brainstate 0.0.2.post20241009__py2.py3-none-any.whl → 0.1.0__py2.py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- brainstate/__init__.py +31 -11
- brainstate/_state.py +760 -316
- brainstate/_state_test.py +41 -12
- brainstate/_utils.py +31 -4
- brainstate/augment/__init__.py +40 -0
- brainstate/augment/_autograd.py +608 -0
- brainstate/augment/_autograd_test.py +1193 -0
- brainstate/augment/_eval_shape.py +102 -0
- brainstate/augment/_eval_shape_test.py +40 -0
- brainstate/augment/_mapping.py +525 -0
- brainstate/augment/_mapping_test.py +210 -0
- brainstate/augment/_random.py +99 -0
- brainstate/{transform → compile}/__init__.py +25 -13
- brainstate/compile/_ad_checkpoint.py +204 -0
- brainstate/compile/_ad_checkpoint_test.py +51 -0
- brainstate/compile/_conditions.py +259 -0
- brainstate/compile/_conditions_test.py +221 -0
- brainstate/compile/_error_if.py +94 -0
- brainstate/compile/_error_if_test.py +54 -0
- brainstate/compile/_jit.py +314 -0
- brainstate/compile/_jit_test.py +143 -0
- brainstate/compile/_loop_collect_return.py +516 -0
- brainstate/compile/_loop_collect_return_test.py +59 -0
- brainstate/compile/_loop_no_collection.py +185 -0
- brainstate/compile/_loop_no_collection_test.py +51 -0
- brainstate/compile/_make_jaxpr.py +756 -0
- brainstate/compile/_make_jaxpr_test.py +134 -0
- brainstate/compile/_progress_bar.py +111 -0
- brainstate/compile/_unvmap.py +159 -0
- brainstate/compile/_util.py +147 -0
- brainstate/environ.py +408 -381
- brainstate/environ_test.py +34 -32
- brainstate/{nn/event → event}/__init__.py +6 -6
- brainstate/event/_csr.py +308 -0
- brainstate/event/_csr_test.py +118 -0
- brainstate/event/_fixed_probability.py +271 -0
- brainstate/event/_fixed_probability_test.py +128 -0
- brainstate/event/_linear.py +219 -0
- brainstate/event/_linear_test.py +112 -0
- brainstate/{nn/event → event}/_misc.py +7 -7
- brainstate/functional/_activations.py +521 -511
- brainstate/functional/_activations_test.py +300 -300
- brainstate/functional/_normalization.py +43 -43
- brainstate/functional/_others.py +15 -15
- brainstate/functional/_spikes.py +49 -49
- brainstate/graph/__init__.py +33 -0
- brainstate/graph/_graph_context.py +443 -0
- brainstate/graph/_graph_context_test.py +65 -0
- brainstate/graph/_graph_convert.py +246 -0
- brainstate/graph/_graph_node.py +300 -0
- brainstate/graph/_graph_node_test.py +75 -0
- brainstate/graph/_graph_operation.py +1746 -0
- brainstate/graph/_graph_operation_test.py +724 -0
- brainstate/init/_base.py +28 -10
- brainstate/init/_generic.py +175 -172
- brainstate/init/_random_inits.py +470 -415
- brainstate/init/_random_inits_test.py +150 -0
- brainstate/init/_regular_inits.py +66 -69
- brainstate/init/_regular_inits_test.py +51 -0
- brainstate/mixin.py +236 -244
- brainstate/mixin_test.py +44 -46
- brainstate/nn/__init__.py +26 -51
- brainstate/nn/_collective_ops.py +199 -0
- brainstate/nn/_dyn_impl/__init__.py +46 -0
- brainstate/nn/_dyn_impl/_dynamics_neuron.py +290 -0
- brainstate/nn/_dyn_impl/_dynamics_neuron_test.py +162 -0
- brainstate/nn/_dyn_impl/_dynamics_synapse.py +320 -0
- brainstate/nn/_dyn_impl/_dynamics_synapse_test.py +132 -0
- brainstate/nn/_dyn_impl/_inputs.py +154 -0
