brainstate 0.1.8__py2.py3-none-any.whl → 0.1.10__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (133) hide show
  1. brainstate/__init__.py +58 -51
  2. brainstate/_compatible_import.py +148 -148
  3. brainstate/_state.py +1605 -1663
  4. brainstate/_state_test.py +52 -52
  5. brainstate/_utils.py +47 -47
  6. brainstate/augment/__init__.py +30 -30
  7. brainstate/augment/_autograd.py +778 -778
  8. brainstate/augment/_autograd_test.py +1289 -1289
  9. brainstate/augment/_eval_shape.py +99 -99
  10. brainstate/augment/_eval_shape_test.py +38 -38
  11. brainstate/augment/_mapping.py +1060 -1060
  12. brainstate/augment/_mapping_test.py +597 -597
  13. brainstate/augment/_random.py +151 -151
  14. brainstate/compile/__init__.py +38 -38
  15. brainstate/compile/_ad_checkpoint.py +204 -204
  16. brainstate/compile/_ad_checkpoint_test.py +49 -49
  17. brainstate/compile/_conditions.py +256 -256
  18. brainstate/compile/_conditions_test.py +220 -220
  19. brainstate/compile/_error_if.py +92 -92
  20. brainstate/compile/_error_if_test.py +52 -52
  21. brainstate/compile/_jit.py +346 -346
  22. brainstate/compile/_jit_test.py +143 -143
  23. brainstate/compile/_loop_collect_return.py +536 -536
  24. brainstate/compile/_loop_collect_return_test.py +58 -58
  25. brainstate/compile/_loop_no_collection.py +184 -184
  26. brainstate/compile/_loop_no_collection_test.py +50 -50
  27. brainstate/compile/_make_jaxpr.py +888 -888
  28. brainstate/compile/_make_jaxpr_test.py +156 -156
  29. brainstate/compile/_progress_bar.py +202 -202
  30. brainstate/compile/_unvmap.py +159 -159
  31. brainstate/compile/_util.py +147 -147
  32. brainstate/environ.py +563 -563
  33. brainstate/environ_test.py +62 -62
  34. brainstate/functional/__init__.py +27 -26
  35. brainstate/graph/__init__.py +29 -29
  36. brainstate/graph/_graph_node.py +244 -244
  37. brainstate/graph/_graph_node_test.py +73 -73
  38. brainstate/graph/_graph_operation.py +1738 -1738
  39. brainstate/graph/_graph_operation_test.py +563 -563
  40. brainstate/init/__init__.py +26 -26
  41. brainstate/init/_base.py +52 -52
  42. brainstate/init/_generic.py +244 -244
  43. brainstate/init/_random_inits.py +553 -553
  44. brainstate/init/_random_inits_test.py +149 -149
  45. brainstate/init/_regular_inits.py +105 -105
  46. brainstate/init/_regular_inits_test.py +50 -50
  47. brainstate/mixin.py +365 -363
  48. brainstate/mixin_test.py +77 -73
  49. brainstate/nn/__init__.py +135 -131
  50. brainstate/{functional → nn}/_activations.py +808 -813
  51. brainstate/{functional → nn}/_activations_test.py +331 -331
  52. brainstate/nn/_collective_ops.py +514 -514
  53. brainstate/nn/_collective_ops_test.py +43 -43
  54. brainstate/nn/_common.py +178 -178
  55. brainstate/nn/_conv.py +501 -501
  56. brainstate/nn/_conv_test.py +238 -238
  57. brainstate/nn/_delay.py +588 -502
  58. brainstate/nn/_delay_test.py +238 -184
  59. brainstate/nn/_dropout.py +426 -426
  60. brainstate/nn/_dropout_test.py +100 -100
  61. brainstate/nn/_dynamics.py +1343 -1343
  62. brainstate/nn/_dynamics_test.py +78 -78
  63. brainstate/nn/_elementwise.py +1119 -1119
  64. brainstate/nn/_elementwise_test.py +169 -169
  65. brainstate/nn/_embedding.py +58 -58
  66. brainstate/nn/_exp_euler.py +92 -92
  67. brainstate/nn/_exp_euler_test.py +35 -35
  68. brainstate/nn/_fixedprob.py +239 -239
