MultiOptPy 1.20.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- multioptpy/Calculator/__init__.py +0 -0
- multioptpy/Calculator/ase_calculation_tools.py +424 -0
- multioptpy/Calculator/ase_tools/__init__.py +0 -0
- multioptpy/Calculator/ase_tools/fairchem.py +28 -0
- multioptpy/Calculator/ase_tools/gamess.py +19 -0
- multioptpy/Calculator/ase_tools/gaussian.py +165 -0
- multioptpy/Calculator/ase_tools/mace.py +28 -0
- multioptpy/Calculator/ase_tools/mopac.py +19 -0
- multioptpy/Calculator/ase_tools/nwchem.py +31 -0
- multioptpy/Calculator/ase_tools/orca.py +22 -0
- multioptpy/Calculator/ase_tools/pygfn0.py +37 -0
- multioptpy/Calculator/dxtb_calculation_tools.py +344 -0
- multioptpy/Calculator/emt_calculation_tools.py +458 -0
- multioptpy/Calculator/gpaw_calculation_tools.py +183 -0
- multioptpy/Calculator/lj_calculation_tools.py +314 -0
- multioptpy/Calculator/psi4_calculation_tools.py +334 -0
- multioptpy/Calculator/pwscf_calculation_tools.py +189 -0
- multioptpy/Calculator/pyscf_calculation_tools.py +327 -0
- multioptpy/Calculator/sqm1_calculation_tools.py +611 -0
- multioptpy/Calculator/sqm2_calculation_tools.py +376 -0
- multioptpy/Calculator/tblite_calculation_tools.py +352 -0
- multioptpy/Calculator/tersoff_calculation_tools.py +818 -0
- multioptpy/Constraint/__init__.py +0 -0
- multioptpy/Constraint/constraint_condition.py +834 -0
- multioptpy/Coordinate/__init__.py +0 -0
- multioptpy/Coordinate/polar_coordinate.py +199 -0
- multioptpy/Coordinate/redundant_coordinate.py +638 -0
- multioptpy/IRC/__init__.py +0 -0
- multioptpy/IRC/converge_criteria.py +28 -0
- multioptpy/IRC/dvv.py +544 -0
- multioptpy/IRC/euler.py +439 -0
- multioptpy/IRC/hpc.py +564 -0
- multioptpy/IRC/lqa.py +540 -0
- multioptpy/IRC/modekill.py +662 -0
- multioptpy/IRC/rk4.py +579 -0
- multioptpy/Interpolation/__init__.py +0 -0
- multioptpy/Interpolation/adaptive_interpolation.py +283 -0
- multioptpy/Interpolation/binomial_interpolation.py +179 -0
- multioptpy/Interpolation/geodesic_interpolation.py +785 -0
- multioptpy/Interpolation/interpolation.py +156 -0
- multioptpy/Interpolation/linear_interpolation.py +473 -0
- multioptpy/Interpolation/savitzky_golay_interpolation.py +252 -0
- multioptpy/Interpolation/spline_interpolation.py +353 -0
- multioptpy/MD/__init__.py +0 -0
- multioptpy/MD/thermostat.py +185 -0
- multioptpy/MEP/__init__.py +0 -0
- multioptpy/MEP/pathopt_bneb_force.py +443 -0
- multioptpy/MEP/pathopt_dmf_force.py +448 -0
- multioptpy/MEP/pathopt_dneb_force.py +130 -0
- multioptpy/MEP/pathopt_ewbneb_force.py +207 -0
- multioptpy/MEP/pathopt_gpneb_force.py +512 -0
- multioptpy/MEP/pathopt_lup_force.py +113 -0
- multioptpy/MEP/pathopt_neb_force.py +225 -0
- multioptpy/MEP/pathopt_nesb_force.py +205 -0
- multioptpy/MEP/pathopt_om_force.py +153 -0
- multioptpy/MEP/pathopt_qsm_force.py +174 -0
- multioptpy/MEP/pathopt_qsmv2_force.py +304 -0
- multioptpy/ModelFunction/__init__.py +7 -0
- multioptpy/ModelFunction/avoiding_model_function.py +29 -0
- multioptpy/ModelFunction/binary_image_ts_search_model_function.py +47 -0
- multioptpy/ModelFunction/conical_model_function.py +26 -0
- multioptpy/ModelFunction/opt_meci.py +50 -0
- multioptpy/ModelFunction/opt_mesx.py +47 -0
- multioptpy/ModelFunction/opt_mesx_2.py +49 -0
- multioptpy/ModelFunction/seam_model_function.py +27 -0
- multioptpy/ModelHessian/__init__.py +0 -0
