MultiOptPy 1.20.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- multioptpy/Calculator/__init__.py +0 -0
- multioptpy/Calculator/ase_calculation_tools.py +424 -0
- multioptpy/Calculator/ase_tools/__init__.py +0 -0
- multioptpy/Calculator/ase_tools/fairchem.py +28 -0
- multioptpy/Calculator/ase_tools/gamess.py +19 -0
- multioptpy/Calculator/ase_tools/gaussian.py +165 -0
- multioptpy/Calculator/ase_tools/mace.py +28 -0
- multioptpy/Calculator/ase_tools/mopac.py +19 -0
- multioptpy/Calculator/ase_tools/nwchem.py +31 -0
- multioptpy/Calculator/ase_tools/orca.py +22 -0
- multioptpy/Calculator/ase_tools/pygfn0.py +37 -0
- multioptpy/Calculator/dxtb_calculation_tools.py +344 -0
- multioptpy/Calculator/emt_calculation_tools.py +458 -0
- multioptpy/Calculator/gpaw_calculation_tools.py +183 -0
- multioptpy/Calculator/lj_calculation_tools.py +314 -0
- multioptpy/Calculator/psi4_calculation_tools.py +334 -0
- multioptpy/Calculator/pwscf_calculation_tools.py +189 -0
- multioptpy/Calculator/pyscf_calculation_tools.py +327 -0
- multioptpy/Calculator/sqm1_calculation_tools.py +611 -0
- multioptpy/Calculator/sqm2_calculation_tools.py +376 -0
- multioptpy/Calculator/tblite_calculation_tools.py +352 -0
- multioptpy/Calculator/tersoff_calculation_tools.py +818 -0
- multioptpy/Constraint/__init__.py +0 -0
- multioptpy/Constraint/constraint_condition.py +834 -0
- multioptpy/Coordinate/__init__.py +0 -0
- multioptpy/Coordinate/polar_coordinate.py +199 -0
- multioptpy/Coordinate/redundant_coordinate.py +638 -0
- multioptpy/IRC/__init__.py +0 -0
- multioptpy/IRC/converge_criteria.py +28 -0
- multioptpy/IRC/dvv.py +544 -0
- multioptpy/IRC/euler.py +439 -0
- multioptpy/IRC/hpc.py +564 -0
- multioptpy/IRC/lqa.py +540 -0
- multioptpy/IRC/modekill.py +662 -0
- multioptpy/IRC/rk4.py +579 -0
- multioptpy/Interpolation/__init__.py +0 -0
- multioptpy/Interpolation/adaptive_interpolation.py +283 -0
- multioptpy/Interpolation/binomial_interpolation.py +179 -0
- multioptpy/Interpolation/geodesic_interpolation.py +785 -0
- multioptpy/Interpolation/interpolation.py +156 -0
- multioptpy/Interpolation/linear_interpolation.py +473 -0
- multioptpy/Interpolation/savitzky_golay_interpolation.py +252 -0
- multioptpy/Interpolation/spline_interpolation.py +353 -0
- multioptpy/MD/__init__.py +0 -0
- multioptpy/MD/thermostat.py +185 -0
- multioptpy/MEP/__init__.py +0 -0
- multioptpy/MEP/pathopt_bneb_force.py +443 -0
- multioptpy/MEP/pathopt_dmf_force.py +448 -0
- multioptpy/MEP/pathopt_dneb_force.py +130 -0
- multioptpy/MEP/pathopt_ewbneb_force.py +207 -0
- multioptpy/MEP/pathopt_gpneb_force.py +512 -0
- multioptpy/MEP/pathopt_lup_force.py +113 -0
- multioptpy/MEP/pathopt_neb_force.py +225 -0
- multioptpy/MEP/pathopt_nesb_force.py +205 -0
- multioptpy/MEP/pathopt_om_force.py +153 -0
- multioptpy/MEP/pathopt_qsm_force.py +174 -0
- multioptpy/MEP/pathopt_qsmv2_force.py +304 -0
- multioptpy/ModelFunction/__init__.py +7 -0
- multioptpy/ModelFunction/avoiding_model_function.py +29 -0
- multioptpy/ModelFunction/binary_image_ts_search_model_function.py +47 -0
- multioptpy/ModelFunction/conical_model_function.py +26 -0
- multioptpy/ModelFunction/opt_meci.py +50 -0
- multioptpy/ModelFunction/opt_mesx.py +47 -0
- multioptpy/ModelFunction/opt_mesx_2.py +49 -0
- multioptpy/ModelFunction/seam_model_function.py +27 -0
- multioptpy/ModelHessian/__init__.py +0 -0
- multioptpy/ModelHessian/approx_hessian.py +147 -0
- multioptpy/ModelHessian/calc_params.py +227 -0
- multioptpy/ModelHessian/fischer.py +236 -0
- multioptpy/ModelHessian/fischerd3.py +360 -0
- multioptpy/ModelHessian/fischerd4.py +398 -0
- multioptpy/ModelHessian/gfn0xtb.py +633 -0
- multioptpy/ModelHessian/gfnff.py +709 -0
- multioptpy/ModelHessian/lindh.py +165 -0
- multioptpy/ModelHessian/lindh2007d2.py +707 -0
- multioptpy/ModelHessian/lindh2007d3.py +822 -0
- multioptpy/ModelHessian/lindh2007d4.py +1030 -0
- multioptpy/ModelHessian/morse.py +106 -0
- multioptpy/ModelHessian/schlegel.py +144 -0
- multioptpy/ModelHessian/schlegeld3.py +322 -0
- multioptpy/ModelHessian/schlegeld4.py +559 -0
- multioptpy/ModelHessian/shortrange.py +346 -0
- multioptpy/ModelHessian/swartd2.py +496 -0
- multioptpy/ModelHessian/swartd3.py +706 -0
- multioptpy/ModelHessian/swartd4.py +918 -0
- multioptpy/ModelHessian/tshess.py +40 -0
- multioptpy/Optimizer/QHAdam.py +61 -0
- multioptpy/Optimizer/__init__.py +0 -0
- multioptpy/Optimizer/abc_fire.py +83 -0
- multioptpy/Optimizer/adabelief.py +58 -0
- multioptpy/Optimizer/adabound.py +68 -0
- multioptpy/Optimizer/adadelta.py +65 -0
- multioptpy/Optimizer/adaderivative.py +56 -0
- multioptpy/Optimizer/adadiff.py +68 -0
- multioptpy/Optimizer/adafactor.py +70 -0
- multioptpy/Optimizer/adam.py +65 -0
- multioptpy/Optimizer/adamax.py +62 -0
- multioptpy/Optimizer/adamod.py +83 -0
- multioptpy/Optimizer/adamw.py +65 -0
- multioptpy/Optimizer/adiis.py +523 -0
- multioptpy/Optimizer/afire_neb.py +282 -0
- multioptpy/Optimizer/block_hessian_update.py +709 -0
- multioptpy/Optimizer/c2diis.py +491 -0
- multioptpy/Optimizer/component_wise_scaling.py +405 -0
- multioptpy/Optimizer/conjugate_gradient.py +82 -0
- multioptpy/Optimizer/conjugate_gradient_neb.py +345 -0
- multioptpy/Optimizer/coordinate_locking.py +405 -0
- multioptpy/Optimizer/dic_rsirfo.py +1015 -0
- multioptpy/Optimizer/ediis.py +417 -0
- multioptpy/Optimizer/eve.py +76 -0
- multioptpy/Optimizer/fastadabelief.py +61 -0
- multioptpy/Optimizer/fire.py +77 -0
- multioptpy/Optimizer/fire2.py +249 -0
- multioptpy/Optimizer/fire_neb.py +92 -0
- multioptpy/Optimizer/gan_step.py +486 -0
- multioptpy/Optimizer/gdiis.py +609 -0
- multioptpy/Optimizer/gediis.py +203 -0
- multioptpy/Optimizer/geodesic_step.py +433 -0
- multioptpy/Optimizer/gpmin.py +633 -0
- multioptpy/Optimizer/gpr_step.py +364 -0
- multioptpy/Optimizer/gradientdescent.py +78 -0
- multioptpy/Optimizer/gradientdescent_neb.py +52 -0
- multioptpy/Optimizer/hessian_update.py +433 -0
- multioptpy/Optimizer/hybrid_rfo.py +998 -0
- multioptpy/Optimizer/kdiis.py +625 -0
- multioptpy/Optimizer/lars.py +21 -0
- multioptpy/Optimizer/lbfgs.py +253 -0
- multioptpy/Optimizer/lbfgs_neb.py +355 -0
- multioptpy/Optimizer/linesearch.py +236 -0
- multioptpy/Optimizer/lookahead.py +40 -0
- multioptpy/Optimizer/nadam.py +64 -0
- multioptpy/Optimizer/newton.py +200 -0
- multioptpy/Optimizer/prodigy.py +70 -0
- multioptpy/Optimizer/purtubation.py +16 -0
- multioptpy/Optimizer/quickmin_neb.py +245 -0
- multioptpy/Optimizer/radam.py +75 -0
- multioptpy/Optimizer/rfo_neb.py +302 -0
- multioptpy/Optimizer/ric_rfo.py +842 -0
- multioptpy/Optimizer/rl_step.py +627 -0
- multioptpy/Optimizer/rmspropgrave.py +65 -0
- multioptpy/Optimizer/rsirfo.py +1647 -0
- multioptpy/Optimizer/rsprfo.py +1056 -0
- multioptpy/Optimizer/sadam.py +60 -0
- multioptpy/Optimizer/samsgrad.py +63 -0
- multioptpy/Optimizer/tr_lbfgs.py +678 -0
- multioptpy/Optimizer/trim.py +273 -0
- multioptpy/Optimizer/trust_radius.py +207 -0
- multioptpy/Optimizer/trust_radius_neb.py +121 -0
- multioptpy/Optimizer/yogi.py +60 -0
- multioptpy/OtherMethod/__init__.py +0 -0
- multioptpy/OtherMethod/addf.py +1150 -0
- multioptpy/OtherMethod/dimer.py +895 -0
- multioptpy/OtherMethod/elastic_image_pair.py +629 -0
- multioptpy/OtherMethod/modelfunction.py +456 -0
- multioptpy/OtherMethod/newton_traj.py +454 -0
- multioptpy/OtherMethod/twopshs.py +1095 -0
- multioptpy/PESAnalyzer/__init__.py +0 -0
- multioptpy/PESAnalyzer/calc_irc_curvature.py +125 -0
- multioptpy/PESAnalyzer/cmds_analysis.py +152 -0
- multioptpy/PESAnalyzer/koopman_analysis.py +268 -0
- multioptpy/PESAnalyzer/pca_analysis.py +314 -0
- multioptpy/Parameters/__init__.py +0 -0
- multioptpy/Parameters/atomic_mass.py +20 -0
- multioptpy/Parameters/atomic_number.py +22 -0
- multioptpy/Parameters/covalent_radii.py +44 -0
- multioptpy/Parameters/d2.py +61 -0
- multioptpy/Parameters/d3.py +63 -0
- multioptpy/Parameters/d4.py +103 -0
- multioptpy/Parameters/dreiding.py +34 -0
- multioptpy/Parameters/gfn0xtb_param.py +137 -0
