brainstate 0.0.2.post20241009__py2.py3-none-any.whl → 0.1.0__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (175) hide show
  1. brainstate/__init__.py +31 -11
  2. brainstate/_state.py +760 -316
  3. brainstate/_state_test.py +41 -12
  4. brainstate/_utils.py +31 -4
  5. brainstate/augment/__init__.py +40 -0
  6. brainstate/augment/_autograd.py +608 -0
  7. brainstate/augment/_autograd_test.py +1193 -0
  8. brainstate/augment/_eval_shape.py +102 -0
  9. brainstate/augment/_eval_shape_test.py +40 -0
  10. brainstate/augment/_mapping.py +525 -0
  11. brainstate/augment/_mapping_test.py +210 -0
  12. brainstate/augment/_random.py +99 -0
  13. brainstate/{transform → compile}/__init__.py +25 -13
  14. brainstate/compile/_ad_checkpoint.py +204 -0
  15. brainstate/compile/_ad_checkpoint_test.py +51 -0
  16. brainstate/compile/_conditions.py +259 -0
  17. brainstate/compile/_conditions_test.py +221 -0
  18. brainstate/compile/_error_if.py +94 -0
  19. brainstate/compile/_error_if_test.py +54 -0
  20. brainstate/compile/_jit.py +314 -0
  21. brainstate/compile/_jit_test.py +143 -0
  22. brainstate/compile/_loop_collect_return.py +516 -0
  23. brainstate/compile/_loop_collect_return_test.py +59 -0
  24. brainstate/compile/_loop_no_collection.py +185 -0
  25. brainstate/compile/_loop_no_collection_test.py +51 -0
  26. brainstate/compile/_make_jaxpr.py +756 -0
  27. brainstate/compile/_make_jaxpr_test.py +134 -0
  28. brainstate/compile/_progress_bar.py +111 -0
  29. brainstate/compile/_unvmap.py +159 -0
  30. brainstate/compile/_util.py +147 -0
  31. brainstate/environ.py +408 -381
  32. brainstate/environ_test.py +34 -32
  33. brainstate/{nn/event → event}/__init__.py +6 -6
  34. brainstate/event/_csr.py +308 -0
  35. brainstate/event/_csr_test.py +118 -0
  36. brainstate/event/_fixed_probability.py +271 -0
  37. brainstate/event/_fixed_probability_test.py +128 -0
  38. brainstate/event/_linear.py +219 -0
  39. brainstate/event/_linear_test.py +112 -0
  40. brainstate/{nn/event → event}/_misc.py +7 -7
  41. brainstate/functional/_activations.py +521 -511
  42. brainstate/functional/_activations_test.py +300 -300
  43. brainstate/functional/_normalization.py +43 -43
  44. brainstate/functional/_others.py +15 -15
  45. brainstate/functional/_spikes.py +49 -49
  46. brainstate/graph/__init__.py +33 -0
  47. brainstate/graph/_graph_context.py +443 -0
  48. brainstate/graph/_graph_context_test.py +65 -0
  49. brainstate/graph/_graph_convert.py +246 -0
  50. brainstate/graph/_graph_node.py +300 -0
  51. brainstate/graph/_graph_node_test.py +75 -0
  52. brainstate/graph/_graph_operation.py +1746 -0
  53. brainstate/graph/_graph_operation_test.py +724 -0
  54. brainstate/init/_base.py +28 -10
  55. brainstate/init/_generic.py +175 -172
  56. brainstate/init/_random_inits.py +470 -415
  57. brainstate/init/_random_inits_test.py +150 -0
  58. brainstate/init/_regular_inits.py +66 -69
  59. brainstate/init/_regular_inits_test.py +51 -0
  60. brainstate/mixin.py +236 -244
  61. brainstate/mixin_test.py +44 -46
  62. brainstate/nn/__init__.py +26 -51
  63. brainstate/nn/_collective_ops.py +199 -0
  64. brainstate/nn/_dyn_impl/__init__.py +46 -0
  65. brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
