,
|
446
|
-
)
|
447
|
-
|
448
|
-
|
449
|
-
@set_module_as('brainstate.nn')
|
450
|
-
def load_all_states(target: Module, state_dict: Dict, **kwargs):
|
451
|
-
"""
|
452
|
-
Copy parameters and buffers from :attr:`state_dict` into
|
453
|
-
this module and its descendants.
|
454
|
-
|
455
|
-
Args:
|
456
|
-
target: Module. The dynamical system to load its states.
|
457
|
-
state_dict: dict. A dict containing parameters and persistent buffers.
|
458
|
-
|
459
|
-
Returns
|
460
|
-
-------
|
461
|
-
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
|
462
|
-
|
463
|
-
* **missing_keys** is a list of str containing the missing keys
|
464
|
-
* **unexpected_keys** is a list of str containing the unexpected keys
|
465
|
-
"""
|
466
|
-
missing_keys = []
|
467
|
-
unexpected_keys = []
|
468
|
-
for path, node in nodes(target).items():
|
469
|
-
r = node.load_state(state_dict[path], **kwargs)
|
470
|
-
if r is not None:
|
471
|
-
missing, unexpected = r
|
472
|
-
missing_keys.extend([f'{path}.{key}' for key in missing])
|
473
|
-
unexpected_keys.extend([f'{path}.{key}' for key in unexpected])
|
474
|
-
return StateLoadResult(missing_keys, unexpected_keys)
|
475
|
-
|
476
|
-
|
477
|
-
@set_module_as('brainstate.nn')
|
478
|
-
def save_all_states(target: Module, **kwargs) -> Dict:
|
479
|
-
"""
|
480
|
-
Save all states in the ``target`` as a dictionary for later disk serialization.
|
481
|
-
|
482
|
-
Args:
|
483
|
-
target: Module. The node to save its states.
|
484
|
-
|
485
|
-
Returns
|
486
|
-
Dict. The state dict for serialization.
|
487
|
-
"""
|
488
|
-
return {key: node.save_state(**kwargs) for key, node in target.nodes().items()}
|
489
|
-
|
490
|
-
|
491
|
-
@set_module_as('brainstate.nn')
|
492
|
-
def assign_state_values(target: Module, *state_by_abs_path: Dict):
|
493
|
-
"""
|
494
|
-
Assign state values according to the given state dictionary.
|
495
|
-
|
496
|
-
Parameters
|
497
|
-
----------
|
498
|
-
target: Module
|
499
|
-
The target module.
|
500
|
-
state_by_abs_path: dict
|
501
|
-
The state dictionary which is accessed by the "absolute" accessing method.
|
502
|
-
|
503
|
-
"""
|
504
|
-
all_states = dict()
|
505
|
-
for state in state_by_abs_path:
|
506
|
-
all_states.update(state)
|
507
|
-
variables = target.states()
|
508
|
-
keys1 = set(all_states.keys())
|
509
|
-
keys2 = set(variables.keys())
|
510
|
-
for key in keys2.intersection(keys1):
|
511
|
-
variables[key].value = jax.numpy.asarray(all_states[key])
|
512
|
-
unexpected_keys = list(keys1 - keys2)
|
513
|
-
missing_keys = list(keys2 - keys1)
|
514
|
-
return unexpected_keys, missing_keys
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from collections import namedtuple
|
17
|
+
from typing import Callable, TypeVar, Tuple, Any, Dict
|
18
|
+
|
19
|
+
import jax
|
20
|
+
|
21
|
+
from brainstate._state import catch_new_states
|
22
|
+
from brainstate._utils import set_module_as
|
23
|
+
from brainstate.augment import vmap, vmap_new_states
|
24
|
+
from brainstate.graph import nodes
|
25
|
+
from brainstate.random import set_key, split_key
|
26
|
+
from brainstate.typing import Filter
|
27
|
+
from ._module import Module
|
28
|
+
|
29
|
+
# the maximum order
|
30
|
+
MAX_ORDER = 10
|
31
|
+
|
32
|
+
# State Load Results
|
33
|
+
StateLoadResult = namedtuple('StateLoadResult', ['missing_keys', 'unexpected_keys'])
|
34
|
+
|
35
|
+
T = TypeVar('T', bound=Module)
|
36
|
+
|
37
|
+
__all__ = [
|
38
|
+
'MAX_ORDER',
|
39
|
+
'call_order',
|
40
|
+
'call_all_functions',
|
41
|
+
'vmap_call_all_functions',
|
42
|
+
'init_all_states',
|
43
|
+
'vmap_init_all_states',
|
44
|
+
'reset_all_states',
|
45
|
+
'load_all_states',
|
46
|
+
'save_all_states',
|
47
|
+
'assign_state_values',
|
48
|
+
]
|
49
|
+
|
50
|
+
|
51
|
+
@set_module_as('brainstate.nn')
|
52
|
+
def call_order(level: int = 0, check_order_boundary: bool = True):
|
53
|
+
"""The decorator for indicating the resetting level.