- multioptpy/ModelHessian/approx_hessian.py +147 -0
- multioptpy/ModelHessian/calc_params.py +227 -0
- multioptpy/ModelHessian/fischer.py +236 -0
- multioptpy/ModelHessian/fischerd3.py +360 -0
- multioptpy/ModelHessian/fischerd4.py +398 -0
- multioptpy/ModelHessian/gfn0xtb.py +633 -0
- multioptpy/ModelHessian/gfnff.py +709 -0
- multioptpy/ModelHessian/lindh.py +165 -0
- multioptpy/ModelHessian/lindh2007d2.py +707 -0
- multioptpy/ModelHessian/lindh2007d3.py +822 -0
- multioptpy/ModelHessian/lindh2007d4.py +1030 -0
- multioptpy/ModelHessian/morse.py +106 -0
- multioptpy/ModelHessian/schlegel.py +144 -0
- multioptpy/ModelHessian/schlegeld3.py +322 -0
- multioptpy/ModelHessian/schlegeld4.py +559 -0
- multioptpy/ModelHessian/shortrange.py +346 -0
- multioptpy/ModelHessian/swartd2.py +496 -0
- multioptpy/ModelHessian/swartd3.py +706 -0
- multioptpy/ModelHessian/swartd4.py +918 -0
- multioptpy/ModelHessian/tshess.py +40 -0
- multioptpy/Optimizer/QHAdam.py +61 -0
- multioptpy/Optimizer/__init__.py +0 -0
- multioptpy/Optimizer/abc_fire.py +83 -0
- multioptpy/Optimizer/adabelief.py +58 -0
- multioptpy/Optimizer/adabound.py +68 -0
- multioptpy/Optimizer/adadelta.py +65 -0
- multioptpy/Optimizer/adaderivative.py +56 -0
- multioptpy/Optimizer/adadiff.py +68 -0
- multioptpy/Optimizer/adafactor.py +70 -0
- multioptpy/Optimizer/adam.py +65 -0
- multioptpy/Optimizer/adamax.py +62 -0
- multioptpy/Optimizer/adamod.py +83 -0
- multioptpy/Optimizer/adamw.py +65 -0
- multioptpy/Optimizer/adiis.py +523 -0
- multioptpy/Optimizer/afire_neb.py +282 -0
- multioptpy/Optimizer/block_hessian_update.py +709 -0
- multioptpy/Optimizer/c2diis.py +491 -0
- multioptpy/Optimizer/component_wise_scaling.py +405 -0
- multioptpy/Optimizer/conjugate_gradient.py +82 -0
- multioptpy/Optimizer/conjugate_gradient_neb.py +345 -0
- multioptpy/Optimizer/coordinate_locking.py +405 -0
- multioptpy/Optimizer/dic_rsirfo.py +1015 -0
- multioptpy/Optimizer/ediis.py +417 -0
- multioptpy/Optimizer/eve.py +76 -0
- multioptpy/Optimizer/fastadabelief.py +61 -0
- multioptpy/Optimizer/fire.py +77 -0
- multioptpy/Optimizer/fire2.py +249 -0
- multioptpy/Optimizer/fire_neb.py +92 -0
- multioptpy/Optimizer/gan_step.py +486 -0
- multioptpy/Optimizer/gdiis.py +609 -0
- multioptpy/Optimizer/gediis.py +203 -0
- multioptpy/Optimizer/geodesic_step.py +433 -0
- multioptpy/Optimizer/gpmin.py +633 -0
- multioptpy/Optimizer/gpr_step.py +364 -0
- multioptpy/Optimizer/gradientdescent.py +78 -0
- multioptpy/Optimizer/gradientdescent_neb.py +52 -0
- multioptpy/Optimizer/hessian_update.py +433 -0
- multioptpy/Optimizer/hybrid_rfo.py +998 -0
- multioptpy/Optimizer/kdiis.py +625 -0
- multioptpy/Optimizer/lars.py +21 -0
- multioptpy/Optimizer/lbfgs.py +253 -0
- multioptpy/Optimizer/lbfgs_neb.py +355 -0
- multioptpy/Optimizer/linesearch.py +236 -0
- multioptpy/Optimizer/lookahead.py +40 -0
- multioptpy/Optimizer/nadam.py +64 -0
- multioptpy/Optimizer/newton.py +200 -0
- multioptpy/Optimizer/prodigy.py +70 -0
- multioptpy/Optimizer/purtubation.py +16 -0
- multioptpy/Optimizer/quickmin_neb.py +245 -0
- multioptpy/Optimizer/radam.py +75 -0
- multioptpy/Optimizer/rfo_neb.py +302 -0
- multioptpy/Optimizer/ric_rfo.py +842 -0
- multioptpy/Optimizer/rl_step.py +627 -0
- multioptpy/Optimizer/rmspropgrave.py +65 -0
- multioptpy/Optimizer/rsirfo.py +1647 -0
- multioptpy/Optimizer/rsprfo.py +1056 -0
- multioptpy/Optimizer/sadam.py +60 -0
