MultiOptPy 1.20.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- multioptpy/Calculator/__init__.py +0 -0
- multioptpy/Calculator/ase_calculation_tools.py +424 -0
- multioptpy/Calculator/ase_tools/__init__.py +0 -0
- multioptpy/Calculator/ase_tools/fairchem.py +28 -0
- multioptpy/Calculator/ase_tools/gamess.py +19 -0
- multioptpy/Calculator/ase_tools/gaussian.py +165 -0
- multioptpy/Calculator/ase_tools/mace.py +28 -0
- multioptpy/Calculator/ase_tools/mopac.py +19 -0
- multioptpy/Calculator/ase_tools/nwchem.py +31 -0
- multioptpy/Calculator/ase_tools/orca.py +22 -0
- multioptpy/Calculator/ase_tools/pygfn0.py +37 -0
- multioptpy/Calculator/dxtb_calculation_tools.py +344 -0
- multioptpy/Calculator/emt_calculation_tools.py +458 -0
- multioptpy/Calculator/gpaw_calculation_tools.py +183 -0
- multioptpy/Calculator/lj_calculation_tools.py +314 -0
- multioptpy/Calculator/psi4_calculation_tools.py +334 -0
- multioptpy/Calculator/pwscf_calculation_tools.py +189 -0
- multioptpy/Calculator/pyscf_calculation_tools.py +327 -0
- multioptpy/Calculator/sqm1_calculation_tools.py +611 -0
- multioptpy/Calculator/sqm2_calculation_tools.py +376 -0
- multioptpy/Calculator/tblite_calculation_tools.py +352 -0
- multioptpy/Calculator/tersoff_calculation_tools.py +818 -0
- multioptpy/Constraint/__init__.py +0 -0
- multioptpy/Constraint/constraint_condition.py +834 -0
- multioptpy/Coordinate/__init__.py +0 -0
- multioptpy/Coordinate/polar_coordinate.py +199 -0
- multioptpy/Coordinate/redundant_coordinate.py +638 -0
- multioptpy/IRC/__init__.py +0 -0
- multioptpy/IRC/converge_criteria.py +28 -0
- multioptpy/IRC/dvv.py +544 -0
- multioptpy/IRC/euler.py +439 -0
- multioptpy/IRC/hpc.py +564 -0
- multioptpy/IRC/lqa.py +540 -0
- multioptpy/IRC/modekill.py +662 -0
- multioptpy/IRC/rk4.py +579 -0
- multioptpy/Interpolation/__init__.py +0 -0
- multioptpy/Interpolation/adaptive_interpolation.py +283 -0
- multioptpy/Interpolation/binomial_interpolation.py +179 -0
- multioptpy/Interpolation/geodesic_interpolation.py +785 -0
- multioptpy/Interpolation/interpolation.py +156 -0
- multioptpy/Interpolation/linear_interpolation.py +473 -0
- multioptpy/Interpolation/savitzky_golay_interpolation.py +252 -0
- multioptpy/Interpolation/spline_interpolation.py +353 -0
- multioptpy/MD/__init__.py +0 -0
- multioptpy/MD/thermostat.py +185 -0
- multioptpy/MEP/__init__.py +0 -0
- multioptpy/MEP/pathopt_bneb_force.py +443 -0
- multioptpy/MEP/pathopt_dmf_force.py +448 -0
- multioptpy/MEP/pathopt_dneb_force.py +130 -0
- multioptpy/MEP/pathopt_ewbneb_force.py +207 -0
- multioptpy/MEP/pathopt_gpneb_force.py +512 -0
- multioptpy/MEP/pathopt_lup_force.py +113 -0
- multioptpy/MEP/pathopt_neb_force.py +225 -0
- multioptpy/MEP/pathopt_nesb_force.py +205 -0
- multioptpy/MEP/pathopt_om_force.py +153 -0
- multioptpy/MEP/pathopt_qsm_force.py +174 -0
- multioptpy/MEP/pathopt_qsmv2_force.py +304 -0
- multioptpy/ModelFunction/__init__.py +7 -0
- multioptpy/ModelFunction/avoiding_model_function.py +29 -0
- multioptpy/ModelFunction/binary_image_ts_search_model_function.py +47 -0
- multioptpy/ModelFunction/conical_model_function.py +26 -0
- multioptpy/ModelFunction/opt_meci.py +50 -0
- multioptpy/ModelFunction/opt_mesx.py +47 -0
- multioptpy/ModelFunction/opt_mesx_2.py +49 -0
- multioptpy/ModelFunction/seam_model_function.py +27 -0
- multioptpy/ModelHessian/__init__.py +0 -0
- multioptpy/ModelHessian/approx_hessian.py +147 -0
- multioptpy/ModelHessian/calc_params.py +227 -0
- multioptpy/ModelHessian/fischer.py +236 -0
- multioptpy/ModelHessian/fischerd3.py +360 -0
- multioptpy/ModelHessian/fischerd4.py +398 -0
- multioptpy/ModelHessian/gfn0xtb.py +633 -0
- multioptpy/ModelHessian/gfnff.py +709 -0
- multioptpy/ModelHessian/lindh.py +165 -0
- multioptpy/ModelHessian/lindh2007d2.py +707 -0
- multioptpy/ModelHessian/lindh2007d3.py +822 -0
- multioptpy/ModelHessian/lindh2007d4.py +1030 -0
- multioptpy/ModelHessian/morse.py +106 -0
- multioptpy/ModelHessian/schlegel.py +144 -0
- multioptpy/ModelHessian/schlegeld3.py +322 -0
- multioptpy/ModelHessian/schlegeld4.py +559 -0
- multioptpy/ModelHessian/shortrange.py +346 -0
- multioptpy/ModelHessian/swartd2.py +496 -0
- multioptpy/ModelHessian/swartd3.py +706 -0
- multioptpy/ModelHessian/swartd4.py +918 -0
- multioptpy/ModelHessian/tshess.py +40 -0
- multioptpy/Optimizer/QHAdam.py +61 -0
- multioptpy/Optimizer/__init__.py +0 -0
- multioptpy/Optimizer/abc_fire.py +83 -0
- multioptpy/Optimizer/adabelief.py +58 -0
- multioptpy/Optimizer/adabound.py +68 -0
- multioptpy/Optimizer/adadelta.py +65 -0
- multioptpy/Optimizer/adaderivative.py +56 -0
- multioptpy/Optimizer/adadiff.py +68 -0
- multioptpy/Optimizer/adafactor.py +70 -0
- multioptpy/Optimizer/adam.py +65 -0
- multioptpy/Optimizer/adamax.py +62 -0
- multioptpy/Optimizer/adamod.py +83 -0
- multioptpy/Optimizer/adamw.py +65 -0
- multioptpy/Optimizer/adiis.py +523 -0
- multioptpy/Optimizer/afire_neb.py +282 -0
- multioptpy/Optimizer/block_hessian_update.py +709 -0
- multioptpy/Optimizer/c2diis.py +491 -0
- multioptpy/Optimizer/component_wise_scaling.py +405 -0
- multioptpy/Optimizer/conjugate_gradient.py +82 -0
- multioptpy/Optimizer/conjugate_gradient_neb.py +345 -0
- multioptpy/Optimizer/coordinate_locking.py +405 -0
- multioptpy/Optimizer/dic_rsirfo.py +1015 -0
- multioptpy/Optimizer/ediis.py +417 -0
- multioptpy/Optimizer/eve.py +76 -0
- multioptpy/Optimizer/fastadabelief.py +61 -0
- multioptpy/Optimizer/fire.py +77 -0
- multioptpy/Optimizer/fire2.py +249 -0
- multioptpy/Optimizer/fire_neb.py +92 -0
- multioptpy/Optimizer/gan_step.py +486 -0
- multioptpy/Optimizer/gdiis.py +609 -0
- multioptpy/Optimizer/gediis.py +203 -0
- multioptpy/Optimizer/geodesic_step.py +433 -0
- multioptpy/Optimizer/gpmin.py +633 -0
- multioptpy/Optimizer/gpr_step.py +364 -0
- multioptpy/Optimizer/gradientdescent.py +78 -0
- multioptpy/Optimizer/gradientdescent_neb.py +52 -0
- multioptpy/Optimizer/hessian_update.py +433 -0
- multioptpy/Optimizer/hybrid_rfo.py +998 -0
- multioptpy/Optimizer/kdiis.py +625 -0