|
54
|
+
|
55
|
+
The function takes an optional integer argument level with a default value of 0.
|
56
|
+
|
57
|
+
The lower the level, the earlier the function is called.
|
58
|
+
|
59
|
+
>>> import brainstate as brainstate
|
60
|
+
>>> brainstate.nn.call_order(0)
|
61
|
+
>>> brainstate.nn.call_order(-1)
|
62
|
+
>>> brainstate.nn.call_order(-2)
|
63
|
+
|
64
|
+
Parameters
|
65
|
+
----------
|
66
|
+
level: int
|
67
|
+
The call order level.
|
68
|
+
check_order_boundary: bool
|
69
|
+
Whether check the boundary of function call order. If True,
|
70
|
+
the order that not in [0, 10) will raise a ValueError.
|
71
|
+
|
72
|
+
Returns
|
73
|
+
-------
|
74
|
+
The function to warp.
|
75
|
+
"""
|
76
|
+
if check_order_boundary and (level < 0 or level >= MAX_ORDER):
|
77
|
+
raise ValueError(f'"call_order" must be an integer in [0, {MAX_ORDER}). but we got {level}.')
|
78
|
+
|
79
|
+
def wrap(fun: Callable):
|
80
|
+
fun.call_order = level
|
81
|
+
return fun
|
82
|
+
|
83
|
+
return wrap
|
84
|
+
|
85
|
+
|
86
|
+
@set_module_as('brainstate.nn')
|
87
|
+
def call_all_functions(
|
88
|
+
target: T,
|
89
|
+
fun_name: str,
|
90
|
+
args: Tuple[Any, ...] | Any = (),
|
91
|
+
kwargs: Dict[str, Any] | None = None,
|
92
|
+
node_to_exclude: Filter = None,
|
93
|
+
fun_if_not_exist: str = 'raise',
|
94
|
+
) -> T:
|
95
|
+
"""
|
96
|
+
Call a specified function on all nodes of a target module, respecting call order if defined.
|
97
|
+
|
98
|
+
This function iterates through all nodes of the target module, calling a specified function
|
99
|
+
on each node. It respects the call order of functions if defined, and provides options for
|
100
|
+
handling cases where the specified function does not exist on a node.
|
101
|
+
|
102
|
+
Parameters
|
103
|
+
-----------
|
104
|
+
target : T
|
105
|
+
The target module on which to call functions.
|
106
|
+
fun_name : str
|
107
|
+
The name of the function to call on each node.
|
108
|
+
args : Tuple[Any, ...] | Any, optional
|
109
|
+
Positional arguments to pass to the called function. Default is an empty tuple.
|
110
|
+
kwargs : Dict[str, Any] | None, optional
|
111
|
+
Keyword arguments to pass to the called function. Default is None.