- multioptpy/Optimizer/samsgrad.py +63 -0
- multioptpy/Optimizer/tr_lbfgs.py +678 -0
- multioptpy/Optimizer/trim.py +273 -0
- multioptpy/Optimizer/trust_radius.py +207 -0
- multioptpy/Optimizer/trust_radius_neb.py +121 -0
- multioptpy/Optimizer/yogi.py +60 -0
- multioptpy/OtherMethod/__init__.py +0 -0
- multioptpy/OtherMethod/addf.py +1150 -0
- multioptpy/OtherMethod/dimer.py +895 -0
- multioptpy/OtherMethod/elastic_image_pair.py +629 -0
- multioptpy/OtherMethod/modelfunction.py +456 -0
- multioptpy/OtherMethod/newton_traj.py +454 -0
- multioptpy/OtherMethod/twopshs.py +1095 -0
- multioptpy/PESAnalyzer/__init__.py +0 -0
- multioptpy/PESAnalyzer/calc_irc_curvature.py +125 -0
- multioptpy/PESAnalyzer/cmds_analysis.py +152 -0
- multioptpy/PESAnalyzer/koopman_analysis.py +268 -0
- multioptpy/PESAnalyzer/pca_analysis.py +314 -0
- multioptpy/Parameters/__init__.py +0 -0
- multioptpy/Parameters/atomic_mass.py +20 -0
- multioptpy/Parameters/atomic_number.py +22 -0
- multioptpy/Parameters/covalent_radii.py +44 -0
- multioptpy/Parameters/d2.py +61 -0
- multioptpy/Parameters/d3.py +63 -0
- multioptpy/Parameters/d4.py +103 -0
- multioptpy/Parameters/dreiding.py +34 -0
- multioptpy/Parameters/gfn0xtb_param.py +137 -0
- multioptpy/Parameters/gfnff_param.py +315 -0
- multioptpy/Parameters/gnb.py +104 -0
- multioptpy/Parameters/parameter.py +22 -0
- multioptpy/Parameters/uff.py +72 -0
- multioptpy/Parameters/unit_values.py +20 -0
- multioptpy/Potential/AFIR_potential.py +55 -0
- multioptpy/Potential/LJ_repulsive_potential.py +345 -0
- multioptpy/Potential/__init__.py +0 -0
- multioptpy/Potential/anharmonic_keep_potential.py +28 -0
- multioptpy/Potential/asym_elllipsoidal_potential.py +718 -0
- multioptpy/Potential/electrostatic_potential.py +69 -0
- multioptpy/Potential/flux_potential.py +30 -0
- multioptpy/Potential/gaussian_potential.py +101 -0
- multioptpy/Potential/idpp.py +516 -0
- multioptpy/Potential/keep_angle_potential.py +146 -0
- multioptpy/Potential/keep_dihedral_angle_potential.py +105 -0
- multioptpy/Potential/keep_outofplain_angle_potential.py +70 -0
- multioptpy/Potential/keep_potential.py +99 -0
- multioptpy/Potential/mechano_force_potential.py +74 -0
- multioptpy/Potential/nanoreactor_potential.py +52 -0
- multioptpy/Potential/potential.py +896 -0
- multioptpy/Potential/spacer_model_potential.py +221 -0
- multioptpy/Potential/switching_potential.py +258 -0
- multioptpy/Potential/universal_potential.py +34 -0
- multioptpy/Potential/value_range_potential.py +36 -0
- multioptpy/Potential/void_point_potential.py +25 -0
- multioptpy/SQM/__init__.py +0 -0
- multioptpy/SQM/sqm1/__init__.py +0 -0
- multioptpy/SQM/sqm1/sqm1_core.py +1792 -0
- multioptpy/SQM/sqm2/__init__.py +0 -0
- multioptpy/SQM/sqm2/calc_tools.py +95 -0
- multioptpy/SQM/sqm2/sqm2_basis.py +850 -0
- multioptpy/SQM/sqm2/sqm2_bond.py +119 -0
- multioptpy/SQM/sqm2/sqm2_core.py +303 -0
- multioptpy/SQM/sqm2/sqm2_data.py +1229 -0
- multioptpy/SQM/sqm2/sqm2_disp.py +65 -0
- multioptpy/SQM/sqm2/sqm2_eeq.py +243 -0
- multioptpy/SQM/sqm2/sqm2_overlapint.py +704 -0
- multioptpy/SQM/sqm2/sqm2_qm.py +578 -0
- multioptpy/SQM/sqm2/sqm2_rep.py +66 -0
- multioptpy/SQM/sqm2/sqm2_srb.py +70 -0
- multioptpy/Thermo/__init__.py +0 -0
- multioptpy/Thermo/normal_mode_analyzer.py +865 -0
- multioptpy/Utils/__init__.py +0 -0
- multioptpy/Utils/bond_connectivity.py +264 -0