- multioptpy/Optimizer/lars.py +21 -0
- multioptpy/Optimizer/lbfgs.py +253 -0
- multioptpy/Optimizer/lbfgs_neb.py +355 -0
- multioptpy/Optimizer/linesearch.py +236 -0
- multioptpy/Optimizer/lookahead.py +40 -0
- multioptpy/Optimizer/nadam.py +64 -0
- multioptpy/Optimizer/newton.py +200 -0
- multioptpy/Optimizer/prodigy.py +70 -0
- multioptpy/Optimizer/purtubation.py +16 -0
- multioptpy/Optimizer/quickmin_neb.py +245 -0
- multioptpy/Optimizer/radam.py +75 -0
- multioptpy/Optimizer/rfo_neb.py +302 -0
- multioptpy/Optimizer/ric_rfo.py +842 -0
- multioptpy/Optimizer/rl_step.py +627 -0
- multioptpy/Optimizer/rmspropgrave.py +65 -0
- multioptpy/Optimizer/rsirfo.py +1647 -0
- multioptpy/Optimizer/rsprfo.py +1056 -0
- multioptpy/Optimizer/sadam.py +60 -0
- multioptpy/Optimizer/samsgrad.py +63 -0
- multioptpy/Optimizer/tr_lbfgs.py +678 -0
- multioptpy/Optimizer/trim.py +273 -0
- multioptpy/Optimizer/trust_radius.py +207 -0
- multioptpy/Optimizer/trust_radius_neb.py +121 -0
- multioptpy/Optimizer/yogi.py +60 -0
- multioptpy/OtherMethod/__init__.py +0 -0
- multioptpy/OtherMethod/addf.py +1150 -0
- multioptpy/OtherMethod/dimer.py +895 -0
- multioptpy/OtherMethod/elastic_image_pair.py +629 -0
- multioptpy/OtherMethod/modelfunction.py +456 -0
- multioptpy/OtherMethod/newton_traj.py +454 -0
- multioptpy/OtherMethod/twopshs.py +1095 -0
- multioptpy/PESAnalyzer/__init__.py +0 -0
- multioptpy/PESAnalyzer/calc_irc_curvature.py +125 -0
- multioptpy/PESAnalyzer/cmds_analysis.py +152 -0
- multioptpy/PESAnalyzer/koopman_analysis.py +268 -0
- multioptpy/PESAnalyzer/pca_analysis.py +314 -0
- multioptpy/Parameters/__init__.py +0 -0
- multioptpy/Parameters/atomic_mass.py +20 -0
- multioptpy/Parameters/atomic_number.py +22 -0
- multioptpy/Parameters/covalent_radii.py +44 -0
- multioptpy/Parameters/d2.py +61 -0
- multioptpy/Parameters/d3.py +63 -0
- multioptpy/Parameters/d4.py +103 -0
- multioptpy/Parameters/dreiding.py +34 -0
- multioptpy/Parameters/gfn0xtb_param.py +137 -0
- multioptpy/Parameters/gfnff_param.py +315 -0
- multioptpy/Parameters/gnb.py +104 -0
- multioptpy/Parameters/parameter.py +22 -0
- multioptpy/Parameters/uff.py +72 -0
- multioptpy/Parameters/unit_values.py +20 -0
- multioptpy/Potential/AFIR_potential.py +55 -0
- multioptpy/Potential/LJ_repulsive_potential.py +345 -0
- multioptpy/Potential/__init__.py +0 -0
- multioptpy/Potential/anharmonic_keep_potential.py +28 -0
- multioptpy/Potential/asym_elllipsoidal_potential.py +718 -0
- multioptpy/Potential/electrostatic_potential.py +69 -0
- multioptpy/Potential/flux_potential.py +30 -0
- multioptpy/Potential/gaussian_potential.py +101 -0
- multioptpy/Potential/idpp.py +516 -0
- multioptpy/Potential/keep_angle_potential.py +146 -0
- multioptpy/Potential/keep_dihedral_angle_potential.py +105 -0
- multioptpy/Potential/keep_outofplain_angle_potential.py +70 -0
- multioptpy/Potential/keep_potential.py +99 -0
- multioptpy/Potential/mechano_force_potential.py +74 -0
- multioptpy/Potential/nanoreactor_potential.py +52 -0
- multioptpy/Potential/potential.py +896 -0
- multioptpy/Potential/spacer_model_potential.py +221 -0
- multioptpy/Potential/switching_potential.py +258 -0
- multioptpy/Potential/universal_potential.py +34 -0
- multioptpy/Potential/value_range_potential.py +36 -0
- multioptpy/Potential/void_point_potential.py +25 -0
- multioptpy/SQM/__init__.py +0 -0
- multioptpy/SQM/sqm1/__init__.py +0 -0
- multioptpy/SQM/sqm1/sqm1_core.py +1792 -0
- multioptpy/SQM/sqm2/__init__.py +0 -0
- multioptpy/SQM/sqm2/calc_tools.py +95 -0
- multioptpy/SQM/sqm2/sqm2_basis.py +850 -0
- multioptpy/SQM/sqm2/sqm2_bond.py +119 -0
- multioptpy/SQM/sqm2/sqm2_core.py +303 -0
- multioptpy/SQM/sqm2/sqm2_data.py +1229 -0
- multioptpy/SQM/sqm2/sqm2_disp.py +65 -0
- multioptpy/SQM/sqm2/sqm2_eeq.py +243 -0
- multioptpy/SQM/sqm2/sqm2_overlapint.py +704 -0
- multioptpy/SQM/sqm2/sqm2_qm.py +578 -0
- multioptpy/SQM/sqm2/sqm2_rep.py +66 -0
- multioptpy/SQM/sqm2/sqm2_srb.py +70 -0
- multioptpy/Thermo/__init__.py +0 -0
- multioptpy/Thermo/normal_mode_analyzer.py +865 -0
- multioptpy/Utils/__init__.py +0 -0
- multioptpy/Utils/bond_connectivity.py +264 -0
- multioptpy/Utils/calc_tools.py +884 -0
- multioptpy/Utils/oniom.py +96 -0
- multioptpy/Utils/pbc.py +48 -0
- multioptpy/Utils/riemann_curvature.py +208 -0
- multioptpy/Utils/symmetry_analyzer.py +482 -0
- multioptpy/Visualization/__init__.py +0 -0
- multioptpy/Visualization/visualization.py +156 -0
- multioptpy/WFAnalyzer/MO_analysis.py +104 -0
- multioptpy/WFAnalyzer/__init__.py +0 -0
- multioptpy/Wrapper/__init__.py +0 -0
- multioptpy/Wrapper/autots.py +1239 -0
- multioptpy/Wrapper/ieip_wrapper.py +93 -0
- multioptpy/Wrapper/md_wrapper.py +92 -0
- multioptpy/Wrapper/neb_wrapper.py +94 -0
- multioptpy/Wrapper/optimize_wrapper.py +76 -0
- multioptpy/__init__.py +5 -0
- multioptpy/entrypoints.py +916 -0
- multioptpy/fileio.py +660 -0
- multioptpy/ieip.py +340 -0
- multioptpy/interface.py +1086 -0
- multioptpy/irc.py +529 -0
- multioptpy/moleculardynamics.py +432 -0
- multioptpy/neb.py +1267 -0
- multioptpy/optimization.py +1553 -0
- multioptpy/optimizer.py +709 -0
- multioptpy-1.20.2.dist-info/METADATA +438 -0
- multioptpy-1.20.2.dist-info/RECORD +246 -0
- multioptpy-1.20.2.dist-info/WHEEL +5 -0
- multioptpy-1.20.2.dist-info/entry_points.txt +9 -0
- multioptpy-1.20.2.dist-info/licenses/LICENSE +674 -0
- multioptpy-1.20.2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,578 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import torch
|
|
3
|
+
import math
|
|
4
|
+
|
|
5
|
+
from multioptpy.SQM.sqm2.sqm2_overlapint import OverlapCalculator
|
|
6
|
+
from multioptpy.SQM.sqm2.sqm2_basis import BasisSet
|
|
7
|
+
from multioptpy.SQM.sqm2.calc_tools import factorial2, dfactorial
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class EHTCalculator:
|
|
11
|
+
def __init__(self, element_list, charge, spin, param, wf_instance):
|
|
12
|
+
# element_list: list[int]
|
|
13
|
+
# param: SQM2Parameters object containing EHT parameters
|
|
14
|
+
