brainstate 0.0.2.post20241009__py2.py3-none-any.whl → 0.1.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (175) hide show
  1. brainstate/__init__.py +31 -11
  2. brainstate/_state.py +760 -316
  3. brainstate/_state_test.py +41 -12
  4. brainstate/_utils.py +31 -4
  5. brainstate/augment/__init__.py +40 -0
  6. brainstate/augment/_autograd.py +608 -0
  7. brainstate/augment/_autograd_test.py +1193 -0
  8. brainstate/augment/_eval_shape.py +102 -0
  9. brainstate/augment/_eval_shape_test.py +40 -0
  10. brainstate/augment/_mapping.py +525 -0
  11. brainstate/augment/_mapping_test.py +210 -0
  12. brainstate/augment/_random.py +99 -0
  13. brainstate/{transform → compile}/__init__.py +25 -13
  14. brainstate/compile/_ad_checkpoint.py +204 -0
  15. brainstate/compile/_ad_checkpoint_test.py +51 -0
  16. brainstate/compile/_conditions.py +259 -0
  17. brainstate/compile/_conditions_test.py +221 -0
  18. brainstate/compile/_error_if.py +94 -0
  19. brainstate/compile/_error_if_test.py +54 -0
  20. brainstate/compile/_jit.py +314 -0
  21. brainstate/compile/_jit_test.py +143 -0
  22. brainstate/compile/_loop_collect_return.py +516 -0
  23. brainstate/compile/_loop_collect_return_test.py +59 -0
  24. brainstate/compile/_loop_no_collection.py +185 -0
  25. brainstate/compile/_loop_no_collection_test.py +51 -0
  26. brainstate/compile/_make_jaxpr.py +756 -0
  27. brainstate/compile/_make_jaxpr_test.py +134 -0
  28. brainstate/compile/_progress_bar.py +111 -0
  29. brainstate/compile/_unvmap.py +159 -0
  30. brainstate/compile/_util.py +147 -0
  31. brainstate/environ.py +408 -381
  32. brainstate/environ_test.py +34 -32
  33. brainstate/{nn/event → event}/__init__.py +6 -6
  34. brainstate/event/_csr.py +308 -0
  35. brainstate/event/_csr_test.py +118 -0
  36. brainstate/event/_fixed_probability.py +271 -0
  37. brainstate/event/_fixed_probability_test.py +128 -0
  38. brainstate/event/_linear.py +219 -0
  39. brainstate/event/_linear_test.py +112 -0
  40. brainstate/{nn/event → event}/_misc.py +7 -7
  41. brainstate/functional/_activations.py +521 -511
  42. brainstate/functional/_activations_test.py +300 -300
  43. brainstate/functional/_normalization.py +43 -43
  44. brainstate/functional/_others.py +15 -15
  45. brainstate/functional/_spikes.py +49 -49
  46. brainstate/graph/__init__.py +33 -0
  47. brainstate/graph/_graph_context.py +443 -0
  48. brainstate/graph/_graph_context_test.py +65 -0
  49. brainstate/graph/_graph_convert.py +246 -0
  50. brainstate/graph/_graph_node.py +300 -0
  51. brainstate/graph/_graph_node_test.py +75 -0
  52. brainstate/graph/_graph_operation.py +1746 -0
  53. brainstate/graph/_graph_operation_test.py +724 -0
  54. brainstate/init/_base.py +28 -10
  55. brainstate/init/_generic.py +175 -172
  56. brainstate/init/_random_inits.py +470 -415
  57. brainstate/init/_random_inits_test.py +150 -0
  58. brainstate/init/_regular_inits.py +66 -69
  59. brainstate/init/_regular_inits_test.py +51 -0
  60. brainstate/mixin.py +236 -244
  61. brainstate/mixin_test.py +44 -46
  62. brainstate/nn/__init__.py +26 -51
  63. brainstate/nn/_collective_ops.py +199 -0
  64. brainstate/nn/_dyn_impl/__init__.py +46 -0
  65. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  66. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  67. brainstate/nn/_dyn_impl/_dynamics_synapse.py +320 -0
  68. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  69. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  70. brainstate/nn/{_projection/__init__.py → _dyn_impl/_projection_alignpost.py} +6 -13
  71. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  72. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  73. brainstate/nn/_dyn_impl/_readout.py +128 -0
