brainstate 0.0.2.post20241009__py2.py3-none-any.whl → 0.1.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (175) hide show
  1. brainstate/__init__.py +31 -11
  2. brainstate/_state.py +760 -316
  3. brainstate/_state_test.py +41 -12
  4. brainstate/_utils.py +31 -4
  5. brainstate/augment/__init__.py +40 -0
  6. brainstate/augment/_autograd.py +608 -0
  7. brainstate/augment/_autograd_test.py +1193 -0
  8. brainstate/augment/_eval_shape.py +102 -0
  9. brainstate/augment/_eval_shape_test.py +40 -0
  10. brainstate/augment/_mapping.py +525 -0
  11. brainstate/augment/_mapping_test.py +210 -0
  12. brainstate/augment/_random.py +99 -0
  13. brainstate/{transform → compile}/__init__.py +25 -13
  14. brainstate/compile/_ad_checkpoint.py +204 -0
  15. brainstate/compile/_ad_checkpoint_test.py +51 -0
  16. brainstate/compile/_conditions.py +259 -0
  17. brainstate/compile/_conditions_test.py +221 -0
  18. brainstate/compile/_error_if.py +94 -0
  19. brainstate/compile/_error_if_test.py +54 -0
  20. brainstate/compile/_jit.py +314 -0
  21. brainstate/compile/_jit_test.py +143 -0
  22. brainstate/compile/_loop_collect_return.py +516 -0
  23. brainstate/compile/_loop_collect_return_test.py +59 -0
  24. brainstate/compile/_loop_no_collection.py +185 -0
  25. brainstate/compile/_loop_no_collection_test.py +51 -0
  26. brainstate/compile/_make_jaxpr.py +756 -0
  27. brainstate/compile/_make_jaxpr_test.py +134 -0
  28. brainstate/compile/_progress_bar.py +111 -0
  29. brainstate/compile/_unvmap.py +159 -0
  30. brainstate/compile/_util.py +147 -0
  31. brainstate/environ.py +408 -381
  32. brainstate/environ_test.py +34 -32
  33. brainstate/{nn/event → event}/__init__.py +6 -6
  34. brainstate/event/_csr.py +308 -0
  35. brainstate/event/_csr_test.py +118 -0
  36. brainstate/event/_fixed_probability.py +271 -0
  37. brainstate/event/_fixed_probability_test.py +128 -0
  38. brainstate/event/_linear.py +219 -0
  39. brainstate/event/_linear_test.py +112 -0
  40. brainstate/{nn/event → event}/_misc.py +7 -7
  41. brainstate/functional/_activations.py +521 -511
  42. brainstate/functional/_activations_test.py +300 -300
  43. brainstate/functional/_normalization.py +43 -43
  44. brainstate/functional/_others.py +15 -15
  45. brainstate/functional/_spikes.py +49 -49
  46. brainstate/graph/__init__.py +33 -0
  47. brainstate/graph/_graph_context.py +443 -0
  48. brainstate/graph/_graph_context_test.py +65 -0
  49. brainstate/graph/_graph_convert.py +246 -0
  50. brainstate/graph/_graph_node.py +300 -0
  51. brainstate/graph/_graph_node_test.py +75 -0
  52. brainstate/graph/_graph_operation.py +1746 -0
  53. brainstate/graph/_graph_operation_test.py +724 -0
  54. brainstate/init/_base.py +28 -10
  55. brainstate/init/_generic.py +175 -172
  56. brainstate/init/_random_inits.py +470 -415
  57. brainstate/init/_random_inits_test.py +150 -0
  58. brainstate/init/_regular_inits.py +66 -69
  59. brainstate/init/_regular_inits_test.py +51 -0
  60. brainstate/mixin.py +236 -244
  61. brainstate/mixin_test.py +44 -46
  62. brainstate/nn/__init__.py +26 -51
  63. brainstate/nn/_collective_ops.py +199 -0
  64. brainstate/nn/_dyn_impl/__init__.py +46 -0
  65. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  66. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  67. brainstate/nn/_dyn_impl/_dynamics_synapse.py +320 -0
  68. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  69. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  70. brainstate/nn/{_projection/__init__.py → _dyn_impl/_projection_alignpost.py} +6 -13
  71. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  72. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  73. brainstate/nn/_dyn_impl/_readout.py +128 -0
  74. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  75. brainstate/nn/_dynamics/__init__.py +37 -0