# wf_instance: BasisSet object (or similar containing 'basis' dict and atom type info)
|
|
15
|
+
|
|
16
|
+
# --- Device and Type ---
|
|
17
|
+
self.device = "cpu" # Or get from wf_instance/param if available
|
|
18
|
+
self.dtype = torch.float64
|
|
19
|
+
|
|
20
|
+
# --- Core Properties ---
|
|
21
|
+
self.element_list = element_list
|
|
22
|
+
self.params = param
|
|
23
|
+
self.wf = wf_instance
|
|
24
|
+
self.basis = wf_instance.basis # Basis dictionary
|
|
25
|
+
self.charge = charge
|
|
26
|
+
self.charge_t = torch.tensor(self.charge, dtype=self.dtype, device=self.device) # Pre-tensorize
|
|
27
|
+
self.spin = spin
|
|
28
|
+
self.n_atoms = len(self.element_list)
|
|
29
|
+
self.n_ao = self.basis["number_of_ao"]
|
|
30
|
+
|
|
31
|
+
# --- Constants (non-tensor) ---
|
|
32
|
+
self.PI = math.pi
|
|
33
|
+
self.SQRTPI = math.sqrt(self.PI)
|
|
34
|
+
self.LMAX_INTEGRAL = 8 # Max L for 1D integrals (l+l'+2)
|
|
35
|
+
|
|
36
|
+
# --- Initialize Overlap Calculator ---
|
|
37
|
+
self.overlap_calc = OverlapCalculator(self.element_list, self.params, self.wf)
|
|
38
|
+
|
|
39
|
+
# --- Pre-load Basis Info as Tensors ---
|
|
40
|
+
self.amqn_list = torch.tensor(self.basis["shell_amqn_list"], dtype=torch.int64, device=self.device)
|
|
41
|
+
self.atom_shells_map = torch.tensor(self.basis["atom_shells_map"], dtype=torch.int64, device=self.device)
|
|
42
|
+
self.shell_ao_map = torch.tensor(self.basis["shell_ao_map"], dtype=torch.int64, device=self.device)
|
|
43
|
+
self.ang_shells_list = self.wf.ang_shells_list # Keep as list of lists for flattening
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
# Build python lists first
|
|
47
|
+
paulingEN_list = []
|
|
48
|
+
kQatom_list = []
|
|
49
|
+
kQShell_list = []
|
|
50
|
+
shellpoly_list = []
|
|
51
|
+
atomicRad_list = []
|
|
52
|
+
nshells_list = []
|
|
53
|
+
self_energy_list = []
|
|
54
|
+
kCN_list = []
|
|
55
|
+
slaterexponent_list = []
|
|
56
|
+
referenceOcc = []
|
|
57
|
+
|
|
58
|
+
for i in range(len(self.element_list)):
|
|
59
|
+
atn = self.element_list[i]
|
|
60
|
+
paulingEN_list.append(param.paulingEN[atn])
|
|
61
|
+
kQatom_list.append(param.kQAtom[atn])
|
|
62
|
+
kQShell_list.append(param.kQShell[atn])
|
|
63
|
+
shellpoly_list.append(param.shellPoly[atn])
|
|
64
|
+
atomicRad_list.append(param.atomicRad[atn])
|
|
65
|
+
nshells_list.append(param.nShell[atn])
|
|
66
|
+
self_energy_list.append(param.selfEnergy[atn])
|
|
67
|
+
kCN_list.append(param.kCN[atn])
|
|
68
|
+
slaterexponent_list.append(param.slaterExponent[atn])
|
|
69
|
+
referenceOcc.append(param.referenceOcc[atn])
|
|
70
|
+
|
|
71
|
+
# --- Pre-compute total valence electrons ---
|
|
72
|
+
self.total_valence_e = sum(sum(occ) for occ in referenceOcc)
|
|
73
|
+
self.total_valence_e = torch.tensor(self.total_valence_e, dtype=self.dtype, device=self.device)
|
|
74
|
+
|
|
75
|
+
# --- Pad per-atom lists to (n_atoms, max_nshell) arrays ---
|
|
76
|
+
max_nshell = max(ns for ns in nshells_list)
|
|
77
|
+
|
|
78
|
+
def pad_list_of_lists(lst, max_len, fill=0.0):
|
|
79
|
+
# Helper to pad lists of lists/arrays to a uniform 2D NumPy array
|
|
80
|
+
padded = np.full((self.n_atoms, max_len), fill, dtype=np.float64)
|
|
81
|
+
for i, sublst in enumerate(lst):
|
|
82
|
+
n_to_copy = min(len(sublst), max_len)
|
|
83
|
+
padded[i, :n_to_copy] = sublst[:n_to_copy]
|
|
84
|
+
|
|
85
|
+
return padded
|
|
86
|
+
|
|
87
|
+
kQShell_padded = pad_list_of_lists(kQShell_list, max_nshell)
|
|
88
|
+
shellpoly_padded = pad_list_of_lists(shellpoly_list, max_nshell)
|
|
89
|
+
self_energy_padded = pad_list_of_lists(self_energy_list, max_nshell)
|
|
90
|
+
kCN_padded = pad_list_of_lists(kCN_list, max_nshell)
|
|
91
|
+
slaterexponent_padded = pad_list_of_lists(slaterexponent_list, max_nshell)
|
|
92
|
+
|
|
93
|
+
# --- Convert all to tensors ---
|
|
94
|
+
# 1D tensors (per-atom)
|
|
95
|
+
self.paulingEN_list = torch.tensor(paulingEN_list, dtype=self.dtype, device=self.device)
|
|
96
|
+
self.kQatom_list = torch.tensor(kQatom_list, dtype=self.dtype, device=self.device)
|
|
97
|
+
self.atomicRad_list = torch.tensor(atomicRad_list, dtype=self.dtype, device=self.device)
|
|
98
|
+
self.nshells_list = torch.tensor(nshells_list, dtype=torch.int64, device=self.device)
|
|
99
|
+
|
|
100
|
+
# 2D tensors (per-atom, per-shell)
|
|
101
|
+
self.kQShell_tensor = torch.tensor(kQShell_padded, dtype=self.dtype, device=self.device)
|
|
102
|
+
self.shellpoly_tensor = torch.tensor(shellpoly_padded, dtype=self.dtype, device=self.device)
|
|
103
|
+
self.self_energy_tensor = torch.tensor(self_energy_padded, dtype=self.dtype, device=self.device)
|
|
104
|
+
self.kCN_tensor = torch.tensor(kCN_padded, dtype=self.dtype, device=self.device)
|
|
105
|
+
self.slaterexponent_tensor = torch.tensor(slaterexponent_padded, dtype=self.dtype, device=self.device)
|
|
106
|
+
|
|
107
|
+
# --- EHT K-Factors (scalar) ---
|
|
108
|
+
self.k_ss_eht = param.k_ss_eht
|
|
109
|
+
self.k_pp_eht = param.k_pp_eht
|
|
110
|
+
self.k_dd_eht = param.k_dd_eht
|
|
111
|
+
self.k_sp_eht = param.k_sp_eht
|
|
112
|
+
self.k_sd_eht = param.k_sd_eht
|
|
113
|
+
self.k_pd_eht = param.k_pd_eht
|
|
114
|
+
self.k_hh_2s22 = param.k_hh_2s2s
|
|
115
|
+
self.k_ss_en_eht = param.k_ss_en_eht
|
|
116
|
+
self.k_pp_en_eht = param.k_pp_en_eht
|
|
117
|
+
self.k_dd_en_eht = param.k_dd_en_eht
|
|
118
|
+
self.k_sp_en_eht = param.k_sp_en_eht
|
|
119
|
+
self.k_sd_en_eht = param.k_sd_en_eht
|
|
120
|
+
self.k_pd_en_eht = param.k_pd_en_eht # <-- Fixed typo
|
|
121
|
+
self.b_en_eht = param.b_en_eht
|
|
122
|
+
self.k_MM_pair = param.k_MM_pair
|
|
123
|
+
self.k_g11_pair = param.k_g11_pair
|
|
124
|
+
|
|
125
|
+
# Convert bool lists to tensors
|
|
126
|
+
self.is_tm_tensor = torch.tensor(wf_instance.is_tm_list, dtype=torch.bool, device=self.device)
|
|
127
|
+
self.is_g11_tensor = torch.tensor(wf_instance.is_g11_element_list, dtype=torch.bool, device=self.device)
|
|
128
|
+
|
|
129
|
+
# --- Pre-compute static shell properties (Vectorized) ---
|
|
130
|
+
self.n_shell = self.shell_ao_map.shape[0]