  66. brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
  67. brainstate/nn/_dyn_impl/_dynamics_synapse.py +320 -0
  68. brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
  69. brainstate/nn/_dyn_impl/_inputs.py +154 -0
  70. brainstate/nn/{_projection/__init__.py → _dyn_impl/_projection_alignpost.py} +6 -13
  71. brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
  72. brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
  73. brainstate/nn/_dyn_impl/_readout.py +128 -0
  74. brainstate/nn/_dyn_impl/_readout_test.py +54 -0
  75. brainstate/nn/_dynamics/__init__.py +37 -0
  76. brainstate/nn/_dynamics/_dynamics_base.py +631 -0
  77. brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
  78. brainstate/nn/_dynamics/_projection_base.py +346 -0
  79. brainstate/nn/_dynamics/_state_delay.py +453 -0
  80. brainstate/nn/_dynamics/_synouts.py +161 -0
  81. brainstate/nn/_dynamics/_synouts_test.py +58 -0
  82. brainstate/nn/_elementwise/__init__.py +22 -0
  83. brainstate/nn/_elementwise/_dropout.py +418 -0
  84. brainstate/nn/_elementwise/_dropout_test.py +100 -0
  85. brainstate/nn/_elementwise/_elementwise.py +1122 -0
  86. brainstate/nn/_elementwise/_elementwise_test.py +171 -0
  87. brainstate/nn/_exp_euler.py +97 -0
  88. brainstate/nn/_exp_euler_test.py +36 -0
  89. brainstate/nn/_interaction/__init__.py +32 -0
  90. brainstate/nn/_interaction/_connections.py +726 -0
  91. brainstate/nn/_interaction/_connections_test.py +254 -0
  92. brainstate/nn/_interaction/_embedding.py +59 -0
  93. brainstate/nn/_interaction/_normalizations.py +388 -0
  94. brainstate/nn/_interaction/_normalizations_test.py +75 -0
  95. brainstate/nn/_interaction/_poolings.py +1179 -0
  96. brainstate/nn/_interaction/_poolings_test.py +219 -0
  97. brainstate/nn/_module.py +328 -0
  98. brainstate/nn/_module_test.py +211 -0
  99. brainstate/nn/metrics.py +309 -309
  100. brainstate/optim/__init__.py +14 -2
  101. brainstate/optim/_base.py +66 -0
  102. brainstate/optim/_lr_scheduler.py +363 -400
  103. brainstate/optim/_lr_scheduler_test.py +25 -24
  104. brainstate/optim/_optax_optimizer.py +103 -176
  105. brainstate/optim/_optax_optimizer_test.py +41 -1
  106. brainstate/optim/_sgd_optimizer.py +950 -1025
  107. brainstate/random/_rand_funs.py +3269 -3268
  108. brainstate/random/_rand_funs_test.py +568 -0
  109. brainstate/random/_rand_seed.py +149 -117
  110. brainstate/random/_rand_seed_test.py +50 -0
  111. brainstate/random/_rand_state.py +1360 -1318
  112. brainstate/random/_random_for_unit.py +13 -13
  113. brainstate/surrogate.py +1262 -1243
  114. brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
  115. brainstate/typing.py +157 -130
  116. brainstate/util/__init__.py +52 -0
  117. brainstate/util/_caller.py +100 -0
  118. brainstate/util/_dict.py +734 -0
  119. brainstate/util/_dict_test.py +160 -0
  120. brainstate/util/_error.py +28 -0
  121. brainstate/util/_filter.py +178 -0
  122. brainstate/util/_others.py +497 -0
  123. brainstate/util/_pretty_repr.py +208 -0
  124. brainstate/util/_scaling.py +260 -0
  125. brainstate/util/_struct.py +524 -0
  126. brainstate/util/_tracers.py +75 -0
  127. brainstate/{_visualization.py → util/_visualization.py} +16 -16
  128. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/METADATA +11 -11