  74. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  75. brainstate/nn/_dynamics/__init__.py +37 -0
  76. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  77. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  78. brainstate/nn/_dynamics/_projection_base.py +346 -0
  79. brainstate/nn/_dynamics/_state_delay.py +453 -0
  80. brainstate/nn/_dynamics/_synouts.py +161 -0
  81. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  82. brainstate/nn/_elementwise/__init__.py +22 -0
  83. brainstate/nn/_elementwise/_dropout.py +418 -0
  84. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  85. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  86. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  87. brainstate/nn/_exp_euler.py +97 -0
  88. brainstate/nn/_exp_euler_test.py +36 -0
  89. brainstate/nn/_interaction/__init__.py +32 -0
  90. brainstate/nn/_interaction/_connections.py +726 -0
  91. brainstate/nn/_interaction/_connections_test.py +254 -0
  92. brainstate/nn/_interaction/_embedding.py +59 -0
  93. brainstate/nn/_interaction/_normalizations.py +388 -0
  94. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  95. brainstate/nn/_interaction/_poolings.py +1179 -0
  96. brainstate/nn/_interaction/_poolings_test.py +219 -0
  97. brainstate/nn/_module.py +328 -0
  98. brainstate/nn/_module_test.py +211 -0
  99. brainstate/nn/metrics.py +309 -309
  100. brainstate/optim/__init__.py +14 -2
  101. brainstate/optim/_base.py +66 -0
  102. brainstate/optim/_lr_scheduler.py +363 -400
  103. brainstate/optim/_lr_scheduler_test.py +25 -24
  104. brainstate/optim/_optax_optimizer.py +103 -176
  105. brainstate/optim/_optax_optimizer_test.py +41 -1
  106. brainstate/optim/_sgd_optimizer.py +950 -1025
  107. brainstate/random/_rand_funs.py +3269 -3268
  108. brainstate/random/_rand_funs_test.py +568 -0
  109. brainstate/random/_rand_seed.py +149 -117
  110. brainstate/random/_rand_seed_test.py +50 -0
  111. brainstate/random/_rand_state.py +1360 -1318
  112. brainstate/random/_random_for_unit.py +13 -13
  113. brainstate/surrogate.py +1262 -1243
  114. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  115. brainstate/typing.py +157 -130
  116. brainstate/util/__init__.py +52 -0
  117. brainstate/util/_caller.py +100 -0
  118. brainstate/util/_dict.py +734 -0
  119. brainstate/util/_dict_test.py +160 -0
  120. brainstate/util/_error.py +28 -0
  121. brainstate/util/_filter.py +178 -0
  122. brainstate/util/_others.py +497 -0
  123. brainstate/util/_pretty_repr.py +208 -0
  124. brainstate/util/_scaling.py +260 -0
  125. brainstate/util/_struct.py +524 -0
  126. brainstate/util/_tracers.py +75 -0
  127. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  128. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/METADATA +11 -11
  129. brainstate-0.1.0.dist-info/RECORD +135 -0
  130. brainstate/_module.py +0 -1637
  131. brainstate/_module_test.py +0 -207
  132. brainstate/nn/_base.py +0 -251
  133. brainstate/nn/_connections.py +0 -686
  134. brainstate/nn/_dynamics.py +0 -426
  135. brainstate/nn/_elementwise.py +0 -1438
  136. brainstate/nn/_embedding.py +0 -66
  137. brainstate/nn/_misc.py +0 -133
  138. brainstate/nn/_normalizations.py +0 -389
  139. brainstate/nn/_others.py +0 -101
  140. brainstate/nn/_poolings.py +0 -1229
  141. brainstate/nn/_poolings_test.py +0 -231
  142. brainstate/nn/_projection/_align_post.py +0 -546
  143. brainstate/nn/_projection/_align_pre.py +0 -599
  144. brainstate/nn/_projection/_delta.py +0 -241
  145. brainstate/nn/_projection/_vanilla.py +0 -101
  146. brainstate/nn/_rate_rnns.py +0 -410
  147. brainstate/nn/_readout.py +0 -136
  148. brainstate/nn/_synouts.py +0 -166