|
|
131
|
+
|
|
132
|
+
# Map: shell_index -> atom_index
|
|
133
|
+
# e.g., [0, 0, 0, 1, 1, 2, 2, 2, 2, ...]
|
|
134
|
+
self.shell_atom_map = torch.repeat_interleave(
|
|
135
|
+
torch.arange(self.n_atoms, device=self.device),
|
|
136
|
+
self.nshells_list
|
|
137
|
+
)
|
|
138
|
+
|
|
139
|
+
# Map: shell_index -> local_shell_index (within its atom)
|
|
140
|
+
# e.g., [0, 1, 2, 0, 1, 0, 1, 2, 3, ...]
|
|
141
|
+
self.shell_local_idx_map = torch.cat(
|
|
142
|
+
[torch.arange(n.item(), dtype=torch.int64, device=self.device) for n in self.nshells_list]
|
|
143
|
+
)
|
|
144
|
+
|
|
145
|
+
# Map: shell_index -> shell_type (0=s, 1=p, 2=d)
|
|
146
|
+
# e.g., [0, 1, 0, 1, 2, 0, 1, 2, 3, ...]
|
|
147
|
+
ang_flat = [item for sublist in self.ang_shells_list for item in sublist]
|
|
148
|
+
self.shell_type_map = torch.tensor(ang_flat, dtype=torch.int64, device=self.device)
|
|
149
|
+
|
|
150
|
+
# --- Gather shell properties using maps (NO LOOPS) ---
|
|
151
|
+
|
|
152
|
+
# (n_shell,) tensors gathered from (n_atoms, max_nshell) tensors
|
|
153
|
+
self.shell_poly_const_map = self.shellpoly_tensor[self.shell_atom_map, self.shell_local_idx_map]
|
|
154
|
+
self.shell_slater_exp_map = self.slaterexponent_tensor[self.shell_atom_map, self.shell_local_idx_map]
|
|
155
|
+
|
|
156
|
+
# (n_shell,) tensors gathered from (n_atoms,) tensors
|
|
157
|
+
self.shell_rad_map = self.atomicRad_list[self.shell_atom_map]
|
|
158
|
+
self.shell_en_map = self.paulingEN_list[self.shell_atom_map]
|
|
159
|
+
self.shell_is_tm_map = self.is_tm_tensor[self.shell_atom_map]
|
|
160
|
+
self.shell_is_g11_map = self.is_g11_tensor[self.shell_atom_map]
|
|
161
|
+
|
|
162
|
+
# --- Pre-compute pair indices ---
|
|
163
|
+
i_indices_upper, j_indices_upper = torch.triu_indices(self.n_shell, self.n_shell, 1, device=self.device)
|
|
164
|
+
|
|
165
|
+
iat_pairs = self.shell_atom_map[i_indices_upper]
|
|
166
|
+
jat_pairs = self.shell_atom_map[j_indices_upper]
|
|
167
|
+
|
|
168
|
+
off_atom_mask = (iat_pairs != jat_pairs)
|
|
169
|
+
self.i_off_atom_pairs = i_indices_upper[off_atom_mask]
|
|
170
|
+
self.j_off_atom_pairs = j_indices_upper[off_atom_mask]
|
|
171
|
+
|
|
172
|
+
on_atom_mask = ~off_atom_mask
|
|
173
|
+
self.i_on_atom_pairs = i_indices_upper[on_atom_mask]
|
|
174
|
+
self.j_on_atom_pairs = j_indices_upper[on_atom_mask]
|
|
175
|
+
|
|
176
|
+
# --- Pre-load AO slice info ---
|
|
177
|
+
self.shell_ao_starts = self.shell_ao_map[:, 0]
|
|
178
|
+
self.shell_ao_nao = self.shell_ao_map[:, 1]