- brainstate/nn/{_projection/__init__.py → _dyn_impl/_projection_alignpost.py} +6 -13
- brainstate/nn/_dyn_impl/_rate_rnns.py +400 -0
- brainstate/nn/_dyn_impl/_rate_rnns_test.py +64 -0
- brainstate/nn/_dyn_impl/_readout.py +128 -0
- brainstate/nn/_dyn_impl/_readout_test.py +54 -0
- brainstate/nn/_dynamics/__init__.py +37 -0
- brainstate/nn/_dynamics/_dynamics_base.py +631 -0
- brainstate/nn/_dynamics/_dynamics_base_test.py +79 -0
- brainstate/nn/_dynamics/_projection_base.py +346 -0
- brainstate/nn/_dynamics/_state_delay.py +453 -0
- brainstate/nn/_dynamics/_synouts.py +161 -0
- brainstate/nn/_dynamics/_synouts_test.py +58 -0
- brainstate/nn/_elementwise/__init__.py +22 -0
- brainstate/nn/_elementwise/_dropout.py +418 -0
- brainstate/nn/_elementwise/_dropout_test.py +100 -0
- brainstate/nn/_elementwise/_elementwise.py +1122 -0
- brainstate/nn/_elementwise/_elementwise_test.py +171 -0
- brainstate/nn/_exp_euler.py +97 -0
- brainstate/nn/_exp_euler_test.py +36 -0
- brainstate/nn/_interaction/__init__.py +32 -0
- brainstate/nn/_interaction/_connections.py +726 -0
- brainstate/nn/_interaction/_connections_test.py +254 -0
- brainstate/nn/_interaction/_embedding.py +59 -0
- brainstate/nn/_interaction/_normalizations.py +388 -0
- brainstate/nn/_interaction/_normalizations_test.py +75 -0
- brainstate/nn/_interaction/_poolings.py +1179 -0
- brainstate/nn/_interaction/_poolings_test.py +219 -0
- brainstate/nn/_module.py +328 -0
- brainstate/nn/_module_test.py +211 -0
- brainstate/nn/metrics.py +309 -309
- brainstate/optim/__init__.py +14 -2
- brainstate/optim/_base.py +66 -0
- brainstate/optim/_lr_scheduler.py +363 -400
- brainstate/optim/_lr_scheduler_test.py +25 -24
- brainstate/optim/_optax_optimizer.py +103 -176
- brainstate/optim/_optax_optimizer_test.py +41 -1
- brainstate/optim/_sgd_optimizer.py +950 -1025
- brainstate/random/_rand_funs.py +3269 -3268
- brainstate/random/_rand_funs_test.py +568 -0
- brainstate/random/_rand_seed.py +149 -117
- brainstate/random/_rand_seed_test.py +50 -0
- brainstate/random/_rand_state.py +1360 -1318
- brainstate/random/_random_for_unit.py +13 -13
- brainstate/surrogate.py +1262 -1243
- brainstate/{nn/_projection/_utils.py → transform.py} +1 -2
- brainstate/typing.py +157 -130
- brainstate/util/__init__.py +52 -0
- brainstate/util/_caller.py +100 -0
- brainstate/util/_dict.py +734 -0
- brainstate/util/_dict_test.py +160 -0
- brainstate/util/_error.py +28 -0
- brainstate/util/_filter.py +178 -0
- brainstate/util/_others.py +497 -0
- brainstate/util/_pretty_repr.py +208 -0
- brainstate/util/_scaling.py +260 -0
- brainstate/util/_struct.py +524 -0
- brainstate/util/_tracers.py +75 -0
- brainstate/{_visualization.py → util/_visualization.py} +16 -16
- {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/METADATA +11 -11
- brainstate-0.1.0.dist-info/RECORD +135 -0
- brainstate/_module.py +0 -1637
- brainstate/_module_test.py +0 -207
- brainstate/nn/_base.py +0 -251
- brainstate/nn/_connections.py +0 -686
- brainstate/nn/_dynamics.py +0 -426
- brainstate/nn/_elementwise.py +0 -1438
- brainstate/nn/_embedding.py +0 -66
- brainstate/nn/_misc.py +0 -133
- brainstate/nn/_normalizations.py +0 -389
- brainstate/nn/_others.py +0 -101