  149. brainstate/nn/event/csr.py +0 -312
  150. brainstate/nn/event/csr_test.py +0 -118
  151. brainstate/nn/event/fixed_probability.py +0 -276
  152. brainstate/nn/event/fixed_probability_test.py +0 -127
  153. brainstate/nn/event/linear.py +0 -220
  154. brainstate/nn/event/linear_test.py +0 -111
  155. brainstate/random/random_test.py +0 -593
  156. brainstate/transform/_autograd.py +0 -585
  157. brainstate/transform/_autograd_test.py +0 -1181
  158. brainstate/transform/_conditions.py +0 -334
  159. brainstate/transform/_conditions_test.py +0 -220
  160. brainstate/transform/_error_if.py +0 -94
  161. brainstate/transform/_error_if_test.py +0 -55
  162. brainstate/transform/_jit.py +0 -265
  163. brainstate/transform/_jit_test.py +0 -118
  164. brainstate/transform/_loop_collect_return.py +0 -502
  165. brainstate/transform/_loop_no_collection.py +0 -170
  166. brainstate/transform/_make_jaxpr.py +0 -739
  167. brainstate/transform/_make_jaxpr_test.py +0 -131
  168. brainstate/transform/_mapping.py +0 -109
  169. brainstate/transform/_progress_bar.py +0 -111
  170. brainstate/transform/_unvmap.py +0 -143
  171. brainstate/util.py +0 -746
  172. brainstate-0.0.2.post20241009.dist-info/RECORD +0 -87
  173. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/LICENSE +0 -0
  174. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/WHEEL +0 -0
  175. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/top_level.txt +0 -0
@@ -1,593 +0,0 @@
1
- # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # ==============================================================================
15
-
16
-
17
- import platform
18
- import unittest
19
-
20
- import jax.numpy as jnp
21
- import jax.random
22
- import jax.random as jr
23
- import numpy as np
24
- import pytest
25
-
26
- import brainstate as bst
27
-
28
-
29
- class TestRandom(unittest.TestCase):
30
-
31
- def test_seed2(self):
32
- test_seed = 299
33
- key = jax.random.PRNGKey(test_seed)
34
- bst.random.seed(key)
35
-
36
- @jax.jit
37
- def jit_seed(key):
38
- bst.random.seed(key)
39
- with bst.random.seed_context(key):
40
- print(bst.random.DEFAULT.value)
41
-
42
- jit_seed(key)
43
- jit_seed(1)
44
- jit_seed(None)
45
-
46
- def test_seed(self):
47
- test_seed = 299
48
- bst.random.seed(test_seed)
49
- a = bst.random.rand(3)
50
- bst.random.seed(test_seed)
51
- b = bst.random.rand(3)
52
- self.assertTrue(jnp.array_equal(a, b))
53
-
54
- def test_rand(self):
55
- bst.random.seed()
56
- a = bst.random.rand(3, 2)
57
- self.assertTupleEqual(a.shape, (3, 2))
58
- self.assertTrue((a >= 0).all() and (a < 1).all())
59
-
60
- key = jr.PRNGKey(123)
61
- jres = jr.uniform(key, shape=(10, 100))
62
- self.assertTrue(jnp.allclose(jres, bst.random.rand(10, 100, key=key)))
63
- self.assertTrue(jnp.allclose(jres, bst.random.rand(10, 100, key=123)))
64
-
65
- def test_randint1(self):
66
- bst.random.seed()
67
- a = bst.random.randint(5)
68
- self.assertTupleEqual(a.shape, ())
69
- self.assertTrue(0 <= a < 5)
70
-
71
- def test_randint2(self):
72
- bst.random.seed()
73
- a = bst.random.randint(2, 6, size=(4, 3))
74
- self.assertTupleEqual(a.shape, (4, 3))
75
- self.assertTrue((a >= 2).all() and (a < 6).all())
76
-
77
- def test_randint3(self):
78
- bst.random.seed()
79
- a = bst.random.randint([1, 2, 3], [10, 7, 8])
80
- self.assertTupleEqual(a.shape, (3,))
81
- self.assertTrue((a - jnp.array([1, 2, 3]) >= 0).all()
82
- and (-a + jnp.array([10, 7, 8]) > 0).all())
83
-
84
- def test_randint4(self):
85
- bst.random.seed()
86
- a = bst.random.randint([1, 2, 3], [10, 7, 8], size=(2, 3))
87
- self.assertTupleEqual(a.shape, (2, 3))
88
-
89
- def test_randn(self):
90
- bst.random.seed()
91
- a = bst.random.randn(3, 2)