- multioptpy/Parameters/gfnff_param.py +315 -0
- multioptpy/Parameters/gnb.py +104 -0
- multioptpy/Parameters/parameter.py +22 -0
- multioptpy/Parameters/uff.py +72 -0
- multioptpy/Parameters/unit_values.py +20 -0
- multioptpy/Potential/AFIR_potential.py +55 -0
- multioptpy/Potential/LJ_repulsive_potential.py +345 -0
- multioptpy/Potential/__init__.py +0 -0
- multioptpy/Potential/anharmonic_keep_potential.py +28 -0
- multioptpy/Potential/asym_elllipsoidal_potential.py +718 -0
- multioptpy/Potential/electrostatic_potential.py +69 -0
- multioptpy/Potential/flux_potential.py +30 -0
- multioptpy/Potential/gaussian_potential.py +101 -0
- multioptpy/Potential/idpp.py +516 -0
- multioptpy/Potential/keep_angle_potential.py +146 -0
- multioptpy/Potential/keep_dihedral_angle_potential.py +105 -0
- multioptpy/Potential/keep_outofplain_angle_potential.py +70 -0
- multioptpy/Potential/keep_potential.py +99 -0
- multioptpy/Potential/mechano_force_potential.py +74 -0
- multioptpy/Potential/nanoreactor_potential.py +52 -0
- multioptpy/Potential/potential.py +896 -0
- multioptpy/Potential/spacer_model_potential.py +221 -0
- multioptpy/Potential/switching_potential.py +258 -0
- multioptpy/Potential/universal_potential.py +34 -0
- multioptpy/Potential/value_range_potential.py +36 -0
- multioptpy/Potential/void_point_potential.py +25 -0
- multioptpy/SQM/__init__.py +0 -0
- multioptpy/SQM/sqm1/__init__.py +0 -0
- multioptpy/SQM/sqm1/sqm1_core.py +1792 -0
- multioptpy/SQM/sqm2/__init__.py +0 -0
- multioptpy/SQM/sqm2/calc_tools.py +95 -0
- multioptpy/SQM/sqm2/sqm2_basis.py +850 -0
- multioptpy/SQM/sqm2/sqm2_bond.py +119 -0
- multioptpy/SQM/sqm2/sqm2_core.py +303 -0
- multioptpy/SQM/sqm2/sqm2_data.py +1229 -0
- multioptpy/SQM/sqm2/sqm2_disp.py +65 -0
- multioptpy/SQM/sqm2/sqm2_eeq.py +243 -0
- multioptpy/SQM/sqm2/sqm2_overlapint.py +704 -0
- multioptpy/SQM/sqm2/sqm2_qm.py +578 -0
- multioptpy/SQM/sqm2/sqm2_rep.py +66 -0
- multioptpy/SQM/sqm2/sqm2_srb.py +70 -0
- multioptpy/Thermo/__init__.py +0 -0
- multioptpy/Thermo/normal_mode_analyzer.py +865 -0
- multioptpy/Utils/__init__.py +0 -0
- multioptpy/Utils/bond_connectivity.py +264 -0
- multioptpy/Utils/calc_tools.py +884 -0
- multioptpy/Utils/oniom.py +96 -0
- multioptpy/Utils/pbc.py +48 -0
- multioptpy/Utils/riemann_curvature.py +208 -0
- multioptpy/Utils/symmetry_analyzer.py +482 -0
- multioptpy/Visualization/__init__.py +0 -0
- multioptpy/Visualization/visualization.py +156 -0
- multioptpy/WFAnalyzer/MO_analysis.py +104 -0
- multioptpy/WFAnalyzer/__init__.py +0 -0
- multioptpy/Wrapper/__init__.py +0 -0
- multioptpy/Wrapper/autots.py +1239 -0
- multioptpy/Wrapper/ieip_wrapper.py +93 -0
- multioptpy/Wrapper/md_wrapper.py +92 -0
- multioptpy/Wrapper/neb_wrapper.py +94 -0
- multioptpy/Wrapper/optimize_wrapper.py +76 -0
- multioptpy/__init__.py +5 -0
- multioptpy/entrypoints.py +916 -0
- multioptpy/fileio.py +660 -0
- multioptpy/ieip.py +340 -0
- multioptpy/interface.py +1086 -0
- multioptpy/irc.py +529 -0
- multioptpy/moleculardynamics.py +432 -0
- multioptpy/neb.py +1267 -0
- multioptpy/optimization.py +1553 -0
- multioptpy/optimizer.py +709 -0
- multioptpy-1.20.2.dist-info/METADATA +438 -0
- multioptpy-1.20.2.dist-info/RECORD +246 -0
- multioptpy-1.20.2.dist-info/WHEEL +5 -0
- multioptpy-1.20.2.dist-info/entry_points.txt +9 -0
- multioptpy-1.20.2.dist-info/licenses/LICENSE +674 -0
- multioptpy-1.20.2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,896 @@
|
|
|
1
|
+
|
|
2
|
+
from multioptpy.Parameters.parameter import UnitValueLib
|
|
3
|
+
from multioptpy.fileio import save_bias_pot_info, save_bias_param_grad_info
|
|
4
|
+
|
|
5
|
+
import numpy as np
|
|
6
|
+
import copy
|
|
7
|
+
import random
|
|
8
|
+
import torch
|
|
9
|
+
import re
|
|
10
|
+
|
|
11
|
+
from multioptpy.Potential.LJ_repulsive_potential import LJRepulsivePotentialCone, LJRepulsivePotentialGaussian, LJRepulsivePotentialv2Value, LJRepulsivePotentialv2Scale, LJRepulsivePotentialValue, LJRepulsivePotentialScale
|
|
12
|
+
from multioptpy.Potential.AFIR_potential import AFIRPotential
|
|
13
|
+
from multioptpy.Potential.keep_potential import StructKeepPotential, StructKeepPotentialv2
|
|
14
|
+
from multioptpy.Potential.anharmonic_keep_potential import StructAnharmonicKeepPotential
|
|
15
|
+
from multioptpy.Potential.keep_angle_potential import StructKeepAnglePotential, StructKeepAnglePotentialv2
|
|
16
|
+
from multioptpy.Potential.keep_dihedral_angle_potential import StructKeepDihedralAnglePotential, StructKeepDihedralAnglePotentialv2, StructKeepDihedralAnglePotentialCos
|
|
17
|
+
from multioptpy.Potential.keep_outofplain_angle_potential import StructKeepOutofPlainAnglePotential, StructKeepOutofPlainAnglePotentialv2
|
|
18
|
+
from multioptpy.Potential.void_point_potential import VoidPointPotential
|
|
19
|
+
from multioptpy.Potential.switching_potential import WellPotential, WellPotentialAround, WellPotentialVP, WellPotentialWall
|
|
20
|
+
from multioptpy.Potential.gaussian_potential import GaussianPotential
|
|
21
|
+
from multioptpy.Potential.spacer_model_potential import SpacerModelPotential
|
|
22
|
+
from multioptpy.Potential.universal_potential import UniversalPotential
|
|
23
|
+
from multioptpy.Potential.flux_potential import FluxPotential
|
|
24
|
+
from multioptpy.Potential.value_range_potential import ValueRangePotential
|
|
25
|
+
from multioptpy.Potential.mechano_force_potential import LinearMechanoForcePotential, LinearMechanoForcePotentialv2
|
|
26
|
+
from multioptpy.Potential.asym_elllipsoidal_potential import AsymmetricEllipsoidalLJPotential, AsymmetricEllipsoidalLJPotentialv2
|
|
27
|
+
from multioptpy.Potential.nanoreactor_potential import NanoReactorPotential
|
|
28
|
+
|
|
29
|
+
class BiasPotentialCalculation:
|
|
30
|
+
def __init__(self, FOLDER_DIRECTORY="./"):
|
|
31
|
+
torch.set_printoptions(precision=12)
|
|
32
|
+
UVL = UnitValueLib()
|
|
33
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol #
|
|
34
|
+
self.bohr2angstroms = UVL.bohr2angstroms #
|
|
35
|
+
self.hartree2kjmol = UVL.hartree2kjmol #
|
|
36
|
+
self.JOBID = random.randint(0, 1000000)
|
|
37
|
+
self.microiteration_num = 300
|
|
38
|
+
self.rand_search_num = 800
|
|
39
|
+
self.BPA_FOLDER_DIRECTORY = FOLDER_DIRECTORY
|
|
40
|
+
self.metaD_history_list = None
|
|
41
|
+
self.miter_delta = 1.0
|
|
42
|
+
self.mi_bias_pot_obj_list = []
|
|
43
|
+
self.mi_bias_pot_obj_id_list = []
|
|
44
|
+
self.mi_bias_pot_params_list = []
|
|
45
|
+
self.bias_pot_params_grad_list = None
|
|
46
|
+
self.bias_pot_params_grad_name_list = None
|
|
47
|
+
self.bias_pot_prev_ene_list = []
|
|
48
|
+
self.bias_pot_obj_list = []
|
|
49
|
+
self.bias_pot_obj_id_list = []
|
|
50
|
+
self.bias_pot_params_list = []
|
|
51
|
+
self.numerical_derivative_delta = 1e-5 #unit:Bohr
|
|
52
|
+
|
|
53
|
+
def main(self, e, g, geom_num_list, element_list, force_data, pre_B_g="", iter="", initial_geom_num_list=""):
|
|
54
|
+
#g:hartree/Bohr
|
|
55
|
+
#e:hartree
|
|
56
|
+
#geom_num_list:Bohr
|
|
57
|
+
tmp_bias_pot_params_grad_list = []
|
|
58
|
+
tmp_bias_pot_params_grad_name_list = []
|
|
59
|
+
change_param_flag = []
|
|
60
|
+
#--------------------------------------------------
|
|
61
|
+
B_e = torch.tensor(0.0, dtype=torch.float64)
|
|
62
|
+
BPA_grad_list = g*0.0
|
|
63
|
+
BPA_hessian = np.zeros((3*len(g), 3*len(g)))
|
|
64
|
+
geom_num_list = ndarray2tensor(geom_num_list)
|
|
65
|
+
#------------------------------------------------
|
|
66
|
+
|
|
67
|
+
if iter == 0 or iter == "":
|
|
68
|
+
self.bias_pot_obj_list, self.bias_pot_obj_id_list, self.bias_pot_params_list = make_bias_pot_obj_list(force_data, element_list, self.BPA_FOLDER_DIRECTORY, self.JOBID, geom_num_list, iter)
|
|
69
|
+
self.mi_bias_pot_obj_list, self.mi_bias_pot_obj_id_list, self.mi_bias_pot_params_list = make_micro_iter_bias_pot_obj_list(force_data, element_list, self.BPA_FOLDER_DIRECTORY, self.JOBID, geom_num_list, iter)
|
|
70
|
+
self.bias_pot_prev_ene_list = [np.inf for i in range(len(self.bias_pot_obj_id_list))]