  76. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  77. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  78. brainstate/nn/_dynamics/_projection_base.py +346 -0
  79. brainstate/nn/_dynamics/_state_delay.py +453 -0
  80. brainstate/nn/_dynamics/_synouts.py +161 -0
  81. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  82. brainstate/nn/_elementwise/__init__.py +22 -0
  83. brainstate/nn/_elementwise/_dropout.py +418 -0
  84. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  85. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  86. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  87. brainstate/nn/_exp_euler.py +97 -0
  88. brainstate/nn/_exp_euler_test.py +36 -0
  89. brainstate/nn/_interaction/__init__.py +32 -0
  90. brainstate/nn/_interaction/_connections.py +726 -0
  91. brainstate/nn/_interaction/_connections_test.py +254 -0
  92. brainstate/nn/_interaction/_embedding.py +59 -0
  93. brainstate/nn/_interaction/_normalizations.py +388 -0
  94. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  95. brainstate/nn/_interaction/_poolings.py +1179 -0
  96. brainstate/nn/_interaction/_poolings_test.py +219 -0
  97. brainstate/nn/_module.py +328 -0
  98. brainstate/nn/_module_test.py +211 -0
  99. brainstate/nn/metrics.py +309 -309
  100. brainstate/optim/__init__.py +14 -2
  101. brainstate/optim/_base.py +66 -0
  102. brainstate/optim/_lr_scheduler.py +363 -400
  103. brainstate/optim/_lr_scheduler_test.py +25 -24
  104. brainstate/optim/_optax_optimizer.py +103 -176
  105. brainstate/optim/_optax_optimizer_test.py +41 -1
  106. brainstate/optim/_sgd_optimizer.py +950 -1025
  107. brainstate/random/_rand_funs.py +3269 -3268
  108. brainstate/random/_rand_funs_test.py +568 -0
  109. brainstate/random/_rand_seed.py +149 -117
  110. brainstate/random/_rand_seed_test.py +50 -0
  111. brainstate/random/_rand_state.py +1360 -1318
  112. brainstate/random/_random_for_unit.py +13 -13
  113. brainstate/surrogate.py +1262 -1243
  114. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  115. brainstate/typing.py +157 -130
  116. brainstate/util/__init__.py +52 -0
  117. brainstate/util/_caller.py +100 -0
  118. brainstate/util/_dict.py +734 -0
  119. brainstate/util/_dict_test.py +160 -0
  120. brainstate/util/_error.py +28 -0
  121. brainstate/util/_filter.py +178 -0
  122. brainstate/util/_others.py +497 -0
  123. brainstate/util/_pretty_repr.py +208 -0
  124. brainstate/util/_scaling.py +260 -0
  125. brainstate/util/_struct.py +524 -0
  126. brainstate/util/_tracers.py +75 -0
  127. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  128. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/METADATA +11 -11
  129. brainstate-0.1.0.dist-info/RECORD +135 -0
  130. brainstate/_module.py +0 -1637
  131. brainstate/_module_test.py +0 -207
  132. brainstate/nn/_base.py +0 -251
  133. brainstate/nn/_connections.py +0 -686
  134. brainstate/nn/_dynamics.py +0 -426
  135. brainstate/nn/_elementwise.py +0 -1438
  136. brainstate/nn/_embedding.py +0 -66
  137. brainstate/nn/_misc.py +0 -133
  138. brainstate/nn/_normalizations.py +0 -389
  139. brainstate/nn/_others.py +0 -101
  140. brainstate/nn/_poolings.py +0 -1229
  141. brainstate/nn/_poolings_test.py +0 -231
  142. brainstate/nn/_projection/_align_post.py +0 -546
  143. brainstate/nn/_projection/_align_pre.py +0 -599
  144. brainstate/nn/_projection/_delta.py +0 -241
  145. brainstate/nn/_projection/_vanilla.py +0 -101
  146. brainstate/nn/_rate_rnns.py +0 -410
  147. brainstate/nn/_readout.py +0 -136
  148. brainstate/nn/_synouts.py +0 -166
  149. brainstate/nn/event/csr.py +0 -312
  150. brainstate/nn/event/csr_test.py +0 -118
  151. brainstate/nn/event/fixed_probability.py +0 -276
  152. brainstate/nn/event/fixed_probability_test.py +0 -127
  153. brainstate/nn/event/linear.py +0 -220
  154. brainstate/nn/event/linear_test.py +0 -111
  155. brainstate/random/random_test.py +0 -593