  129. brainstate-0.1.0.dist-info/RECORD +135 -0
  130. brainstate/_module.py +0 -1637
  131. brainstate/_module_test.py +0 -207
  132. brainstate/nn/_base.py +0 -251
  133. brainstate/nn/_connections.py +0 -686
  134. brainstate/nn/_dynamics.py +0 -426
  135. brainstate/nn/_elementwise.py +0 -1438
  136. brainstate/nn/_embedding.py +0 -66
  137. brainstate/nn/_misc.py +0 -133
  138. brainstate/nn/_normalizations.py +0 -389
  139. brainstate/nn/_others.py +0 -101
  140. brainstate/nn/_poolings.py +0 -1229
  141. brainstate/nn/_poolings_test.py +0 -231
  142. brainstate/nn/_projection/_align_post.py +0 -546
  143. brainstate/nn/_projection/_align_pre.py +0 -599
  144. brainstate/nn/_projection/_delta.py +0 -241
  145. brainstate/nn/_projection/_vanilla.py +0 -101
  146. brainstate/nn/_rate_rnns.py +0 -410
  147. brainstate/nn/_readout.py +0 -136
  148. brainstate/nn/_synouts.py +0 -166
  149. brainstate/nn/event/csr.py +0 -312
  150. brainstate/nn/event/csr_test.py +0 -118
  151. brainstate/nn/event/fixed_probability.py +0 -276
  152. brainstate/nn/event/fixed_probability_test.py +0 -127
  153. brainstate/nn/event/linear.py +0 -220
  154. brainstate/nn/event/linear_test.py +0 -111
  155. brainstate/random/random_test.py +0 -593
  156. brainstate/transform/_autograd.py +0 -585
  157. brainstate/transform/_autograd_test.py +0 -1181
  158. brainstate/transform/_conditions.py +0 -334
  159. brainstate/transform/_conditions_test.py +0 -220
  160. brainstate/transform/_error_if.py +0 -94
  161. brainstate/transform/_error_if_test.py +0 -55
  162. brainstate/transform/_jit.py +0 -265
  163. brainstate/transform/_jit_test.py +0 -118
  164. brainstate/transform/_loop_collect_return.py +0 -502
  165. brainstate/transform/_loop_no_collection.py +0 -170
  166. brainstate/transform/_make_jaxpr.py +0 -739
  167. brainstate/transform/_make_jaxpr_test.py +0 -131
  168. brainstate/transform/_mapping.py +0 -109
  169. brainstate/transform/_progress_bar.py +0 -111
  170. brainstate/transform/_unvmap.py +0 -143
  171. brainstate/util.py +0 -746
  172. brainstate-0.0.2.post20241009.dist-info/RECORD +0 -87
  173. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/LICENSE +0 -0
  174. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/WHEEL +0 -0
  175. {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,219 @@
1
+ # -*- coding: utf-8 -*-
2
+
3
+ from __future__ import annotations
4
+
5
+ import jax
6
+ import numpy as np
7
+ from absl.testing import absltest
8
+ from absl.testing import parameterized
9
+
10
+ import brainstate as bst
11
+ import brainstate.nn as nn
12
+
13
+
14
+ class TestFlatten(parameterized.TestCase):
15
+ def test_flatten1(self):
16
+ for size in [
17
+ (16, 32, 32, 8),
18
+ (32, 8),
19
+ (10, 20, 30),
20
+ ]:
21
+ arr = bst.random.rand(*size)
22
+ f = nn.Flatten(start_axis=0)
23
+ out = f(arr)
24
+ self.assertTrue(out.shape == (np.prod(size),))
25
+
26
+ def test_flatten2(self):
27
+ for size in [
28
+ (16, 32, 32, 8),
29
+ (32, 8),
30
+ (10, 20, 30),
31
+ ]:
32
+ arr = bst.random.rand(*size)
33
+ f = nn.Flatten(start_axis=1)
34
+ out = f(arr)
35
+ self.assertTrue(out.shape == (size[0], np.prod(size[1:])))
36
+
37
+ def test_flatten3(self):
38
+ size = (16, 32, 32, 8)
39