|
112
|
+
node_to_exclude : Filter, optional
|
113
|
+
A filter function to exclude certain nodes from the function call.
|
114
|
+
fun_if_not_exist : str, optional
|
115
|
+
Specifies behavior when the function doesn't exist on a node. Options are:
|
116
|
+
|
117
|
+
- 'raise': Raise an exception (default)
|
118
|
+
- 'pass' or 'none': Skip the node and continue
|
119
|
+
|
120
|
+
Returns
|
121
|
+
--------
|
122
|
+
T
|
123
|
+
The target module after calling the specified function on all applicable nodes.
|
124
|
+
|
125
|
+
Raises
|
126
|
+
-------
|
127
|
+
AssertionError
|
128
|
+
If fun_name is not a string or kwargs is not a dictionary.
|
129
|
+
ValueError
|
130
|
+
If fun_if_not_exist is not one of the allowed values.
|
131
|
+
AttributeError
|
132
|
+
If the specified function doesn't exist on a node and fun_if_not_exist is 'raise'.
|
133
|
+
"""
|
134
|
+
assert isinstance(fun_name, str), f'fun_name must be a string, but got {fun_name}.'
|
135
|
+
|
136
|
+
args = (args,) if not isinstance(args, tuple) else args
|
137
|
+
kwargs = kwargs or {}
|
138
|
+
assert isinstance(kwargs, dict), f'kwargs must be a dict, but got {kwargs}.'
|
139
|
+
|
140
|
+
all_nodes = nodes(target).filter(Module)
|
141
|
+
if node_to_exclude is not None:
|
142
|
+
all_nodes -= all_nodes.filter(node_to_exclude)
|
143
|
+
|
144
|
+
nodes_with_order = []
|
145
|
+
for node in all_nodes.values():
|
146
|
+
try:
|
147
|
+
fun = getattr(node, fun_name)
|
148
|
+
except AttributeError as e:
|
149
|
+
if fun_if_not_exist == 'raise':
|
150
|
+
raise
|
151
|
+
elif fun_if_not_exist in ('pass', 'none'):
|
152
|
+
continue
|
153
|
+
else:
|
154
|
+
raise ValueError(
|
155
|
+
f'fun_if_not_exist must be one of ["raise", "pass", "none"], but got {fun_if_not_exist}.')
|
156
|
+
|
157
|
+
assert callable(fun), f'{fun_name} must be a callable function, but got {fun}.'
|
158
|
+
if hasattr(fun, 'call_order'):
|
159
|
+
nodes_with_order.append(node)
|
160
|
+
else:
|
161
|
+
fun(*args, **kwargs)
|
162
|
+
|
163
|
+
for node in sorted(nodes_with_order, key=lambda x: getattr(x, fun_name).call_order):
|
164
|
+
getattr(node, fun_name)(*args, **kwargs)
|
165
|
+
|
166
|
+
return target
|
167
|
+
|
168
|
+
|
169
|
+
def vmap_call_all_functions(
|
170
|
+
target: T,
|
171
|
+
fun_name: str,
|
172
|
+
args: Tuple[Any, ...] | Any = (),
|
173
|
+
kwargs: Dict[str, Any] | None = None,
|
174
|
+
axis_size: int = None,
|
175
|
+
node_to_exclude: Filter = None,
|
176
|
+
tag: str | None = None,
|
177
|
+
fun_if_not_exist: str = 'raise',
|
178
|
+
) -> T:
|
179
|
+
"""
|
180
|
+
Apply vectorized mapping (vmap) to call a specified function on all nodes of a target module.
|
181
|
+
|
182
|
+
This function vectorizes the process of calling a specified function across multiple instances
|
183
|
+
of the target module, effectively batching the operation.
|
184
|
+
|
185
|
+
Parameters
|
186
|
+
-----------
|
187
|
+
target : T
|
188
|
+
The target module on which to call functions.