  156. brainstate/transform/_autograd.py +0 -585
  157. brainstate/transform/_autograd_test.py +0 -1181
  158. brainstate/transform/_conditions.py +0 -334
  159. brainstate/transform/_conditions_test.py +0 -220
  160. brainstate/transform/_error_if.py +0 -94
  161. brainstate/transform/_error_if_test.py +0 -55
  162. brainstate/transform/_jit.py +0 -265
  163. brainstate/transform/_jit_test.py +0 -118
  164. brainstate/transform/_loop_collect_return.py +0 -502
  165. brainstate/transform/_loop_no_collection.py +0 -170
  166. brainstate/transform/_make_jaxpr.py +0 -739
  167. brainstate/transform/_make_jaxpr_test.py +0 -131
  168. brainstate/transform/_mapping.py +0 -109
  169. brainstate/transform/_progress_bar.py +0 -111
  170. brainstate/transform/_unvmap.py +0 -143
  171. brainstate/util.py +0 -746
  172. brainstate-0.0.2.post20241009.dist-info/RECORD +0 -87
  173. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/LICENSE +0 -0
  174. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/WHEEL +0 -0
  175. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,246 @@
1
+ # The file is adapted from the Flax library (https://github.com/google/flax).
2
+ # The credit should go to the Flax authors.
3
+ #
4
+ # Copyright 2024 The Flax Authors & 2024 BDP Ecosystem.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+ # ==============================================================================
18
+
19
+ from __future__ import annotations
20
+
21
+ from typing import Any, Callable, Iterable, TypeVar, Hashable, Optional, Tuple, List
22
+
23
+ import jax
24
+
25
+ from brainstate._state import State
26
+ from brainstate.typing import Missing, PyTree, PathParts
27
+ from brainstate.util import PyTreeNode, field
28
+ from ._graph_context import SplitContext, MergeContext, split_context, merge_context
29
+ from ._graph_operation import (RefMap, iter_leaf, _is_graph_node, GraphDef, GraphStateMapping)
30
+
31
+ __all__ = [
32
+ 'graph_to_tree', 'tree_to_graph', 'NodeStates'
33
+ ]
34
+
35
+ Node = TypeVar('Node')
36
+ Leaf = TypeVar('Leaf')
37
+
38
+ KeyEntry = TypeVar('KeyEntry', bound=Hashable)
39
+ KeyPath = tuple[KeyEntry, ...]
40
+ Prefix = Any
41
+
42
+
43
+ def check_consistent_aliasing(
44
+ node: Tuple[Any, ...],
45
+ prefix: Tuple[Any, ...],
46
+ /,
47
+ *,
48
+ node_prefixes: Optional[RefMap[Any, List[Tuple[PathParts, Any]]]] = None,
49
+ ):
50
+ node_prefixes = RefMap() if node_prefixes is None else node_prefixes
51
+
52
+ # collect all paths and prefixes for each node
53
+ for path, value in iter_leaf(node):
54
+ if isinstance(value, State):
55
+ # value.check_valid_trace(lambda: f'Trying to extract graph node '
56
+ # f'from different trace level, got {value!r}')
57
+ if value in node_prefixes:
58
+ paths_prefixes = node_prefixes[value]
59
+ paths_prefixes.append((path, prefix))
60
+ else:
61
+ node_prefixes[value] = [(path, prefix)]
62
+
63
+ # check for inconsistent aliasing
64
+ node_msgs = []
65
+ for node, paths_prefixes in node_prefixes.items():
66
+ unique_prefixes = {prefix for _, prefix in paths_prefixes}
67
+ if len(unique_prefixes) > 1:
68
+ path_prefix_repr = '\n'.join([f' {"/".join(map(str, path)) if path else "<root>"}: {prefix}'
69
+ for path, prefix in paths_prefixes])
70
+ nodes_msg = f'Node: {type(node)}\n{path_prefix_repr}'
71
+ node_msgs.append(nodes_msg)
72
+
73
+ if node_msgs:
74
+ raise ValueError('Inconsistent aliasing detected. The '
75
+ 'following nodes have different prefixes:\n'
76
+ + '\n'.join(node_msgs))
77
+
78
+
79
+ # -----------------------------
80
+ # to_tree/from_tree
81
+ # -----------------------------
82
+
83
+ def broadcast_prefix(
84
+ prefix_tree: Any,
85
+ full_tree: Any,
86
+ prefix_is_leaf: Optional[Callable[[Any], bool]] = None,
87
+ tree_is_leaf: Optional[Callable[[Any], bool]] = None,
88
+ ) -> List[Any]:
89
+ """
90
+ Broadcasts a prefix tree to a full tree.
