brainstate 0.0.2.post20241009__py2.py3-none-any.whl → 0.1.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +31 -11
- brainstate/_state.py +760 -316
- brainstate/_state_test.py +41 -12
- brainstate/_utils.py +31 -4
- brainstate/augment/__init__.py +40 -0
- brainstate/augment/_autograd.py +608 -0
- brainstate/augment/_autograd_test.py +1193 -0
- brainstate/augment/_eval_shape.py +102 -0
- brainstate/augment/_eval_shape_test.py +40 -0
- brainstate/augment/_mapping.py +525 -0
- brainstate/augment/_mapping_test.py +210 -0
- brainstate/augment/_random.py +99 -0
- brainstate/{transform → compile}/__init__.py +25 -13
- brainstate/compile/_ad_checkpoint.py +204 -0
- brainstate/compile/_ad_checkpoint_test.py +51 -0
- brainstate/compile/_conditions.py +259 -0
- brainstate/compile/_conditions_test.py +221 -0
- brainstate/compile/_error_if.py +94 -0
- brainstate/compile/_error_if_test.py +54 -0
- brainstate/compile/_jit.py +314 -0
- brainstate/compile/_jit_test.py +143 -0
- brainstate/compile/_loop_collect_return.py +516 -0
- brainstate/compile/_loop_collect_return_test.py +59 -0
- brainstate/compile/_loop_no_collection.py +185 -0
- brainstate/compile/_loop_no_collection_test.py +51 -0
- brainstate/compile/_make_jaxpr.py +756 -0
- brainstate/compile/_make_jaxpr_test.py +134 -0
- brainstate/compile/_progress_bar.py +111 -0
- brainstate/compile/_unvmap.py +159 -0
- brainstate/compile/_util.py +147 -0
- brainstate/environ.py +408 -381
- brainstate/environ_test.py +34 -32
- brainstate/{nn/event → event}/__init__.py +6 -6
- brainstate/event/_csr.py +308 -0
- brainstate/event/_csr_test.py +118 -0
- brainstate/event/_fixed_probability.py +271 -0
- brainstate/event/_fixed_probability_test.py +128 -0
- brainstate/event/_linear.py +219 -0
- brainstate/event/_linear_test.py +112 -0
- brainstate/{nn/event → event}/_misc.py +7 -7
- brainstate/functional/_activations.py +521 -511
- brainstate/functional/_activations_test.py +300 -300
- brainstate/functional/_normalization.py +43 -43
- brainstate/functional/_others.py +15 -15
- brainstate/functional/_spikes.py +49 -49
- brainstate/graph/__init__.py +33 -0
- brainstate/graph/_graph_context.py +443 -0
- brainstate/graph/_graph_context_test.py +65 -0
- brainstate/graph/_graph_convert.py +246 -0
- brainstate/graph/_graph_node.py +300 -0
- brainstate/graph/_graph_node_test.py +75 -0
- brainstate/graph/_graph_operation.py +1746 -0
- brainstate/graph/_graph_operation_test.py +724 -0
- brainstate/init/_base.py +28 -10
- brainstate/init/_generic.py +175 -172
- brainstate/init/_random_inits.py +470 -415
- brainstate/init/_random_inits_test.py +150 -0
- brainstate/init/_regular_inits.py +66 -69
- brainstate/init/_regular_inits_test.py +51 -0
- brainstate/mixin.py +236 -244
- brainstate/mixin_test.py +44 -46
- brainstate/nn/__init__.py +26 -51
- brainstate/nn/_collective_ops.py +199 -0
- brainstate/nn/_dyn_impl/__init__.py +46 -0
- brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
- brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
- brainstate/nn/_dyn_impl/_dynamics_synapse.py +320 -0
- brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
- brainstate/nn/_dyn_impl/_inputs.py +154 -0
- brainstate/nn/{_projection/__init__.py → _dyn_impl/_projection_alignpost.py} +6 -13
- brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
- brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
- brainstate/nn/_dyn_impl/_readout.py +128 -0