- brainstate/nn/_poolings.py +0 -1229
- brainstate/nn/_poolings_test.py +0 -231
- brainstate/nn/_projection/_align_post.py +0 -546
- brainstate/nn/_projection/_align_pre.py +0 -599
- brainstate/nn/_projection/_delta.py +0 -241
- brainstate/nn/_projection/_vanilla.py +0 -101
- brainstate/nn/_rate_rnns.py +0 -410
- brainstate/nn/_readout.py +0 -136
- brainstate/nn/_synouts.py +0 -166
- brainstate/nn/event/csr.py +0 -312
- brainstate/nn/event/csr_test.py +0 -118
- brainstate/nn/event/fixed_probability.py +0 -276
- brainstate/nn/event/fixed_probability_test.py +0 -127
- brainstate/nn/event/linear.py +0 -220
- brainstate/nn/event/linear_test.py +0 -111
- brainstate/random/random_test.py +0 -593
- brainstate/transform/_autograd.py +0 -585
- brainstate/transform/_autograd_test.py +0 -1181
- brainstate/transform/_conditions.py +0 -334
- brainstate/transform/_conditions_test.py +0 -220
- brainstate/transform/_error_if.py +0 -94
- brainstate/transform/_error_if_test.py +0 -55
- brainstate/transform/_jit.py +0 -265
- brainstate/transform/_jit_test.py +0 -118
- brainstate/transform/_loop_collect_return.py +0 -502
- brainstate/transform/_loop_no_collection.py +0 -170
- brainstate/transform/_make_jaxpr.py +0 -739
- brainstate/transform/_make_jaxpr_test.py +0 -131
- brainstate/transform/_mapping.py +0 -109
- brainstate/transform/_progress_bar.py +0 -111
- brainstate/transform/_unvmap.py +0 -143
- brainstate/util.py +0 -746
- brainstate-0.0.2.post20241009.dist-info/RECORD +0 -87
- {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/LICENSE +0 -0
- {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/WHEEL +0 -0
- {brainstate-0.0.2.post20241009.dist-info → brainstate-0.1.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,290 @@
|
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
# -*- coding: utf-8 -*-
|
17
|
+
|
18
|
+
from __future__ import annotations
|
19
|
+
|
20
|
+
from typing import Callable, Optional
|
21
|
+
|
22
|
+
import brainunit as u
|
23
|
+
import jax
|
24
|
+
|
25
|
+
from brainstate import init, surrogate, environ
|
26
|
+
from brainstate._state import HiddenState, ShortTermState
|
27
|
+
from brainstate.nn._dynamics._dynamics_base import Dynamics
|
28
|
+
from brainstate.nn._exp_euler import exp_euler_step
|
29
|
+
from brainstate.typing import ArrayLike, Size
|
30
|
+
|
31
|
+
__all__ = [
|
32
|
+
'Neuron', 'IF', 'LIF', 'LIFRef', 'ALIF',
|
33
|
+
]
|
34
|
+
|
35
|
+
|
36
|
+
class Neuron(Dynamics):
|
37
|
+
"""
|
38
|
+
Base class for neuronal dynamics.
|
39
|
+
|
40
|
+
All neuron models are differentiable since they use surrogate gradient functions to
|
41
|
+
generate the spiking state.
|
42
|
+
"""
|
43
|
+
__module__ = 'brainstate.nn'
|
44
|
+
|
45
|
+
def __init__(
|
46
|
+
self,
|
47
|
+
in_size: Size,
|
48
|
+
spk_fun: Callable = surrogate.InvSquareGrad(),
|
49
|
+
spk_reset: str = 'soft',
|
50
|
+
name: Optional[str] = None,
|
51
|
+
):
|
52
|
+
super().__init__(in_size, name=name)
|
53
|
+
self.spk_reset = spk_reset
|
54
|
+
self.spk_fun = spk_fun
|
55
|
+
|
56
|
+
def get_spike(self, *args, **kwargs):
|
57
|
+
raise NotImplementedError
|
58
|
+
|
59
|
+
|
60
|
+
class IF(Neuron):
|
61
|
+
"""
|
62
|
+
Integrate-and-fire neuron model.