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
####------------------
|
|
74
|
+
# For meta-dynamics
|
|
75
|
+
####------------------
|
|
76
|
+
# caution : This potential is not for geometry optimization.
|
|
77
|
+
if len(force_data["gaussian_potential_target"]) > 0:
|
|
78
|
+
if self.metaD_history_list is None:
|
|
79
|
+
self.metaD_history_list = [[] for i in range(len(force_data["gaussian_potential_target"]))]
|
|
80
|
+
prev_metaD_history_list = self.metaD_history_list
|
|
81
|
+
METAD = GaussianPotential(gaussian_potential_target=force_data["gaussian_potential_target"],
|
|
82
|
+
gaussian_potential_height=force_data["gaussian_potential_height"],
|
|
83
|
+
gaussian_potential_width=force_data["gaussian_potential_width"],
|
|
84
|
+
gaussian_potential_tgt_atom=force_data["gaussian_potential_tgt_atom"])
|
|
85
|
+
METAD.history_list = prev_metaD_history_list
|
|
86
|
+
|
|
87
|
+
B_e += METAD.calc_energy_for_metadyn(geom_num_list)
|
|
88
|
+
|
|
89
|
+
tensor_BPA_grad = torch.func.jacfwd(METAD.calc_energy_for_metadyn)(geom_num_list)
|
|
90
|
+
BPA_grad_list += tensor2ndarray(tensor_BPA_grad)
|
|
91
|
+
|
|
92
|
+
tensor_BPA_hessian = torch.func.hessian(METAD.calc_energy_for_metadyn)(geom_num_list)
|
|
93
|
+
tensor_BPA_hessian = torch.reshape(tensor_BPA_hessian, (len(geom_num_list)*3, len(geom_num_list)*3))
|
|
94
|
+
BPA_hessian += tensor2ndarray(tensor_BPA_hessian)
|
|
95
|
+
|
|
96
|
+
self.metaD_history_list = METAD.history_list
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
|
|
100
|
+
###-----------------
|
|
101
|
+
# For ab initio nano-reactor (ref.:https://doi.org/10.1038/nchem.2099, https://doi.org/10.1021/acs.jctc.4c00826)
|
|
102
|
+
###-----------------
|
|
103
|
+
# caution : This potential is not for geometry optimization.
|
|
104
|
+
if len(force_data["nano_reactor_potential"]) > 0:
|
|
105
|
+
time = torch.tensor([iter], dtype=torch.float64)
|
|
106
|
+
NRP = NanoReactorPotential(inner_wall=force_data["nano_reactor_potential"][0][0],
|
|
107
|
+
outer_wall=force_data["nano_reactor_potential"][0][1],
|
|
108
|
+
contraction_time=force_data["nano_reactor_potential"][0][2],
|
|
109
|
+
expansion_time=force_data["nano_reactor_potential"][0][3],
|
|
110
|
+
contraction_force_const=force_data["nano_reactor_potential"][0][4],
|
|
111
|
+
expansion_force_const=force_data["nano_reactor_potential"][0][5],
|
|
112
|
+
element_list=element_list,)
|
|
113
|
+
B_e += NRP.calc_energy(geom_num_list, time)
|
|
114
|
+
|
|
115
|
+
tensor_BPA_grad = torch.func.jacfwd(NRP.calc_energy)(geom_num_list, time)
|
|
116
|
+
BPA_grad_list += tensor2ndarray(tensor_BPA_grad)
|
|
117
|
+
|
|
118
|
+
tensor_BPA_hessian = torch.func.hessian(NRP.calc_energy)(geom_num_list, time)
|
|
119
|
+
tensor_BPA_hessian = torch.reshape(tensor_BPA_hessian, (len(geom_num_list)*3, len(geom_num_list)*3))
|
|
120
|
+
BPA_hessian += tensor2ndarray(tensor_BPA_hessian)
|
|
121
|
+
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
###-----------------
|
|
125
|
+
# combine almost all the bias potentials
|
|
126
|
+
###-----------------
|
|
127
|
+
for j in range(len(self.bias_pot_obj_list)):
|
|
128
|
+
tmp_bias_pot_params = self.bias_pot_params_list[j]
|
|
129
|
+
|
|
130
|
+
tmp_B_e = self.bias_pot_obj_list[j].calc_energy(geom_num_list, tmp_bias_pot_params)
|
|
131
|
+
tmp_tensor_BPA_grad = torch.func.jacrev(self.bias_pot_obj_list[j].calc_energy, argnums=0)(geom_num_list, tmp_bias_pot_params)
|
|
132
|
+
tmp_tensor_BPA_grad = tensor2ndarray(tmp_tensor_BPA_grad)
|
|
133
|
+
tmp_tensor_BPA_hessian = torch.func.hessian(self.bias_pot_obj_list[j].calc_energy, argnums=0)(geom_num_list, tmp_bias_pot_params)
|
|
134
|
+
tmp_tensor_BPA_hessian = torch.reshape(tmp_tensor_BPA_hessian, (len(geom_num_list)*3, len(geom_num_list)*3))
|
|
135
|
+
tmp_tensor_BPA_hessian = tensor2ndarray(tmp_tensor_BPA_hessian)
|
|
136
|
+
if len(tmp_bias_pot_params) > 0:
|
|
137
|
+
results = torch.func.jacrev(self.bias_pot_obj_list[j].calc_energy, argnums=1)(geom_num_list, tmp_bias_pot_params)
|
|
138
|
+
results = tensor2ndarray(results)
|
|
139
|
+
print(self.bias_pot_obj_id_list[j],":dE_bias_pot/d_param: ", results)
|
|
140
|
+
save_bias_param_grad_info(self.BPA_FOLDER_DIRECTORY, results, self.bias_pot_obj_id_list[j])
|
|
141
|
+
tmp_bias_pot_params_grad_list.append(results)
|
|
142
|
+
tmp_bias_pot_params_grad_name_list.append(self.bias_pot_obj_id_list[j])
|
|
143
|
+
|
|
144
|
+
save_bias_pot_info(self.BPA_FOLDER_DIRECTORY, tmp_B_e.item(), tmp_tensor_BPA_grad, self.bias_pot_obj_id_list[j])
|
|
145
|
+
|
|
146
|
+
change_param_flag.append(False)
|
|
147
|
+
|
|
148
|
+
self.bias_pot_prev_ene_list[j] = tmp_B_e.item()
|
|
149
|
+
|
|
150
|
+
B_e = B_e + tmp_B_e
|
|
151
|
+
BPA_grad_list = BPA_grad_list + tmp_tensor_BPA_grad
|
|
152
|
+
BPA_hessian = BPA_hessian + tmp_tensor_BPA_hessian
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
self.bias_pot_obj_list, self.bias_pot_obj_id_list, self.bias_pot_params_list = change_bias_pot_params(force_data, self.bias_pot_obj_list, self.bias_pot_obj_id_list, self.bias_pot_params_list, geom_num_list, iter, change_param_flag, tmp_bias_pot_params_grad_list)
|
|
156
|
+
|
|
157
|
+
###-----------------
|
|
158
|
+
# combine the bias potentials using microiteration
|
|
159
|
+
###-----------------
|
|
160
|
+
for j in range(len(self.mi_bias_pot_obj_list)):
|
|
161
|
+
tmp_bias_pot_params = self.mi_bias_pot_params_list[j]
|
|
162
|
+
|
|
163
|
+
tmp_B_e = self.mi_bias_pot_obj_list[j].calc_energy(geom_num_list, tmp_bias_pot_params)
|
|
164
|
+
tmp_tensor_BPA_grad = torch.func.jacrev(self.mi_bias_pot_obj_list[j].calc_energy, argnums=0)(geom_num_list, tmp_bias_pot_params)
|
|
165
|
+
tmp_tensor_BPA_grad = tensor2ndarray(tmp_tensor_BPA_grad)
|
|
166
|
+
tmp_tensor_BPA_hessian = torch.func.hessian(self.mi_bias_pot_obj_list[j].calc_energy, argnums=0)(geom_num_list, tmp_bias_pot_params)
|
|
167
|
+
tmp_tensor_BPA_hessian = torch.reshape(tmp_tensor_BPA_hessian, (len(geom_num_list)*3, len(geom_num_list)*3))
|
|
168
|
+
tmp_tensor_BPA_hessian = tensor2ndarray(tmp_tensor_BPA_hessian)
|
|
169
|
+
if len(tmp_bias_pot_params) > 0:
|
|
170
|
+
results = torch.func.jacrev(self.mi_bias_pot_obj_list[j].calc_energy, argnums=1)(geom_num_list, tmp_bias_pot_params)
|
|
171
|
+
results = tensor2ndarray(results)
|
|
172
|
+
print(self.mi_bias_pot_obj_id_list[j],":dE_bias_pot/d_param: ", results)
|
|
173
|
+
save_bias_param_grad_info(self.BPA_FOLDER_DIRECTORY, results, self.mi_bias_pot_obj_id_list[j])
|
|
174
|
+
tmp_bias_pot_params_grad_list.append(results)
|
|
175
|
+
tmp_bias_pot_params_grad_name_list.append(self.mi_bias_pot_obj_id_list[j])
|
|
176
|
+
|
|
177
|
+
save_bias_pot_info(self.BPA_FOLDER_DIRECTORY, tmp_B_e.item(), tmp_tensor_BPA_grad, self.mi_bias_pot_obj_id_list[j])
|
|
178
|
+
|
|
179
|
+
|
|
180
|
+
#self.mi_bias_pot_obj_list, self.mi_bias_pot_obj_id_list, self.mi_bias_pot_params_list = change_bias_pot_params(force_data, self.mi_bias_pot_obj_list, self.mi_bias_pot_obj_id_list, self.mi_bias_pot_params_list, geom_num_list, iter)
|
|
181
|
+
B_e = B_e + tmp_B_e
|
|
182
|
+
BPA_grad_list = BPA_grad_list + tmp_tensor_BPA_grad
|
|
183
|
+
BPA_hessian = BPA_hessian + tmp_tensor_BPA_hessian
|
|
184
|
+
# calculate effective hessian (ref.: https://doi.org/10.1021/ct9003383)
|
|
185
|
+
eff_hess = self.mi_bias_pot_obj_list[j].calc_eff_hessian(geom_num_list, tmp_bias_pot_params)
|
|
186
|
+
eff_hess = tensor2ndarray(eff_hess)
|
|
187
|
+
BPA_hessian = BPA_hessian + eff_hess
|
|
188
|
+
self.mi_bias_pot_obj_list[j].save_state()
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
|
|
192
|
+
|
|
193
|
+
B_g = g + BPA_grad_list
|
|
194
|
+
B_e = B_e.item() + e
|
|
195
|
+
#new_geometry:ang.