|
189
|
+
fun_name : str
|
190
|
+
The name of the function to call on each node.
|
191
|
+
args : Tuple[Any, ...] | Any, optional
|
192
|
+
Positional arguments to pass to the called function. Default is an empty tuple.
|
193
|
+
kwargs : Dict[str, Any] | None, optional
|
194
|
+
Keyword arguments to pass to the called function. Default is None.
|
195
|
+
axis_size : int, optional
|
196
|
+
The size of the batch axis for vmap. Must be a positive integer.
|
197
|
+
node_to_exclude : Filter, optional
|
198
|
+
A filter function to exclude certain nodes from the function call.
|
199
|
+
tag : str | None, optional
|
200
|
+
A tag to be used for catching new states.
|
201
|
+
fun_if_not_exist : str, optional
|
202
|
+
Specifies behavior when the function doesn't exist on a node. Options are:
|
203
|
+
|
204
|
+
- 'raise': Raise an exception (default)
|
205
|
+
- 'pass' or 'none': Skip the node and continue
|
206
|
+
|
207
|
+
Returns
|
208
|
+
--------
|
209
|
+
T
|
210
|
+
The target module after applying the vectorized function call on all applicable nodes.
|
211
|
+
|
212
|
+
Raises
|
213
|
+
-------
|
214
|
+
AssertionError
|
215
|
+
If axis_size is not specified or is not a positive integer.
|
216
|
+
"""
|
217
|
+
assert axis_size is not None and axis_size > 0, f"axis_size must be a positive integer, got {axis_size}"
|
218
|
+
|
219
|
+
if not isinstance(args, tuple):
|
220
|
+
args = (args,)
|
221
|
+
kwargs = kwargs or {}
|
222
|
+
assert isinstance(kwargs, dict), f'kwargs must be a dict, but got {kwargs}.'
|
223
|
+
|
224
|
+
@vmap(out_axes=0, axis_size=axis_size)
|
225
|
+
def vmapped_fn(key):
|
226
|
+
set_key(key)
|
227
|
+
with catch_new_states(tag) as inner_catcher:
|
228
|
+
call_all_functions(
|
229
|
+
target,
|
230
|
+
fun_name=fun_name,
|
231
|
+
args=args,
|
232
|
+
kwargs=kwargs,
|
233
|
+
node_to_exclude=node_to_exclude,
|
234
|
+
fun_if_not_exist=fun_if_not_exist
|
235
|
+
)
|
236
|
+
values = inner_catcher.get_state_values()
|
237
|
+
return values
|
238
|
+
|
239
|
+
with catch_new_states(tag) as outer_catcher:
|
240
|
+
values = vmapped_fn(split_key(axis_size))
|
241
|
+
states = outer_catcher.get_states()
|
242
|
+
for state, value in zip(states, values):
|
243
|
+
state.value = value
|
244
|
+
|
245
|
+
return target
|
246
|
+
|
247
|
+
|
248
|
+
@set_module_as('brainstate.nn')
|
249
|
+
def init_all_states(
|
250
|
+
target: T,
|
251
|
+
*init_args,
|
252
|
+
node_to_exclude: Filter = None,
|
253
|
+
**init_kwargs,
|
254
|
+
) -> T:
|
255
|
+
"""
|
256
|
+
Initialize all states for the given target module and its submodules.
|
257
|
+
|
258
|
+
This function initializes the states of the target module and all its submodules,
|
259
|
+
respecting any call order decorators that may be present on the init_state methods.
|
260
|
+
|
261
|
+
Parameters
|
262
|
+
----------
|
263
|
+
target : T
|
264
|
+
The target module whose states are to be initialized.
|
265
|
+
init_args : Tuple[Any, ...] | Any, optional
|
266
|
+
Positional arguments to be passed to each init_state method.
|
267
|
+
If a single non-tuple argument is provided, it will be wrapped in a tuple.