  69. brainstate/nn/_fixedprob_test.py +114 -114
  70. brainstate/nn/_inputs.py +608 -608
  71. brainstate/nn/_linear.py +424 -424
  72. brainstate/nn/_linear_mv.py +83 -83
  73. brainstate/nn/_linear_mv_test.py +120 -120
  74. brainstate/nn/_linear_test.py +107 -107
  75. brainstate/nn/_ltp.py +28 -28
  76. brainstate/nn/_module.py +377 -377
  77. brainstate/nn/_module_test.py +40 -40
  78. brainstate/nn/_neuron.py +705 -705
  79. brainstate/nn/_neuron_test.py +161 -161
  80. brainstate/nn/_normalizations.py +975 -918
  81. brainstate/nn/_normalizations_test.py +73 -73
  82. brainstate/{functional → nn}/_others.py +46 -46
  83. brainstate/nn/_poolings.py +1177 -1177
  84. brainstate/nn/_poolings_test.py +217 -217
  85. brainstate/nn/_projection.py +486 -486
  86. brainstate/nn/_rate_rnns.py +554 -554
  87. brainstate/nn/_rate_rnns_test.py +63 -63
  88. brainstate/nn/_readout.py +209 -209
  89. brainstate/nn/_readout_test.py +53 -53
  90. brainstate/nn/_stp.py +236 -236
  91. brainstate/nn/_synapse.py +505 -505
  92. brainstate/nn/_synapse_test.py +131 -131
  93. brainstate/nn/_synaptic_projection.py +423 -423
  94. brainstate/nn/_synouts.py +162 -162
  95. brainstate/nn/_synouts_test.py +57 -57
  96. brainstate/nn/_utils.py +89 -89
  97. brainstate/nn/metrics.py +388 -388
  98. brainstate/optim/__init__.py +38 -38
  99. brainstate/optim/_base.py +64 -64
  100. brainstate/optim/_lr_scheduler.py +448 -448
  101. brainstate/optim/_lr_scheduler_test.py +50 -50
  102. brainstate/optim/_optax_optimizer.py +152 -152
  103. brainstate/optim/_optax_optimizer_test.py +53 -53
  104. brainstate/optim/_sgd_optimizer.py +1104 -1104
  105. brainstate/random/__init__.py +24 -24
  106. brainstate/random/_rand_funs.py +3616 -3616
  107. brainstate/random/_rand_funs_test.py +567 -567
  108. brainstate/random/_rand_seed.py +210 -210
  109. brainstate/random/_rand_seed_test.py +48 -48
  110. brainstate/random/_rand_state.py +1409 -1409
  111. brainstate/random/_random_for_unit.py +52 -52
  112. brainstate/surrogate.py +1957 -1957
  113. brainstate/transform.py +23 -23
  114. brainstate/typing.py +304 -304
  115. brainstate/util/__init__.py +50 -50
  116. brainstate/util/caller.py +98 -98
  117. brainstate/util/error.py +55 -55
  118. brainstate/util/filter.py +469 -469
  119. brainstate/util/others.py +540 -540
  120. brainstate/util/pretty_pytree.py +945 -945
  121. brainstate/util/pretty_pytree_test.py +159 -159
  122. brainstate/util/pretty_repr.py +328 -328
  123. brainstate/util/pretty_table.py +2954 -2954
  124. brainstate/util/scaling.py +258 -258
  125. brainstate/util/struct.py +523 -523
  126. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/METADATA +91 -99
  127. brainstate-0.1.10.dist-info/RECORD +130 -0
  128. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/WHEEL +1 -1
  129. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info/licenses}/LICENSE +202 -202
  130. brainstate/functional/_normalization.py +0 -81
  131. brainstate/functional/_spikes.py +0 -204
  132. brainstate-0.1.8.dist-info/RECORD +0 -132
  133. {brainstate-0.1.8.dist-info → brainstate-0.1.10.dist-info}/top_level.txt +0 -0
@@ -1,244 +1,244 @@
1
- # The file is adapted from the Flax library (https://github.com/google/flax).
2
- # The credit should go to the Flax authors.
3
- #
4
- # Copyright 2024 The Flax Authors.