- brainstate/nn/_dyn_impl/_readout_test.py +54 -0
- brainstate/nn/_dynamics/__init__.py +37 -0
- brainstate/nn/_dynamics/_dynamics_base.py +631 -0
- brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
- brainstate/nn/_dynamics/_projection_base.py +346 -0
- brainstate/nn/_dynamics/_state_delay.py +453 -0
- brainstate/nn/_dynamics/_synouts.py +161 -0
- brainstate/nn/_dynamics/_synouts_test.py +58 -0
- brainstate/nn/_elementwise/__init__.py +22 -0
- brainstate/nn/_elementwise/_dropout.py +418 -0
- brainstate/nn/_elementwise/_dropout_test.py +100 -0
- brainstate/nn/_elementwise/_elementwise.py +1122 -0
- brainstate/nn/_elementwise/_elementwise_test.py +171 -0
- brainstate/nn/_exp_euler.py +97 -0
- brainstate/nn/_exp_euler_test.py +36 -0
- brainstate/nn/_interaction/__init__.py +32 -0
- brainstate/nn/_interaction/_connections.py +726 -0
- brainstate/nn/_interaction/_connections_test.py +254 -0
- brainstate/nn/_interaction/_embedding.py +59 -0
- brainstate/nn/_interaction/_normalizations.py +388 -0
- brainstate/nn/_interaction/_normalizations_test.py +75 -0
- brainstate/nn/_interaction/_poolings.py +1179 -0
- brainstate/nn/_interaction/_poolings_test.py +219 -0
- brainstate/nn/_module.py +328 -0
- brainstate/nn/_module_test.py +211 -0
- brainstate/nn/metrics.py +309 -309
- brainstate/optim/__init__.py +14 -2
- brainstate/optim/_base.py +66 -0
- brainstate/optim/_lr_scheduler.py +363 -400
- brainstate/optim/_lr_scheduler_test.py +25 -24
- brainstate/optim/_optax_optimizer.py +103 -176
- brainstate/optim/_optax_optimizer_test.py +41 -1
- brainstate/optim/_sgd_optimizer.py +950 -1025
- brainstate/random/_rand_funs.py +3269 -3268
- brainstate/random/_rand_funs_test.py +568 -0
- brainstate/random/_rand_seed.py +149 -117
- brainstate/random/_rand_seed_test.py +50 -0
- brainstate/random/_rand_state.py +1360 -1318
- brainstate/random/_random_for_unit.py +13 -13
- brainstate/surrogate.py +1262 -1243
- brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
- brainstate/typing.py +157 -130
- brainstate/util/__init__.py +52 -0
- brainstate/util/_caller.py +100 -0
- brainstate/util/_dict.py +734 -0
- brainstate/util/_dict_test.py +160 -0
- brainstate/util/_error.py +28 -0
- brainstate/util/_filter.py +178 -0
- brainstate/util/_others.py +497 -0
- brainstate/util/_pretty_repr.py +208 -0
- brainstate/util/_scaling.py +260 -0
- brainstate/util/_struct.py +524 -0
- brainstate/util/_tracers.py +75 -0
- brainstate/{_visualization.py → util/_visualization.py} +16 -16
- {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/METADATA +11 -11
- brainstate-0.1.0.dist-info/RECORD +135 -0
- brainstate/_module.py +0 -1637
- brainstate/_module_test.py +0 -207
- brainstate/nn/_base.py +0 -251
- brainstate/nn/_connections.py +0 -686
- brainstate/nn/_dynamics.py +0 -426
- brainstate/nn/_elementwise.py +0 -1438
- brainstate/nn/_embedding.py +0 -66
- brainstate/nn/_misc.py +0 -133
- brainstate/nn/_normalizations.py +0 -389
- brainstate/nn/_others.py +0 -101
- brainstate/nn/_poolings.py +0 -1229
- brainstate/nn/_poolings_test.py +0 -231
- brainstate/nn/_projection/_align_post.py +0 -546
- brainstate/nn/_projection/_align_pre.py +0 -599
- brainstate/nn/_projection/_delta.py +0 -241
- brainstate/nn/_projection/_vanilla.py +0 -101
- brainstate/nn/_rate_rnns.py +0 -410
- brainstate/nn/_readout.py +0 -136
- brainstate/nn/_synouts.py +0 -166
- brainstate/nn/event/csr.py +0 -312