|
268
|
+
init_kwargs : Dict[str, Any] | None, optional
|
269
|
+
Keyword arguments to be passed to each init_state method.
|
270
|
+
If None, an empty dictionary will be used.
|
271
|
+
node_to_exclude : Filter, optional
|
272
|
+
A filter function or predicate to exclude certain nodes from initialization.
|
273
|
+
|
274
|
+
Returns
|
275
|
+
-------
|
276
|
+
T
|
277
|
+
The target module with all states initialized.
|
278
|
+
|
279
|
+
Raises
|
280
|
+
------
|
281
|
+
AssertionError
|
282
|
+
If init_kwargs is provided but is not a dictionary.
|
283
|
+
"""
|
284
|
+
return call_all_functions(target, 'init_state', init_args, init_kwargs, node_to_exclude)
|
285
|
+
|
286
|
+
|
287
|
+
@set_module_as('brainstate.nn')
|
288
|
+
def vmap_init_all_states(
|
289
|
+
target: T,
|
290
|
+
*init_args: Tuple[Any, ...] | Any,
|
291
|
+
axis_size: int = None,
|
292
|
+
node_to_exclude: Filter = None,
|
293
|
+
state_to_exclude: Filter = None,
|
294
|
+
state_tag: str | None = None,
|
295
|
+
**init_kwargs: Dict[str, Any] | None
|
296
|
+
) -> T:
|
297
|
+
"""
|
298
|
+
Initialize all vmap states for the given target module.
|
299
|
+
|
300
|
+
This function applies vectorized mapping (vmap) to initialize states across multiple
|
301
|
+
instances of the target module, effectively batching the initialization process.
|
302
|
+
|
303
|
+
Parameters
|
304
|
+
-----------
|
305
|
+
target : T
|
306
|
+
The target module whose states are to be initialized.
|
307
|
+
init_args : Tuple[Any, ...] | Any, optional
|
308
|
+
Positional arguments to be passed to the init_all_states function. Default is an empty tuple.
|
309
|
+
init_kwargs : Dict[str, Any] | None, optional
|
310
|
+
Keyword arguments to be passed to the init_all_states function. Default is None.
|
311
|
+
axis_size : int, optional
|
312
|
+
The size of the batch axis for vmap. This must be specified and should be greater than 0.
|
313
|
+
node_to_exclude : Filter, optional
|
314
|
+
A filter to exclude certain nodes from initialization.
|
315
|
+
state_tag : str | None, optional
|
316
|
+
A tag to be used for catching new states.
|
317
|
+
|
318
|
+
Returns
|
319
|
+
--------
|
320
|
+
T
|
321
|
+
The target module with initialized states.
|
322
|
+
|
323
|
+
Raises
|
324
|
+
-------
|
325
|
+
AssertionError
|
326
|
+
If axis_size is not specified or is not greater than 0.
|
327
|
+
If init_kwargs is not a dictionary.
|
328
|
+
"""
|
329
|
+
|
330
|
+
# return vmap_call_all_functions(
|
331
|
+
# target,
|
332
|
+
# 'init_state',
|
333
|
+
# args=init_args,
|
334
|
+
# kwargs=init_kwargs,
|
335
|
+
# axis_size=axis_size,
|
336
|
+
# node_to_exclude=node_to_exclude,
|
337
|
+
# tag=tag,
|
338
|
+
# )
|
339
|
+
|
340
|
+
def init_fn():
|
341
|
+
init_all_states(
|
342
|
+
target,
|
343
|
+
*init_args,
|
344
|
+
**init_kwargs,
|
345
|
+
node_to_exclude=node_to_exclude,
|
346
|
+
)
|
347
|
+
return
|
348
|
+
|
349
|
+
vmap_new_states(init_fn, state_tag=state_tag, axis_size=axis_size, state_to_exclude=state_to_exclude)()
|
350
|
+
return target
|
351
|
+
|
352
|
+
|
353
|
+
@set_module_as('brainstate.nn')
|
354
|
+
def reset_all_states(
|
355
|
+
target: T,
|
356
|
+
reset_args: Tuple[Any, ...] | Any = (),
|
357
|
+
reset_kwargs: Dict[str, Any] | None = None,
|
358
|
+
node_to_exclude: Filter = None,
|
359
|
+
) -> T:
|
360
|
+
"""
|
361
|
+
Reset all states for the given target module and its submodules.