|
|
196
|
+
#B_e:hartree
|
|
197
|
+
|
|
198
|
+
self.bias_pot_params_grad_list = tmp_bias_pot_params_grad_list
|
|
199
|
+
self.bias_pot_params_grad_name_list = tmp_bias_pot_params_grad_name_list
|
|
200
|
+
|
|
201
|
+
return BPA_grad_list, B_e, B_g, BPA_hessian
|
|
202
|
+
|
|
203
|
+
def ndarray2tensor(ndarray):
|
|
204
|
+
tensor = copy.copy(torch.tensor(ndarray, dtype=torch.float64, requires_grad=True))
|
|
205
|
+
|
|
206
|
+
return tensor
|
|
207
|
+
|
|
208
|
+
def ndarray2nogradtensor(ndarray):
|
|
209
|
+
tensor = copy.copy(torch.tensor(ndarray, dtype=torch.float64))
|
|
210
|
+
|
|
211
|
+
return tensor
|
|
212
|
+
|
|
213
|
+
def tensor2ndarray(tensor):
|
|
214
|
+
ndarray = copy.copy(tensor.detach().numpy())
|
|
215
|
+
return ndarray
|
|
216
|
+
|
|
217
|
+
def gradually_change_param(param_1, param_2, iter):
|
|
218
|
+
partition = 300
|
|
219
|
+
parameter = param_1 + ((param_2 - param_1)/partition) * int(iter)
|
|
220
|
+
if param_1 < param_2:
|
|
221
|
+
return min(parameter, param_2)
|
|
222
|
+
elif param_1 > param_2:
|
|
223
|
+
return max(parameter, param_2)
|
|
224
|
+
else:
|
|
225
|
+
return parameter
|
|
226
|
+
|
|
227
|
+
def make_micro_iter_bias_pot_obj_list(force_data, element_list, file_directory, JOBID, geom_num_list, iter):
|
|
228
|
+
bias_pot_obj_list = []
|
|
229
|
+
bias_pot_obj_id_list = []
|
|
230
|
+
bias_pot_params_list = []
|
|
231
|
+
if len(force_data["asymmetric_ellipsoidal_repulsive_potential_eps"]) > 0:
|
|
232
|
+
AERP = AsymmetricEllipsoidalLJPotential(asymmetric_ellipsoidal_repulsive_potential_eps=force_data["asymmetric_ellipsoidal_repulsive_potential_eps"],
|
|
233
|
+
asymmetric_ellipsoidal_repulsive_potential_sig=force_data["asymmetric_ellipsoidal_repulsive_potential_sig"],
|
|
234
|
+
asymmetric_ellipsoidal_repulsive_potential_dist=force_data["asymmetric_ellipsoidal_repulsive_potential_dist"],
|
|
235
|
+
asymmetric_ellipsoidal_repulsive_potential_atoms=force_data["asymmetric_ellipsoidal_repulsive_potential_atoms"],
|
|
236
|
+
asymmetric_ellipsoidal_repulsive_potential_offtgt=force_data["asymmetric_ellipsoidal_repulsive_potential_offtgt"],
|
|
237
|
+
element_list=element_list,
|
|
238
|
+
file_directory=file_directory)
|
|
239
|
+
|
|
240
|
+
bias_pot_params = []
|
|
241
|
+
|
|
242
|
+
for j in range(len(force_data["asymmetric_ellipsoidal_repulsive_potential_eps"])):
|
|
243
|
+
tmp_list = [force_data["asymmetric_ellipsoidal_repulsive_potential_eps"][j]] + force_data["asymmetric_ellipsoidal_repulsive_potential_sig"][j] + [force_data["asymmetric_ellipsoidal_repulsive_potential_dist"][j]]
|
|
244
|
+
bias_pot_params.append(tmp_list)
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
bias_pot_params = torch.tensor(bias_pot_params, requires_grad=True, dtype=torch.float64)
|
|
248
|
+
|
|
249
|
+
bias_pot_obj_list.append(AERP)
|
|
250
|
+
bias_pot_obj_id_list.append("asymmetric_ellipsoidal_repulsive_potential")
|
|
251
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
252
|
+
|
|
253
|
+
if len(force_data["asymmetric_ellipsoidal_repulsive_potential_v2_eps"]) > 0:
|
|
254
|
+
AERP2 = AsymmetricEllipsoidalLJPotentialv2(asymmetric_ellipsoidal_repulsive_potential_v2_eps=force_data["asymmetric_ellipsoidal_repulsive_potential_v2_eps"],
|
|
255
|
+
asymmetric_ellipsoidal_repulsive_potential_v2_sig=force_data["asymmetric_ellipsoidal_repulsive_potential_v2_sig"],
|
|
256
|
+
asymmetric_ellipsoidal_repulsive_potential_v2_dist=force_data["asymmetric_ellipsoidal_repulsive_potential_v2_dist"],
|
|
257
|
+
asymmetric_ellipsoidal_repulsive_potential_v2_atoms=force_data["asymmetric_ellipsoidal_repulsive_potential_v2_atoms"],
|
|
258
|
+
asymmetric_ellipsoidal_repulsive_potential_v2_offtgt=force_data["asymmetric_ellipsoidal_repulsive_potential_v2_offtgt"],
|
|
259
|
+
element_list=element_list,
|
|
260
|
+
file_directory=file_directory)
|
|
261
|
+
|
|
262
|
+
bias_pot_params = []
|
|
263
|
+
|
|
264
|
+
for j in range(len(force_data["asymmetric_ellipsoidal_repulsive_potential_v2_eps"])):
|
|
265
|
+
tmp_list = [force_data["asymmetric_ellipsoidal_repulsive_potential_v2_eps"][j]] + force_data["asymmetric_ellipsoidal_repulsive_potential_v2_sig"][j] + [force_data["asymmetric_ellipsoidal_repulsive_potential_v2_dist"][j]]
|
|
266
|
+
bias_pot_params.append(tmp_list)
|
|
267
|
+
|
|
268
|
+
|
|
269
|
+
bias_pot_params = torch.tensor(bias_pot_params, requires_grad=True, dtype=torch.float64)
|
|
270
|
+
|
|
271
|
+
bias_pot_obj_list.append(AERP2)
|
|
272
|
+
bias_pot_obj_id_list.append("asymmetric_ellipsoidal_repulsive_potential_v2")
|
|
273
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
274
|
+
|
|
275
|
+
|
|
276
|
+
for i in range(len(force_data["spacer_model_potential_well_depth"])):
|
|
277
|
+
|
|
278
|
+
if force_data["spacer_model_potential_well_depth"][i] != 0.0:
|
|
279
|
+
SMP = SpacerModelPotential(spacer_model_potential_target=force_data["spacer_model_potential_target"][i],
|
|
280
|
+
spacer_model_potential_distance=force_data["spacer_model_potential_distance"][i],
|
|
281
|
+
spacer_model_potential_well_depth=force_data["spacer_model_potential_well_depth"][i],
|
|
282
|
+
spacer_model_potential_cavity_scaling=force_data["spacer_model_potential_cavity_scaling"][i],
|
|
283
|
+
spacer_model_potential_particle_number=force_data["spacer_model_potential_particle_number"][i],
|
|
284
|
+
element_list=element_list,
|
|
285
|
+
directory=file_directory)
|
|
286
|
+
bias_pot_params = []
|
|
287
|
+
bias_pot_obj_list.append(SMP)
|
|
288
|
+
bias_pot_obj_id_list.append("spacer_model_potential_"+str(i))
|
|
289
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
290
|
+
|
|
291
|
+
|
|
292
|
+
return bias_pot_obj_list, bias_pot_obj_id_list, bias_pot_params_list
|
|
293
|
+
|
|
294
|
+
|
|
295
|
+
def change_bias_pot_params(force_data, bias_pot_obj_list, bias_pot_obj_id_list, bias_pot_params_list, geom_num_list, iter, change_param_flag, tmp_bias_pot_params_grad_list):
|
|
296
|
+
def process_AFIR_pot(k):
|
|
297
|
+
|
|
298
|
+
gamma_data = force_data["AFIR_gamma"][k]
|
|
299
|
+
AFIR_gamma_tmp = (
|
|
300
|
+
gradually_change_param(gamma_data[0], gamma_data[1], iter)
|
|
301
|
+
if len(gamma_data) == 2 and iter != ""
|
|
302
|
+
else gamma_data[0]
|
|
303
|
+
)
|
|
304
|
+
|
|
305
|
+
print(AFIR_gamma_tmp)
|
|
306
|
+
|
|
307
|
+
return torch.tensor([AFIR_gamma_tmp], requires_grad=True, dtype=torch.float64)
|
|
308
|
+
|
|
309
|
+
def process_keep_pot_v2(k):
|
|
310
|
+
spring_data = force_data["keep_pot_v2_spring_const"][k]
|
|
311
|
+
distance_data = force_data["keep_pot_v2_distance"][k]
|
|
312
|
+
|
|
313
|
+
spring_const_tmp = (
|
|
314
|
+
gradually_change_param(spring_data[0], spring_data[1], iter)
|
|
315
|
+
if len(spring_data) == 2 and iter != ""
|
|
316
|
+
else spring_data[0]
|
|
317
|
+
)
|
|
318
|
+
dist_tmp = (
|
|
319
|
+
gradually_change_param(distance_data[0], distance_data[1], iter)
|
|
320
|
+
if len(distance_data) == 2 and iter != ""
|
|
321
|
+
else distance_data[0]
|
|
322
|
+
)
|
|
323
|
+
|
|
324
|
+
print(spring_const_tmp, dist_tmp)
|
|
325
|
+
return torch.tensor([spring_const_tmp, dist_tmp], requires_grad=True, dtype=torch.float64)
|
|
326
|
+
|
|
327
|
+
def process_keep_angle_v2(k):
|
|
328
|
+
spring_data = force_data["keep_angle_v2_spring_const"][k]
|
|
329
|
+
angle_data = force_data["keep_angle_v2_angle"][k]
|
|
330
|
+
|
|
331
|
+
spring_const_tmp = (
|
|
332
|
+
gradually_change_param(spring_data[0], spring_data[1], iter)
|
|
333
|
+
if len(spring_data) == 2 and iter != ""