- brainstate/nn/event/csr_test.py +0 -118
- brainstate/nn/event/fixed_probability.py +0 -276
- brainstate/nn/event/fixed_probability_test.py +0 -127
- brainstate/nn/event/linear.py +0 -220
- brainstate/nn/event/linear_test.py +0 -111
- brainstate/random/random_test.py +0 -593
- brainstate/transform/_autograd.py +0 -585
- brainstate/transform/_autograd_test.py +0 -1181
- brainstate/transform/_conditions.py +0 -334
- brainstate/transform/_conditions_test.py +0 -220
- brainstate/transform/_error_if.py +0 -94
- brainstate/transform/_error_if_test.py +0 -55
- brainstate/transform/_jit.py +0 -265
- brainstate/transform/_jit_test.py +0 -118
- brainstate/transform/_loop_collect_return.py +0 -502
- brainstate/transform/_loop_no_collection.py +0 -170
- brainstate/transform/_make_jaxpr.py +0 -739
- brainstate/transform/_make_jaxpr_test.py +0 -131
- brainstate/transform/_mapping.py +0 -109
- brainstate/transform/_progress_bar.py +0 -111
- brainstate/transform/_unvmap.py +0 -143
- brainstate/util.py +0 -746
- brainstate-0.0.2.post20241009.dist-info/RECORD +0 -87
- {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/LICENSE +0 -0
- {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/WHEEL +0 -0
- {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/top_level.txt +0 -0
@@ -13,6 +13,7 @@
|
|
13
13
|
# limitations under the License.
|
14
14
|
# ==============================================================================
|
15
15
|
|
16
|
+
from __future__ import annotations
|
16
17
|
|
17
18
|
import unittest
|
18
19
|
|
@@ -22,28 +23,28 @@ import brainstate as bst
|
|
22
23
|
|
23
24
|
|
24
25
|
class TestMultiStepLR(unittest.TestCase):
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
26
|
+
def test1(self):
|
27
|
+
lr = bst.optim.MultiStepLR(0.1, [10, 20, 30], gamma=0.1)
|
28
|
+
for i in range(40):
|
29
|
+
r = lr(i)
|
30
|
+
if i < 10:
|
31
|
+
self.assertEqual(r, 0.1)
|
32
|
+
elif i < 20:
|
33
|
+
self.assertTrue(jnp.allclose(r, 0.01))
|
34
|
+
elif i < 30:
|
35
|
+
self.assertTrue(jnp.allclose(r, 0.001))
|
36
|
+
else:
|
37
|
+
self.assertTrue(jnp.allclose(r, 0.0001))
|
37
38
|
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
39
|
+
def test2(self):
|
40
|
+
lr = bst.transform.jit(bst.optim.MultiStepLR(0.1, [10, 20, 30], gamma=0.1))
|
41
|
+
for i in range(40):
|
42
|
+
r = lr(i)
|
43
|
+
if i < 10:
|
44
|
+
self.assertEqual(r, 0.1)
|
45
|
+
elif i < 20:
|
46
|
+
self.assertTrue(jnp.allclose(r, 0.01))
|
47
|
+
elif i < 30:
|
48
|
+
self.assertTrue(jnp.allclose(r, 0.001))
|
49
|
+
else:
|
50
|
+
self.assertTrue(jnp.allclose(r, 0.0001))
|
@@ -17,192 +17,119 @@
|
|
17
17
|
from __future__ import annotations
|
18
18
|
|
19
19
|
import importlib.util
|
20
|
-
from typing import
|
20
|
+
from typing import Hashable, Dict, Optional
|
21
21
|
|
22
|
-
|
22
|
+
from brainstate._state import ShortTermState, State, StateDictManager
|
23
|
+
from brainstate.typing import PyTree
|
24
|
+
from ._base import Optimizer
|
23
25
|
|
24
|
-
|
25
|
-
from brainstate._state import ShortTermState, ParamState
|
26
|
+
optax_installed = importlib.util.find_spec('optax') is not None
|
26
27
|
|
27
28
|
__all__ = [
|
28
|
-
|
29
|
+
'OptaxOptimizer',
|
29
30
|
]
|
30
31
|
|
31
|
-
optax_installed = importlib.util.find_spec('optax') is not None
|
32
32
|
|
33
|
+
class OptaxOptimizer(Optimizer):
|
34
|
+
"""Simple train state for the common case with a single Optax optimizer.