91
+
92
+ Args:
93
+ prefix_tree: A prefix tree.
94
+ full_tree: A full tree.
95
+ prefix_is_leaf: A function that checks if a prefix is a leaf.
96
+ tree_is_leaf: A function that checks if a tree is a leaf.
97
+
98
+ Returns:
99
+ A list of prefixes.
100
+ """
101
+ # If prefix_tree is not a tree prefix of full_tree, this code can raise a
102
+ # ValueError; use prefix_errors to find disagreements and raise more precise
103
+ # error messages.
104
+ result = []
105
+ num_leaves = lambda t: jax.tree_util.tree_structure(t, is_leaf=tree_is_leaf).num_leaves
106
+ add_leaves = lambda x, subtree: result.extend([x] * num_leaves(subtree))
107
+ jax.tree.map(add_leaves, prefix_tree, full_tree, is_leaf=prefix_is_leaf)
108
+ return result
109
+
110
+
111
+ class NodeStates(PyTreeNode):
112
+ _graphdef: GraphDef[Any] | None
113
+ states: tuple[GraphStateMapping, ...]
114
+ metadata: Any = field(pytree_node=False)
115
+
116
+ @property
117
+ def graphdef(self) -> GraphDef[Any]:
118
+ if self._graphdef is None:
119
+ raise ValueError('No graphdef available')
120
+ return self._graphdef
121
+
122
+ @property
123
+ def state(self) -> GraphStateMapping:
124
+ if len(self.states) != 1:
125
+ raise ValueError(f'Expected exactly one GraphDefState, got {len(self.states)}')
126
+ return self.states[0]
127
+
128
+ @classmethod
129
+ def from_split(
130
+ cls,
131
+ graphdef: GraphDef[Any],
132
+ state: GraphStateMapping,
133
+ /,
134
+ *states: GraphStateMapping,
135
+ metadata: Any = None,
136
+ ):
137
+ return cls(_graphdef=graphdef, states=(state, *states), metadata=metadata)
138
+
139
+ @classmethod
140
+ def from_states(cls, state: GraphStateMapping, *states: GraphStateMapping):
141
+ return cls(_graphdef=None, states=(state, *states), metadata=None)
142
+
143
+ @classmethod
144
+ def from_prefixes(cls, prefixes: Iterable[Any], /, *, metadata: Any = None):
145
+ return cls(_graphdef=None, states=tuple(prefixes), metadata=metadata)
146
+
147
+
148
+ def _default_split_fn(ctx: SplitContext, path: KeyPath, prefix: Prefix, leaf: Leaf):
149
+ return NodeStates.from_split(*ctx.treefy_split(leaf))
150
+
151
+
152
+ def graph_to_tree(
153
+ may_have_graph_nodes,
154
+ /,
155
+ *,
156
+ prefix: Any = Missing,
157
+ split_fn: Callable[[SplitContext, KeyPath, Prefix, Leaf], Any] = _default_split_fn,
158
+ map_non_graph_nodes: bool = False,
159
+ ctxtag: str | None = None,
160
+ check_aliasing: bool = True,
161
+ ) -> PyTree:
162
+ """
163
+ Convert a tree of pytree objects to a tree of TreeNode objects.