|
|
334
|
+
else spring_data[0]
|
|
335
|
+
)
|
|
336
|
+
angle_tmp = (
|
|
337
|
+
gradually_change_param(angle_data[0], angle_data[1], iter)
|
|
338
|
+
if len(angle_data) == 2 and iter != ""
|
|
339
|
+
else angle_data[0]
|
|
340
|
+
)
|
|
341
|
+
|
|
342
|
+
print(spring_const_tmp, angle_tmp)
|
|
343
|
+
return torch.tensor([spring_const_tmp, angle_tmp], requires_grad=True, dtype=torch.float64)
|
|
344
|
+
|
|
345
|
+
def process_keep_dihedral_angle_v2(k):
|
|
346
|
+
spring_data = force_data["keep_dihedral_angle_v2_spring_const"][k]
|
|
347
|
+
angle_data = force_data["keep_dihedral_angle_v2_angle"][k]
|
|
348
|
+
|
|
349
|
+
spring_const_tmp = (
|
|
350
|
+
gradually_change_param(spring_data[0], spring_data[1], iter)
|
|
351
|
+
if len(spring_data) == 2 and iter != ""
|
|
352
|
+
else spring_data[0]
|
|
353
|
+
)
|
|
354
|
+
angle_tmp = (
|
|
355
|
+
gradually_change_param(angle_data[0], angle_data[1], iter)
|
|
356
|
+
if len(angle_data) == 2 and iter != ""
|
|
357
|
+
else angle_data[0]
|
|
358
|
+
)
|
|
359
|
+
|
|
360
|
+
print(spring_const_tmp, angle_tmp)
|
|
361
|
+
return torch.tensor([spring_const_tmp, angle_tmp], requires_grad=True, dtype=torch.float64)
|
|
362
|
+
|
|
363
|
+
def process_keep_dihedral_angle_cos(k):
|
|
364
|
+
potential_const_data = force_data["keep_dihedral_angle_cos_potential_const"][k]
|
|
365
|
+
angle_const_data = force_data["keep_dihedral_angle_cos_angle_const"][k]
|
|
366
|
+
angle_data = force_data["keep_dihedral_angle_cos_angle"][k]
|
|
367
|
+
|
|
368
|
+
potential_const_tmp = (
|
|
369
|
+
gradually_change_param(potential_const_data[0], potential_const_data[1], iter)
|
|
370
|
+
if len(potential_const_data) == 2 and iter != ""
|
|
371
|
+
else potential_const_data[0]
|
|
372
|
+
)
|
|
373
|
+
angle_const_tmp = (
|
|
374
|
+
gradually_change_param(angle_const_data[0], angle_const_data[1], iter)
|
|
375
|
+
if len(angle_const_data) == 2 and iter != ""
|
|
376
|
+
else angle_const_data[0]
|
|
377
|
+
)
|
|
378
|
+
angle_tmp = (
|
|
379
|
+
gradually_change_param(angle_data[0], angle_data[1], iter)
|
|
380
|
+
if len(angle_data) == 2 and iter != ""
|
|
381
|
+
else angle_data[0]
|
|
382
|
+
)
|
|
383
|
+
|
|
384
|
+
print(potential_const_tmp, angle_const_tmp, angle_tmp)
|
|
385
|
+
return torch.tensor([potential_const_tmp, angle_const_tmp, angle_tmp], requires_grad=True, dtype=torch.float64)
|
|
386
|
+
|
|
387
|
+
def process_keep_out_of_plain_angle_v2(k):
|
|
388
|
+
spring_data = force_data["keep_out_of_plain_angle_v2_spring_const"][k]
|
|
389
|
+
angle_data = force_data["keep_out_of_plain_angle_v2_angle"][k]
|
|
390
|
+
|
|
391
|
+
spring_const_tmp = (
|
|
392
|
+
gradually_change_param(spring_data[0], spring_data[1], iter)
|
|
393
|
+
if len(spring_data) == 2 and iter != ""
|
|
394
|
+
else spring_data[0]
|
|
395
|
+
)
|
|
396
|
+
angle_tmp = (
|
|
397
|
+
gradually_change_param(angle_data[0], angle_data[1], iter)
|
|
398
|
+
if len(angle_data) == 2 and iter != ""
|
|
399
|
+
else angle_data[0]
|
|
400
|
+
)
|
|
401
|
+
|
|
402
|
+
print(spring_const_tmp, angle_tmp)
|
|
403
|
+
return torch.tensor([spring_const_tmp, angle_tmp], requires_grad=True, dtype=torch.float64)
|
|
404
|
+
|
|
405
|
+
def process_default():
|
|
406
|
+
pass # Do nothing for unsupported patterns
|
|
407
|
+
|
|
408
|
+
pattern_to_function = {
|
|
409
|
+
r"AFIR_pot_\d+": process_AFIR_pot,
|
|
410
|
+
r"keep_pot_v2_\d+": process_keep_pot_v2,
|
|
411
|
+
r"keep_angle_v2_\d+": process_keep_angle_v2,
|
|
412
|
+
r"keep_dihedral_angle_v2_\d+": process_keep_dihedral_angle_v2,
|
|
413
|
+
r"keep_dihedral_angle_cos_\d+": process_keep_dihedral_angle_cos,
|
|
414
|
+
r"keep_out_of_plain_angle_v2_\d+": process_keep_out_of_plain_angle_v2,
|
|
415
|
+
# Add patterns here for other types if needed
|
|
416
|
+
}
|
|
417
|
+
|
|
418
|
+
for i, bias_pot_obj_id in enumerate(bias_pot_obj_id_list):
|
|
419
|
+
matched = False
|
|
420
|
+
for pattern, func in pattern_to_function.items():
|
|
421
|
+
if re.match(pattern, bias_pot_obj_id):
|
|
422
|
+
extracted = re.findall(r'_[0-9]+', bias_pot_obj_id)[0]
|
|
423
|
+
num = int(extracted[1:])
|
|
424
|
+
bias_pot_params_list[i] = func(num)
|
|
425
|
+
matched = True
|
|
426
|
+
break
|
|
427
|
+
if not matched:
|
|
428
|
+
process_default()
|
|
429
|
+
|
|
430
|
+
return bias_pot_obj_list, bias_pot_obj_id_list, bias_pot_params_list
|
|
431
|
+
|
|
432
|
+
|
|
433
|
+
def make_bias_pot_obj_list(force_data, element_list, file_directory, JOBID, geom_num_list, iter):
|
|
434
|
+
bias_pot_obj_list = []
|
|
435
|
+
bias_pot_obj_id_list = []
|
|
436
|
+
bias_pot_params_list = []
|
|
437
|
+
|
|
438
|
+
|
|
439
|
+
for i in range(len(force_data["linear_mechano_force"])):
|
|
440
|
+
if force_data["linear_mechano_force"][i] != 0.0:
|
|
441
|
+
LMF = LinearMechanoForcePotential(linear_mechano_force=force_data["linear_mechano_force"][i],
|
|
442
|
+
linear_mechano_force_atoms_1=force_data["linear_mechano_force_atoms_1"][i],
|
|
443
|
+
linear_mechano_force_atoms_2=force_data["linear_mechano_force_atoms_2"][i],
|
|
444
|
+
element_list=element_list)
|
|
445
|
+
bias_pot_params = torch.tensor([force_data["linear_mechano_force"][i]], requires_grad=True, dtype=torch.float64)
|
|
446
|
+
bias_pot_obj_list.append(LMF)
|
|
447
|
+
bias_pot_obj_id_list.append("linear_mechano_force_"+str(i))
|
|
448
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
449
|
+
|
|
450
|
+
else:
|
|
451
|
+
pass
|
|
452
|
+
|
|
453
|
+
for i in range(len(force_data["linear_mechano_force_v2"])):
|
|
454
|
+
if force_data["linear_mechano_force_v2"][i] != 0.0:
|
|
455
|
+
LMF2 = LinearMechanoForcePotentialv2(linear_mechano_force_v2=force_data["linear_mechano_force_v2"][i],
|
|
456
|
+
linear_mechano_force_atom_v2=force_data["linear_mechano_force_atom_v2"][i],
|
|
457
|
+
element_list=element_list)
|
|
458
|
+
bias_pot_params = torch.tensor([force_data["linear_mechano_force_v2"][i]], requires_grad=True, dtype=torch.float64)
|
|
459
|
+
bias_pot_obj_list.append(LMF2)
|
|
460
|
+
bias_pot_obj_id_list.append("linear_mechano_force_v2_"+str(i))
|
|
461
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
462
|
+
|
|
463
|
+
else:
|
|
464
|
+
pass
|
|
465
|
+
|
|
466
|
+
|
|
467
|
+
for i in range(len(force_data["AFIR_gamma"])):
|
|
468
|
+
if not 0.0 in force_data["AFIR_gamma"][i]:
|
|
469
|
+
if len(force_data["AFIR_gamma"][i]) == 2 and iter != "":
|
|
470
|
+
AFIR_gamma_tmp = gradually_change_param(force_data["AFIR_gamma"][i][0], force_data["AFIR_gamma"][i][1], iter)
|
|
471
|
+
print(AFIR_gamma_tmp)
|
|
472
|
+
else:
|
|
473
|
+
AFIR_gamma_tmp = force_data["AFIR_gamma"][i][0]
|
|
474
|
+
|
|
475
|
+
bias_pot_params = torch.tensor([AFIR_gamma_tmp], requires_grad=True, dtype=torch.float64)
|
|
476
|
+
|
|
477
|
+
AP = AFIRPotential(AFIR_Fragm_1=force_data["AFIR_Fragm_1"][i],
|
|
478
|
+
AFIR_Fragm_2=force_data["AFIR_Fragm_2"][i],
|
|
479
|
+
element_list=element_list)
|
|
480
|
+
bias_pot_obj_list.append(AP)
|
|
481
|
+
bias_pot_obj_id_list.append("AFIR_pot_"+str(i))
|
|
482
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
483
|
+
|
|
484
|
+
for i in range(len(force_data["flux_pot_const"])):
|
|
485
|
+
|
|
486
|
+
FP = FluxPotential(flux_pot_const=force_data["flux_pot_const"][i],
|
|
487
|
+
flux_pot_target=force_data["flux_pot_target"][i],
|
|
488
|
+
flux_pot_order=force_data["flux_pot_order"][i],
|
|
489
|
+
flux_pot_direction=force_data["flux_pot_direction"][i],
|
|
490
|
+
element_list=element_list,
|
|