- multioptpy/Utils/calc_tools.py +884 -0
- multioptpy/Utils/oniom.py +96 -0
- multioptpy/Utils/pbc.py +48 -0
- multioptpy/Utils/riemann_curvature.py +208 -0
- multioptpy/Utils/symmetry_analyzer.py +482 -0
- multioptpy/Visualization/__init__.py +0 -0
- multioptpy/Visualization/visualization.py +156 -0
- multioptpy/WFAnalyzer/MO_analysis.py +104 -0
- multioptpy/WFAnalyzer/__init__.py +0 -0
- multioptpy/Wrapper/__init__.py +0 -0
- multioptpy/Wrapper/autots.py +1239 -0
- multioptpy/Wrapper/ieip_wrapper.py +93 -0
- multioptpy/Wrapper/md_wrapper.py +92 -0
- multioptpy/Wrapper/neb_wrapper.py +94 -0
- multioptpy/Wrapper/optimize_wrapper.py +76 -0
- multioptpy/__init__.py +5 -0
- multioptpy/entrypoints.py +916 -0
- multioptpy/fileio.py +660 -0
- multioptpy/ieip.py +340 -0
- multioptpy/interface.py +1086 -0
- multioptpy/irc.py +529 -0
- multioptpy/moleculardynamics.py +432 -0
- multioptpy/neb.py +1267 -0
- multioptpy/optimization.py +1553 -0
- multioptpy/optimizer.py +709 -0
- multioptpy-1.20.2.dist-info/METADATA +438 -0
- multioptpy-1.20.2.dist-info/RECORD +246 -0
- multioptpy-1.20.2.dist-info/WHEEL +5 -0
- multioptpy-1.20.2.dist-info/entry_points.txt +9 -0
- multioptpy-1.20.2.dist-info/licenses/LICENSE +674 -0
- multioptpy-1.20.2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,105 @@
|
|
|
1
|
+
|
|
2
|
+
from multioptpy.Parameters.parameter import UnitValueLib
|
|
3
|
+
from multioptpy.Utils.calc_tools import torch_calc_dihedral_angle_from_vec
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
class StructKeepDihedralAnglePotential:
|
|
7
|
+
def __init__(self, **kwarg):
|
|
8
|
+
self.config = kwarg
|
|
9
|
+
UVL = UnitValueLib()
|
|
10
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
11
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
12
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
13
|
+
return
|
|
14
|
+
def calc_energy(self, geom_num_list, bias_pot_params=[]):
|
|
15
|
+
"""
|
|
16
|
+
# required variables: self.config["keep_dihedral_angle_spring_const"],
|
|
17
|
+
self.config["keep_dihedral_angle_atom_pairs"]
|
|
18
|
+
self.config["keep_dihedral_angle_angle"]
|
|
19
|
+
bias_pot_params[0] : keep_dihedral_angle_spring_const
|
|
20
|
+
bias_pot_params[1] : keep_dihedral_angle_angle
|
|
21
|
+
"""
|
|
22
|
+
a1 = geom_num_list[self.config["keep_dihedral_angle_atom_pairs"][1]-1] - geom_num_list[self.config["keep_dihedral_angle_atom_pairs"][0]-1]
|
|
23
|
+
a2 = geom_num_list[self.config["keep_dihedral_angle_atom_pairs"][2]-1] - geom_num_list[self.config["keep_dihedral_angle_atom_pairs"][1]-1]
|
|
24
|
+
a3 = geom_num_list[self.config["keep_dihedral_angle_atom_pairs"][3]-1] - geom_num_list[self.config["keep_dihedral_angle_atom_pairs"][2]-1]
|
|
25
|
+
|
|
26
|
+
angle = torch.abs(torch_calc_dihedral_angle_from_vec(a1, a2, a3))
|
|
27
|
+
if len(bias_pot_params) == 0:
|
|
28
|
+
energy = 0.5 * self.config["keep_dihedral_angle_spring_const"] * (angle - torch.deg2rad(torch.tensor(self.config["keep_dihedral_angle_angle"]))) ** 2
|
|
29
|
+
else:
|
|
30
|
+
energy = 0.5 * bias_pot_params[0] * (angle - torch.deg2rad(bias_pot_params[1])) ** 2
|
|
31
|
+
|
|
32
|
+
return energy #hartree
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class StructKeepDihedralAnglePotentialv2:
|
|
36
|
+
def __init__(self, **kwarg):
|
|
37
|
+
self.config = kwarg
|
|
38
|
+
UVL = UnitValueLib()
|
|
39