|
|
179
|
+
|
|
180
|
+
# --- Create AO -> Shell map (Vectorized) ---
|
|
181
|
+
# Map: ao_index -> shell_index
|
|
182
|
+
# e.g., [0, 0, 0, 1, 1, 1, 1, 1, 2, 2, ...]
|
|
183
|
+
self.ao_shell_map = torch.repeat_interleave(
|
|
184
|
+
torch.arange(self.n_shell, device=self.device),
|
|
185
|
+
self.shell_ao_nao
|
|
186
|
+
)
|
|
187
|
+
self.holistic_k_factor = 1.4 #1.0# # Overall scaling factor
|
|
188
|
+
return
|
|
189
|
+
|
|
190
|
+
def _get_eht_k_factor(self, ishtyp, jshtyp, iat, jat, delta_en):
|
|
191
|
+
""" Calculates the EHT K-factor based on shell and atom types. (Scalar version) """
|
|
192
|
+
|
|
193
|
+
# Determine base K based on shell types
|
|
194
|
+
if ishtyp == 0 and jshtyp == 0: # s-s
|
|
195
|
+
k_base = self.k_ss_eht
|
|
196
|
+
k_en = self.k_ss_en_eht
|
|
197
|
+
elif ishtyp == 1 and jshtyp == 1: # p-p
|
|
198
|
+
k_base = self.k_pp_eht
|
|
199
|
+
k_en = self.k_pp_en_eht
|
|
200
|
+
elif ishtyp == 2 and jshtyp == 2: # d-d
|
|
201
|
+
k_base = self.k_dd_eht
|
|
202
|
+
k_en = self.k_dd_en_eht
|
|
203
|
+
elif (ishtyp == 0 and jshtyp == 1) or (ishtyp == 1 and jshtyp == 0): # s-p
|
|
204
|
+
k_base = self.k_sp_eht
|
|
205
|
+
k_en = self.k_sp_en_eht
|
|
206
|
+
elif (ishtyp == 0 and jshtyp == 2) or (ishtyp == 2 and jshtyp == 0): # s-d
|
|
207
|
+
k_base = self.k_sd_eht
|
|
208
|
+
k_en = self.k_sd_en_eht
|
|
209
|
+
elif (ishtyp == 1 and jshtyp == 2) or (ishtyp == 2 and jshtyp == 1): # p-d
|
|
210
|
+
k_base = self.k_pd_eht
|
|
211
|
+
k_en = self.k_pd_en_eht
|
|
212
|
+
else: # f-shells or higher
|
|
213
|
+
k_base = 1.0
|
|
214
|
+
k_en = 0.0
|
|
215
|
+
|
|
216
|
+
en_factor = 1.0 + k_en * delta_en ** 2.0 + k_en * self.b_en_eht * delta_en ** 4.0
|
|
217
|
+
|
|
218
|
+
# Atom type scaling (TM/G11)
|
|
219
|
+
atom_factor = 1.0
|
|
220
|
+
# Use pre-loaded boolean tensors
|
|
221
|
+
is_tm_i = self.is_tm_tensor[iat]
|
|
222
|
+
is_tm_j = self.is_tm_tensor[jat]
|
|
223
|
+
is_g11_i = self.is_g11_tensor[iat]
|
|
224
|
+
is_g11_j = self.is_g11_tensor[jat]
|
|
225
|
+
|
|
226
|
+
if is_tm_i and is_tm_j:
|
|
227
|
+
atom_factor = self.k_MM_pair
|
|
228
|
+
elif is_g11_i and is_g11_j:
|
|
229
|
+
atom_factor = self.k_g11_pair
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
|
|
233
|
+
return k_base * en_factor * atom_factor
|
|
234
|
+
|
|
235
|
+
def _get_eht_k_factor_vec(self, ishtyp, jshtyp, is_tm_i, is_tm_j, is_g11_i, is_g11_j, delta_en):
|
|
236
|
+
""" (Vectorized) Calculates EHT K-factors for pairs. """
|
|
237
|
+
# ishtyp, jshtyp, ... are all 1D tensors of shape (n_pairs,)
|
|
238
|
+
|
|
239
|
+
k_base = torch.full_like(delta_en, 1.0)
|
|
240
|
+
k_en = torch.zeros_like(delta_en)
|
|
241
|
+
|
|
242
|
+
# s-s
|
|
243
|
+
mask = (ishtyp == 0) & (jshtyp == 0)
|
|
244
|
+
k_base[mask] = self.k_ss_eht
|
|
245
|
+
k_en[mask] = self.k_ss_en_eht
|
|
246
|
+
# p-p
|
|
247
|
+
mask = (ishtyp == 1) & (jshtyp == 1)
|
|
248
|
+
k_base[mask] = self.k_pp_eht
|
|
249
|
+
k_en[mask] = self.k_pp_en_eht
|
|
250
|
+
# d-d
|
|
251
|
+
mask = (ishtyp == 2) & (jshtyp == 2)
|
|
252
|
+
k_base[mask] = self.k_dd_eht
|
|
253
|
+
k_en[mask] = self.k_dd_en_eht
|
|
254
|
+
# s-p
|
|
255
|
+
mask = ((ishtyp == 0) & (jshtyp == 1)) | ((ishtyp == 1) & (jshtyp == 0))
|
|
256
|
+
k_base[mask] = self.k_sp_eht
|
|
257
|
+
k_en[mask] = self.k_sp_en_eht
|
|
258
|
+
# s-d
|
|
259
|
+
mask = ((ishtyp == 0) & (jshtyp == 2)) | ((ishtyp == 2) & (jshtyp == 0))
|
|
260
|
+
k_base[mask] = self.k_sd_eht
|
|
261
|
+
k_en[mask] = self.k_sd_en_eht
|
|
262
|
+
# p-d
|
|
263
|
+
mask = ((ishtyp == 1) & (jshtyp == 2)) | ((ishtyp == 2) & (jshtyp == 1))
|
|
264
|
+
k_base[mask] = self.k_pd_eht
|
|
265
|
+
k_en[mask] = self.k_pd_en_eht
|
|
266
|
+
|
|
267
|
+
en_factor = 1.0 + k_en * delta_en ** 2.0 + k_en * self.b_en_eht * delta_en ** 4.0
|
|
268
|
+
|
|
269
|
+
atom_factor = torch.ones_like(delta_en)
|
|
270
|
+
atom_factor[is_tm_i & is_tm_j] = self.k_MM_pair
|
|
271
|
+
atom_factor[is_g11_i & is_g11_j] = self.k_g11_pair
|
|
272
|
+
|
|
273
|
+
return k_base * en_factor * atom_factor * self.holistic_k_factor
|
|
274
|
+
|
|
275
|
+
def _get_self_energy(self, q, cn):
|
|
276
|
+
# q: torch.Tensor (N_atoms,)
|
|
277
|
+
# cn: torch.Tensor (N_atoms,)
|
|
278
|
+
"""
|
|
279
|
+
Calculates the self-energy matrix (N_atoms, max_n_shell).
|
|
280
|
+
(Vectorized implementation using padded tensors)
|
|
281
|
+
"""
|
|
282
|
+
# Reshape (N_atoms,) to (N_atoms, 1) for broadcasting
|
|
283
|
+
q_col = q.unsqueeze(-1)
|
|
284
|
+
cn_col = cn.unsqueeze(-1)
|
|
285
|
+
kqatom_col = self.kQatom_list.unsqueeze(-1)
|
|
286
|
+
|
|
287
|
+
# All tensors are (N_atoms, max_nshell) or broadcast to it
|
|
288
|
+
cn_corr = -self.kCN_tensor * cn_col
|
|
289
|
+
q_corr = -self.kQShell_tensor * q_col
|
|
290
|
+
q_corr_2 = -kqatom_col * (q_col ** 2)