491
|
+
directory=file_directory)
|
|
492
|
+
|
|
493
|
+
bias_pot_obj_list.append(FP)
|
|
494
|
+
bias_pot_obj_id_list.append("flux_pot_"+str(i))
|
|
495
|
+
bias_pot_params_list.append([])
|
|
496
|
+
|
|
497
|
+
for i in range(len(force_data["value_range_upper_const"])):
|
|
498
|
+
if force_data["value_range_upper_const"][i] != 0.0:
|
|
499
|
+
VRP = ValueRangePotential(value_range_upper_const=force_data["value_range_upper_const"][i],
|
|
500
|
+
value_range_lower_const=force_data["value_range_lower_const"][i],
|
|
501
|
+
value_range_upper_distance=force_data["value_range_upper_distance"][i],
|
|
502
|
+
value_range_lower_distance=force_data["value_range_lower_distance"][i],
|
|
503
|
+
value_range_fragm_1=force_data["value_range_fragm_1"][i],
|
|
504
|
+
value_range_fragm_2=force_data["value_range_fragm_2"][i],
|
|
505
|
+
element_list=element_list,
|
|
506
|
+
directory=file_directory)
|
|
507
|
+
|
|
508
|
+
|
|
509
|
+
bias_pot_obj_list.append(VRP)
|
|
510
|
+
bias_pot_obj_id_list.append("value_range_pot_"+str(i))
|
|
511
|
+
bias_pot_params_list.append([])
|
|
512
|
+
else:
|
|
513
|
+
pass
|
|
514
|
+
|
|
515
|
+
for i in range(len(force_data["universal_pot_const"])):
|
|
516
|
+
if force_data["universal_pot_const"][i] != 0.0:
|
|
517
|
+
UP = UniversalPotential(universal_pot_const=force_data["universal_pot_const"][i],
|
|
518
|
+
universal_pot_target=force_data["universal_pot_target"][i],
|
|
519
|
+
element_list=element_list,
|
|
520
|
+
directory=file_directory)
|
|
521
|
+
|
|
522
|
+
|
|
523
|
+
bias_pot_obj_list.append(UP)
|
|
524
|
+
bias_pot_obj_id_list.append("universal_pot_"+str(i))
|
|
525
|
+
bias_pot_params_list.append([])
|
|
526
|
+
else:
|
|
527
|
+
pass
|
|
528
|
+
|
|
529
|
+
for i in range(len(force_data["repulsive_potential_v2_well_scale"])):
|
|
530
|
+
if force_data["repulsive_potential_v2_well_scale"][i] != 0.0:
|
|
531
|
+
if force_data["repulsive_potential_v2_unit"][i] == "scale":
|
|
532
|
+
LJRP = LJRepulsivePotentialv2Scale(repulsive_potential_v2_well_scale=force_data["repulsive_potential_v2_well_scale"][i],
|
|
533
|
+
repulsive_potential_v2_dist_scale=force_data["repulsive_potential_v2_dist_scale"][i],
|
|
534
|
+
repulsive_potential_v2_length=force_data["repulsive_potential_v2_length"][i],
|
|
535
|
+
repulsive_potential_v2_const_rep=force_data["repulsive_potential_v2_const_rep"][i],
|
|
536
|
+
repulsive_potential_v2_const_attr=force_data["repulsive_potential_v2_const_attr"][i],
|
|
537
|
+
repulsive_potential_v2_order_rep=force_data["repulsive_potential_v2_order_rep"][i],
|
|
538
|
+
repulsive_potential_v2_order_attr=force_data["repulsive_potential_v2_order_attr"][i],
|
|
539
|
+
repulsive_potential_v2_center=force_data["repulsive_potential_v2_center"][i],
|
|
540
|
+
repulsive_potential_v2_target=force_data["repulsive_potential_v2_target"][i],
|
|
541
|
+
element_list=element_list,
|
|
542
|
+
jobid=JOBID)
|
|
543
|
+
|
|
544
|
+
|
|
545
|
+
bias_pot_obj_list.append(LJRP)
|
|
546
|
+
bias_pot_obj_id_list.append("repulsive_pot_v2_scale_"+str(i))
|
|
547
|
+
bias_pot_params_list.append([])
|
|
548
|
+
|
|
549
|
+
elif force_data["repulsive_potential_v2_unit"][i] == "value":
|
|
550
|
+
LJRP = LJRepulsivePotentialv2Value(repulsive_potential_v2_well_value=force_data["repulsive_potential_v2_well_scale"][i],
|
|
551
|
+
repulsive_potential_v2_dist_value=force_data["repulsive_potential_v2_dist_scale"][i],
|
|
552
|
+
repulsive_potential_v2_length=force_data["repulsive_potential_v2_length"][i],
|
|
553
|
+
repulsive_potential_v2_const_rep=force_data["repulsive_potential_v2_const_rep"][i],
|
|
554
|
+
repulsive_potential_v2_const_attr=force_data["repulsive_potential_v2_const_attr"][i],
|
|
555
|
+
repulsive_potential_v2_order_rep=force_data["repulsive_potential_v2_order_rep"][i],
|
|
556
|
+
repulsive_potential_v2_order_attr=force_data["repulsive_potential_v2_order_attr"][i],
|
|
557
|
+
repulsive_potential_v2_center=force_data["repulsive_potential_v2_center"][i],
|
|
558
|
+
repulsive_potential_v2_target=force_data["repulsive_potential_v2_target"][i],
|
|
559
|
+
element_list=element_list,
|
|
560
|
+
jobid=JOBID)
|
|
561
|
+
|
|
562
|
+
|
|
563
|
+
bias_pot_obj_list.append(LJRP)
|
|
564
|
+
bias_pot_obj_id_list.append("repulsive_pot_v2_value_"+str(i))
|
|
565
|
+
bias_pot_params_list.append([])
|
|
566
|
+
|
|
567
|
+
else:
|
|
568
|
+
print("error -rpv2")
|
|
569
|
+
raise "error -rpv2"
|
|
570
|
+
else:
|
|
571
|
+
pass
|
|
572
|
+
|
|
573
|
+
for i in range(len(force_data["repulsive_potential_dist_scale"])):
|
|
574
|
+
if force_data["repulsive_potential_well_scale"][i] != 0.0:
|
|
575
|
+
if force_data["repulsive_potential_unit"][i] == "scale":
|
|
576
|
+
LJRP = LJRepulsivePotentialScale(repulsive_potential_well_scale=force_data["repulsive_potential_well_scale"][i],
|
|
577
|
+
repulsive_potential_dist_scale=force_data["repulsive_potential_dist_scale"][i],
|
|
578
|
+
repulsive_potential_Fragm_1=force_data["repulsive_potential_Fragm_1"][i],
|
|
579
|
+
repulsive_potential_Fragm_2=force_data["repulsive_potential_Fragm_2"][i],
|
|
580
|
+
element_list=element_list,
|
|
581
|
+
jobid=JOBID)
|
|
582
|
+
|
|
583
|
+
|
|
584
|
+
bias_pot_obj_list.append(LJRP)
|
|
585
|
+
bias_pot_obj_id_list.append("repulsive_pot_scale_"+str(i))
|
|
586
|
+
bias_pot_params_list.append([])
|
|
587
|
+
|
|
588
|
+
elif force_data["repulsive_potential_unit"][i] == "value":
|
|
589
|
+
LJRP = LJRepulsivePotentialValue(repulsive_potential_well_value=force_data["repulsive_potential_well_scale"][i],
|
|
590
|
+
repulsive_potential_dist_value=force_data["repulsive_potential_dist_scale"][i],
|
|
591
|
+
repulsive_potential_Fragm_1=force_data["repulsive_potential_Fragm_1"][i],
|
|
592
|
+
repulsive_potential_Fragm_2=force_data["repulsive_potential_Fragm_2"][i],
|
|
593
|
+
element_list=element_list,
|
|
594
|
+
jobid=JOBID)
|
|
595
|
+
|
|
596
|
+
bias_pot_obj_list.append(LJRP)
|
|
597
|
+
bias_pot_obj_id_list.append("repulsive_pot_value_"+str(i))
|
|
598
|
+
bias_pot_params_list.append([])
|
|
599
|
+
else:
|
|
600
|
+
print("error -rpv2")
|
|
601
|
+
raise "error -rpv2"
|
|
602
|
+
else:
|
|
603
|
+
pass
|
|
604
|
+
|
|
605
|
+
for i in range(len(force_data["repulsive_potential_gaussian_LJ_well_depth"])):
|
|
606
|
+
|
|
607
|
+
if force_data["repulsive_potential_gaussian_LJ_well_depth"][i] != 0.0 or force_data["repulsive_potential_gaussian_gau_well_depth"][i] != 0.0:
|
|
608
|
+
|
|
609
|
+
LJRP = LJRepulsivePotentialGaussian(repulsive_potential_gaussian_LJ_well_depth=force_data["repulsive_potential_gaussian_LJ_well_depth"][i],
|
|
610
|
+
repulsive_potential_gaussian_LJ_dist=force_data["repulsive_potential_gaussian_LJ_dist"][i],
|
|
611
|
+
repulsive_potential_gaussian_gau_well_depth=force_data["repulsive_potential_gaussian_gau_well_depth"][i],
|
|
612
|
+
repulsive_potential_gaussian_gau_dist=force_data["repulsive_potential_gaussian_gau_dist"][i],
|
|
613
|
+
repulsive_potential_gaussian_gau_range=force_data["repulsive_potential_gaussian_gau_range"][i],
|
|
614
|
+
repulsive_potential_gaussian_fragm_1=force_data["repulsive_potential_gaussian_fragm_1"][i],
|
|
615
|
+
repulsive_potential_gaussian_fragm_2=force_data["repulsive_potential_gaussian_fragm_2"][i],
|
|
616
|
+
element_list=element_list,
|
|
617
|
+
jobid=JOBID)
|
|
618
|
+
|
|
619
|
+
bias_pot_obj_list.append(LJRP)
|
|
620
|
+
bias_pot_obj_id_list.append("repulsive_gaussian_pot_"+str(i))
|
|
621
|
+
bias_pot_params_list.append([])
|
|
622
|
+
|
|
623
|
+