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
40
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
41
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
42
|
+
return
|
|
43
|
+
def calc_energy(self, geom_num_list, bias_pot_params=[]):
|
|
44
|
+
"""
|
|
45
|
+
# required variables: self.config["keep_dihedral_angle_v2_spring_const"],
|
|
46
|
+
self.config["keep_dihedral_angle_v2_angle"],
|
|
47
|
+
self.config["keep_dihedral_angle_v2_fragm1"],
|
|
48
|
+
self.config["keep_dihedral_angle_v2_fragm2"],
|
|
49
|
+
self.config["keep_dihedral_angle_v2_fragm3"],
|
|
50
|
+
self.config["keep_dihedral_angle_v2_fragm4"],
|
|
51
|
+
bias_pot_params[0] : keep_dihedral_angle_v2_spring_const
|
|
52
|
+
bias_pot_params[1] : keep_dihedral_angle_v2_angle
|
|
53
|
+
"""
|
|
54
|
+
fragm_1_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_dihedral_angle_v2_fragm1"]) - 1], dim=0)
|
|
55
|
+
fragm_2_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_dihedral_angle_v2_fragm2"]) - 1], dim=0)
|
|
56
|
+
fragm_3_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_dihedral_angle_v2_fragm3"]) - 1], dim=0)
|
|
57
|
+
fragm_4_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_dihedral_angle_v2_fragm4"]) - 1], dim=0)
|
|
58
|
+
|
|
59
|
+
a1 = fragm_2_center - fragm_1_center
|
|
60
|
+
a2 = fragm_3_center - fragm_2_center
|
|
61
|
+
a3 = fragm_4_center - fragm_3_center
|
|
62
|
+
|
|
63
|
+
angle = torch.abs(torch_calc_dihedral_angle_from_vec(a1, a2, a3))
|
|
64
|
+
if len(bias_pot_params) == 0:
|
|
65
|
+
energy = 0.5 * self.config["keep_dihedral_angle_v2_spring_const"] * (angle - torch.deg2rad(torch.tensor(self.config["keep_dihedral_angle_v2_angle"]))) ** 2
|
|
66
|
+
else:
|
|
67
|
+
energy = 0.5 * bias_pot_params[0] * (angle - torch.deg2rad(bias_pot_params[1])) ** 2
|
|
68
|
+
return energy #hartree
|
|
69
|
+
|
|
70
|
+
class StructKeepDihedralAnglePotentialCos:
|
|
71
|
+
def __init__(self, **kwarg):
|
|
72
|
+
self.config = kwarg
|
|
73
|
+
UVL = UnitValueLib()
|
|
74
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
75
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
76
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
77
|
+
return
|
|
78
|
+
def calc_energy(self, geom_num_list, bias_pot_params=[]):
|
|
79
|
+
"""
|
|
80
|
+
# required variables: self.config["keep_dihedral_angle_cos_potential_const"],
|
|
81
|
+
self.config["keep_dihedral_angle_cos_angle_const"],
|
|
82
|
+
self.config["keep_dihedral_angle_cos_angle"],
|
|
83
|
+
self.config["keep_dihedral_angle_cos_fragm1"],
|
|
84
|
+
self.config["keep_dihedral_angle_cos_fragm2"],
|
|
85
|
+
self.config["keep_dihedral_angle_cos_fragm3"],
|
|
86
|
+
self.config["keep_dihedral_angle_cos_fragm4"],
|
|
87
|
+
|
|
88
|
+
"""
|
|
89
|
+
potential_const = float(self.config["keep_dihedral_angle_cos_potential_const"])
|
|
90
|
+
angle_const = float(self.config["keep_dihedral_angle_cos_angle_const"])
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
fragm_1_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_dihedral_angle_cos_fragm1"]) - 1], dim=0)
|
|
94
|
+
fragm_2_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_dihedral_angle_cos_fragm2"]) - 1], dim=0)
|
|
95
|
+
fragm_3_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_dihedral_angle_cos_fragm3"]) - 1], dim=0)
|
|
96
|
+
fragm_4_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_dihedral_angle_cos_fragm4"]) - 1], dim=0)