|
|
291
|
+
|
|
292
|
+
# (N_atoms, max_nshell) + (N_atoms, max_nshell) + ...
|
|
293
|
+
self_energy_matrix = self.self_energy_tensor + cn_corr + q_corr + q_corr_2
|
|
294
|
+
|
|
295
|
+
return self_energy_matrix
|
|
296
|
+
|
|
297
|
+
def _get_shellpoly_corr(self, iat, jat, ish_local, jsh_local, vec_i, vec_j, rad_ij):
|
|
298
|
+
""" (Original scalar function, kept for reference/debugging if needed) """
|
|
299
|
+
a = 0.5
|
|
300
|
+
r_ij_vec = vec_i - vec_j
|
|
301
|
+
# Add epsilon for numerical stability in norm
|
|
302
|
+
r_ij_norm = torch.sqrt(torch.dot(r_ij_vec, r_ij_vec) + 1e-20)
|
|
303
|
+
|
|
304
|
+
atomic_rad_ij = rad_ij
|
|
305
|
+
ratio = r_ij_norm / atomic_rad_ij
|
|
306
|
+
|
|
307
|
+
# Accessing from padded tensor requires atom and local shell index
|
|
308
|
+
shellpoly_const_i = self.shellpoly_tensor[iat, ish_local]
|
|
309
|
+
shellpoly_const_j = self.shellpoly_tensor[jat, jsh_local]
|
|
310
|
+
|
|
311
|
+
shellpoly_corr_i = 1.0 + (0.01 * shellpoly_const_i) * ratio ** a
|
|
312
|
+
shellpoly_corr_j = 1.0 + (0.01 * shellpoly_const_j) * ratio ** a
|
|
313
|
+
|
|
314
|
+
return shellpoly_corr_i * shellpoly_corr_j
|
|
315
|
+
|
|
316
|
+
def _get_shellpoly_corr_vec(self, vec_i_pairs, vec_j_pairs, rad_ij_pairs, poly_i_pairs, poly_j_pairs):
|
|
317
|
+
""" (Vectorized) Calculates shellpoly correction for pairs. """
|
|
318
|
+
# vec_i_pairs, vec_j_pairs are (n_pairs, 3)
|
|
319
|
+
# rad_ij_pairs, poly_i_pairs, poly_j_pairs are (n_pairs,)
|
|
320
|
+
a = 0.5
|
|
321
|
+
r_ij_vec = vec_i_pairs - vec_j_pairs # (n_pairs, 3)
|
|
322
|
+
# Add epsilon for numerical stability
|
|
323
|
+
r_ij_norm = torch.linalg.norm(r_ij_vec, dim=1) + 1e-20 # (n_pairs,)
|
|
324
|
+
|
|
325
|
+
ratio = r_ij_norm / rad_ij_pairs
|
|
326
|
+
|
|
327
|
+
shellpoly_corr_i = 1.0 + (0.01 * poly_i_pairs) * ratio ** a
|
|
328
|
+
shellpoly_corr_j = 1.0 + (0.01 * poly_j_pairs) * ratio ** a
|
|
329
|
+
|
|
330
|
+
return shellpoly_corr_i * shellpoly_corr_j
|
|
331
|
+
|
|
332
|
+
def get_hamiltonian(self, xyz, q, cn, sint):
|
|
333
|
+
|
|
334
|
+
# 1. Get Self Energy
|
|
335
|
+
# self_energy_matrix (N_atoms, max_n_shell)
|
|
336
|
+
self_energy_matrix = self._get_self_energy(q, cn)
|
|
337
|
+
|
|
338
|
+
# Create a flat (n_shell,) tensor of self-energies
|
|
339
|
+
# hii_all[k] = self_energy_matrix[atom_of_shell_k, local_idx_of_shell_k]
|
|
340
|
+
hii_all = self_energy_matrix[self.shell_atom_map, self.shell_local_idx_map]
|
|
341
|
+
|
|
342
|
+
# --- 2. DIAGONAL ELEMENTS (Vectorized) ---
|
|
343
|
+
# Map hii from shells (n_shell,) to aos (n_ao,)
|
|
344
|
+
hii_ao = hii_all[self.ao_shell_map] # (n_ao,)
|
|
345
|
+
# Assign to diagonal of H0
|
|
346
|
+
H0 = torch.diag_embed(hii_ao)
|
|
347
|
+
|
|
348
|
+
# --- 3. OFF-DIAGONAL BLOCKS (On-Atom and Off-Atom) ---
|
|
349
|
+
|
|
350
|
+
# Initialize (n_shell, n_shell) matrix for H_av values
|
|
351
|
+
Hav_shell = torch.zeros((self.n_shell, self.n_shell), dtype=self.dtype, device=self.device)
|
|
352
|
+
|
|
353
|
+
# --- 3a. On-Atom Pairs (Vectorized) ---
|
|
354
|
+
i_pairs_on = self.i_on_atom_pairs
|
|
355
|
+
j_pairs_on = self.j_on_atom_pairs
|
|
356
|
+
|
|
357
|
+
if i_pairs_on.numel() > 0:
|
|
358
|
+
# Gather parameters
|
|
359
|
+
hii_pairs_on = hii_all[i_pairs_on]
|
|
360
|
+
hjj_pairs_on = hii_all[j_pairs_on]
|
|
361
|
+
ishtyp_pairs_on = self.shell_type_map[i_pairs_on]
|
|
362
|
+
jshtyp_pairs_on = self.shell_type_map[j_pairs_on]
|
|
363
|
+
slater_i_pairs_on = self.shell_slater_exp_map[i_pairs_on]
|
|
364
|
+
slater_j_pairs_on = self.shell_slater_exp_map[j_pairs_on]
|
|
365
|
+
|
|
366
|
+
is_tm_i_pairs_on = self.shell_is_tm_map[i_pairs_on]
|
|
367
|
+
is_g11_i_pairs_on = self.shell_is_g11_map[i_pairs_on]
|
|
368
|
+
delta_en_pairs_on = torch.zeros_like(hii_pairs_on) # On-atom, delta_en = 0
|
|
369
|
+
|
|
370
|
+
# Calculate k_eht
|
|
371
|
+
k_eht_vec_on = self._get_eht_k_factor_vec(
|
|
372
|
+
ishtyp_pairs_on, jshtyp_pairs_on,
|
|
373
|
+
is_tm_i_pairs_on, is_tm_i_pairs_on, # Same atom
|
|
374
|
+
is_g11_i_pairs_on, is_g11_i_pairs_on, # Same atom
|
|
375
|
+
delta_en_pairs_on
|
|
376
|
+
)
|
|
377
|
+
|
|
378
|
+
# Calculate slater_exp_corr
|
|
379
|
+
slater_exp_corr_vec_on = (2.0 * torch.sqrt(slater_i_pairs_on * slater_j_pairs_on)) / (slater_i_pairs_on + slater_j_pairs_on)
|
|
380
|
+
|
|
381
|
+
# shellpoly_corr is 1.0 for on-atom pairs.
|
|
382
|
+
|
|
383
|
+
# Calculate hav
|
|
384
|
+
hav_vec_on = 0.5 * k_eht_vec_on * (hii_pairs_on + hjj_pairs_on) * slater_exp_corr_vec_on
|
|
385
|
+
|
|
386
|
+
# Scatter into shell matrix (upper triangle)
|
|
387
|
+
Hav_shell[i_pairs_on, j_pairs_on] = hav_vec_on
|
|
388
|
+
|
|
389
|
+
# --- 3b. Off-Atom Pairs (Vectorized) ---
|
|
390
|
+
i_pairs_off = self.i_off_atom_pairs
|
|
391
|
+
j_pairs_off = self.j_off_atom_pairs
|
|
392
|
+
|
|
393
|
+
if i_pairs_off.numel() > 0:
|
|
394
|
+
# Gather all parameters for all pairs
|
|
395
|
+
iat_pairs_off = self.shell_atom_map[i_pairs_off]
|
|
396
|
+
jat_pairs_off = self.shell_atom_map[j_pairs_off]
|
|
397
|
+
|
|
398
|
+
hii_pairs_off = hii_all[i_pairs_off]
|
|
399
|
+
hjj_pairs_off = hii_all[j_pairs_off]
|
|
400
|
+
|
|
401
|
+
ishtyp_pairs_off = self.shell_type_map[i_pairs_off]
|
|
402
|
+
jshtyp_pairs_off = self.shell_type_map[j_pairs_off]
|
|
403
|
+
|
|
404
|
+
slater_i_pairs_off = self.shell_slater_exp_map[i_pairs_off]
|
|
405
|
+
slater_j_pairs_off = self.shell_slater_exp_map[j_pairs_off]
|
|
406
|
+
|
|
407
|
+
poly_i_pairs_off = self.shell_poly_const_map[i_pairs_off]