92
- self.assertTupleEqual(a.shape, (3, 2))
93
-
94
- def test_random1(self):
95
- bst.random.seed()
96
- a = bst.random.random()
97
- self.assertTrue(0. <= a < 1)
98
-
99
- def test_random2(self):
100
- bst.random.seed()
101
- a = bst.random.random(size=(3, 2))
102
- self.assertTupleEqual(a.shape, (3, 2))
103
- self.assertTrue((a >= 0).all() and (a < 1).all())
104
-
105
- def test_random_sample(self):
106
- bst.random.seed()
107
- a = bst.random.random_sample(size=(3, 2))
108
- self.assertTupleEqual(a.shape, (3, 2))
109
- self.assertTrue((a >= 0).all() and (a < 1).all())
110
-
111
- def test_choice1(self):
112
- bst.random.seed()
113
- a = bst.random.choice(5)
114
- self.assertTupleEqual(jnp.shape(a), ())
115
- self.assertTrue(0 <= a < 5)
116
-
117
- def test_choice2(self):
118
- bst.random.seed()
119
- a = bst.random.choice(5, 3, p=[0.1, 0.4, 0.2, 0., 0.3])
120
- self.assertTupleEqual(a.shape, (3,))
121
- self.assertTrue((a >= 0).all() and (a < 5).all())
122
-
123
- def test_choice3(self):
124
- bst.random.seed()
125
- a = bst.random.choice(jnp.arange(2, 20), size=(4, 3), replace=False)
126
- self.assertTupleEqual(a.shape, (4, 3))
127
- self.assertTrue((a >= 2).all() and (a < 20).all())
128
- self.assertEqual(len(jnp.unique(a)), 12)
129
-
130
- def test_permutation1(self):
131
- bst.random.seed()
132
- a = bst.random.permutation(10)
133
- self.assertTupleEqual(a.shape, (10,))
134
- self.assertEqual(len(jnp.unique(a)), 10)
135
-
136
- def test_permutation2(self):
137
- bst.random.seed()
138
- a = bst.random.permutation(jnp.arange(10))
139
- self.assertTupleEqual(a.shape, (10,))
140
- self.assertEqual(len(jnp.unique(a)), 10)
141
-
142
- def test_shuffle1(self):
143
- bst.random.seed()
144
- a = jnp.arange(10)
145
- bst.random.shuffle(a)
146
- self.assertTupleEqual(a.shape, (10,))
147
- self.assertEqual(len(jnp.unique(a)), 10)
148
-
149
- def test_shuffle2(self):
150
- bst.random.seed()
151
- a = jnp.arange(12).reshape(4, 3)
152
- bst.random.shuffle(a, axis=1)
153
- self.assertTupleEqual(a.shape, (4, 3))
154
- self.assertEqual(len(jnp.unique(a)), 12)
155
-
156
- # test that a is only shuffled along axis 1
157
- uni = jnp.unique(jnp.diff(a, axis=0))
158
- self.assertEqual(uni, jnp.asarray([3]))
159
-
160
- def test_beta1(self):
161
- bst.random.seed()
162
- a = bst.random.beta(2, 2)
163
- self.assertTupleEqual(a.shape, ())
164
-
165
- def test_beta2(self):
166
- bst.random.seed()
167
- a = bst.random.beta([2, 2, 3], 2, size=(3,))
168
- self.assertTupleEqual(a.shape, (3,))
169
-
170
- def test_exponential1(self):
171
- bst.random.seed()
172
- a = bst.random.exponential(10., size=[3, 2])
173
- self.assertTupleEqual(a.shape, (3, 2))
174
-
175
- def test_exponential2(self):
176
- bst.random.seed()
177
- a = bst.random.exponential([1., 2., 5.])
178
- self.assertTupleEqual(a.shape, (3,))
179
-
180
- def test_gamma(self):
181
- bst.random.seed()
182
- a = bst.random.gamma(2, 10., size=[3, 2])
183
- self.assertTupleEqual(a.shape, (3, 2))
184
-
185
- def test_gumbel(self):
186
- bst.random.seed()
187
- a = bst.random.gumbel(0., 2., size=[3, 2])
188
- self.assertTupleEqual(a.shape, (3, 2))
189
-
190
- def test_laplace(self):
191
- bst.random.seed()
192
- a = bst.random.laplace(0., 2., size=[3, 2])
193
- self.assertTupleEqual(a.shape, (3, 2))
194
-
195
- def test_logistic(self):
196
- bst.random.seed()
197
- a = bst.random.logistic(0., 2., size=[3, 2])
198
- self.assertTupleEqual(a.shape, (3, 2))
199
-
200
- def test_normal1(self):
201
- bst.random.seed()
202
- a = bst.random.normal()
203
- self.assertTupleEqual(a.shape, ())
204
-
205
- def test_normal2(self):
206
- bst.random.seed()
207
- a = bst.random.normal(loc=[0., 2., 4.], scale=[1., 2., 3.])