|
33
35
|
|
34
|
-
|
35
|
-
"""Wrapper class for Optimizer Variables."""
|
36
|
-
pass
|
37
|
-
|
38
|
-
|
39
|
-
class OptaxOptimizer(Module):
|
40
|
-
"""Simple train state for the common case with a single Optax optimizer.
|
41
|
-
|
42
|
-
Example usage::
|
43
|
-
|
44
|
-
>>> import jax, jax.numpy as jnp
|
45
|
-
>>> import brainstate as bst
|
46
|
-
>>> from brainstate import nn
|
47
|
-
>>> import optax
|
48
|
-
...
|
49
|
-
>>> class Model(bst.Module):
|
50
|
-
... def __init__(self):
|
51
|
-
... super().__init__()
|
52
|
-
... self.linear1 = nn.Linear(2, 3)
|
53
|
-
... self.linear2 = nn.Linear(3, 4)
|
54
|
-
... def __call__(self, x):
|
55
|
-
... return self.linear2(self.linear1(x))
|
56
|
-
...
|
57
|
-
>>> x = jax.random.normal(jax.random.key(0), (1, 2))
|
58
|
-
>>> y = jnp.ones((1, 4))
|
59
|
-
...
|
60
|
-
>>> model = Model()
|
61
|
-
>>> tx = optax.adam(1e-3)
|
62
|
-
>>> state = bst.optim.OptaxOptimizer(model, tx)
|
63
|
-
...
|
64
|
-
>>> loss_fn = lambda model: ((model(x) - y) ** 2).mean()
|
65
|
-
>>> loss_fn(model)
|
66
|
-
Array(1.7055722, dtype=float32)
|
67
|
-
>>> grads = bst.transform.grad(loss_fn)(state.model)
|
68
|
-
>>> state.update(grads)
|
69
|
-
>>> loss_fn(model)
|
70
|
-
Array(1.6925814, dtype=float32)
|
71
|
-
|
72
|
-
Note that you can easily extend this class by subclassing it for storing
|
73
|
-
additional data (e.g. adding metrics).
|
74
|
-
|
75
|
-
Example usage::
|
76
|
-
|
77
|
-
>>> class TrainState(nnx.Optimizer):
|
78
|
-
... def __init__(self, model, tx, metrics):
|
79
|
-
... self.metrics = metrics
|
80
|
-
... super().__init__(model, tx)
|
81
|
-
... def update(self, *, grads, **updates):
|
82
|
-
... self.metrics.update(**updates)
|
83
|
-
... super().update(grads)
|
84
|
-
...
|
85
|
-
>>> metrics = nnx.metrics.Average()
|
86
|
-
>>> state = TrainState(model, tx, metrics)
|
87
|
-
...
|
88
|
-
>>> grads = nnx.grad(loss_fn)(state.model)
|
89
|
-
>>> state.update(grads=grads, values=loss_fn(state.model))
|
90
|
-
>>> state.metrics.compute()
|
91
|
-
Array(1.6925814, dtype=float32)
|
92
|
-
>>> state.update(grads=grads, values=loss_fn(state.model))
|
93
|
-
>>> state.metrics.compute()
|
94
|
-
Array(1.68612, dtype=float32)
|
95
|
-
|
96
|
-
For more exotic usecases (e.g. multiple optimizers) it's probably best to
|
97
|
-
fork the class and modify it.