+ arr = bst.random.rand(*size)
40
+ f = nn.Flatten(start_axis=0, in_size=(32, 8))
41
+ out = f(arr)
42
+ self.assertTrue(out.shape == (16, 32, 32 * 8))
43
+
44
+ def test_flatten4(self):
45
+ size = (16, 32, 32, 8)
46
+ arr = bst.random.rand(*size)
47
+ f = nn.Flatten(start_axis=1, in_size=(32, 32, 8))
48
+ out = f(arr)
49
+ self.assertTrue(out.shape == (16, 32, 32 * 8))
50
+
51
+
52
+ class TestUnflatten(parameterized.TestCase):
53
+ pass
54
+
55
+
56
+ class TestPool(parameterized.TestCase):
57
+ def __init__(self, *args, **kwargs):
58
+ super().__init__(*args, **kwargs)
59
+
60
+ def test_MaxPool2d_v1(self):
61
+ arr = bst.random.rand(16, 32, 32, 8)
62
+
63
+ out = nn.MaxPool2d(2, 2, channel_axis=-1)(arr)
64
+ self.assertTrue(out.shape == (16, 16, 16, 8))
65
+
66
+ out = nn.MaxPool2d(2, 2, channel_axis=None)(arr)
67
+ self.assertTrue(out.shape == (16, 32, 16, 4))
68
+
69
+ out = nn.MaxPool2d(2, 2, channel_axis=None, padding=1)(arr)
70
+ self.assertTrue(out.shape == (16, 32, 17, 5))
71
+
72
+ out = nn.MaxPool2d(2, 2, channel_axis=None, padding=(2, 1))(arr)
73
+ self.assertTrue(out.shape == (16, 32, 18, 5))
74
+
75
+ out = nn.MaxPool2d(2, 2, channel_axis=-1, padding=(1, 1))(arr)
76
+ self.assertTrue(out.shape == (16, 17, 17, 8))
77
+
78
+ out = nn.MaxPool2d(2, 2, channel_axis=2, padding=(1, 1))(arr)
79
+ self.assertTrue(out.shape == (16, 17, 32, 5))
80
+
81
+ def test_AvgPool2d_v1(self):
82
+ arr = bst.random.rand(16, 32, 32, 8)
83
+
84
+ out = nn.AvgPool2d(2, 2, channel_axis=-1)(arr)
85
+ self.assertTrue(out.shape == (16, 16, 16, 8))
86
+
87
+ out = nn.AvgPool2d(2, 2, channel_axis=None)(arr)
88
+ self.assertTrue(out.shape == (16, 32, 16, 4))
89
+
90
+ out = nn.AvgPool2d(2, 2, channel_axis=None, padding=1)(arr)
91
+ self.assertTrue(out.shape == (16, 32, 17, 5))
92
+
93
+ out = nn.AvgPool2d(2, 2, channel_axis=None, padding=(2, 1))(arr)
94
+ self.assertTrue(out.shape == (16, 32, 18, 5))
95
+
96
+ out = nn.AvgPool2d(2, 2, channel_axis=-1, padding=(1, 1))(arr)
97
+ self.assertTrue(out.shape == (16, 17, 17, 8))
98
+
99
+ out = nn.AvgPool2d(2, 2, channel_axis=2, padding=(1, 1))(arr)
100
+ self.assertTrue(out.shape == (16, 17, 32, 5))
101
+
102
+ @parameterized.named_parameters(
103
+ dict(testcase_name=f'target_size={target_size}',
104
+ target_size=target_size)
105
+ for target_size in [10, 9, 8, 7, 6]
106
+ )
107
+ def test_adaptive_pool1d(self, target_size):
108
+ from brainstate.nn._interaction._poolings import _adaptive_pool1d
109
+
110
+ arr = bst.random.rand(100)
111
+ op = jax.numpy.mean
112
+
113
+ out = _adaptive_pool1d(arr, target_size, op)
114
+ print(out.shape)
115
+ self.assertTrue(out.shape == (target_size,))
116
+
117
+ out = _adaptive_pool1d(arr, target_size, op)
118
+ print(out.shape)
119
+ self.assertTrue(out.shape == (target_size,))
120
+
121
+ def test_AdaptiveAvgPool2d_v1(self):
122
+ input = bst.random.randn(64, 8, 9)
123
+
124
+ output = nn.AdaptiveAvgPool2d((5, 7), channel_axis=0)(input)
125
+ self.assertTrue(output.shape == (64, 5, 7))
126
+
127
+ output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=0)(input)
128
+ self.assertTrue(output.shape == (64, 2, 3))
129
+
130
+ output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=-1)(input)
131
+ self.assertTrue(output.shape == (2, 3, 9))