|
63
|
+
"""
|
64
|
+
|
65
|
+
__module__ = 'brainstate.nn'
|
66
|
+
|
67
|
+
def __init__(
|
68
|
+
self,
|
69
|
+
in_size: Size,
|
70
|
+
R: ArrayLike = 1. * u.ohm,
|
71
|
+
tau: ArrayLike = 5. * u.ms,
|
72
|
+
V_th: ArrayLike = 1. * u.mV, # should be positive
|
73
|
+
V_initializer: Callable = init.Constant(0. * u.mV),
|
74
|
+
spk_fun: Callable = surrogate.ReluGrad(),
|
75
|
+
spk_reset: str = 'soft',
|
76
|
+
name: str = None,
|
77
|
+
):
|
78
|
+
super().__init__(in_size, name=name, spk_fun=spk_fun, spk_reset=spk_reset)
|
79
|
+
|
80
|
+
# parameters
|
81
|
+
self.R = init.param(R, self.varshape)
|
82
|
+
self.tau = init.param(tau, self.varshape)
|
83
|
+
self.V_th = init.param(V_th, self.varshape)
|
84
|
+
self.V_initializer = V_initializer
|
85
|
+
|
86
|
+
def init_state(self, batch_size: int = None, **kwargs):
|
87
|
+
self.V = HiddenState(init.param(self.V_initializer, self.varshape, batch_size))
|
88
|
+
|
89
|
+
def reset_state(self, batch_size: int = None, **kwargs):
|
90
|
+
self.V.value = init.param(self.V_initializer, self.varshape, batch_size)
|
91
|
+
|
92
|
+
def get_spike(self, V=None):
|
93
|
+
V = self.V.value if V is None else V
|
94
|
+
v_scaled = (V - self.V_th) / self.V_th
|
95
|
+
return self.spk_fun(v_scaled)
|
96
|
+
|
97
|
+
def update(self, x=0. * u.mA):
|
98
|
+
# reset
|
99
|
+
last_V = self.V.value
|
100
|
+
last_spike = self.get_spike(self.V.value)
|
101
|
+
V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_V)
|
102
|
+
V = last_V - V_th * last_spike
|
103
|
+
# membrane potential
|
104
|
+
dv = lambda v: (-v + self.R * self.sum_current_inputs(x, v)) / self.tau
|
105
|
+
V = exp_euler_step(dv, V)
|
106
|
+
V = self.sum_delta_inputs(V)
|
107
|
+
self.V.value = V
|
108
|
+
return self.get_spike(V)
|
109
|
+
|
110
|
+
|
111
|
+
class LIF(Neuron):
|
112
|
+
"""
|
113
|
+
Leaky integrate-and-fire neuron model.
|
114
|
+
"""
|
115
|
+
__module__ = 'brainstate.nn'
|
116
|
+
|
117
|
+
def __init__(
|
118
|
+
self,
|
119
|
+
in_size: Size,
|
120
|
+
R: ArrayLike = 1. * u.ohm,
|
121
|
+
tau: ArrayLike = 5. * u.ms,
|
122
|
+
V_th: ArrayLike = 1. * u.mV,
|
123
|
+
V_reset: ArrayLike = 0. * u.mV,
|
124
|
+
V_rest: ArrayLike = 0. * u.mV,
|
125
|
+
V_initializer: Callable = init.Constant(0. * u.mV),
|
126
|
+
spk_fun: Callable = surrogate.ReluGrad(),
|
127
|
+
spk_reset: str = 'soft',
|
128
|
+
name: str = None,
|
129
|
+
):
|
130
|
+
super().__init__(in_size, name=name, spk_fun=spk_fun, spk_reset=spk_reset)
|
131
|
+
|
132
|
+
# parameters
|
133
|
+
self.R = init.param(R, self.varshape)
|
134
|
+
self.tau = init.param(tau, self.varshape)
|
135
|
+
self.V_th = init.param(V_th, self.varshape)
|
136
|
+
self.V_rest = init.param(V_rest, self.varshape)
|
137
|
+
self.V_reset = init.param(V_reset, self.varshape)
|
138
|
+
self.V_initializer = V_initializer
|
139
|
+
|
140
|
+
def init_state(self, batch_size: int = None, **kwargs):
|
141
|
+
self.V = HiddenState(init.param(self.V_initializer, self.varshape, batch_size))
|
142
|
+
|
143
|
+
def reset_state(self, batch_size: int = None, **kwargs):
|
144
|
+
self.V.value = init.param(self.V_initializer, self.varshape, batch_size)
|
145
|
+
|
146
|
+
def get_spike(self, V: ArrayLike = None):
|
147
|
+
V = self.V.value if V is None else V
|
148
|
+
v_scaled = (V - self.V_th) / (self.V_th - self.V_reset)
|
149
|
+
return self.spk_fun(v_scaled)
|
150
|
+
|
151
|
+
def update(self, x=0. * u.mA):
|
152
|
+
last_v = self.V.value
|
153
|
+
lst_spk = self.get_spike(last_v)
|
154
|
+
V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_v)
|
155
|
+
V = last_v - (V_th - self.V_reset) * lst_spk
|
156
|
+
# membrane potential
|
157
|
+
dv = lambda v: (-v + self.V_rest + self.R * self.sum_current_inputs(x, v)) / self.tau
|
158
|
+
V = exp_euler_step(dv, V)
|
159
|
+
V = self.sum_delta_inputs(V)
|
160
|
+
self.V.value = V
|
161
|
+
return self.get_spike(V)
|
162
|
+
|
163
|
+
|
164
|
+
class LIFRef(Neuron):
|
165
|
+
"""
|
166
|
+
Leaky integrate-and-fire neuron model with refractory period.