|
|
408
|
+
poly_j_pairs_off = self.shell_poly_const_map[j_pairs_off]
|
|
409
|
+
|
|
410
|
+
en_i_pairs_off = self.shell_en_map[i_pairs_off]
|
|
411
|
+
en_j_pairs_off = self.shell_en_map[j_pairs_off]
|
|
412
|
+
|
|
413
|
+
rad_i_pairs_off = self.shell_rad_map[i_pairs_off]
|
|
414
|
+
rad_j_pairs_off = self.shell_rad_map[j_pairs_off]
|
|
415
|
+
rad_ij_pairs_off = rad_i_pairs_off + rad_j_pairs_off
|
|
416
|
+
|
|
417
|
+
is_tm_i_pairs_off = self.shell_is_tm_map[i_pairs_off]
|
|
418
|
+
is_tm_j_pairs_off = self.shell_is_tm_map[j_pairs_off]
|
|
419
|
+
is_g11_i_pairs_off = self.shell_is_g11_map[i_pairs_off]
|
|
420
|
+
is_g11_j_pairs_off = self.shell_is_g11_map[j_pairs_off]
|
|
421
|
+
|
|
422
|
+
vec_i_pairs_off = xyz[iat_pairs_off] # (n_pairs, 3)
|
|
423
|
+
vec_j_pairs_off = xyz[jat_pairs_off] # (n_pairs, 3)
|
|
424
|
+
|
|
425
|
+
# Perform all calculations vectorized
|
|
426
|
+
delta_en_pairs_off = torch.abs(en_i_pairs_off - en_j_pairs_off)
|
|
427
|
+
|
|
428
|
+
k_eht_vec_off = self._get_eht_k_factor_vec(
|
|
429
|
+
ishtyp_pairs_off, jshtyp_pairs_off,
|
|
430
|
+
is_tm_i_pairs_off, is_tm_j_pairs_off,
|
|
431
|
+
is_g11_i_pairs_off, is_g11_j_pairs_off,
|
|
432
|
+
delta_en_pairs_off
|
|
433
|
+
)
|
|
434
|
+
|
|
435
|
+
slater_exp_corr_vec_off = (2.0 * torch.sqrt(slater_i_pairs_off * slater_j_pairs_off)) / (slater_i_pairs_off + slater_j_pairs_off)
|
|
436
|
+
|
|
437
|
+
shellpoly_corr_vec_off = self._get_shellpoly_corr_vec(
|
|
438
|
+
vec_i_pairs_off, vec_j_pairs_off, rad_ij_pairs_off, poly_i_pairs_off, poly_j_pairs_off
|
|
439
|
+
)
|
|
440
|
+
|
|
441
|
+
hav_vec_off = 0.5 * k_eht_vec_off * (hii_pairs_off + hjj_pairs_off) * slater_exp_corr_vec_off * shellpoly_corr_vec_off
|
|
442
|
+
|
|
443
|
+
# Scatter into shell matrix (upper triangle)
|
|
444
|
+
Hav_shell[i_pairs_off, j_pairs_off] = hav_vec_off
|
|
445
|
+
|
|
446
|
+
# --- 4. Assemble Final H0 (Vectorized) ---
|
|
447
|
+
|
|
448
|
+
# Symmetrize the Hav_shell matrix
|
|
449
|
+
Hav_shell = Hav_shell + Hav_shell.T
|
|
450
|
+
|
|
451
|
+
# Expand Hav from (n_shell, n_shell) to (n_ao, n_ao) using ao_shell_map
|
|
452
|
+
# Hav_ao[i, j] = Hav_shell[shell_of_ao_i, shell_of_ao_j]
|
|
453
|
+
Hav_ao = Hav_shell[self.ao_shell_map, :][:, self.ao_shell_map]
|
|
454
|
+
|
|
455
|
+
# Add the off-diagonal part (H_ij = Hav_ij * S_ij) to the diagonal H0
|
|
456
|
+
# Since the diagonal of Hav_ao is 0.0, this does not affect
|
|
457
|
+
# the diagonal elements of H0.
|
|
458
|
+
H0 = H0 + Hav_ao * sint
|
|
459
|
+
|
|
460
|
+
return H0
|
|
461
|
+
|
|
462
|
+
def calculation(self, xyz, q, cn):
|
|
463
|
+
# xyz: torch.Tensor (N, 3)
|
|
464
|
+
# q: torch.Tensor (N, 1) or (N,)
|
|
465
|
+
# cn: torch.Tensor (N, 1) or (N,)
|
|
466
|
+
|
|
467
|
+
# Ensure q and cn are 1D
|
|
468
|
+
q_1d = q.squeeze()
|
|
469
|
+
cn_1d = cn.squeeze()
|
|
470
|
+
|
|
471
|
+
# 1. Calculate Overlap
|
|
472
|
+
sint = self.overlap_calc.overlap_int_torch(xyz)
|
|
473
|
+
|
|
474
|
+
# 2. Calculate Hamiltonian H0
|
|
475
|
+
h0 = self.get_hamiltonian(xyz, q_1d, cn_1d, sint)
|
|
476
|
+
|
|
477
|
+
# 3. Solve Generalized Eigenvalue Problem H0 C = S C E
|
|
478
|
+
w_s, v_s = torch.linalg.eigh(sint)
|
|
479
|
+
|
|
480
|
+
thresh = 1e-8
|
|
481
|
+
mask = w_s > thresh
|
|
482
|
+
w_s_inv_sqrt = torch.zeros_like(w_s)
|
|
483
|
+
w_s_inv_sqrt[mask] = 1.0 / torch.sqrt(w_s[mask])
|
|
484
|
+
|
|
485
|
+
s_inv_sqrt = torch.matmul(v_s, torch.matmul(torch.diag(w_s_inv_sqrt), v_s.T))
|
|
486
|
+
f_tilde = torch.matmul(s_inv_sqrt, torch.matmul(h0, s_inv_sqrt))
|
|
487
|
+
f_tilde = 0.5 * (f_tilde + f_tilde.T) # Ensure symmetry
|
|
488
|
+
mo_ene, mo_eff_tilde = torch.linalg.eigh(f_tilde)
|
|
489
|
+
|
|
490
|
+
C = torch.matmul(s_inv_sqrt, mo_eff_tilde)
|
|
491
|
+
|
|
492
|
+
n_elec = self.total_valence_e - self.charge_t
|
|
493
|
+
|
|
494
|
+
# Use torch.floor for differentiability, though this part is usually constant
|
|
495
|
+
n_occ = (n_elec / 2.0).floor().long()
|
|
496
|
+
|
|
497
|
+
# Proper EHT energy: 2 * sum occupied mo_ene (assuming closed shell)
|
|
498
|
+
energy = 2.0 * torch.sum(mo_ene[:n_occ])
|
|
499
|
+
|
|
500
|
+
self.mo_energy = mo_ene
|
|
501
|
+
self.mo_coeff = C
|
|
502
|
+
|
|
503
|
+
# Return energy
|
|
504
|
+
return energy
|
|
505
|
+
|
|
506
|
+
def get_mo_energy(self):
|
|
507
|
+
return self.mo_energy
|
|
508
|
+
|
|
509
|
+
def get_mo_coeff(self):
|
|
510
|
+
return self.mo_coeff
|
|
511
|
+
|
|
512
|
+
def get_overlap_integral_matrix(self):
|
|
513
|
+
return self.overlap_calc.get_overlap_integral_matrix()
|
|
514
|
+
|
|
515
|
+
|
|
516
|
+
def energy(self, xyz, q, cn):
|
|
517
|
+
xyz_t = torch.tensor(xyz, dtype=self.dtype, device=self.device, requires_grad=True)
|
|
518
|
+
q_t = torch.tensor(q, dtype=self.dtype, device=self.device, requires_grad=True)
|
|
519
|
+
cn_t = torch.tensor(cn, dtype=self.dtype, device=self.device, requires_grad=True)
|
|
520
|
+
|
|
521
|
+
energy_val = self.calculation(xyz_t, q_t, cn_t)
|
|
522
|
+
return energy_val
|
|
523
|
+
|
|
524
|
+
def gradient(self, xyz, q, cn, d_eeq_charge, d_cn):
|
|
525
|
+
xyz_t = torch.tensor(xyz, dtype=self.dtype, device=self.device, requires_grad=True)
|
|
526
|
+
q_t = torch.tensor(q, dtype=self.dtype, device=self.device, requires_grad=True)
|
|
527
|
+
cn_t = torch.tensor(cn, dtype=self.dtype, device=self.device, requires_grad=True)
|
|
528
|
+
d_eeq_charge_t = torch.tensor(d_eeq_charge, dtype=self.dtype, device=self.device)
|
|
529
|
+