132
+
133
+ output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=1)(input)
134
+ self.assertTrue(output.shape == (2, 8, 3))
135
+
136
+ output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=None)(input)
137
+ self.assertTrue(output.shape == (64, 2, 3))
138
+
139
+ def test_AdaptiveAvgPool2d_v2(self):
140
+ bst.random.seed()
141
+ input = bst.random.randn(128, 64, 32, 16)
142
+
143
+ output = nn.AdaptiveAvgPool2d((5, 7), channel_axis=0)(input)
144
+ self.assertTrue(output.shape == (128, 64, 5, 7))
145
+
146
+ output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=0)(input)
147
+ self.assertTrue(output.shape == (128, 64, 2, 3))
148
+
149
+ output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=-1)(input)
150
+ self.assertTrue(output.shape == (128, 2, 3, 16))
151
+
152
+ output = nn.AdaptiveAvgPool2d((2, 3), channel_axis=1)(input)
153
+ self.assertTrue(output.shape == (128, 64, 2, 3))
154
+ print()
155
+
156
+ def test_AdaptiveAvgPool3d_v1(self):
157
+ input = bst.random.randn(10, 128, 64, 32)
158
+ net = nn.AdaptiveAvgPool3d(target_size=[6, 5, 3], channel_axis=0)
159
+ output = net(input)
160
+ self.assertTrue(output.shape == (10, 6, 5, 3))
161
+
162
+ def test_AdaptiveAvgPool3d_v2(self):
163
+ input = bst.random.randn(10, 20, 128, 64, 32)
164
+ net = nn.AdaptiveAvgPool3d(target_size=[6, 5, 3])
165
+ output = net(input)
166
+ self.assertTrue(output.shape == (10, 6, 5, 3, 32))
167
+
168
+ @parameterized.product(
169
+ axis=(-1, 0, 1)
170
+ )
171
+ def test_AdaptiveMaxPool1d_v1(self, axis):
172
+ input = bst.random.randn(32, 16)
173
+ net = nn.AdaptiveMaxPool1d(target_size=4, channel_axis=axis)
174
+ output = net(input)
175
+
176
+ @parameterized.product(
177
+ axis=(-1, 0, 1, 2)
178
+ )
179
+ def test_AdaptiveMaxPool1d_v2(self, axis):
180
+ input = bst.random.randn(2, 32, 16)
181
+ net = nn.AdaptiveMaxPool1d(target_size=4, channel_axis=axis)
182
+ output = net(input)
183
+
184
+ @parameterized.product(
185
+ axis=(-1, 0, 1, 2)
186
+ )
187
+ def test_AdaptiveMaxPool2d_v1(self, axis):
188
+ input = bst.random.randn(32, 16, 12)
189
+ net = nn.AdaptiveAvgPool2d(target_size=[5, 4], channel_axis=axis)
190
+ output = net(input)
191
+
192
+ @parameterized.product(
193
+ axis=(-1, 0, 1, 2, 3)
194
+ )
195
+ def test_AdaptiveMaxPool2d_v2(self, axis):
196
+ input = bst.random.randn(2, 32, 16, 12)
197
+ net = nn.AdaptiveAvgPool2d(target_size=[5, 4], channel_axis=axis)
198
+ output = net(input)
199
+
200
+ @parameterized.product(
201
+ axis=(-1, 0, 1, 2, 3)
202
+ )
203
+ def test_AdaptiveMaxPool3d_v1(self, axis):
204
+ input = bst.random.randn(2, 128, 64, 32)
205
+ net = nn.AdaptiveMaxPool3d(target_size=[6, 5, 4], channel_axis=axis)
206
+ output = net(input)
207
+ print()
208
+
209
+ @parameterized.product(
210
+ axis=(-1, 0, 1, 2, 3, 4)
211
+ )
212
+ def test_AdaptiveMaxPool3d_v1(self, axis):
213
+ input = bst.random.randn(2, 128, 64, 32, 16)
214
+ net = nn.AdaptiveMaxPool3d(target_size=[6, 5, 4], channel_axis=axis)
215
+ output = net(input)
216
+
217
+
218
+ if __name__ == '__main__':
219
+ absltest.main()
@@ -0,0 +1,328 @@
1
+ # Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ # -*- coding: utf-8 -*-
17
+
18
+
19
+ """
20
+ All the basic classes for neural networks in ``brainstate``.