|
167
|
+
"""
|
168
|
+
__module__ = 'brainstate.nn'
|
169
|
+
|
170
|
+
def __init__(
|
171
|
+
self,
|
172
|
+
in_size: Size,
|
173
|
+
R: ArrayLike = 1. * u.ohm,
|
174
|
+
tau: ArrayLike = 5. * u.ms,
|
175
|
+
tau_ref: ArrayLike = 5. * u.ms,
|
176
|
+
V_th: ArrayLike = 1. * u.mV,
|
177
|
+
V_reset: ArrayLike = 0. * u.mV,
|
178
|
+
V_rest: ArrayLike = 0. * u.mV,
|
179
|
+
V_initializer: Callable = init.Constant(0. * u.mV),
|
180
|
+
spk_fun: Callable = surrogate.ReluGrad(),
|
181
|
+
spk_reset: str = 'soft',
|
182
|
+
name: str = None,
|
183
|
+
):
|
184
|
+
super().__init__(in_size, name=name, spk_fun=spk_fun, spk_reset=spk_reset)
|
185
|
+
|
186
|
+
# parameters
|
187
|
+
self.R = init.param(R, self.varshape)
|
188
|
+
self.tau = init.param(tau, self.varshape)
|
189
|
+
self.tau_ref = init.param(tau_ref, self.varshape)
|
190
|
+
self.V_th = init.param(V_th, self.varshape)
|
191
|
+
self.V_rest = init.param(V_rest, self.varshape)
|
192
|
+
self.V_reset = init.param(V_reset, self.varshape)
|
193
|
+
self.V_initializer = V_initializer
|
194
|
+
|
195
|
+
def init_state(self, batch_size: int = None, **kwargs):
|
196
|
+
self.V = HiddenState(init.param(self.V_initializer, self.varshape, batch_size))
|
197
|
+
self.last_spike_time = ShortTermState(init.param(init.Constant(-1e7 * u.ms), self.varshape, batch_size))
|
198
|
+
|
199
|
+
def reset_state(self, batch_size: int = None, **kwargs):
|
200
|
+
self.V.value = init.param(self.V_initializer, self.varshape, batch_size)
|
201
|
+
self.last_spike_time.value = init.param(init.Constant(-1e7 * u.ms), self.varshape, batch_size)
|
202
|
+
|
203
|
+
def get_spike(self, V: ArrayLike = None):
|
204
|
+
V = self.V.value if V is None else V
|
205
|
+
v_scaled = (V - self.V_th) / (self.V_th - self.V_reset)
|
206
|
+
return self.spk_fun(v_scaled)
|
207
|
+
|
208
|
+
def update(self, x=0. * u.mA):
|
209
|
+
t = environ.get('t')
|
210
|
+
last_v = self.V.value
|
211
|
+
lst_spk = self.get_spike(last_v)
|
212
|
+
V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_v)
|
213
|
+
last_v = last_v - (V_th - self.V_reset) * lst_spk
|
214
|
+
# membrane potential
|
215
|
+
dv = lambda v: (-v + self.V_rest + self.R * self.sum_current_inputs(x, v)) / self.tau
|
216
|
+
V = exp_euler_step(dv, last_v)
|
217
|
+
V = self.sum_delta_inputs(V)
|
218
|
+
self.V.value = u.math.where(t - self.last_spike_time.value < self.tau_ref, last_v, V)
|
219
|
+
# spike time evaluation
|
220
|
+
lst_spk_time = u.math.where(self.V.value >= self.V_th, environ.get('t'), self.last_spike_time.value)
|
221
|
+
self.last_spike_time.value = jax.lax.stop_gradient(lst_spk_time)
|
222
|
+
return self.get_spike()
|
223
|
+
|
224
|
+
|
225
|
+
class ALIF(Neuron):
|
226
|
+
"""
|
227
|
+
Adaptive Leaky Integrate-and-Fire (LIF) neuron model.