d_cn_t = torch.tensor(d_cn, dtype=self.dtype, device=self.device)
|
|
530
|
+
|
|
531
|
+
gradient_1 = torch.func.jacrev(self.calculation, argnums=0)(xyz_t, q_t, cn_t)
|
|
532
|
+
q_grad = torch.func.jacrev(self.calculation, argnums=1)(xyz_t, q_t, cn_t)
|
|
533
|
+
cn_grad = torch.func.jacrev(self.calculation, argnums=2)(xyz_t, q_t, cn_t)
|
|
534
|
+
|
|
535
|
+
gradient_2 = torch.einsum('i,ijk->jk', q_grad.squeeze(), d_eeq_charge_t)
|
|
536
|
+
gradient_3 = torch.einsum('i,ijk->jk', cn_grad.squeeze(), d_cn_t)
|
|
537
|
+
|
|
538
|
+
gradient = gradient_1 + gradient_2 + gradient_3
|
|
539
|
+
energy = self.energy(xyz, q, cn)
|
|
540
|
+
return energy, gradient
|
|
541
|
+
|
|
542
|
+
def hessian(self, xyz, q, cn, d_eeq_charge, dd_eeq_charge, d_cn, dd_cn):
|
|
543
|
+
xyz_t = torch.tensor(xyz, dtype=self.dtype, device=self.device, requires_grad=True)
|
|
544
|
+
q_t = torch.tensor(q, dtype=self.dtype, device=self.device, requires_grad=True)
|
|
545
|
+
cn_t = torch.tensor(cn, dtype=self.dtype, device=self.device, requires_grad=True)
|
|
546
|
+
|
|
547
|
+
d_eeq_charge_t = torch.tensor(d_eeq_charge, dtype=self.dtype, device=self.device)
|
|
548
|
+
dd_eeq_charge_t = torch.tensor(dd_eeq_charge, dtype=self.dtype, device=self.device)
|
|
549
|
+
d_cn_t = torch.tensor(d_cn, dtype=self.dtype, device=self.device)
|
|
550
|
+
dd_cn_t = torch.tensor(dd_cn, dtype=self.dtype, device=self.device)
|
|
551
|
+
|
|
552
|
+
n_atoms = xyz_t.shape[0]
|
|
553
|
+
n_dim = n_atoms * 3
|
|
554
|
+
|
|
555
|
+
hessian_1_raw = torch.func.hessian(self.calculation, argnums=0)(xyz_t, q_t, cn_t)
|
|
556
|
+
hessian_1 = hessian_1_raw.reshape(n_dim, n_dim)
|
|
557
|
+
|
|
558
|
+
q_hessian = torch.func.hessian(self.calculation, argnums=1)(xyz_t, q_t, cn_t)
|
|
559
|
+
q_hessian = q_hessian.reshape(n_atoms, n_atoms)
|
|
560
|
+
|
|
561
|
+
cn_hessian = torch.func.hessian(self.calculation, argnums=2)(xyz_t, q_t, cn_t)
|
|
562
|
+
cn_hessian = cn_hessian.reshape(n_atoms, n_atoms)
|
|
563
|
+
|
|
564
|
+
q_grad = torch.func.jacrev(self.calculation, argnums=1)(xyz_t, q_t, cn_t).squeeze()
|
|
565
|
+
cn_grad = torch.func.jacrev(self.calculation, argnums=2)(xyz_t, q_t, cn_t).squeeze()
|
|
566
|
+
|
|
567
|
+
dq_dr = d_eeq_charge_t.permute(0, 2, 1).reshape(n_atoms, n_dim) # (N, N*3)
|
|
568
|
+
dcn_dr = d_cn_t.permute(0, 2, 1).reshape(n_atoms, n_dim) # (N, N*3)
|
|
569
|
+
|
|
570
|
+
hessian_2 = torch.matmul(dq_dr.T, torch.matmul(q_hessian, dq_dr))
|
|
571
|
+
hessian_3 = torch.matmul(dcn_dr.T, torch.matmul(cn_hessian, dcn_dr))
|
|
572
|
+
|
|
573
|
+
hessian_4 = torch.einsum('i,ijk->jk', q_grad, dd_eeq_charge_t)
|
|
574
|
+
hessian_5 = torch.einsum('i,ijk->jk', cn_grad, dd_cn_t)
|
|
575
|
+
|
|
576
|
+
hessian = hessian_1 + hessian_2 + hessian_3 + hessian_4 + hessian_5
|
|
577
|
+
|
|
578
|
+
return hessian
|
|
@@ -0,0 +1,66 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
class RepulsionCalculator:
|
|
4
|
+
def __init__(self, element_list, params):
|
|
5
|
+
|
|
6
|
+
self.rep_alpha_list = []
|
|
7
|
+
self.rep_zeff_list = []
|
|
8
|
+
|
|
9
|
+
for elem in element_list:
|
|
10
|
+
self.rep_alpha_list.append(params.repAlpha[elem])
|
|
11
|
+
self.rep_zeff_list.append(params.repZeff[elem])
|
|
12
|
+
|
|
13
|
+
self.rep_alpha_list = torch.tensor(self.rep_alpha_list, dtype=torch.float64)
|
|
14
|
+
self.rep_zeff_list = torch.tensor(self.rep_zeff_list, dtype=torch.float64)
|
|
15
|
+
|
|
16
|
+
return
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def calculation(self, xyz):
|
|
20
|
+
"""
|
|
21
|
+
This is the vectorized version of your calculation method.
|
|
22
|
+
It removes the nested Python loops for efficiency.
|
|
23
|
+
|
|
24
|
+
Args:
|
|
25
|
+
xyz (torch.Tensor): A tensor of atomic coordinates,
|
|
26
|
+
shape [n_atoms, 3].
|
|
27
|
+
|
|
28
|
+
Returns:
|
|
29
|
+
torch.Tensor: A scalar tensor containing the total energy.
|
|
30
|
+
"""
|
|
31
|
+
device = xyz.device
|
|
32
|
+
zeff_list = self.rep_zeff_list.to(device)
|
|
33
|
+
alpha_list = self.rep_alpha_list.to(device)
|
|
34
|
+
diff = xyz.unsqueeze(1) - xyz.unsqueeze(0)
|
|
35
|
+
dist_sq_matrix = torch.sum(diff**2, dim=-1)
|
|
36
|
+
dist_matrix = torch.sqrt(dist_sq_matrix + 1e-12)
|
|
37
|
+
zeff_matrix = torch.outer(zeff_list, zeff_list)
|
|
38
|
+
alpha_matrix = torch.outer(alpha_list, alpha_list)
|
|
39
|
+
dist_cubed = dist_matrix ** 3.0
|
|
40
|
+
exp_term = torch.exp(-1.0 * torch.sqrt(alpha_matrix * dist_cubed))
|
|
41
|
+
inv_dist = 1.0 / dist_matrix
|
|
42
|
+
energy_matrix = zeff_matrix * inv_dist * exp_term
|
|
43
|
+
total_energy = torch.sum(torch.triu(energy_matrix, diagonal=1))
|
|
44
|
+
return total_energy
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
def energy(self, xyz):
|
|
48
|
+
xyz = torch.tensor(xyz, dtype=torch.float64, requires_grad=False)
|
|
49
|
+
energy = self.calculation(xyz)
|
|
50
|
+
return energy
|
|
51
|
+
|
|
52
|
+
def gradient(self, xyz):
|
|
53
|
+
xyz = torch.tensor(xyz, dtype=torch.float64, requires_grad=True)
|
|
54
|
+
energy = self.calculation(xyz)
|
|
55
|
+
gradient = torch.func.jacrev(self.calculation)(xyz)
|
|
56
|
+
|
|
57
|
+
return energy, gradient
|
|
58
|
+
|
|
59
|
+
def hessian(self, xyz):
|
|
60
|
+
xyz = torch.tensor(xyz, dtype=torch.float64, requires_grad=True)
|
|
61
|
+
energy = self.calculation(xyz)
|
|
62
|
+
hessian = torch.func.hessian(self.calculation)(xyz)
|
|
63
|
+
hessian = hessian.reshape(xyz.shape[0]*3, xyz.shape[0]*3)
|
|
64
|
+
return energy, hessian
|
|
65
|
+
|
|
66
|
+
|