|
98
|
-
|
99
|
-
Attributes:
|
100
|
-
step: An ``OptaxState`` :class:`Variable` that tracks the step count.
|
101
|
-
model: The wrapped :class:`Module`.
|
102
|
-
tx: An Optax gradient transformation.
|
103
|
-
opt_state: The Optax optimizer state.
|
104
|
-
"""
|
105
|
-
|
106
|
-
def __init__(
|
107
|
-
self,
|
108
|
-
model: Module,
|
109
|
-
tx: 'optax.GradientTransformation',
|
110
|
-
wrt: Any = ParamState,
|
111
|
-
):
|
112
|
-
"""
|
113
|
-
Instantiate the class and wrap the :class:`Module` and Optax gradient
|
114
|
-
transformation. Instantiate the optimizer state to keep track of
|
115
|
-
:class:`Variable` types specified in ``wrt``. Set the step count to 0.
|
116
|
-
|
117
|
-
Args:
|
118
|
-
model: An NNX Module.
|
119
|
-
tx: An Optax gradient transformation.
|
120
|
-
wrt: optional argument to filter for which :class:`Variable`'s to keep
|
121
|
-
track of in the optimizer state. These should be the :class:`Variable`'s
|
122
|
-
that you plan on updating; i.e. this argument value should match the
|
123
|
-
``wrt`` argument passed to the ``nnx.grad`` call that will generate the
|
124
|
-
gradients that will be passed into the ``grads`` argument of the
|
125
|
-
:func:`update` method.
|
126
|
-
"""
|
36
|
+
Example usage::
|
127
37
|
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
raise TypeError(f"tx must be an instance of optax.GradientTransformation, got {tx}")
|
132
|
-
self.tx = tx
|
133
|
-
|
134
|
-
# model
|
135
|
-
if not callable(model):
|
136
|
-
raise TypeError(f"model must be a callable, got {model}")
|
137
|
-
self.model = model
|
138
|
-
|
139
|
-
# wrt
|
140
|
-
self.opt_state = tx.init(nnx.state(model, wrt))
|
141
|
-
self.wrt = wrt
|
142
|
-
|
143
|
-
def update(self, grads):
|
144
|
-
"""Updates ``step``, ``params``, ``opt_state`` and ``**kwargs`` in return value.
|
145
|
-
The ``grads`` must be derived from ``nnx.grad(..., wrt=self.wrt)``, where the
|
146
|
-
gradients are with respect to the same :class:`Variable` types as defined in
|
147
|
-
``self.wrt`` during instantiation of this ``Optimizer``. For example::
|
148
|
-
|
149
|
-
>>> from flax import nnx
|
150
|
-
>>> import jax, jax.numpy as jnp
|
38
|
+
>>> import jax
|
39
|
+
>>> import jax.numpy as jnp
|
40
|
+
>>> import brainstate as bst
|
151
41
|
>>> import optax
|
152
|
-
|
153
|
-
>>> class
|
154
|
-
...
|
155
|
-
|
156
|
-
|
157
|
-
...
|
158
|
-
... self.linear = nnx.Linear(2, 3, rngs=rngs)
|
159
|
-
... self.custom_variable = CustomVariable(jnp.ones((1, 3)))
|
42
|
+
...
|
43
|
+
>>> class Model(bst.nn.Module):
|
44
|
+
... def __init__(self):
|
45
|
+
... super().__init__()
|
46
|
+
... self.linear1 = bst.nn.Linear(2, 3)
|
47
|
+
... self.linear2 = bst.nn.Linear(3, 4)
|
160
48
|
... def __call__(self, x):
|
161
|
-
... return self.