|
362
|
+
|
363
|
+
This function resets the states of the target module and all its submodules,
|
364
|
+
respecting any call order decorators that may be present on the reset_state methods.
|
365
|
+
|
366
|
+
Parameters
|
367
|
+
----------
|
368
|
+
target : T
|
369
|
+
The target module whose states are to be reset.
|
370
|
+
reset_args : Tuple[Any, ...] | Any, optional
|
371
|
+
Positional arguments to be passed to each reset_state method.
|
372
|
+
If a single non-tuple argument is provided, it will be wrapped in a tuple.
|
373
|
+
reset_kwargs : Dict[str, Any] | None, optional
|
374
|
+
Keyword arguments to be passed to each reset_state method.
|
375
|
+
If None, an empty dictionary will be used.
|
376
|
+
node_to_exclude : Filter, optional
|
377
|
+
A filter function or predicate to exclude certain nodes from reset.
|
378
|
+
|
379
|
+
Returns
|
380
|
+
-------
|
381
|
+
T
|
382
|
+
The target module with all states reset.
|
383
|
+
|
384
|
+
Raises
|
385
|
+
------
|
386
|
+
AssertionError
|
387
|
+
If init_kwargs is provided but is not a dictionary.
|
388
|
+
"""
|
389
|
+
return call_all_functions(
|
390
|
+
target,
|
391
|
+
fun_name='reset_state',
|
392
|
+
args=reset_args,
|
393
|
+
kwargs=reset_kwargs,
|
394
|
+
node_to_exclude=node_to_exclude
|
395
|
+
)
|
396
|
+
|
397
|
+
|
398
|
+
def vmap_reset_all_states(
|
399
|
+
target: T,
|
400
|
+
reset_args: Tuple[Any, ...] | Any = (),
|
401
|
+
reset_kwargs: Dict[str, Any] | None = None,
|
402
|
+
axis_size: int = None,
|
403
|
+
node_to_exclude: Filter = None,
|
404
|
+
tag: str | None = None,
|
405
|
+
) -> T:
|
406
|
+
"""
|
407
|
+
Reset all vmap states for the given target module.
|
408
|
+
|
409
|
+
This function applies vectorized mapping (vmap) to reset states across multiple
|
410
|
+
instances of the target module, effectively batching the reset process.
|
411
|
+
|
412
|
+
Parameters
|
413
|
+
-----------
|
414
|
+
target : T
|
415
|
+
The target module whose states are to be reset.
|
416
|
+
reset_args : Tuple[Any, ...] | Any, optional
|
417
|
+
Positional arguments to be passed to the reset_all_states function. Default is an empty tuple.
|
418
|
+
reset_kwargs : Dict[str, Any] | None, optional
|
419
|
+
Keyword arguments to be passed to the reset_all_states function. Default is None.
|
420
|
+
axis_size : int, optional
|
421
|
+
The size of the batch axis for vmap. This must be specified and should be greater than 0.
|
422
|
+
node_to_exclude : Filter, optional
|
423
|
+
A filter to exclude certain nodes from reset.
|
424
|
+
tag : str | None, optional
|
425
|
+
A tag to be used for catching new states.
|
426
|
+
|
427
|
+
Returns
|
428
|
+
--------
|
429
|
+
T
|
430
|
+
The target module with reset states.