|
|
97
|
+
|
|
98
|
+
a1 = fragm_2_center - fragm_1_center
|
|
99
|
+
a2 = fragm_3_center - fragm_2_center
|
|
100
|
+
a3 = fragm_4_center - fragm_3_center
|
|
101
|
+
|
|
102
|
+
angle = torch_calc_dihedral_angle_from_vec(a1, a2, a3)
|
|
103
|
+
energy = 0.5 * potential_const * (1.0 -1* torch.cos(angle_const * angle - (torch.deg2rad(torch.tensor(self.config["keep_dihedral_angle_cos_angle"])))))
|
|
104
|
+
|
|
105
|
+
return energy #hartree
|
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
|
|
2
|
+
from multioptpy.Parameters.parameter import UnitValueLib
|
|
3
|
+
from multioptpy.Utils.calc_tools import torch_calc_outofplain_angle_from_vec
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class StructKeepOutofPlainAnglePotential:
|
|
8
|
+
def __init__(self, **kwarg):
|
|
9
|
+
self.config = kwarg
|
|
10
|
+
UVL = UnitValueLib()
|
|
11
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
12
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
13
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
14
|
+
return
|
|
15
|
+
def calc_energy(self, geom_num_list, bias_pot_params=[]):
|
|
16
|
+
"""
|
|
17
|
+
# required variables: self.config["keep_out_of_plain_angle_spring_const"],
|
|
18
|
+
self.config["keep_out_of_plain_angle_atom_pairs"]
|
|
19
|
+
self.config["keep_out_of_plain_angle_angle"]
|
|
20
|
+
bias_pot_params[0] : keep_out_of_plain_angle_spring_const
|
|
21
|
+
bias_pot_params[1] : keep_out_of_plain_angle_angle
|
|
22
|
+
|
|
23
|
+
"""
|
|
24
|
+
a1 = geom_num_list[self.config["keep_out_of_plain_angle_atom_pairs"][1]-1] - geom_num_list[self.config["keep_out_of_plain_angle_atom_pairs"][0]-1]
|
|
25
|
+
a2 = geom_num_list[self.config["keep_out_of_plain_angle_atom_pairs"][2]-1] - geom_num_list[self.config["keep_out_of_plain_angle_atom_pairs"][0]-1]
|
|
26
|
+
a3 = geom_num_list[self.config["keep_out_of_plain_angle_atom_pairs"][3]-1] - geom_num_list[self.config["keep_out_of_plain_angle_atom_pairs"][0]-1]
|
|
27
|
+
|
|
28
|
+
angle = torch_calc_outofplain_angle_from_vec(a1, a2, a3)
|
|
29
|
+
if len(bias_pot_params) == 0:
|
|
30
|
+
energy = 0.5 * self.config["keep_out_of_plain_angle_spring_const"] * (angle - torch.deg2rad(torch.tensor(self.config["keep_out_of_plain_angle_angle"]))) ** 2
|
|
31
|
+
else:
|
|
32
|
+
energy = 0.5 * bias_pot_params[0] * (angle - torch.deg2rad(bias_pot_params[1])) ** 2
|
|
33
|
+
return energy #hartree
|
|
34
|
+
|
|
35
|
+
class StructKeepOutofPlainAnglePotentialv2:
|
|
36
|
+
def __init__(self, **kwarg):
|
|
37
|
+
self.config = kwarg
|
|
38
|
+
UVL = UnitValueLib()
|
|
39
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
40
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
41
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
42
|
+
return
|
|
43
|
+
|
|
44
|
+
def calc_energy(self, geom_num_list, bias_pot_params=[]):
|
|
45
|
+
"""
|
|
46
|
+
# required variables: self.config["keep_out_of_plain_angle_v2_spring_const"],
|
|
47
|
+
self.config["keep_out_of_plain_angle_v2_angle"],
|
|
48
|
+
self.config["keep_out_of_plain_angle_v2_fragm1"],
|
|
49
|
+
self.config["keep_out_of_plain_angle_v2_fragm2"],
|
|
50
|
+
self.config["keep_out_of_plain_angle_v2_fragm3"],
|
|
51
|
+
self.config["keep_out_of_plain_angle_v2_fragm4"],
|
|
52
|
+
|
|
53
|
+
"""
|
|
54
|
+
fragm_1_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_out_of_plain_angle_v2_fragm1"]) - 1], dim=0)