164
+ """
165
+ leaf_prefixes = broadcast_prefix(prefix, may_have_graph_nodes, prefix_is_leaf=lambda x: x is None)
166
+ leaf_keys, treedef = jax.tree_util.tree_flatten_with_path(may_have_graph_nodes)
167
+
168
+ # Check that the number of keys and prefixes match
169
+ assert len(leaf_keys) == len(leaf_prefixes)
170
+
171
+ # Split the tree
172
+ with split_context(ctxtag) as ctx:
173
+ leaves_out = []
174
+ node_prefixes = RefMap[Any, list[tuple[PathParts, Any]]]()
175
+ for (keypath, leaf), leaf_prefix in zip(leaf_keys, leaf_prefixes):
176
+ if _is_graph_node(leaf):
177
+ if check_aliasing:
178
+ check_consistent_aliasing(leaf, leaf_prefix, node_prefixes=node_prefixes)
179
+ leaves_out.append(split_fn(ctx, keypath, leaf_prefix, leaf))
180
+ else:
181
+ if map_non_graph_nodes:
182
+ leaf = split_fn(ctx, keypath, leaf_prefix, leaf)
183
+ leaves_out.append(leaf)
184
+
185
+ pytree_out = jax.tree.unflatten(treedef, leaves_out)
186
+ return pytree_out
187
+
188
+
189
+ def _is_tree_node(x):
190
+ """Check if x is a TreeNode."""
191
+ return isinstance(x, NodeStates)
192
+
193
+
194
+ def _merge_tree_node(ctx: MergeContext, path: KeyPath, prefix: Prefix, leaf: Leaf) -> Any:
195
+ if not isinstance(leaf, NodeStates):
196
+ raise ValueError(f'Expected TreeNode, got {type(leaf)} at path {path}')
197
+ return ctx.treefy_merge(leaf.graphdef, *leaf.states)
198
+
199
+
200
+ def tree_to_graph(
201
+ tree: Any,
202
+ /,
203
+ *,
204
+ prefix: Any = Missing,
205
+ merge_fn: Callable[[MergeContext, KeyPath, Prefix, Leaf], Any] = _merge_tree_node,
206
+ is_node_leaf: Callable[[Leaf], bool] = _is_tree_node,
207
+ is_leaf: Callable[[Leaf], bool] = _is_tree_node,
208
+ map_non_graph_nodes: bool = False,
209
+ ctxtag: str | None = None,
210
+ ) -> Any:
211
+ """
212
+ Convert a tree of TreeNode objects to a tree of pytree objects.
213
+
214
+ Args:
215
+ tree: A tree of TreeNode objects.
216
+ prefix: A tree of prefixes.
217
+ merge_fn: A function that merges a TreeNode object.
218
+ is_node_leaf: A function that checks if a leaf is a TreeNode.
219
+ is_leaf: A function that checks if a leaf is a TreeNode.
220
+ map_non_graph_nodes: A boolean indicating whether to map non-graph nodes.
221
+
222
+ Returns:
223
+ A tree of pytree objects.
224
+ """
225
+ _prefix_is_leaf = lambda x: x is None or is_leaf(x)
226
+ leaf_prefixes = broadcast_prefix(prefix, tree, prefix_is_leaf=_prefix_is_leaf, tree_is_leaf=is_leaf)
227
+ leaf_keys, treedef = jax.tree_util.tree_flatten_with_path(tree, is_leaf=is_leaf)
228
+ assert len(leaf_keys) == len(leaf_prefixes), "Mismatched number of keys and prefixes"
229
+
230
+ with merge_context(ctxtag) as ctx:
231
+ leaves_out = []
232
+ for (keypath, leaf), leaf_prefix in zip(leaf_keys, leaf_prefixes):
233
+ if is_node_leaf(leaf):
234
+ leaf_out = merge_fn(ctx, keypath, leaf_prefix, leaf)
235
+ leaves_out.append(leaf_out)
236
+ else:
237
+ if map_non_graph_nodes:
238
+ leaf = merge_fn(ctx, keypath, leaf_prefix, leaf)
239
+ leaves_out.append(leaf)
240
+
241
+ pytree_out = jax.tree.unflatten(treedef, leaves_out)
242
+ return pytree_out
243
+
244
+
245
+ def clear_non_graph_nodes(tree):
246
+ return jax.tree.map(lambda x: x if _is_graph_node(x) else None, tree)
@@ -0,0 +1,300 @@
1
+ # The file is adapted from the Flax library (https://github.com/google/flax).
2
+ # The credit should go to the Flax authors.
3
+ #
4
+ # Copyright 2024 The Flax Authors & 2024 BDP Ecosystem.
5
+ #
6
+ # Licensed under the Apache License, Version 2.0 (the "License");
7
+ # you may not use this file except in compliance with the License.