208
- self.assertTupleEqual(a.shape, (3,))
209
-
210
- def test_normal3(self):
211
- bst.random.seed()
212
- a = bst.random.normal(loc=[0., 2., 4.], scale=[[1., 2., 3.], [1., 1., 1.]])
213
- print(a)
214
- self.assertTupleEqual(a.shape, (2, 3))
215
-
216
- def test_pareto(self):
217
- bst.random.seed()
218
- a = bst.random.pareto([1, 2, 2])
219
- self.assertTupleEqual(a.shape, (3,))
220
-
221
- def test_poisson(self):
222
- bst.random.seed()
223
- a = bst.random.poisson([1., 2., 2.], size=3)
224
- self.assertTupleEqual(a.shape, (3,))
225
-
226
- def test_standard_cauchy(self):
227
- bst.random.seed()
228
- a = bst.random.standard_cauchy(size=(3, 2))
229
- self.assertTupleEqual(a.shape, (3, 2))
230
-
231
- def test_standard_exponential(self):
232
- bst.random.seed()
233
- a = bst.random.standard_exponential(size=(3, 2))
234
- self.assertTupleEqual(a.shape, (3, 2))
235
-
236
- def test_standard_gamma(self):
237
- bst.random.seed()
238
- a = bst.random.standard_gamma(shape=[1, 2, 4], size=3)
239
- self.assertTupleEqual(a.shape, (3,))
240
-
241
- def test_standard_normal(self):
242
- bst.random.seed()
243
- a = bst.random.standard_normal(size=(3, 2))
244
- self.assertTupleEqual(a.shape, (3, 2))
245
-
246
- def test_standard_t(self):
247
- bst.random.seed()
248
- a = bst.random.standard_t(df=[1, 2, 4], size=3)
249
- self.assertTupleEqual(a.shape, (3,))
250
-
251
- def test_standard_uniform1(self):
252
- bst.random.seed()
253
- a = bst.random.uniform()
254
- self.assertTupleEqual(a.shape, ())
255
- self.assertTrue(0 <= a < 1)
256
-
257
- def test_uniform2(self):
258
- bst.random.seed()
259
- a = bst.random.uniform(low=[-1., 5., 2.], high=[2., 6., 10.], size=3)
260
- self.assertTupleEqual(a.shape, (3,))
261
- self.assertTrue((a - jnp.array([-1., 5., 2.]) >= 0).all()
262
- and (-a + jnp.array([2., 6., 10.]) > 0).all())
263
-
264
- def test_uniform3(self):
265
- bst.random.seed()
266
- a = bst.random.uniform(low=-1., high=[2., 6., 10.], size=(2, 3))
267
- self.assertTupleEqual(a.shape, (2, 3))
268
-
269
- def test_uniform4(self):
270
- bst.random.seed()
271
- a = bst.random.uniform(low=[-1., 5., 2.], high=[[2., 6., 10.], [10., 10., 10.]])
272
- self.assertTupleEqual(a.shape, (2, 3))
273
-
274
- def test_truncated_normal1(self):
275
- bst.random.seed()
276
- a = bst.random.truncated_normal(-1., 1.)
277
- self.assertTupleEqual(a.shape, ())
278
- self.assertTrue(-1. <= a <= 1.)
279
-
280
- def test_truncated_normal2(self):
281
- bst.random.seed()
282
- a = bst.random.truncated_normal(-1., [1., 2., 1.], size=(4, 3))
283
- self.assertTupleEqual(a.shape, (4, 3))
284
-
285
- def test_truncated_normal3(self):
286
- bst.random.seed()
287
- a = bst.random.truncated_normal([-1., 0., 1.], [[2., 2., 4.], [2., 2., 4.]])