21
+
22
+ The basic classes include:
23
+
24
+ - ``Module``: The base class for all the objects in the ecosystem.
25
+ - ``Sequential``: The class for a sequential of modules, which update the modules sequentially.
26
+
27
+ """
28
+ from __future__ import annotations
29
+
30
+ import warnings
31
+ from typing import Sequence, Optional, Tuple, Union, TYPE_CHECKING
32
+
33
+ import numpy as np
34
+
35
+ from brainstate._state import State
36
+ from brainstate.graph import Node, states, nodes, flatten
37
+ from brainstate.mixin import ParamDescriber, ParamDesc
38
+ from brainstate.typing import PathParts
39
+ from brainstate.util import FlattedDict, NestedDict
40
+
41
+ # maximum integer
42
+ max_int = np.iinfo(np.int32).max
43
+
44
+ __all__ = [
45
+ 'Module', 'ElementWiseBlock', 'Sequential',
46
+ ]
47
+
48
+
49
+ class Module(Node, ParamDesc):
50
+ """
51
+ The Module class for the whole ecosystem.
52
+
53
+ The ``Module`` is the base class for all the objects in the ecosystem. It
54
+ provides the basic functionalities for the objects, including:
55
+
56
+ - ``states()``: Collect all states in this node and the children nodes.
57
+ - ``nodes()``: Collect all children nodes.
58
+ - ``update()``: The function to specify the updating rule.
59
+ - ``init_state()``: State initialization function.
60
+ - ``reset_state()``: State resetting function.
61
+
62
+ """
63
+
64
+ __module__ = 'brainstate.nn'
65
+
66
+ _in_size: Optional[Tuple[int, ...]]
67
+ _out_size: Optional[Tuple[int, ...]]
68
+ _name: Optional[str]
69
+
70
+ if not TYPE_CHECKING:
71
+ def __init__(self, name: str = None):
72
+ # check the name
73
+ if name is not None:
74
+ assert isinstance(name, str), f'The name must be a string, but we got {type(name)}: {name}'
75
+ self._name = name
76
+
77
+ # input and output size
78
+ self._in_size = None
79
+ self._out_size = None
80
+
81
+ @property
82
+ def name(self):
83
+ """Name of the model."""
84
+ return self._name
85
+
86
+ @name.setter
87
+ def name(self, name: str = None):
88
+ raise AttributeError('The name of the model is read-only.')
89
+
90
+ @property
91
+ def in_size(self) -> Tuple[int, ...]:
92
+ return self._in_size
93
+
94
+ @in_size.setter
95
+ def in_size(self, in_size: Sequence[int] | int):
96
+ if isinstance(in_size, int):
97
+ in_size = (in_size,)
98
+ assert isinstance(in_size, (tuple, list)), f"Invalid type of in_size: {type(in_size)}"
99
+ self._in_size = tuple(in_size)
100
+
101
+ @property
102
+ def out_size(self) -> Tuple[int, ...]:
103
+ return self._out_size
104
+
105
+ @out_size.setter
106
+ def out_size(self, out_size: Sequence[int] | int):
107
+ if isinstance(out_size, int):
108
+ out_size = (out_size,)
109
+ assert isinstance(out_size, (tuple, list)), f"Invalid type of out_size: {type(out_size)}"
110
+ self._out_size = tuple(out_size)
111
+
112
+ def update(self, *args, **kwargs):
113
+ """
114
+ The function to specify the updating rule.