8
+ # You may obtain a copy of the License at
9
+ #
10
+ # http://www.apache.org/licenses/LICENSE-2.0
11
+ #
12
+ # Unless required by applicable law or agreed to in writing, software
13
+ # distributed under the License is distributed on an "AS IS" BASIS,
14
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ # See the License for the specific language governing permissions and
16
+ # limitations under the License.
17
+
18
+ from __future__ import annotations
19
+
20
+ from abc import ABCMeta
21
+ from copy import deepcopy
22
+ from typing import Any, Callable, Type, TypeVar, Tuple, TYPE_CHECKING, Mapping, Iterator, Sequence
23
+
24
+ import brainunit as u
25
+ import jax
26
+ import numpy as np
27
+
28
+ from brainstate._state import State, TreefyState
29
+ from brainstate.typing import Key
30
+ from brainstate.util._error import TraceContextError
31
+ from brainstate.util._pretty_repr import PrettyRepr, pretty_repr_avoid_duplicate, PrettyType, PrettyAttr
32
+ from brainstate.util._tracers import StateJaxTracer
33
+ from ._graph_operation import register_graph_node_type
34
+
35
+ __all__ = [
36
+ 'Node', 'Dict', 'List', 'Sequential',
37
+ ]
38
+
39
+ G = TypeVar('G', bound='Node')
40
+ A = TypeVar('A')
41
+
42
+
43
+ class GraphNodeMeta(ABCMeta):
44
+ if not TYPE_CHECKING:
45
+ def __call__(cls, *args: Any, **kwargs: Any) -> Any:
46
+ node = cls.__new__(cls, *args, **kwargs)
47
+ vars(node)['_trace_state'] = StateJaxTracer()
48
+ node.__init__(*args, **kwargs)
49
+ return node
50
+
51
+
52
+ class Node(PrettyRepr, metaclass=GraphNodeMeta):
53
+ """
54
+ Base class for all graph nodes.
55
+
56
+ This class provides the following functionalities:
57
+ - Register the node type with the graph tool.
58
+ - Prevent mutation of the node from different trace level.
59
+ - Provide a pretty repr for the node.
60
+ - Provide a treescope repr for the node.
61
+ - Deepcopy the node.
62
+
63
+ """
64
+ if TYPE_CHECKING:
65
+ _trace_state: StateJaxTracer
66
+
67
+ def __init_subclass__(cls) -> None:
68
+ super().__init_subclass__()
69
+
70
+ register_graph_node_type(
71
+ type=cls,
72
+ flatten=_node_flatten,
73
+ set_key=_node_set_key,
74
+ pop_key=_node_pop_key,
75
+ create_empty=_node_create_empty,
76
+ clear=_node_clear,
77
+ )
78
+
79
+ # if not TYPE_CHECKING:
80
+ # def __setattr__(self, name: str, value: Any) -> None:
81
+ # self._setattr(name, value)
82
+
83
+ # def _setattr(self, name: str, value: Any) -> None:
84
+ # self.check_valid_context(lambda: f"Cannot mutate '{type(self).__name__}' from different trace level")
85
+ # object.__setattr__(self, name, value)
86
+
87
+ def check_valid_context(self, error_msg: Callable[[], str]) -> None:
88
+ """
89
+ Check if the current context is valid for the object to be mutated.
90
+ """
91
+ if not self._trace_state.is_valid():
92
+ raise TraceContextError(error_msg())
93
+
94
+ def __deepcopy__(self: G, memo=None) -> G:
95
+ """
96
+ Deepcopy the object.
97
+ """
98
+ from ._graph_operation import treefy_split, treefy_merge
99
+
100
+ graphdef, state = treefy_split(self)
101
+ graphdef = deepcopy(graphdef)
102
+ state = deepcopy(state)
103
+ return treefy_merge(graphdef, state)
104
+
105
+ def __pretty_repr__(self):
106
+ """
107
+ Pretty repr for the object.
108
+ """
109
+ yield from pretty_repr_avoid_duplicate(self, _default_repr_object, _default_repr_attr)
110
+
111
+ def __treescope_repr__(self, path, subtree_renderer):
112
+ """
113
+ Treescope repr for the object.