5
- #
6
- # Licensed under the Apache License, Version 2.0 (the "License");
7
- # you may not use this file except in compliance with the License.
8
- # You may obtain a copy of the License at
9
- #
10
- # http://www.apache.org/licenses/LICENSE-2.0
11
- #
12
- # Unless required by applicable law or agreed to in writing, software
13
- # distributed under the License is distributed on an "AS IS" BASIS,
14
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- # See the License for the specific language governing permissions and
16
- # limitations under the License.
17
-
18
- from abc import ABCMeta
19
- from copy import deepcopy
20
- from typing import Any, Callable, Type, TypeVar, Tuple, TYPE_CHECKING, Mapping, Iterator, Sequence
21
-
22
- import brainunit as u
23
- import jax
24
- import numpy as np
25
-
26
- from brainstate._state import State, TreefyState
27
- from brainstate.typing import Key
28
- from brainstate.util.pretty_pytree import PrettyObject
29
- from ._graph_operation import register_graph_node_type
30
-
31
- __all__ = [
32
- 'Node', 'Dict', 'List', 'Sequential',
33
- ]
34
-
35
- G = TypeVar('G', bound='Node')
36
- A = TypeVar('A')
37
-
38
-
39
- class GraphNodeMeta(ABCMeta):
40
- if not TYPE_CHECKING:
41
- def __call__(cls, *args: Any, **kwargs: Any) -> Any:
42
- node = cls.__new__(cls, *args, **kwargs)
43
- node.__init__(*args, **kwargs)
44
- return node
45
-
46
-
47
- class Node(PrettyObject, metaclass=GraphNodeMeta):
48
- """
49
- Base class for all graph nodes.
50
-
51
- This class provides the following functionalities:
52
- - Register the node type with the graph tool.
53
- - Prevent mutation of the node from different trace level.
54
- - Provide a pretty repr for the node.
55
- - Provide a treescope repr for the node.
56
- - Deepcopy the node.
57
-
58
- """
59
-
60
- graph_invisible_attrs = ()
61
-
62
- def __init_subclass__(cls) -> None:
63
- super().__init_subclass__()
64
-
65
- register_graph_node_type(
66
- type=cls,
67
- flatten=_node_flatten,
68
- set_key=_node_set_key,
69
- pop_key=_node_pop_key,
70
- create_empty=_node_create_empty,
71
- clear=_node_clear,
72
- )
73
-
74
- def __deepcopy__(self: G, memo=None) -> G:
75
- """
76
- Deepcopy the object.
77
- """
78
- from ._graph_operation import treefy_split, treefy_merge
79
-
80
- graphdef, state = treefy_split(self)
81
- graphdef = deepcopy(graphdef)
82
- state = deepcopy(state)
83
- return treefy_merge(graphdef, state)
84
-
85
-
86
- class String:
87
- def __init__(self, msg):
88
- self.msg = msg
89
-
90
- def __repr__(self):
91
- return self.msg
92
-
93
-
94
- def _to_shape_dtype(value):
95
- if isinstance(value, State):
96
- return value.replace(jax.tree.map(_to_shape_dtype, value.value))
97
- elif isinstance(value, (np.ndarray, jax.Array)):
98
- return String(f'Array(shape={value.shape}, dtype={value.dtype.name})')
99
- elif isinstance(value, u.Quantity):
100
- return String(f'Quantity(mantissa=Array(shape={value.shape}, dtype={value.dtype.name}), unit={value.unit})')
101
- return value
102
-
103
-
104
- # -------------------------------
105
- # Graph Definition
106
- # -------------------------------
107
-
108
-
109
- def _node_flatten(
110
- node: Node
111
- ) -> Tuple[Tuple[Tuple[str, Any], ...], Tuple[Type]]:
112
- # graph_invisible_attrs = getattr(node, 'graph_invisible_attrs', ())
113
- # graph_invisible_attrs = tuple(graph_invisible_attrs) + ('_trace_state',)