|
228
|
+
"""
|
229
|
+
__module__ = 'brainstate.nn'
|
230
|
+
|
231
|
+
def __init__(
|
232
|
+
self,
|
233
|
+
in_size: Size,
|
234
|
+
R: ArrayLike = 1. * u.ohm,
|
235
|
+
tau: ArrayLike = 5. * u.ms,
|
236
|
+
tau_a: ArrayLike = 100. * u.ms,
|
237
|
+
V_th: ArrayLike = 1. * u.mV,
|
238
|
+
V_reset: ArrayLike = 0. * u.mV,
|
239
|
+
V_rest: ArrayLike = 0. * u.mV,
|
240
|
+
beta: ArrayLike = 0.1 * u.mV,
|
241
|
+
spk_fun: Callable = surrogate.ReluGrad(),
|
242
|
+
spk_reset: str = 'soft',
|
243
|
+
V_initializer: Callable = init.Constant(0. * u.mV),
|
244
|
+
a_initializer: Callable = init.Constant(0.),
|
245
|
+
name: str = None,
|
246
|
+
):
|
247
|
+
super().__init__(in_size, name=name, spk_fun=spk_fun, spk_reset=spk_reset)
|
248
|
+
|
249
|
+
# parameters
|
250
|
+
self.R = init.param(R, self.varshape)
|
251
|
+
self.tau = init.param(tau, self.varshape)
|
252
|
+
self.tau_a = init.param(tau_a, self.varshape)
|
253
|
+
self.V_th = init.param(V_th, self.varshape)
|
254
|
+
self.V_reset = init.param(V_reset, self.varshape)
|
255
|
+
self.V_rest = init.param(V_rest, self.varshape)
|
256
|
+
self.beta = init.param(beta, self.varshape)
|
257
|
+
|
258
|
+
# functions
|
259
|
+
self.V_initializer = V_initializer
|
260
|
+
self.a_initializer = a_initializer
|
261
|
+
|
262
|
+
def init_state(self, batch_size: int = None, **kwargs):
|
263
|
+
self.V = HiddenState(init.param(self.V_initializer, self.varshape, batch_size))
|
264
|
+
self.a = HiddenState(init.param(self.a_initializer, self.varshape, batch_size))
|
265
|
+
|
266
|
+
def reset_state(self, batch_size: int = None, **kwargs):
|
267
|
+
self.V.value = init.param(self.V_initializer, self.varshape, batch_size)
|
268
|
+
self.a.value = init.param(self.a_initializer, self.varshape, batch_size)
|
269
|
+
|
270
|
+
def get_spike(self, V=None, a=None):
|
271
|
+
V = self.V.value if V is None else V
|
272
|
+
a = self.a.value if a is None else a
|
273
|
+
v_scaled = (V - self.V_th - self.beta * a) / (self.V_th - self.V_reset)
|
274
|
+
return self.spk_fun(v_scaled)
|
275
|
+
|
276
|
+
def update(self, x=0. * u.mA):
|
277
|
+
last_v = self.V.value
|
278
|
+
last_a = self.a.value
|
279
|
+
lst_spk = self.get_spike(last_v, last_a)
|
280
|
+
V_th = self.V_th if self.spk_reset == 'soft' else jax.lax.stop_gradient(last_v)
|
281
|
+
V = last_v - (V_th - self.V_reset) * lst_spk
|
282
|
+
a = last_a + lst_spk
|
283
|
+
# membrane potential
|
284
|
+
dv = lambda v: (-v + self.V_rest + self.R * self.sum_current_inputs(x, v)) / self.tau
|
285
|
+
da = lambda a: -a / self.tau_a
|
286
|
+
V = exp_euler_step(dv, V)
|
287
|
+
a = exp_euler_step(da, a)
|
288
|
+
self.V.value = self.sum_delta_inputs(V)
|
289
|
+
self.a.value = a
|
290
|
+
return self.get_spike(self.V.value, self.a.value)
|
@@ -0,0 +1,162 @@
|
|
1
|
+