|
162
|
-
|
163
|
-
>>>
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
>>> loss_fn = lambda model, x, y: ((model(x) - y) ** 2).mean()
|
186
|
-
>>> for variable in (nnx.Param, CustomVariable, (nnx.Param, CustomVariable)):
|
187
|
-
... # make sure `wrt` arguments match for `nnx.Optimizer` and `nnx.grad`
|
188
|
-
... state = nnx.Optimizer(model, optax.adam(1e-3), wrt=variable)
|
189
|
-
... grads = nnx.grad(loss_fn, argnums=nnx.DiffState(0, variable))(
|
190
|
-
... state.model, jnp.ones((1, 2)), jnp.ones((1, 3))
|
191
|
-
... )
|
192
|
-
... state.update(grads=grads)
|
193
|
-
|
194
|
-
Note that internally this function calls ``.tx.update()`` followed by a call
|
195
|
-
to ``optax.apply_updates()`` to update ``params`` and ``opt_state``.
|
196
|
-
|
197
|
-
Args:
|
198
|
-
grads: the gradients derived from ``nnx.grad``.
|
49
|
+
... return self.linear2(self.linear1(x))
|
50
|
+
...
|
51
|
+
>>> x = bst.random.randn(1, 2)
|
52
|
+
>>> y = jnp.ones((1, 4))
|
53
|
+
...
|
54
|
+
>>> model = Model()
|
55
|
+
>>> tx = optax.adam(1e-3)
|
56
|
+
>>> optimizer = bst.optim.OptaxOptimizer(tx)
|
57
|
+
>>> optimizer.register_trainable_weights(model.states(bst.ParamState))
|
58
|
+
...
|
59
|
+
>>> loss_fn = lambda: ((model(x) - y) ** 2).mean()
|
60
|
+
>>> loss_fn()
|
61
|
+
Array(1.7055722, dtype=float32)
|
62
|
+
>>> grads = bst.augment.grad(loss_fn, model.states(bst.ParamState))()
|
63
|
+
>>> optimizer.update(grads)
|
64
|
+
>>> loss_fn()
|
65
|
+
Array(1.6925814, dtype=float32)
|
66
|
+
|
67
|
+
For more exotic usecases (e.g. multiple optimizers) it's probably best to
|
68
|
+
fork the class and modify it.
|
69
|
+
|
70
|
+
Attributes:
|
71
|
+
param_states: The parameter states to update.
|
72
|
+
tx: An Optax gradient transformation.
|
199
73
|
"""
|
200
|
-
import optax # type: ignore[import-not-found,import-untyped]
|
201
|
-
state = nnx.state(self.model, self.wrt)
|
202
|
-
|
203
|
-
updates, new_opt_state = self.tx.update(grads, self.opt_state, state)
|
204
|
-
new_params = optax.apply_updates(state, updates)
|
205
|
-
assert isinstance(new_params, nnx.State)
|
206
74
|
|
207
|
-
|
208
|
-
|
75
|
+
param_states: StateDictManager
|
76
|
+
opt_state: Optional[ShortTermState]
|
77
|
+
|
78
|
+
def __init__(
|
79
|
+
self,
|
80
|
+
tx: 'optax.GradientTransformation',
|
81
|
+
):
|
82
|
+
"""
|
83
|
+
Instantiate the class and wrap the :class:`FlattedDict` and Optax gradient
|
84
|
+
transformation. Instantiate the optimizer state to keep track of
|
85
|
+
:class:`State`.
|
86
|
+
|
87
|
+
Args:
|
88
|
+
tx: An Optax gradient transformation.