114
- graph_invisible_attrs = ('_trace_state',)
115
- nodes = sorted(
116
- (key, value) for key, value in vars(node).items()
117
- if (key not in graph_invisible_attrs)
118
- )
119
- return nodes, (type(node),)
120
-
121
-
122
- def _node_set_key(
123
- node: Node,
124
- key: Key,
125
- value: Any
126
- ) -> None:
127
- if not isinstance(key, str):
128
- raise KeyError(f'Invalid key: {key!r}')
129
- elif (
130
- hasattr(node, key)
131
- and isinstance(state := getattr(node, key), State)
132
- and isinstance(value, TreefyState)
133
- ):
134
- state.update_from_ref(value)
135
- else:
136
- setattr(node, key, value)
137
-
138
-
139
- def _node_pop_key(
140
- node: Node,
141
- key: Key
142
- ):
143
- if not isinstance(key, str):
144
- raise KeyError(f'Invalid key: {key!r}')
145
- return vars(node).pop(key)
146
-
147
-
148
- def _node_create_empty(
149
- static: tuple[Type[G],]
150
- ) -> G:
151
- node_type, = static
152
- node = object.__new__(node_type)
153
- return node
154
-
155
-
156
- def _node_clear(node: Node):
157
- module_state = node._trace_state
158
- module_vars = vars(node)
159
- module_vars.clear()
160
- module_vars['_trace_state'] = module_state
161
-
162
-
163
- class Dict(Node, Mapping[str, A]):
164
- """
165
- A dictionary node.
166
- """
167
-
168
- def __init__(self, *args, **kwargs):
169
- for name, value in dict(*args, **kwargs).items():
170
- setattr(self, name, value)
171
-
172
- def __getitem__(self, key) -> A:
173
- return getattr(self, key)
174
-
175
- def __setitem__(self, key, value):
176
- setattr(self, key, value)
177
-
178
- def __getattr__(self, key) -> A:
179
- return super().__getattribute__(key)
180
-
181
- def __setattr__(self, key, value):
182
- super().__setattr__(key, value)
183
-
184
- def __iter__(self) -> Iterator[str]:
185
- return (k for k in vars(self) if k != '_object__state')
186
-
187
- def __len__(self) -> int:
188
- return len(vars(self))
189
-
190
-
191
- class List(Node):
192
- """
193
- A list node.
194
- """
195
-
196
- def __init__(self, seq=()):
197
- vars(self).update({str(i): item for i, item in enumerate(seq)})
198
-
199
- def __getitem__(self, idx):
200
- return getattr(self, str(idx))
201
-
202
- def __setitem__(self, idx, value):
203
- setattr(self, str(idx), value)
204
-
205
- def __iter__(self):
206
- return iter(vars(self).values())
207
-
208
- def __len__(self):
209
- return len(vars(self))
210
-
211
- def __add__(self, other: Sequence[A]) -> 'List[A]':
212
- return List(list(self) + list(other))
213
-
214
- def append(self, value):
215
- self[len(vars(self))] = value
216
-
217
- def extend(self, values):
218
- for value in values:
219
- self.append(value)
220
-
221
-
222
- class Sequential(Node):
223
- def __init__(self, *fns: Callable[..., Any]):
224
- self.layers = list(fns)
225
-
226
- def __call__(self, *args, **kwargs) -> Any:
227
- output: Any = None
228
-
229
- for i, f in enumerate(self.layers):
230
- if not callable(f):
231
- raise TypeError(f'Sequence[{i}] is not callable: {f}')
232
- if i > 0:
233
- if isinstance(output, tuple):
234
- args = output
235
- kwargs = {}
236
- elif isinstance(output, dict):
237
- args = ()
238
- kwargs = output
239
- else:
240
- args = (output,)
241
- kwargs = {}
242
- output = f(*args, **kwargs)
243
-
244
- return output
1
+ # The file is adapted from the Flax library (https://github.com/google/flax).
2
+ # The credit should go to the Flax authors.