114
+ """
115
+ children = {}
116
+ for name, value in vars(self).items():
117
+ name, value = self.__leaf_fn__(name, value)
118
+ if name.startswith('_'):
119
+ continue
120
+ children[name] = value
121
+ import treescope # type: ignore[import-not-found,import-untyped]
122
+ return treescope.repr_lib.render_object_constructor(
123
+ object_type=type(self),
124
+ attributes=children,
125
+ path=path,
126
+ subtree_renderer=subtree_renderer,
127
+ color=treescope.formatting_util.color_from_string(type(self).__qualname__)
128
+ )
129
+
130
+ def __leaf_fn__(self, leaf, value):
131
+ return leaf, value
132
+
133
+
134
+ def _default_repr_object(node: Node):
135
+ yield PrettyType(type=type(node))
136
+
137
+
138
+ def _default_repr_attr(node: Node):
139
+ for name, value in vars(node).items():
140
+ name, value = node.__leaf_fn__(name, value)
141
+ if name.startswith('_'):
142
+ continue
143
+ # value = jax.tree.map(_to_shape_dtype, value, is_leaf=lambda x: isinstance(x, u.Quantity))
144
+ yield PrettyAttr(name, repr(value))
145
+
146
+
147
+ class String:
148
+ def __init__(self, msg):
149
+ self.msg = msg
150
+
151
+ def __repr__(self):
152
+ return self.msg
153
+
154
+
155
+ def _to_shape_dtype(value):
156
+ if isinstance(value, State):
157
+ return value.replace(jax.tree.map(_to_shape_dtype, value.value))
158
+ elif isinstance(value, (np.ndarray, jax.Array)):
159
+ return String(f'Array(shape={value.shape}, dtype={value.dtype.name})')
160
+ elif isinstance(value, u.Quantity):
161
+ return String(f'Quantity(mantissa=Array(shape={value.shape}, dtype={value.dtype.name}), unit={value.unit})')
162
+ return value
163
+
164
+
165
+ # -------------------------------
166
+ # Graph Definition
167
+ # -------------------------------
168
+
169
+
170
+ def _node_flatten(
171
+ node: Node
172
+ ) -> Tuple[Tuple[Tuple[str, Any], ...], Tuple[Type]]:
173
+ nodes = sorted((key, value) for key, value in vars(node).items() if key != '_trace_state')
174
+ return nodes, (type(node),)
175
+
176
+
177
+ def _node_set_key(
178
+ node: Node,
179
+ key: Key,
180
+ value: Any
181
+ ) -> None:
182
+ if not isinstance(key, str):
183
+ raise KeyError(f'Invalid key: {key!r}')
184
+ elif (
185
+ hasattr(node, key)
186
+ and isinstance(state := getattr(node, key), State)
187
+ and isinstance(value, TreefyState)
188
+ ):
189
+ state.update_from_ref(value)
190
+ else:
191
+ setattr(node, key, value)
192
+
193
+
194
+ def _node_pop_key(
195
+ node: Node,
196
+ key: Key
197
+ ):
198
+ if not isinstance(key, str):
199
+ raise KeyError(f'Invalid key: {key!r}')
200
+ return vars(node).pop(key)
201
+
202
+
203
+ def _node_create_empty(
204
+ static: tuple[Type[G],]
205
+ ) -> G:
206
+ node_type, = static
207
+ node = object.__new__(node_type)
208
+ vars(node).update(_trace_state=StateJaxTracer())
209
+ return node
210
+
211
+
212
+ def _node_clear(node: Node):
213
+ module_state = node._trace_state
214
+ module_vars = vars(node)
215
+ module_vars.clear()
216
+ module_vars['_trace_state'] = module_state
217
+
218
+
219
+ class Dict(Node, Mapping[str, A]):
220
+ """
221
+ A dictionary node.
222
+ """
223
+
224
+ def __init__(self, *args, **kwargs):
225
+ for name, value in dict(*args, **kwargs).items():
226
+ setattr(self, name, value)
227
+
228
+ def __getitem__(self, key) -> A:
229
+ return getattr(self, key)
230
+
231
+ def __setitem__(self, key, value):
232
+ setattr(self, key, value)
233
+
234
+ def __getattr__(self, key) -> A:
235
+ return super().__getattribute__(key)
236
+
237
+ def __setattr__(self, key, value):
238
+ super().__setattr__(key, value)
239
+
240
+ def __iter__(self) -> Iterator[str]:
241
+ return (k for k in vars(self) if k != '_object__state')
242
+
243
+ def __len__(self) -> int:
244
+ return len(vars(self))
245
+
246
+
247
+ class List(Node):
248
+ """
249
+ A list node.