288
- self.assertTupleEqual(a.shape, (2, 3))
289
- self.assertTrue((a - jnp.array([-1., 0., 1.]) >= 0.).all()
290
- and (- a + jnp.array([2., 2., 4.]) >= 0.).all())
291
-
292
- def test_bernoulli1(self):
293
- bst.random.seed()
294
- a = bst.random.bernoulli()
295
- self.assertTupleEqual(a.shape, ())
296
- self.assertTrue(a == 0 or a == 1)
297
-
298
- def test_bernoulli2(self):
299
- bst.random.seed()
300
- a = bst.random.bernoulli([0.5, 0.6, 0.8])
301
- self.assertTupleEqual(a.shape, (3,))
302
- self.assertTrue(jnp.logical_xor(a == 1, a == 0).all())
303
-
304
- def test_bernoulli3(self):
305
- bst.random.seed()
306
- a = bst.random.bernoulli([0.5, 0.6], size=(3, 2))
307
- self.assertTupleEqual(a.shape, (3, 2))
308
- self.assertTrue(jnp.logical_xor(a == 1, a == 0).all())
309
-
310
- def test_lognormal1(self):
311
- bst.random.seed()
312
- a = bst.random.lognormal()
313
- self.assertTupleEqual(a.shape, ())
314
-
315
- def test_lognormal2(self):
316
- bst.random.seed()
317
- a = bst.random.lognormal(sigma=[2., 1.], size=[3, 2])
318
- self.assertTupleEqual(a.shape, (3, 2))
319
-
320
- def test_lognormal3(self):
321
- bst.random.seed()
322
- a = bst.random.lognormal([2., 0.], [[2., 1.], [3., 1.2]])
323
- self.assertTupleEqual(a.shape, (2, 2))
324
-
325
- def test_binomial1(self):
326
- bst.random.seed()
327
- a = bst.random.binomial(5, 0.5)
328
- b = np.random.binomial(5, 0.5)
329
- print(a)
330
- print(b)
331
- self.assertTupleEqual(a.shape, ())
332
- self.assertTrue(a.dtype, int)
333
-
334
- def test_binomial2(self):
335
- bst.random.seed()
336
- a = bst.random.binomial(5, 0.5, size=(3, 2))
337
- self.assertTupleEqual(a.shape, (3, 2))
338
- self.assertTrue((a >= 0).all() and (a <= 5).all())
339
-
340
- def test_binomial3(self):
341
- bst.random.seed()
342
- a = bst.random.binomial(n=jnp.asarray([2, 3, 4]), p=jnp.asarray([[0.5, 0.5, 0.5], [0.6, 0.6, 0.6]]))
343
- self.assertTupleEqual(a.shape, (2, 3))
344
-
345
- def test_chisquare1(self):
346
- bst.random.seed()
347
- a = bst.random.chisquare(3)
348
- self.assertTupleEqual(a.shape, ())
349
- self.assertTrue(a.dtype, float)
350
-
351
- def test_chisquare2(self):
352
- bst.random.seed()
353
- with self.assertRaises(NotImplementedError):
354
- a = bst.random.chisquare(df=[2, 3, 4])
355
-
356
- def test_chisquare3(self):
357
- bst.random.seed()
358
- a = bst.random.chisquare(df=2, size=100)
359
- self.assertTupleEqual(a.shape, (100,))
360
-
361
- def test_chisquare4(self):
362
- bst.random.seed()
363
- a = bst.random.chisquare(df=2, size=(100, 10))
364
- self.assertTupleEqual(a.shape, (100, 10))
365
-
366
- def test_dirichlet1(self):
367
- bst.random.seed()
368
- a = bst.random.dirichlet((10, 5, 3))
369
- self.assertTupleEqual(a.shape, (3,))
370
-
371
- def test_dirichlet2(self):
372
- bst.random.seed()
373
- a = bst.random.dirichlet((10, 5, 3), 20)
374
- self.assertTupleEqual(a.shape, (20, 3))
375
-
376
- def test_f(self):
377
- bst.random.seed()
378
- a = bst.random.f(1., 48., 100)
379
- self.assertTupleEqual(a.shape, (100,))
380
-
381
- def test_geometric(self):
382
- bst.random.seed()
383
- a = bst.random.geometric([0.7, 0.5, 0.2])
384
- self.assertTupleEqual(a.shape, (3,))
385
-
386
- def test_hypergeometric1(self):
387
- bst.random.seed()
388
- a = bst.random.hypergeometric(10, 10, 10, 20)
389
- self.assertTupleEqual(a.shape, (20,))
390
-
391
- @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows jaxlib error')
392
- def test_hypergeometric2(self):
393
- bst.random.seed()
394
- a = bst.random.hypergeometric(8, [10, 4], [[5, 2], [5, 5]])
395
- self.assertTupleEqual(a.shape, (2, 2))