3
+ #
4
+ # Copyright 2024 The Flax Authors.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ from abc import ABCMeta
19
+ from copy import deepcopy
20
+ from typing import Any, Callable, Type, TypeVar, Tuple, TYPE_CHECKING, Mapping, Iterator, Sequence
21
+
22
+ import brainunit as u
23
+ import jax
24
+ import numpy as np
25
+
26
+ from brainstate._state import State, TreefyState
27
+ from brainstate.typing import Key
28
+ from brainstate.util.pretty_pytree import PrettyObject
29
+ from ._graph_operation import register_graph_node_type
30
+
31
+ __all__ = [
32
+ 'Node', 'Dict', 'List', 'Sequential',
33
+ ]
34
+
35
+ G = TypeVar('G', bound='Node')
36
+ A = TypeVar('A')
37
+
38
+
39
+ class GraphNodeMeta(ABCMeta):
40
+ if not TYPE_CHECKING:
41
+ def __call__(cls, *args: Any, **kwargs: Any) -> Any:
42
+ node = cls.__new__(cls, *args, **kwargs)
43
+ node.__init__(*args, **kwargs)
44
+ return node
45
+
46
+
47
+ class Node(PrettyObject, metaclass=GraphNodeMeta):
48
+ """
49
+ Base class for all graph nodes.
50
+
51
+ This class provides the following functionalities:
52
+ - Register the node type with the graph tool.
53
+ - Prevent mutation of the node from different trace level.
54
+ - Provide a pretty repr for the node.
55
+ - Provide a treescope repr for the node.
56
+ - Deepcopy the node.
57
+
58
+ """
59
+
60
+ graph_invisible_attrs = ()
61
+
62
+ def __init_subclass__(cls) -> None:
63
+ super().__init_subclass__()
64
+
65
+ register_graph_node_type(
66
+ type=cls,
67
+ flatten=_node_flatten,
68
+ set_key=_node_set_key,
69
+ pop_key=_node_pop_key,
70
+ create_empty=_node_create_empty,
71
+ clear=_node_clear,
72
+ )
73
+
74
+ def __deepcopy__(self: G, memo=None) -> G:
75
+ """
76
+ Deepcopy the object.
77
+ """
78
+ from ._graph_operation import treefy_split, treefy_merge
79
+
80
+ graphdef, state = treefy_split(self)
81
+ graphdef = deepcopy(graphdef)
82
+ state = deepcopy(state)
83
+ return treefy_merge(graphdef, state)
84
+
85
+
86
+ class String:
87
+ def __init__(self, msg):
88
+ self.msg = msg
89
+
90
+ def __repr__(self):
91
+ return self.msg
92
+
93
+
94
+ def _to_shape_dtype(value):
95
+ if isinstance(value, State):
96
+ return value.replace(jax.tree.map(_to_shape_dtype, value.value))
97
+ elif isinstance(value, (np.ndarray, jax.Array)):
98
+ return String(f'Array(shape={value.shape}, dtype={value.dtype.name})')
99
+ elif isinstance(value, u.Quantity):
100
+ return String(f'Quantity(mantissa=Array(shape={value.shape}, dtype={value.dtype.name}), unit={value.unit})')
101
+ return value
102
+
103
+
104
+ # -------------------------------
105
+ # Graph Definition
106
+ # -------------------------------
107
+
108
+
109
+ def _node_flatten(
110
+ node: Node
111
+ ) -> Tuple[Tuple[Tuple[str, Any], ...], Tuple[Type]]:
112
+ # graph_invisible_attrs = getattr(node, 'graph_invisible_attrs', ())
113
+ # graph_invisible_attrs = tuple(graph_invisible_attrs) + ('_trace_state',)
114
+ graph_invisible_attrs = ('_trace_state',)
115
+ nodes = sorted(
116
+ (key, value) for key, value in vars(node).items()
117
+ if (key not in graph_invisible_attrs)
118
+ )
119
+ return nodes, (type(node),)
120
+
121
+
122
+ def _node_set_key(
123
+ node: Node,
124
+ key: Key,
125
+ value: Any
126
+ ) -> None:
127
+ if not isinstance(key, str):
128
+ raise KeyError(f'Invalid key: {key!r}')
129
+ elif (
130
+ hasattr(node, key)
131
+ and isinstance(state := getattr(node, key), State)
132
+ and isinstance(value, TreefyState)
133
+ ):
134
+ state.update_from_ref(value)
135
+ else:
136
+ setattr(node, key, value)
137
+
138
+
139
+ def _node_pop_key(
140
+ node: Node,
141
+ key: Key
142
+ ):
143
+ if not isinstance(key, str):
144
+ raise KeyError(f'Invalid key: {key!r}')
145
+ return vars(node).pop(key)
146
+
147
+
148
+ def _node_create_empty(
149
+ static: tuple[Type[G],]
150
+ ) -> G:
151
+ node_type, = static
152
+ node = object.__new__(node_type)
153
+ return node
154
+
155
+
156
+ def _node_clear(node: Node):
157
+ module_state = node._trace_state
158
+ module_vars = vars(node)
159
+ module_vars.clear()
160
+ module_vars['_trace_state'] = module_state
161
+
162
+
163
+ class Dict(Node, Mapping[str, A]):
164
+ """
165
+ A dictionary node.