for i in range(len(force_data["cone_potential_well_value"])):
|
|
624
|
+
if force_data["cone_potential_well_value"][i] != 0.0:
|
|
625
|
+
|
|
626
|
+
LJRP = LJRepulsivePotentialCone(cone_potential_well_value=force_data["cone_potential_well_value"][i],
|
|
627
|
+
cone_potential_dist_value=force_data["cone_potential_dist_value"][i],
|
|
628
|
+
cone_potential_cone_angle=force_data["cone_potential_cone_angle"][i],
|
|
629
|
+
cone_potential_center=force_data["cone_potential_center"][i],
|
|
630
|
+
cone_potential_three_atoms=force_data["cone_potential_three_atoms"][i],
|
|
631
|
+
cone_potential_target=force_data["cone_potential_target"][i],
|
|
632
|
+
element_list=element_list
|
|
633
|
+
)
|
|
634
|
+
|
|
635
|
+
bias_pot_obj_list.append(LJRP)
|
|
636
|
+
bias_pot_obj_id_list.append("repulsive_cone_pot_"+str(i))
|
|
637
|
+
bias_pot_params_list.append([])
|
|
638
|
+
|
|
639
|
+
for i in range(len(force_data["keep_pot_spring_const"])):
|
|
640
|
+
if force_data["keep_pot_spring_const"][i] != 0.0:
|
|
641
|
+
SKP = StructKeepPotential(keep_pot_spring_const=force_data["keep_pot_spring_const"][i],
|
|
642
|
+
keep_pot_distance=force_data["keep_pot_distance"][i],
|
|
643
|
+
keep_pot_atom_pairs=force_data["keep_pot_atom_pairs"][i])
|
|
644
|
+
|
|
645
|
+
bias_pot_params = torch.tensor([force_data["keep_pot_spring_const"][i], force_data["keep_pot_distance"][i]], requires_grad=True, dtype=torch.float64)
|
|
646
|
+
|
|
647
|
+
bias_pot_obj_list.append(SKP)
|
|
648
|
+
bias_pot_obj_id_list.append("keep_pot_"+str(i))
|
|
649
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
650
|
+
else:
|
|
651
|
+
pass
|
|
652
|
+
|
|
653
|
+
|
|
654
|
+
for i in range(len(force_data["keep_pot_v2_spring_const"])):
|
|
655
|
+
if not 0.0 in force_data["keep_pot_v2_spring_const"][i]:
|
|
656
|
+
spring_const_tmp = force_data["keep_pot_v2_spring_const"][i][0]
|
|
657
|
+
dist_tmp = force_data["keep_pot_v2_distance"][i][0]
|
|
658
|
+
SKP = StructKeepPotentialv2(keep_pot_v2_spring_const=spring_const_tmp,
|
|
659
|
+
keep_pot_v2_distance=dist_tmp,
|
|
660
|
+
keep_pot_v2_fragm1=force_data["keep_pot_v2_fragm1"][i],
|
|
661
|
+
keep_pot_v2_fragm2=force_data["keep_pot_v2_fragm2"][i]
|
|
662
|
+
)
|
|
663
|
+
bias_pot_params = torch.tensor([spring_const_tmp, dist_tmp], requires_grad=True, dtype=torch.float64)
|
|
664
|
+
|
|
665
|
+
bias_pot_obj_list.append(SKP)
|
|
666
|
+
bias_pot_obj_id_list.append("keep_pot_v2_"+str(i))
|
|
667
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
668
|
+
else:
|
|
669
|
+
pass
|
|
670
|
+
|
|
671
|
+
|
|
672
|
+
for i in range(len(force_data["anharmonic_keep_pot_spring_const"])):
|
|
673
|
+
if force_data["anharmonic_keep_pot_spring_const"][i] != 0.0:
|
|
674
|
+
SAKP = StructAnharmonicKeepPotential(anharmonic_keep_pot_spring_const=force_data["anharmonic_keep_pot_spring_const"][i],
|
|
675
|
+
anharmonic_keep_pot_potential_well_depth=force_data["anharmonic_keep_pot_potential_well_depth"][i],
|
|
676
|
+
anharmonic_keep_pot_atom_pairs=force_data["anharmonic_keep_pot_atom_pairs"][i],
|
|
677
|
+
anharmonic_keep_pot_distance=force_data["anharmonic_keep_pot_distance"][i])
|
|
678
|
+
|
|
679
|
+
bias_pot_obj_list.append(SAKP)
|
|
680
|
+
bias_pot_obj_id_list.append("anharmonic_keep_pot_"+str(i))
|
|
681
|
+
bias_pot_params_list.append([])
|
|
682
|
+
|
|
683
|
+
else:
|
|
684
|
+
pass
|
|
685
|
+
|
|
686
|
+
for i in range(len(force_data["well_pot_wall_energy"])):
|
|
687
|
+
if force_data["well_pot_wall_energy"][i] != 0.0:
|
|
688
|
+
WP = WellPotential(well_pot_wall_energy=force_data["well_pot_wall_energy"][i],
|
|
689
|
+
well_pot_fragm_1=force_data["well_pot_fragm_1"][i],
|
|
690
|
+
well_pot_fragm_2=force_data["well_pot_fragm_2"][i],
|
|
691
|
+
well_pot_limit_dist=force_data["well_pot_limit_dist"][i])
|
|
692
|
+
|
|
693
|
+
bias_pot_obj_list.append(WP)
|
|
694
|
+
bias_pot_obj_id_list.append("well_pot_wall_"+str(i))
|
|
695
|
+
bias_pot_params_list.append([])
|
|
696
|
+
else:
|
|
697
|
+
pass
|
|
698
|
+
|
|
699
|
+
for i in range(len(force_data["wall_well_pot_wall_energy"])):
|
|
700
|
+
if force_data["wall_well_pot_wall_energy"][i] != 0.0:
|
|
701
|
+
WP = WellPotentialWall(wall_well_pot_wall_energy=force_data["wall_well_pot_wall_energy"][i],
|
|
702
|
+
wall_well_pot_direction=force_data["wall_well_pot_direction"][i],
|
|
703
|
+
wall_well_pot_limit_dist=force_data["wall_well_pot_limit_dist"][i],
|
|
704
|
+
wall_well_pot_target=force_data["wall_well_pot_target"][i])
|
|
705
|
+
|
|
706
|
+
bias_pot_obj_list.append(WP)
|
|
707
|
+
bias_pot_obj_id_list.append("wall_well_pot_wall_"+str(i))
|
|
708
|
+
bias_pot_params_list.append([])
|
|
709
|
+
else:
|
|
710
|
+
pass
|
|
711
|
+
|
|
712
|
+
for i in range(len(force_data["void_point_well_pot_wall_energy"])):
|
|
713
|
+
if force_data["void_point_well_pot_wall_energy"][i] != 0.0:
|
|
714
|
+
WP = WellPotentialVP(void_point_well_pot_wall_energy=force_data["void_point_well_pot_wall_energy"][i],
|
|
715
|
+
void_point_well_pot_coordinate=force_data["void_point_well_pot_coordinate"][i],
|
|
716
|
+
void_point_well_pot_limit_dist=force_data["void_point_well_pot_limit_dist"][i],
|
|
717
|
+
void_point_well_pot_target=force_data["void_point_well_pot_target"][i])
|
|
718
|
+
|
|
719
|
+
bias_pot_obj_list.append(WP)
|
|
720
|
+
bias_pot_obj_id_list.append("void_point_well_pot_wall_"+str(i))
|
|
721
|
+
bias_pot_params_list.append([])
|
|
722
|
+
|
|
723
|
+
else:
|
|
724
|
+
pass
|
|
725
|
+
|
|
726
|
+
for i in range(len(force_data["around_well_pot_wall_energy"])):
|
|
727
|
+
if force_data["around_well_pot_wall_energy"][i] != 0.0:
|
|
728
|
+
WP = WellPotentialAround(around_well_pot_wall_energy=force_data["around_well_pot_wall_energy"][i],
|
|
729
|
+
around_well_pot_center=force_data["around_well_pot_center"][i],
|
|
730
|
+
around_well_pot_limit_dist=force_data["around_well_pot_limit_dist"][i],
|
|
731
|
+
around_well_pot_target=force_data["around_well_pot_target"][i])
|
|
732
|
+
|
|
733
|
+
bias_pot_obj_list.append(WP)
|
|
734
|
+
bias_pot_obj_id_list.append("around_well_pot_wall_"+str(i))
|
|
735
|
+
bias_pot_params_list.append([])
|
|
736
|
+
|
|
737
|
+
else:
|
|
738
|
+
pass
|
|
739
|
+
|
|
740
|
+
if len(geom_num_list) > 2:
|
|
741
|
+
for i in range(len(force_data["keep_angle_spring_const"])):
|
|
742
|
+
if force_data["keep_angle_spring_const"][i] != 0.0:
|
|
743
|
+
SKAngleP = StructKeepAnglePotential(keep_angle_atom_pairs=force_data["keep_angle_atom_pairs"][i],
|
|
744
|
+
keep_angle_spring_const=force_data["keep_angle_spring_const"][i],
|
|
745
|
+
keep_angle_angle=force_data["keep_angle_angle"][i])
|
|
746
|
+
|
|
747
|
+
bias_pot_params = torch.tensor([force_data["keep_angle_spring_const"][i], force_data["keep_angle_angle"][i]], requires_grad=True, dtype=torch.float64)
|
|
748
|
+
bias_pot_obj_list.append(SKAngleP)
|
|
749
|
+
bias_pot_obj_id_list.append("keep_angle_pot_"+str(i))
|
|
750
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
751
|
+
|
|
752
|
+
else:
|
|
753
|
+
pass
|
|
754
|
+
|
|
755
|
+
|
|
756
|
+
if len(geom_num_list) > 2:
|
|
757
|
+
for i in range(len(force_data["keep_angle_v2_spring_const"])):
|
|
758
|
+
if not 0.0 in force_data["keep_angle_v2_spring_const"][i]:
|
|
759
|
+
|
|
760
|
+
spring_const_tmp = force_data["keep_angle_v2_spring_const"][i][0]
|
|
761
|
+
angle_tmp = force_data["keep_angle_v2_angle"][i][0]
|
|
762
|
+
bias_pot_params = torch.tensor([spring_const_tmp, angle_tmp], requires_grad=True, dtype=torch.float64)
|
|
763
|
+