396
-
397
- @pytest.mark.skipif(platform.system() == 'Windows', reason='Windows jaxlib error')
398
- def test_hypergeometric3(self):
399
- bst.random.seed()
400
- a = bst.random.hypergeometric(8, [10, 4], [[5, 2], [5, 5]], size=(3, 2, 2))
401
- self.assertTupleEqual(a.shape, (3, 2, 2))
402
-
403
- def test_logseries(self):
404
- bst.random.seed()
405
- a = bst.random.logseries([0.7, 0.5, 0.2], size=[4, 3])
406
- self.assertTupleEqual(a.shape, (4, 3))
407
-
408
- def test_multinominal1(self):
409
- bst.random.seed()
410
- a = np.random.multinomial(100, (0.5, 0.2, 0.3), size=[4, 2])
411
- print(a, a.shape)
412
- b = bst.random.multinomial(100, (0.5, 0.2, 0.3), size=[4, 2])
413
- print(b, b.shape)
414
- self.assertTupleEqual(a.shape, b.shape)
415
- self.assertTupleEqual(b.shape, (4, 2, 3))
416
-
417
- def test_multinominal2(self):
418
- bst.random.seed()
419
- a = bst.random.multinomial(100, (0.5, 0.2, 0.3))
420
- self.assertTupleEqual(a.shape, (3,))
421
- self.assertTrue(a.sum() == 100)
422
-
423
- def test_multivariate_normal1(self):
424
- bst.random.seed()
425
- # self.skipTest('Windows jaxlib error')
426
- a = np.random.multivariate_normal([1, 2], [[1, 0], [0, 1]], size=3)
427
- b = bst.random.multivariate_normal([1, 2], [[1, 0], [0, 1]], size=3)
428
- print('test_multivariate_normal1')
429
- print(a)
430
- print(b)
431
- self.assertTupleEqual(a.shape, b.shape)
432
- self.assertTupleEqual(a.shape, (3, 2))
433
-
434
- def test_multivariate_normal2(self):
435
- bst.random.seed()
436
- a = np.random.multivariate_normal([1, 2], [[1, 3], [3, 1]])
437
- b = bst.random.multivariate_normal([1, 2], [[1, 3], [3, 1]], method='svd')
438
- print(a)
439
- print(b)
440
- self.assertTupleEqual(a.shape, b.shape)
441
- self.assertTupleEqual(a.shape, (2,))
442
-
443
- def test_negative_binomial(self):
444
- bst.random.seed()
445
- a = np.random.negative_binomial([3., 10.], 0.5)
446
- b = bst.random.negative_binomial([3., 10.], 0.5)
447
- print(a)
448
- print(b)
449
- self.assertTupleEqual(a.shape, b.shape)
450
- self.assertTupleEqual(b.shape, (2,))
451
-
452
- def test_negative_binomial2(self):
453
- bst.random.seed()
454
- a = np.random.negative_binomial(3., 0.5, 10)
455
- b = bst.random.negative_binomial(3., 0.5, 10)
456
- print(a)
457
- print(b)
458
- self.assertTupleEqual(a.shape, b.shape)
459
- self.assertTupleEqual(b.shape, (10,))
460
-
461
- def test_noncentral_chisquare(self):
462
- bst.random.seed()
463
- a = np.random.noncentral_chisquare(3, [3., 2.], (4, 2))
464
- b = bst.random.noncentral_chisquare(3, [3., 2.], (4, 2))
465
- self.assertTupleEqual(a.shape, b.shape)
466
- self.assertTupleEqual(b.shape, (4, 2))
467
-
468
- def test_noncentral_chisquare2(self):
469
- bst.random.seed()
470
- a = bst.random.noncentral_chisquare(3, [3., 2.])
471
- self.assertTupleEqual(a.shape, (2,))
472
-
473
- def test_noncentral_f(self):
474
- bst.random.seed()
475
- a = bst.random.noncentral_f(3, 20, 3., 100)
476
- self.assertTupleEqual(a.shape, (100,))
477
-
478
- def test_power(self):
479
- bst.random.seed()
480
- a = np.random.power(2, (4, 2))
481
- b = bst.random.power(2, (4, 2))
482
- self.assertTupleEqual(a.shape, b.shape)
483
- self.assertTupleEqual(b.shape, (4, 2))
484
-
485
- def test_rayleigh(self):
486
- bst.random.seed()
487
- a = bst.random.power(2., (4, 2))
488
- self.assertTupleEqual(a.shape, (4, 2))
489
-
490
- def test_triangular(self):
491
- bst.random.seed()
492
- a = bst.random.triangular((2, 2))
493
- self.assertTupleEqual(a.shape, (2, 2))
494
-
495
- def test_vonmises(self):
496
- bst.random.seed()
497
- a = np.random.vonmises(2., 2.)