166
+ """
167
+
168
+ def __init__(self, *args, **kwargs):
169
+ for name, value in dict(*args, **kwargs).items():
170
+ setattr(self, name, value)
171
+
172
+ def __getitem__(self, key) -> A:
173
+ return getattr(self, key)
174
+
175
+ def __setitem__(self, key, value):
176
+ setattr(self, key, value)
177
+
178
+ def __getattr__(self, key) -> A:
179
+ return super().__getattribute__(key)
180
+
181
+ def __setattr__(self, key, value):
182
+ super().__setattr__(key, value)
183
+
184
+ def __iter__(self) -> Iterator[str]:
185
+ return (k for k in vars(self) if k != '_object__state')
186
+
187
+ def __len__(self) -> int:
188
+ return len(vars(self))
189
+
190
+
191
+ class List(Node):
192
+ """
193
+ A list node.
194
+ """
195
+
196
+ def __init__(self, seq=()):
197
+ vars(self).update({str(i): item for i, item in enumerate(seq)})
198
+
199
+ def __getitem__(self, idx):
200
+ return getattr(self, str(idx))
201
+
202
+ def __setitem__(self, idx, value):
203
+ setattr(self, str(idx), value)
204
+
205
+ def __iter__(self):
206
+ return iter(vars(self).values())
207
+
208
+ def __len__(self):
209
+ return len(vars(self))
210
+
211
+ def __add__(self, other: Sequence[A]) -> 'List[A]':
212
+ return List(list(self) + list(other))
213
+
214
+ def append(self, value):
215
+ self[len(vars(self))] = value
216
+
217
+ def extend(self, values):
218
+ for value in values:
219
+ self.append(value)
220
+
221
+
222
+ class Sequential(Node):
223
+ def __init__(self, *fns: Callable[..., Any]):
224
+ self.layers = list(fns)
225
+
226
+ def __call__(self, *args, **kwargs) -> Any:
227
+ output: Any = None
228
+
229
+ for i, f in enumerate(self.layers):
230
+ if not callable(f):
231
+ raise TypeError(f'Sequence[{i}] is not callable: {f}')
232
+ if i > 0:
233
+ if isinstance(output, tuple):
234
+ args = output
235
+ kwargs = {}
236
+ elif isinstance(output, dict):
237
+ args = ()
238
+ kwargs = output
239
+ else:
240
+ args = (output,)
241
+ kwargs = {}
242
+ output = f(*args, **kwargs)
243
+
244
+ return output
@@ -1,73 +1,73 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
- import unittest
17
-
18
- import brainstate
19
-
20
-
21
- class TestSequential(unittest.TestCase):
22
- def test1(self):
23
- s = brainstate.graph.Sequential(brainstate.nn.Linear(1, 2),
24
- brainstate.nn.Linear(2, 3))
25
- graphdef, states = brainstate.graph.treefy_split(s)
26
- print(states)
27
- self.assertTrue(len(states.to_flat()) == 2)
28
-
29
-
30
- class TestStateRetrieve(unittest.TestCase):
31
- def test_list_of_states_1(self):
32
- class Model(brainstate.graph.Node):
33
- def __init__(self):
34
- self.a = [1, 2, 3]
35
- self.b = [brainstate.State(1), brainstate.State(2), brainstate.State(3)]
36
-
37
- m = Model()
38
- graphdef, states = brainstate.graph.treefy_split(m)
39
- print(states.to_flat())
40
- self.assertTrue(len(states.to_flat()) == 3)
41
-
42
- def test_list_of_states_2(self):
43
- class Model(brainstate.graph.Node):
44
- def __init__(self):
45
- self.a = [1, 2, 3]