115
+ """
116
+ raise NotImplementedError(f'Subclass of {self.__class__.__name__} must implement "update" function.')
117
+
118
+ def __call__(self, *args, **kwargs):
119
+ return self.update(*args, **kwargs)
120
+
121
+ def __rrshift__(self, other):
122
+ """
123
+ Support using right shift operator to call modules.
124
+
125
+ Examples
126
+ --------
127
+
128
+ >>> import brainstate as bst
129
+ >>> x = bst.random.rand((10, 10))
130
+ >>> l = bst.nn.Dropout(0.5)
131
+ >>> y = x >> l
132
+ """
133
+ return self.__call__(other)
134
+
135
+ def states(
136
+ self,
137
+ *filters,
138
+ allowed_hierarchy: Tuple[int, int] = (0, max_int),
139
+ level: int = None,
140
+ ) -> FlattedDict[PathParts, State] | Tuple[FlattedDict[PathParts, State], ...]:
141
+ """
142
+ Collect all states in this node and the children nodes.
143
+
144
+ Parameters
145
+ ----------
146
+ filters : Any
147
+ The filters to select the states.
148
+ allowed_hierarchy : tuple of int
149
+ The hierarchy of the states to be collected.
150
+ level : int
151
+ The level of the states to be collected. Has been deprecated.
152
+
153
+ Returns
154
+ -------
155
+ states : FlattedDict, tuple of FlattedDict
156
+ The collection contained (the path, the state).
157
+ """
158
+ if level is not None:
159
+ allowed_hierarchy = (0, level)
160
+ warnings.warn('The "level" argument is deprecated. Please use "allowed_hierarchy" instead.',
161
+ DeprecationWarning)
162
+
163
+ return states(self, *filters, allowed_hierarchy=allowed_hierarchy)
164
+
165
+ def state_trees(
166
+ self,
167
+ *filters,
168
+ ) -> NestedDict[PathParts, State] | Tuple[NestedDict[PathParts, State], ...]:
169
+ """
170
+ Collect all states in this node and the children nodes.
171
+
172
+ Parameters
173
+ ----------
174
+ filters : tuple
175
+ The filters to select the states.
176
+
177
+ Returns
178
+ -------
179
+ states : FlattedDict, tuple of FlattedDict
180
+ The collection contained (the path, the state).
181
+ """
182
+ graph_def, state_tree = flatten(self)
183
+ if len(filters):
184
+ return state_tree.filter(*filters)
185
+ return state_tree
186
+
187
+ def nodes(
188
+ self,
189
+ *filters,
190
+ allowed_hierarchy: Tuple[int, int] = (0, max_int),
191
+ level: int = None,
192
+ ) -> FlattedDict[PathParts, Node] | Tuple[FlattedDict[PathParts, Node], ...]:
193
+ """
194
+ Collect all children nodes.
195
+
196
+ Parameters
197
+ ----------
198
+ filters : Any
199
+ The filters to select the states.
200
+ allowed_hierarchy : tuple of int
201
+ The hierarchy of the states to be collected.
202
+ level : int
203
+ The level of the states to be collected. Has been deprecated.
204
+
205
+ Returns
206
+ -------
207
+ nodes : FlattedDict, tuple of FlattedDict
208
+ The collection contained (the path, the node).
209
+ """
210
+ if level is not None:
211
+ allowed_hierarchy = (0, level)
212
+ warnings.warn('The "level" argument is deprecated. Please use "allowed_hierarchy" instead.',
213
+ DeprecationWarning)
214
+
215
+ return nodes(self, *filters, allowed_hierarchy=allowed_hierarchy)
216
+
217
+ def init_state(self, *args, **kwargs):
218
+ """
219
+ State initialization function.