|
|
55
|
+
fragm_2_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_out_of_plain_angle_v2_fragm2"]) - 1], dim=0)
|
|
56
|
+
fragm_3_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_out_of_plain_angle_v2_fragm3"]) - 1], dim=0)
|
|
57
|
+
fragm_4_center = torch.mean(geom_num_list[torch.tensor(self.config["keep_out_of_plain_angle_v2_fragm4"]) - 1], dim=0)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
a1 = fragm_2_center - fragm_1_center
|
|
61
|
+
a2 = fragm_3_center - fragm_1_center
|
|
62
|
+
a3 = fragm_4_center - fragm_1_center
|
|
63
|
+
|
|
64
|
+
angle = torch_calc_outofplain_angle_from_vec(a1, a2, a3)
|
|
65
|
+
if len(bias_pot_params) == 0:
|
|
66
|
+
energy = 0.5 * self.config["keep_out_of_plain_angle_v2_spring_const"] * (angle - torch.deg2rad(torch.tensor(self.config["keep_out_of_plain_angle_v2_angle"]))) ** 2
|
|
67
|
+
else:
|
|
68
|
+
energy = 0.5 * bias_pot_params[0] * (angle - torch.deg2rad(bias_pot_params[1])) ** 2
|
|
69
|
+
return energy #hartree
|
|
70
|
+
|
|
@@ -0,0 +1,99 @@
|
|
|
1
|
+
|
|
2
|
+
from multioptpy.Parameters.parameter import UnitValueLib
|
|
3
|
+
import torch
|
|
4
|
+
|
|
5
|
+
class StructKeepPotential:
|
|
6
|
+
def __init__(self, **kwarg):
|
|
7
|
+
self.config = kwarg
|
|
8
|
+
UVL = UnitValueLib()
|
|
9
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
10
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
11
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
12
|
+
return
|
|
13
|
+
|
|
14
|
+
def calc_energy(self, geom_num_list, bias_pot_params=[]):
|
|
15
|
+
"""
|
|
16
|
+
# required variables: self.config["keep_pot_spring_const"],
|
|
17
|
+
self.config["keep_pot_distance"],
|
|
18
|
+
self.config["keep_pot_atom_pairs"],
|
|
19
|
+
bias_pot_params[0] : keep_pot_spring_const
|
|
20
|
+
bias_pot_params[1] : keep_pot_distance
|
|
21
|
+
"""
|
|
22
|
+
vector = torch.linalg.norm((geom_num_list[self.config["keep_pot_atom_pairs"][0]-1] - geom_num_list[self.config["keep_pot_atom_pairs"][1]-1]), ord=2)
|
|
23
|
+
if len(bias_pot_params) == 0:
|
|
24
|
+
energy = 0.5 * self.config["keep_pot_spring_const"] * (vector - self.config["keep_pot_distance"]/self.bohr2angstroms) ** 2
|
|
25
|
+
else:
|
|
26
|
+
energy = 0.5 * bias_pot_params[0] * (vector - bias_pot_params[1]/self.bohr2angstroms) ** 2
|
|
27
|
+
return energy #hartree
|
|
28
|
+
|
|
29
|
+
class StructKeepPotentialv2:
|
|
30
|
+
def __init__(self, **kwarg):
|
|
31
|
+
self.config = kwarg
|
|
32
|
+
UVL = UnitValueLib()
|
|
33
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
34
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
35
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
36
|
+
return
|
|
37
|
+
def calc_energy(self, geom_num_list, bias_pot_params=[]):
|
|
38
|
+
"""
|
|
39
|
+
# required variables: self.config["keep_pot_v2_spring_const"],
|
|
40
|
+
self.config["keep_pot_v2_distance"],
|
|
41
|
+
self.config["keep_pot_v2_fragm1"],
|
|
42
|
+
self.config["keep_pot_v2_fragm2"],
|
|
43
|
+
bias_pot_params[0] : keep_pot_v2_spring_const
|
|
44
|
+
bias_pot_params[1] : keep_pot_v2_distance
|
|
45
|
+
"""
|
|
46
|
+
fragm_1_indices = torch.tensor(self.config["keep_pot_v2_fragm1"]) - 1
|
|
47
|
+
fragm_2_indices = torch.tensor(self.config["keep_pot_v2_fragm2"]) - 1
|
|
48
|
+
|
|
49
|
+
fragm_1_center = torch.mean(geom_num_list[fragm_1_indices], dim=0)
|
|
50
|
+