498
- b = bst.random.vonmises(2., 2.)
499
- print(a, b)
500
- self.assertTupleEqual(np.shape(a), b.shape)
501
- self.assertTupleEqual(b.shape, ())
502
-
503
- def test_vonmises2(self):
504
- bst.random.seed()
505
- a = np.random.vonmises(2., 2., 10)
506
- b = bst.random.vonmises(2., 2., 10)
507
- print(a, b)
508
- self.assertTupleEqual(a.shape, b.shape)
509
- self.assertTupleEqual(b.shape, (10,))
510
-
511
- def test_wald(self):
512
- bst.random.seed()
513
- a = np.random.wald([2., 0.5], 2.)
514
- b = bst.random.wald([2., 0.5], 2.)
515
- self.assertTupleEqual(a.shape, b.shape)
516
- self.assertTupleEqual(b.shape, (2,))
517
-
518
- def test_wald2(self):
519
- bst.random.seed()
520
- a = np.random.wald(2., 2., 100)
521
- b = bst.random.wald(2., 2., 100)
522
- self.assertTupleEqual(a.shape, b.shape)
523
- self.assertTupleEqual(b.shape, (100,))
524
-
525
- def test_weibull(self):
526
- bst.random.seed()
527
- a = bst.random.weibull(2., (4, 2))
528
- self.assertTupleEqual(a.shape, (4, 2))
529
-
530
- def test_weibull2(self):
531
- bst.random.seed()
532
- a = bst.random.weibull(2., )
533
- self.assertTupleEqual(a.shape, ())
534
-
535
- def test_weibull3(self):
536
- bst.random.seed()
537
- a = bst.random.weibull([2., 3.], )
538
- self.assertTupleEqual(a.shape, (2,))
539
-
540
- def test_weibull_min(self):
541
- bst.random.seed()
542
- a = bst.random.weibull_min(2., 2., (4, 2))
543
- self.assertTupleEqual(a.shape, (4, 2))
544
-
545
- def test_weibull_min2(self):
546
- bst.random.seed()
547
- a = bst.random.weibull_min(2., 2.)
548
- self.assertTupleEqual(a.shape, ())
549
-
550
- def test_weibull_min3(self):
551
- bst.random.seed()
552
- a = bst.random.weibull_min([2., 3.], 2.)
553
- self.assertTupleEqual(a.shape, (2,))
554
-
555
- def test_zipf(self):
556
- bst.random.seed()
557
- a = bst.random.zipf(2., (4, 2))
558
- self.assertTupleEqual(a.shape, (4, 2))
559
-
560
- def test_zipf2(self):
561
- bst.random.seed()
562
- a = np.random.zipf([1.1, 2.])
563
- b = bst.random.zipf([1.1, 2.])
564
- self.assertTupleEqual(a.shape, b.shape)
565
- self.assertTupleEqual(b.shape, (2,))
566
-
567
- def test_maxwell(self):
568
- bst.random.seed()
569
- a = bst.random.maxwell(10)
570
- self.assertTupleEqual(a.shape, (10,))
571
-
572
- def test_maxwell2(self):
573
- bst.random.seed()
574
- a = bst.random.maxwell()
575
- self.assertTupleEqual(a.shape, ())
576
-
577
- def test_t(self):
578
- bst.random.seed()
579
- a = bst.random.t(1., size=10)
580
- self.assertTupleEqual(a.shape, (10,))
581
-
582
- def test_t2(self):
583
- bst.random.seed()
584
- a = bst.random.t([1., 2.], size=None)
585
- self.assertTupleEqual(a.shape, (2,))
586
-
587
-
588
- class TestRandomKey(unittest.TestCase):
589
- def test_clear_memory(self):
590
- bst.random.split_key()
591
- bst.util.clear_buffer_memory()
592
- print(bst.random.DEFAULT.value)
593
- self.assertTrue(isinstance(bst.random.DEFAULT.value, np.ndarray))