# Copyright 2024 BDP Ecosystem Limited. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
# -*- coding: utf-8 -*-
|
17
|
+
|
18
|
+
from __future__ import annotations
|
19
|
+
|
20
|
+
import unittest
|
21
|
+
|
22
|
+
import brainunit as u
|
23
|
+
import jax
|
24
|
+
import jax.numpy as jnp
|
25
|
+
|
26
|
+
import brainstate as bst
|
27
|
+
from brainstate.nn import IF, LIF, ALIF
|
28
|
+
|
29
|
+
|
30
|
+
class TestNeuron(unittest.TestCase):
|
31
|
+
def setUp(self):
|
32
|
+
self.in_size = 10
|
33
|
+
self.batch_size = 5
|
34
|
+
self.time_steps = 100
|
35
|
+
|
36
|
+
def test_neuron_base_class(self):
|
37
|
+
with self.assertRaises(NotImplementedError):
|
38
|
+
bst.nn.Neuron(self.in_size).get_spike() # Neuron is an abstract base class
|
39
|
+
|
40
|
+
def generate_input(self):
|
41
|
+
return bst.random.randn(self.time_steps, self.batch_size, self.in_size) * u.mA
|
42
|
+
|
43
|
+
def test_if_neuron(self):
|
44
|
+
with bst.environ.context(dt=0.1 * u.ms):
|
45
|
+
neuron = IF(self.in_size)
|
46
|
+
inputs = self.generate_input()
|
47
|
+
|
48
|
+
# Test initialization
|
49
|
+
self.assertEqual(neuron.in_size, (self.in_size,))
|
50
|
+
self.assertEqual(neuron.out_size, (self.in_size,))
|
51
|
+
|
52
|
+
# Test forward pass
|
53
|
+
state = neuron.init_state(self.batch_size)
|
54
|
+
|
55
|
+
for t in range(self.time_steps):
|
56
|
+
out = neuron(inputs[t])
|
57
|
+
self.assertEqual(out.shape, (self.batch_size, self.in_size))
|
58
|
+
|
59
|
+
# Test spike generation
|
60
|
+
v = jnp.linspace(-1, 1, 100) * u.mV
|
61
|
+
spikes = neuron.get_spike(v)
|
62
|
+
self.assertTrue(jnp.all((spikes >= 0) & (spikes <= 1)))
|
63
|
+
|
64
|
+
def test_lif_neuron(self):
|
65
|
+
with bst.environ.context(dt=0.1 * u.ms):
|
66
|
+
tau = 20.0 * u.ms
|
67
|
+
neuron = LIF(self.in_size, tau=tau)
|
68
|
+
inputs = self.generate_input()
|
69
|
+
|
70
|
+
# Test initialization
|
71
|
+
self.assertEqual(neuron.in_size, (self.in_size,))
|
72
|
+
self.assertEqual(neuron.out_size, (self.in_size,))
|
73
|
+
self.assertEqual(neuron.tau, tau)
|
74
|
+
|
75
|
+
# Test forward pass
|
76
|
+
state = neuron.init_state(self.batch_size)
|
77
|
+
call = bst.compile.jit(neuron)
|
78
|
+
|
79
|
+
for t in range(self.time_steps):
|
80
|
+
out = call(inputs[t])
|
81
|
+
self.assertEqual(out.shape, (self.batch_size, self.in_size))
|
82
|
+
|
83
|
+
def test_alif_neuron(self):
|
84
|
+
tau = 20.0 * u.ms
|
85
|
+
tau_ada = 100.0 * u.ms
|
86
|
+
neuron = ALIF(self.in_size, tau=tau, tau_a=tau_ada)
|
87
|
+
inputs = self.generate_input()
|
88
|
+
|
89
|
+
# Test initialization
|
90
|
+
self.assertEqual(neuron.in_size, (self.in_size,))
|
91
|
+
self.assertEqual(neuron.out_size, (self.in_size,))
|
92
|
+
self.assertEqual(neuron.tau, tau)
|
93
|
+
self.assertEqual(neuron.tau_a, tau_ada)
|
94
|
+
|
95
|
+
# Test forward pass
|
96
|
+
neuron.init_state(self.batch_size)