220
+ """
221
+ pass
222
+
223
+ def reset_state(self, *args, **kwargs):
224
+ """
225
+ State resetting function.
226
+ """
227
+ pass
228
+
229
+ def __leaf_fn__(self, name, value):
230
+ if name in ['_in_size', '_out_size', '_name']:
231
+ return (name, value) if value is None else (name[1:], value) # skip the first `_`
232
+ return name, value
233
+
234
+
235
+ class ElementWiseBlock(Module):
236
+ __module__ = 'brainstate.nn'
237
+
238
+
239
+ class Sequential(Module):
240
+ """
241
+ A sequential `input-output` module.
242
+
243
+ Modules will be added to it in the order they are passed in the
244
+ constructor. Alternatively, an ``dict`` of modules can be
245
+ passed in. The ``update()`` method of ``Sequential`` accepts any
246
+ input and forwards it to the first module it contains. It then
247
+ "chains" outputs to inputs sequentially for each subsequent module,
248
+ finally returning the output of the last module.
249
+
250
+ The value a ``Sequential`` provides over manually calling a sequence
251
+ of modules is that it allows treating the whole container as a
252
+ single module, such that performing a transformation on the
253
+ ``Sequential`` applies to each of the modules it stores (which are
254
+ each a registered submodule of the ``Sequential``).
255
+
256
+ What's the difference between a ``Sequential`` and a
257
+ :py:class:`Container`? A ``Container`` is exactly what it
258
+ sounds like--a container to store :py:class:`DynamicalSystem` s!
259
+ On the other hand, the layers in a ``Sequential`` are connected
260
+ in a cascading way.
261
+
262
+ Examples
263
+ --------
264
+
265
+ >>> import jax
266
+ >>> import brainstate as bst
267
+ >>> import brainstate.nn as nn
268
+ >>>
269
+ >>> # composing ANN models
270
+ >>> l = nn.Sequential(nn.Linear(100, 10),
271
+ >>> jax.nn.relu,
272
+ >>> nn.Linear(10, 2))
273
+ >>> l(bst.random.random((256, 100)))
274
+
275
+ Args:
276
+ modules_as_tuple: The children modules.
277
+ modules_as_dict: The children modules.
278
+ name: The object name.
279
+ """
280
+ __module__ = 'brainstate.nn'
281
+
282
+ def __init__(self, first: Module, *layers):
283
+ super().__init__()
284
+ self.layers = []
285
+
286
+ # add all modules
287
+ assert isinstance(first, Module), 'The first module should be an instance of Module.'
288
+ in_size = first.out_size
289
+ self.layers.append(first)
290
+ for module in layers:
291
+ module, in_size = _format_module(module, in_size)
292
+ self.layers.append(module)
293
+
294
+ # the input and output shape
295
+ if first.in_size is not None:
296
+ self.in_size = first.in_size
297
+ self.out_size = tuple(in_size)
298
+
299
+ def update(self, x):
300
+ """Update function of a sequential model.
301
+ """
302
+ for m in self.layers:
303
+ x = m(x)
304
+ return x
305
+
306
+ def __getitem__(self, key: Union[int, slice]):
307
+ if isinstance(key, slice):
308
+ return Sequential(*self.layers[key])
309
+ elif isinstance(key, int):
310
+ return self.layers[key]
311
+ elif isinstance(key, (tuple, list)):
312
+ return Sequential(*[self.layers[k] for k in key])
313
+ else:
314
+ raise KeyError(f'Unknown type of key: {type(key)}')
315
+
316
+
317
+ def _format_module(module, in_size):
318
+ if isinstance(module, ParamDescriber):
319
+ module = module(in_size=in_size)
320
+ assert isinstance(module, Module), 'The module should be an instance of Module.'
321
+ out_size = module.out_size
322
+ elif isinstance(module, ElementWiseBlock):
323
+ out_size = in_size
324
+ elif isinstance(module, Module):
325
+ out_size = module.out_size
326
+ else:
327
+ raise TypeError(f"Unsupported type {type(module)}. ")
328
+ return module, out_size