46
- self.b = [brainstate.State(1), [brainstate.State(2), brainstate.State(3)]]
47
-
48
- m = Model()
49
- graphdef, states = brainstate.graph.treefy_split(m)
50
- print(states.to_flat())
51
- self.assertTrue(len(states.to_flat()) == 3)
52
-
53
- def test_list_of_node_1(self):
54
- class Model(brainstate.graph.Node):
55
- def __init__(self):
56
- self.a = [1, 2, 3]
57
- self.b = [brainstate.nn.Linear(1, 2), brainstate.nn.Linear(2, 3)]
58
-
59
- m = Model()
60
- graphdef, states = brainstate.graph.treefy_split(m)
61
- print(states.to_flat())
62
- self.assertTrue(len(states.to_flat()) == 2)
63
-
64
- def test_list_of_node_2(self):
65
- class Model(brainstate.graph.Node):
66
- def __init__(self):
67
- self.a = [1, 2, 3]
68
- self.b = [brainstate.nn.Linear(1, 2), [brainstate.nn.Linear(2, 3)], (brainstate.nn.Linear(3, 4), brainstate.nn.Linear(4, 5))]
69
-
70
- m = Model()
71
- graphdef, states = brainstate.graph.treefy_split(m)
72
- print(states.to_flat())
73
- self.assertTrue(len(states.to_flat()) == 4)
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import unittest
17
+
18
+ import brainstate
19
+
20
+
21
+ class TestSequential(unittest.TestCase):
22
+ def test1(self):
23
+ s = brainstate.graph.Sequential(brainstate.nn.Linear(1, 2),
24
+ brainstate.nn.Linear(2, 3))
25
+ graphdef, states = brainstate.graph.treefy_split(s)
26
+ print(states)
27
+ self.assertTrue(len(states.to_flat()) == 2)
28
+
29
+
30
+ class TestStateRetrieve(unittest.TestCase):
31
+ def test_list_of_states_1(self):
32
+ class Model(brainstate.graph.Node):
33
+ def __init__(self):
34
+ self.a = [1, 2, 3]
35
+ self.b = [brainstate.State(1), brainstate.State(2), brainstate.State(3)]
36
+
37
+ m = Model()
38
+ graphdef, states = brainstate.graph.treefy_split(m)
39
+ print(states.to_flat())
40
+ self.assertTrue(len(states.to_flat()) == 3)
41
+
42
+ def test_list_of_states_2(self):
43
+ class Model(brainstate.graph.Node):
44
+ def __init__(self):
45
+ self.a = [1, 2, 3]
46
+ self.b = [brainstate.State(1), [brainstate.State(2), brainstate.State(3)]]
47
+
48
+ m = Model()
49
+ graphdef, states = brainstate.graph.treefy_split(m)
50
+ print(states.to_flat())
51
+ self.assertTrue(len(states.to_flat()) == 3)
52
+
53
+ def test_list_of_node_1(self):
54
+ class Model(brainstate.graph.Node):
55
+ def __init__(self):
56
+ self.a = [1, 2, 3]
57
+ self.b = [brainstate.nn.Linear(1, 2), brainstate.nn.Linear(2, 3)]
58
+
59
+ m = Model()
60
+ graphdef, states = brainstate.graph.treefy_split(m)
61
+ print(states.to_flat())
62
+ self.assertTrue(len(states.to_flat()) == 2)
63
+
64
+ def test_list_of_node_2(self):
65
+ class Model(brainstate.graph.Node):
66
+ def __init__(self):
67
+ self.a = [1, 2, 3]
68
+ self.b = [brainstate.nn.Linear(1, 2), [brainstate.nn.Linear(2, 3)], (brainstate.nn.Linear(3, 4), brainstate.nn.Linear(4, 5))]
69
+
70
+ m = Model()
71
+ graphdef, states = brainstate.graph.treefy_split(m)
72
+ print(states.to_flat())
73
+ self.assertTrue(len(states.to_flat()) == 4)