SKAngleP = StructKeepAnglePotentialv2(
|
|
764
|
+
keep_angle_v2_fragm1=force_data["keep_angle_v2_fragm1"][i],
|
|
765
|
+
keep_angle_v2_fragm2=force_data["keep_angle_v2_fragm2"][i],
|
|
766
|
+
keep_angle_v2_fragm3=force_data["keep_angle_v2_fragm3"][i],
|
|
767
|
+
keep_angle_v2_spring_const=spring_const_tmp,
|
|
768
|
+
keep_angle_v2_angle=angle_tmp)
|
|
769
|
+
|
|
770
|
+
bias_pot_obj_list.append(SKAngleP)
|
|
771
|
+
bias_pot_obj_id_list.append("keep_angle_v2_"+str(i))
|
|
772
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
773
|
+
|
|
774
|
+
else:
|
|
775
|
+
pass
|
|
776
|
+
|
|
777
|
+
|
|
778
|
+
if len(geom_num_list) > 3:
|
|
779
|
+
for i in range(len(force_data["keep_dihedral_angle_spring_const"])):
|
|
780
|
+
if force_data["keep_dihedral_angle_spring_const"][i] != 0.0:
|
|
781
|
+
SKDAP = StructKeepDihedralAnglePotential(keep_dihedral_angle_spring_const=force_data["keep_dihedral_angle_spring_const"][i],
|
|
782
|
+
keep_dihedral_angle_atom_pairs=force_data["keep_dihedral_angle_atom_pairs"][i],
|
|
783
|
+
keep_dihedral_angle_angle=force_data["keep_dihedral_angle_angle"][i])
|
|
784
|
+
|
|
785
|
+
|
|
786
|
+
bias_pot_params = torch.tensor([force_data["keep_dihedral_angle_spring_const"][i], force_data["keep_dihedral_angle_angle"][i]], requires_grad=True, dtype=torch.float64)
|
|
787
|
+
bias_pot_obj_list.append(SKDAP)
|
|
788
|
+
bias_pot_obj_id_list.append("keep_dihedral_angle_"+str(i))
|
|
789
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
790
|
+
else:
|
|
791
|
+
pass
|
|
792
|
+
else:
|
|
793
|
+
pass
|
|
794
|
+
|
|
795
|
+
if len(geom_num_list) > 3:
|
|
796
|
+
for i in range(len(force_data["keep_out_of_plain_angle_spring_const"])):
|
|
797
|
+
if force_data["keep_out_of_plain_angle_spring_const"][i] != 0.0:
|
|
798
|
+
SKOPAP = StructKeepOutofPlainAnglePotential(keep_out_of_plain_angle_spring_const=force_data["keep_out_of_plain_angle_spring_const"][i],
|
|
799
|
+
keep_out_of_plain_angle_atom_pairs=force_data["keep_out_of_plain_angle_atom_pairs"][i],
|
|
800
|
+
keep_out_of_plain_angle_angle=force_data["keep_out_of_plain_angle_angle"][i])
|
|
801
|
+
bias_pot_params = torch.tensor([force_data["keep_out_of_plain_angle_spring_const"][i], force_data["keep_out_of_plain_angle_angle"][i]], requires_grad=True, dtype=torch.float64)
|
|
802
|
+
bias_pot_obj_list.append(SKOPAP)
|
|
803
|
+
bias_pot_obj_id_list.append("keep_out_of_plain_angle_"+str(i))
|
|
804
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
805
|
+
else:
|
|
806
|
+
pass
|
|
807
|
+
else:
|
|
808
|
+
pass
|
|
809
|
+
|
|
810
|
+
if len(geom_num_list) > 3:
|
|
811
|
+
for i in range(len(force_data["keep_dihedral_angle_v2_spring_const"])):
|
|
812
|
+
if not 0.0 in force_data["keep_dihedral_angle_v2_spring_const"][i]:
|
|
813
|
+
|
|
814
|
+
spring_const_tmp = force_data["keep_dihedral_angle_v2_spring_const"][i][0]
|
|
815
|
+
angle_tmp = force_data["keep_dihedral_angle_v2_angle"][i][0]
|
|
816
|
+
|
|
817
|
+
SKDAP = StructKeepDihedralAnglePotentialv2(keep_dihedral_angle_v2_spring_const=spring_const_tmp,
|
|
818
|
+
keep_dihedral_angle_v2_fragm1=force_data["keep_dihedral_angle_v2_fragm1"][i],
|
|
819
|
+
keep_dihedral_angle_v2_fragm2=force_data["keep_dihedral_angle_v2_fragm2"][i],
|
|
820
|
+
keep_dihedral_angle_v2_fragm3=force_data["keep_dihedral_angle_v2_fragm3"][i],
|
|
821
|
+
keep_dihedral_angle_v2_fragm4=force_data["keep_dihedral_angle_v2_fragm4"][i],
|
|
822
|
+
keep_dihedral_angle_v2_angle=angle_tmp)
|
|
823
|
+
bias_pot_params = torch.tensor([spring_const_tmp, angle_tmp], requires_grad=True, dtype=torch.float64)
|
|
824
|
+
|
|
825
|
+
bias_pot_obj_list.append(SKDAP)
|
|
826
|
+
bias_pot_obj_id_list.append("keep_dihedral_angle_v2_"+str(i))
|
|
827
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
828
|
+
|
|
829
|
+
else:
|
|
830
|
+
pass
|
|
831
|
+
else:
|
|
832
|
+
pass
|
|
833
|
+
|
|
834
|
+
if len(geom_num_list) > 3:
|
|
835
|
+
for i in range(len(force_data["keep_dihedral_angle_cos_potential_const"])):
|
|
836
|
+
if not 0.0 in force_data["keep_dihedral_angle_cos_potential_const"][i]:
|
|
837
|
+
|
|
838
|
+
potential_const_tmp = force_data["keep_dihedral_angle_cos_potential_const"][i][0]
|
|
839
|
+
|
|
840
|
+
angle_const_tmp = force_data["keep_dihedral_angle_cos_angle_const"][i][0]
|
|
841
|
+
|
|
842
|
+
angle_tmp = force_data["keep_dihedral_angle_cos_angle"][i][0]
|
|
843
|
+
|
|
844
|
+
|
|
845
|
+
SKDAP = StructKeepDihedralAnglePotentialCos(keep_dihedral_angle_cos_potential_const=potential_const_tmp,
|
|
846
|
+
keep_dihedral_angle_cos_angle_const=angle_const_tmp,
|
|
847
|
+
keep_dihedral_angle_cos_fragm1=force_data["keep_dihedral_angle_cos_fragm1"][i],
|
|
848
|
+
keep_dihedral_angle_cos_fragm2=force_data["keep_dihedral_angle_cos_fragm2"][i],
|
|
849
|
+
keep_dihedral_angle_cos_fragm3=force_data["keep_dihedral_angle_cos_fragm3"][i],
|
|
850
|
+
keep_dihedral_angle_cos_fragm4=force_data["keep_dihedral_angle_cos_fragm4"][i],
|
|
851
|
+
keep_dihedral_angle_cos_angle=angle_tmp)
|
|
852
|
+
bias_pot_obj_list.append(SKDAP)
|
|
853
|
+
bias_pot_obj_id_list.append("keep_dihedral_angle_cos_"+str(i))
|
|
854
|
+
bias_pot_params_list.append([])
|
|
855
|
+
else:
|
|
856
|
+
pass
|
|
857
|
+
else:
|
|
858
|
+
pass
|
|
859
|
+
|
|
860
|
+
if len(geom_num_list) > 3:
|
|
861
|
+
for i in range(len(force_data["keep_out_of_plain_angle_v2_spring_const"])):
|
|
862
|
+
if not 0.0 in force_data["keep_out_of_plain_angle_v2_spring_const"][i]:
|
|
863
|
+
|
|
864
|
+
spring_const_tmp = force_data["keep_out_of_plain_angle_v2_spring_const"][i][0]
|
|
865
|
+
angle_tmp = force_data["keep_out_of_plain_angle_v2_angle"][i][0]
|
|
866
|
+
bias_pot_params = torch.tensor([spring_const_tmp, angle_tmp], requires_grad=True, dtype=torch.float64)
|
|
867
|
+
SKOPAP = StructKeepOutofPlainAnglePotentialv2(keep_out_of_plain_angle_v2_spring_const=spring_const_tmp,
|
|
868
|
+
keep_out_of_plain_angle_v2_fragm1=force_data["keep_out_of_plain_angle_v2_fragm1"][i],
|
|
869
|
+
keep_out_of_plain_angle_v2_fragm2=force_data["keep_out_of_plain_angle_v2_fragm2"][i],
|
|
870
|
+
keep_out_of_plain_angle_v2_fragm3=force_data["keep_out_of_plain_angle_v2_fragm3"][i],
|
|
871
|
+
keep_out_of_plain_angle_v2_fragm4=force_data["keep_out_of_plain_angle_v2_fragm4"][i],
|
|
872
|
+
keep_out_of_plain_angle_v2_angle=angle_tmp)
|
|
873
|
+
|
|
874
|
+
bias_pot_obj_list.append(SKOPAP)
|
|
875
|
+
bias_pot_obj_id_list.append("keep_out_of_plain_angle_v2_"+str(i))
|
|
876
|
+
bias_pot_params_list.append(bias_pot_params)
|
|
877
|
+
else:
|
|
878
|
+
pass
|
|
879
|
+
else:
|
|
880
|
+
pass
|
|
881
|
+
|
|
882
|
+
for i in range(len(force_data["void_point_pot_spring_const"])):
|
|
883
|
+
if force_data["void_point_pot_spring_const"][i] != 0.0:
|
|
884
|
+
for j in force_data["void_point_pot_atoms"][i]:
|
|
885
|
+
VPP = VoidPointPotential(void_point_pot_spring_const=force_data["void_point_pot_spring_const"][i],
|
|
886
|
+
void_point_pot_atoms=j,
|
|
887
|
+
void_point_pot_coord=ndarray2tensor(np.array(force_data["void_point_pot_coord"][i], dtype="float64")),
|
|
888
|
+
void_point_pot_distance=force_data["void_point_pot_distance"][i],
|
|
889
|
+
void_point_pot_order=force_data["void_point_pot_order"][i])
|
|
890
|
+
bias_pot_obj_list.append(VPP)
|
|
891
|
+
bias_pot_obj_id_list.append("void_point_pot_"+str(i))
|
|
892
|
+
bias_pot_params_list.append([])
|
|
893
|
+
else:
|
|
894
|
+
pass
|
|
895
|
+
|
|
896
|
+
return bias_pot_obj_list, bias_pot_obj_id_list, bias_pot_params_list
|