|
89
|
+
"""
|
90
|
+
super().__init__()
|
91
|
+
|
92
|
+
# tx must be an instance of optax.GradientTransformation
|
93
|
+
import optax # type: ignore[import-not-found,import-untyped]
|
94
|
+
if not isinstance(tx, optax.GradientTransformation):
|
95
|
+
raise TypeError(f"tx must be an instance of optax.GradientTransformation, got {tx}")
|
96
|
+
self.tx = tx
|
97
|
+
|
98
|
+
# optimizer state
|
99
|
+
self.opt_state = None
|
100
|
+
|
101
|
+
def register_trainable_weights(self, param_states: Dict[Hashable, State]):
|
102
|
+
# model
|
103
|
+
if not isinstance(param_states, dict):
|
104
|
+
raise TypeError(f"states must be a dict, got {param_states}")
|
105
|
+
for k, v in param_states.items():
|
106
|
+
if not isinstance(v, State):
|
107
|
+
raise TypeError(f"states values must be ParamState, got {v}")
|
108
|
+
self.param_states.update(param_states)
|
109
|
+
self.param_states.unique_()
|
110
|
+
|
111
|
+
# wrt
|
112
|
+
self.opt_state = ShortTermState(self.tx.init({k: v.value for k, v in self.param_states.items()}))
|
113
|
+
return self
|
114
|
+
|
115
|
+
def update(self, grads: Dict[Hashable, PyTree]):
|
116
|
+
"""Update the model states with the gradients.
|
117
|
+
|
118
|
+
Args:
|
119
|
+
grads: the gradients derived from ``brainstate.augment.grad``.
|
120
|
+
"""
|
121
|
+
if self.opt_state is None:
|
122
|
+
raise ValueError("register_trainable_weights must be called before update.")
|
123
|
+
|
124
|
+
import optax # type: ignore[import-not-found,import-untyped]
|
125
|
+
grads = {k: grads[k] for k in self.param_states.keys()}
|
126
|
+
states = {k: v.value for k, v in self.param_states.items()}
|
127
|
+
|
128
|
+
# compute updates
|
129
|
+
updates, new_opt_state = self.tx.update(grads, self.opt_state.value, states)
|
130
|
+
new_params = optax.apply_updates(states, updates)
|
131
|
+
|
132
|
+
# update model states and optimizer states
|
133
|
+
for k, v in self.param_states.items():
|
134
|
+
v.value = new_params[k]
|
135
|
+
self.opt_state.value = new_opt_state
|
@@ -1,4 +1,4 @@
|
|
1
|
-
# Copyright 2024
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
2
|
#
|
3
3
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
4
|
# you may not use this file except in compliance with the License.
|
@@ -11,4 +11,44 @@
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
12
|
# See the License for the specific language governing permissions and
|
13
13
|
# limitations under the License.
|
14
|
+
# ==============================================================================
|
14
15
|
|
16
|
+
from __future__ import annotations
|
17
|
+
|
18
|
+
import unittest
|
19
|
+
|
20
|
+
import jax
|
21
|
+
import optax
|
22
|
+
|
23
|
+
import brainstate as bst
|
24
|
+
|
25
|
+
|
26
|
+
class TestOptaxOptimizer(unittest.TestCase):
|
27
|
+
def test1(self):
|
28
|
+
class Model(bst.nn.Module):
|
29
|
+
def __init__(self):
|
30
|
+
super().__init__()
|
31
|
+
self.linear1 = bst.nn.Linear(2, 3)
|
32
|
+
self.linear2 = bst.nn.Linear(3, 4)
|
33
|
+
|
34
|
+
def __call__(self, x):
|
35
|
+
return self.linear2(self.linear1(x))
|
36
|
+
|
37
|
+
x = bst.random.randn(1, 2)
|
38
|
+
y = jax.numpy.ones((1, 4))
|
39
|
+
|
40
|
+
model = Model()
|
41
|
+
tx = optax.adam(1e-3)
|
42
|
+
optimizer = bst.optim.OptaxOptimizer(tx)
|
43
|
+
optimizer.register_trainable_weights(model.states(bst.ParamState))
|
44
|
+
|
45
|
+
loss_fn = lambda: ((model(x) - y) ** 2).mean()
|
46
|
+
prev_loss = loss_fn()
|
47
|
+
|
48
|
+
grads = bst.augment.grad(loss_fn, model.states(bst.ParamState))()
|
49
|
+
optimizer.update(grads)
|
50
|
+
|
51
|
+
new_loss = loss_fn()
|
52
|
+
|
53
|
+
print(new_loss, prev_loss)
|
54
|
+
self.assertLess(new_loss, prev_loss)
|