250
+ """
251
+
252
+ def __init__(self, seq=()):
253
+ vars(self).update({str(i): item for i, item in enumerate(seq)})
254
+
255
+ def __getitem__(self, idx):
256
+ return getattr(self, str(idx))
257
+
258
+ def __setitem__(self, idx, value):
259
+ setattr(self, str(idx), value)
260
+
261
+ def __iter__(self):
262
+ return iter(vars(self).values())
263
+
264
+ def __len__(self):
265
+ return len(vars(self))
266
+
267
+ def __add__(self, other: Sequence[A]) -> List[A]:
268
+ return List(list(self) + list(other))
269
+
270
+ def append(self, value):
271
+ self[len(vars(self))] = value
272
+
273
+ def extend(self, values):
274
+ for value in values:
275
+ self.append(value)
276
+
277
+
278
+ class Sequential(Node):
279
+ def __init__(self, *fns: Callable[..., Any]):
280
+ self.layers = list(fns)
281
+
282
+ def __call__(self, *args, **kwargs) -> Any:
283
+ output: Any = None
284
+
285
+ for i, f in enumerate(self.layers):
286
+ if not callable(f):
287
+ raise TypeError(f'Sequence[{i}] is not callable: {f}')
288
+ if i > 0:
289
+ if isinstance(output, tuple):
290
+ args = output
291
+ kwargs = {}
292
+ elif isinstance(output, dict):
293
+ args = ()
294
+ kwargs = output
295
+ else:
296
+ args = (output,)
297
+ kwargs = {}
298
+ output = f(*args, **kwargs)
299
+
300
+ return output
@@ -0,0 +1,75 @@
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from __future__ import annotations
17
+
18
+ import unittest
19
+
20
+ import brainstate as bst
21
+
22
+
23
+ class TestSequential(unittest.TestCase):
24
+ def test1(self):
25
+ s = bst.graph.Sequential(bst.nn.Linear(1, 2),
26
+ bst.nn.Linear(2, 3))
27
+ graphdef, states = bst.graph.treefy_split(s)
28
+ print(states)
29
+ self.assertTrue(len(states.to_flat()) == 2)
30
+
31
+
32
+ class TestStateRetrieve(unittest.TestCase):
33
+ def test_list_of_states_1(self):
34
+ class Model(bst.graph.Node):
35
+ def __init__(self):
36
+ self.a = [1, 2, 3]
37
+ self.b = [bst.State(1), bst.State(2), bst.State(3)]
38
+
39
+ m = Model()
40
+ graphdef, states = bst.graph.treefy_split(m)
41
+ print(states.to_flat())
42
+ self.assertTrue(len(states.to_flat()) == 3)
43
+
44
+ def test_list_of_states_2(self):
45
+ class Model(bst.graph.Node):
46
+ def __init__(self):
47
+ self.a = [1, 2, 3]
48
+ self.b = [bst.State(1), [bst.State(2), bst.State(3)]]
49
+
50
+ m = Model()
51
+ graphdef, states = bst.graph.treefy_split(m)
52
+ print(states.to_flat())
53
+ self.assertTrue(len(states.to_flat()) == 3)
54
+
55
+ def test_list_of_node_1(self):
56
+ class Model(bst.graph.Node):
57
+ def __init__(self):
58
+ self.a = [1, 2, 3]
59
+ self.b = [bst.nn.Linear(1, 2), bst.nn.Linear(2, 3)]
60
+
61
+ m = Model()
62
+ graphdef, states = bst.graph.treefy_split(m)
63
+ print(states.to_flat())
64
+ self.assertTrue(len(states.to_flat()) == 2)
65
+
66
+ def test_list_of_node_2(self):
67
+ class Model(bst.graph.Node):
68
+ def __init__(self):
69
+ self.a = [1, 2, 3]
70
+ self.b = [bst.nn.Linear(1, 2), [bst.nn.Linear(2, 3)], (bst.nn.Linear(3, 4), bst.nn.Linear(4, 5))]
71
+
72
+ m = Model()
73
+ graphdef, states = bst.graph.treefy_split(m)
74
+ print(states.to_flat())
75
+ self.assertTrue(len(states.to_flat()) == 4)