|
431
|
+
|
432
|
+
Raises
|
433
|
+
-------
|
434
|
+
AssertionError
|
435
|
+
If axis_size is not specified or is not greater than 0.
|
436
|
+
If reset_kwargs is not a dictionary.
|
437
|
+
"""
|
438
|
+
return vmap_call_all_functions(
|
439
|
+
target,
|
440
|
+
fun_name='reset_state',
|
441
|
+
args=reset_args,
|
442
|
+
kwargs=reset_kwargs,
|
443
|
+
axis_size=axis_size,
|
444
|
+
node_to_exclude=node_to_exclude,
|
445
|
+
tag=tag,
|
446
|
+
)
|
447
|
+
|
448
|
+
|
449
|
+
@set_module_as('brainstate.nn')
|
450
|
+
def load_all_states(target: Module, state_dict: Dict, **kwargs):
|
451
|
+
"""
|
452
|
+
Copy parameters and buffers from :attr:`state_dict` into
|
453
|
+
this module and its descendants.
|
454
|
+
|
455
|
+
Args:
|
456
|
+
target: Module. The dynamical system to load its states.
|
457
|
+
state_dict: dict. A dict containing parameters and persistent buffers.
|
458
|
+
|
459
|
+
Returns
|
460
|
+
-------
|
461
|
+
``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:
|
462
|
+
|
463
|
+
* **missing_keys** is a list of str containing the missing keys
|
464
|
+
* **unexpected_keys** is a list of str containing the unexpected keys
|
465
|
+
"""
|
466
|
+
missing_keys = []
|
467
|
+
unexpected_keys = []
|
468
|
+
for path, node in nodes(target).items():
|
469
|
+
r = node.load_state(state_dict[path], **kwargs)
|
470
|
+
if r is not None:
|
471
|
+
missing, unexpected = r
|
472
|
+
missing_keys.extend([f'{path}.{key}' for key in missing])
|
473
|
+
unexpected_keys.extend([f'{path}.{key}' for key in unexpected])
|
474
|
+
return StateLoadResult(missing_keys, unexpected_keys)
|
475
|
+
|
476
|
+
|
477
|
+
@set_module_as('brainstate.nn')
|
478
|
+
def save_all_states(target: Module, **kwargs) -> Dict:
|
479
|
+
"""
|
480
|
+
Save all states in the ``target`` as a dictionary for later disk serialization.
|
481
|
+
|
482
|
+
Args:
|
483
|
+
target: Module. The node to save its states.
|
484
|
+
|
485
|
+
Returns
|
486
|
+
Dict. The state dict for serialization.
|
487
|
+
"""
|
488
|
+
return {key: node.save_state(**kwargs) for key, node in target.nodes().items()}
|
489
|
+
|
490
|
+
|
491
|
+
@set_module_as('brainstate.nn')
|
492
|
+
def assign_state_values(target: Module, *state_by_abs_path: Dict):
|
493
|
+
"""
|
494
|
+
Assign state values according to the given state dictionary.
|
495
|
+
|
496
|
+
Parameters
|
497
|
+
----------
|
498
|
+
target: Module
|
499
|
+
The target module.
|
500
|
+
state_by_abs_path: dict
|
501
|
+
The state dictionary which is accessed by the "absolute" accessing method.
|
502
|
+
|
503
|
+
"""
|
504
|
+
all_states = dict()
|
505
|
+
for state in state_by_abs_path:
|
506
|
+
all_states.update(state)
|
507
|
+
variables = target.states()
|
508
|
+
keys1 = set(all_states.keys())
|
509
|
+
keys2 = set(variables.keys())
|
510
|
+
for key in keys2.intersection(keys1):
|
511
|
+
variables[key].value = jax.numpy.asarray(all_states[key])
|
512
|
+
unexpected_keys = list(keys1 - keys2)
|
513
|
+
missing_keys = list(keys2 - keys1)
|
514
|
+
return unexpected_keys, missing_keys
|