|
97
|
+
call = bst.compile.jit(neuron)
|
98
|
+
with bst.environ.context(dt=0.1 * u.ms):
|
99
|
+
for t in range(self.time_steps):
|
100
|
+
out = call(inputs[t])
|
101
|
+
self.assertEqual(out.shape, (self.batch_size, self.in_size))
|
102
|
+
|
103
|
+
def test_spike_function(self):
|
104
|
+
for NeuronClass in [IF, LIF, ALIF]:
|
105
|
+
neuron = NeuronClass(self.in_size)
|
106
|
+
neuron.init_state()
|
107
|
+
v = jnp.linspace(-1, 1, self.in_size) * u.mV
|
108
|
+
spikes = neuron.get_spike(v)
|
109
|
+
self.assertTrue(jnp.all((spikes >= 0) & (spikes <= 1)))
|
110
|
+
|
111
|
+
def test_soft_reset(self):
|
112
|
+
for NeuronClass in [IF, LIF, ALIF]:
|
113
|
+
neuron = NeuronClass(self.in_size, spk_reset='soft')
|
114
|
+
inputs = self.generate_input()
|
115
|
+
state = neuron.init_state(self.batch_size)
|
116
|
+
call = bst.compile.jit(neuron)
|
117
|
+
with bst.environ.context(dt=0.1 * u.ms):
|
118
|
+
for t in range(self.time_steps):
|
119
|
+
out = call(inputs[t])
|
120
|
+
self.assertTrue(jnp.all(neuron.V.value <= neuron.V_th))
|
121
|
+
|
122
|
+
def test_hard_reset(self):
|
123
|
+
for NeuronClass in [IF, LIF, ALIF]:
|
124
|
+
neuron = NeuronClass(self.in_size, spk_reset='hard')
|
125
|
+
inputs = self.generate_input()
|
126
|
+
state = neuron.init_state(self.batch_size)
|
127
|
+
call = bst.compile.jit(neuron)
|
128
|
+
with bst.environ.context(dt=0.1 * u.ms):
|
129
|
+
for t in range(self.time_steps):
|
130
|
+
out = call(inputs[t])
|
131
|
+
self.assertTrue(jnp.all((neuron.V.value < neuron.V_th) | (neuron.V.value == 0. * u.mV)))
|
132
|
+
|
133
|
+
def test_detach_spike(self):
|
134
|
+
for NeuronClass in [IF, LIF, ALIF]:
|
135
|
+
neuron = NeuronClass(self.in_size)
|
136
|
+
inputs = self.generate_input()
|
137
|
+
state = neuron.init_state(self.batch_size)
|
138
|
+
call = bst.compile.jit(neuron)
|
139
|
+
with bst.environ.context(dt=0.1 * u.ms):
|
140
|
+
for t in range(self.time_steps):
|
141
|
+
out = call(inputs[t])
|
142
|
+
self.assertFalse(jax.tree_util.tree_leaves(out)[0].aval.weak_type)
|
143
|
+
|
144
|
+
def test_keep_size(self):
|
145
|
+
in_size = (2, 3)
|
146
|
+
for NeuronClass in [IF, LIF, ALIF]:
|
147
|
+
neuron = NeuronClass(in_size)
|
148
|
+
self.assertEqual(neuron.in_size, in_size)
|
149
|
+
self.assertEqual(neuron.out_size, in_size)
|
150
|
+
|
151
|
+
inputs = bst.random.randn(self.time_steps, self.batch_size, *in_size) * u.mA
|
152
|
+
state = neuron.init_state(self.batch_size)
|
153
|
+
call = bst.compile.jit(neuron)
|
154
|
+
with bst.environ.context(dt=0.1 * u.ms):
|
155
|
+
for t in range(self.time_steps):
|
156
|
+
out = call(inputs[t])
|
157
|
+
self.assertEqual(out.shape, (self.batch_size, *in_size))
|
158
|
+
|
159
|
+
|
160
|
+
if __name__ == '__main__':
|
161
|
+
with bst.environ.context(dt=0.1):
|
162
|
+
unittest.main()
|