fragm_2_center = torch.mean(geom_num_list[fragm_2_indices], dim=0)
|
|
51
|
+
|
|
52
|
+
distance = torch.linalg.norm(fragm_1_center - fragm_2_center, ord=2)
|
|
53
|
+
if len(bias_pot_params) == 0:
|
|
54
|
+
energy = 0.5 * self.config["keep_pot_v2_spring_const"] * (distance - self.config["keep_pot_v2_distance"]/self.bohr2angstroms) ** 2
|
|
55
|
+
|
|
56
|
+
else:
|
|
57
|
+
energy = 0.5 * bias_pot_params[0] * (distance - bias_pot_params[1]/self.bohr2angstroms) ** 2
|
|
58
|
+
|
|
59
|
+
return energy #hartree
|
|
60
|
+
|
|
61
|
+
class StructKeepPotentialAniso:
|
|
62
|
+
def __init__(self, **kwarg):
|
|
63
|
+
self.config = kwarg
|
|
64
|
+
UVL = UnitValueLib()
|
|
65
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
66
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
67
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
68
|
+
return
|
|
69
|
+
def calc_energy(self, geom_num_list, bias_pot_params=[]):
|
|
70
|
+
"""
|
|
71
|
+
# required variables: self.config["aniso_keep_pot_v2_spring_const_mat"]
|
|
72
|
+
self.config["aniso_keep_pot_v2_dist"]
|
|
73
|
+
self.config["aniso_keep_pot_v2_fragm1"]
|
|
74
|
+
self.config["aniso_keep_pot_v2_fragm2"]
|
|
75
|
+
|
|
76
|
+
"""
|
|
77
|
+
fragm_1_center = torch.tensor([0.0, 0.0, 0.0], dtype=torch.float64, requires_grad=True)
|
|
78
|
+
for i in self.config["aniso_keep_pot_v2_fragm1"]:
|
|
79
|
+
fragm_1_center = fragm_1_center + geom_num_list[i-1]
|
|
80
|
+
|
|
81
|
+
fragm_1_center = fragm_1_center / len(self.config["aniso_keep_pot_v2_fragm1"])
|
|
82
|
+
|
|
83
|
+
fragm_2_center = torch.tensor([0.0, 0.0, 0.0], dtype=torch.float64, requires_grad=True)
|
|
84
|
+
for i in self.config["aniso_keep_pot_v2_fragm2"]:
|
|
85
|
+
fragm_2_center = fragm_2_center + geom_num_list[i-1]
|
|
86
|
+
|
|
87
|
+
fragm_2_center = fragm_2_center / len(self.config["aniso_keep_pot_v2_fragm2"])
|
|
88
|
+
x_dist = torch.abs(fragm_1_center[0] - fragm_2_center[0])
|
|
89
|
+
y_dist = torch.abs(fragm_1_center[1] - fragm_2_center[1])
|
|
90
|
+
z_dist = torch.abs(fragm_1_center[2] - fragm_2_center[2])
|
|
91
|
+
eq_dist = self.config["aniso_keep_pot_v2_dist"] / (3 ** 0.5) / self.bohr2angstroms
|
|
92
|
+
dist_vec = torch.stack([(x_dist - eq_dist) ** 2,(y_dist - eq_dist) ** 2,(z_dist - eq_dist) ** 2])
|
|
93
|
+
dist_vec = torch.reshape(dist_vec, (3, 1))
|
|
94
|
+
vec_pot = torch.matmul(torch.tensor(self.config["aniso_keep_pot_v2_spring_const_mat"], dtype=torch.float32), dist_vec)
|
|
95
|
+
|
|
96
|
+
energy = torch.sum(vec_pot)
|
|
97
|
+
|
|
98
|
+
|
|
99
|
+
return energy #hartree
|
|
@@ -0,0 +1,74 @@
|
|
|
1
|
+
from multioptpy.Parameters.parameter import UnitValueLib
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
|
|
5
|
+
class LinearMechanoForcePotential:
|
|
6
|
+
def __init__(self, **kwarg):
|
|
7
|
+
#ref: J. Am. Chem. Soc. 2009, 131, 18, 6377–6379
|
|
8
|
+
#https://doi.org/10.1021/ja8095834
|
|
9
|
+
#FMPES
|
|
10
|
+
# This implementation is not tested yet.
|
|
11
|
+
self.config = kwarg
|
|
12
|
+
UVL = UnitValueLib()
|
|
13
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
14
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
15
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
16
|
+
self.pN2au = 1.213 * 10 ** (-5)
|
|
17
|
+
return
|
|
18
|
+
|
|
19
|
+
def calc_energy(self, geom_num_list, bias_pot_params=[]):
|
|
20
|
+
"""
|
|
21
|
+
# required variables: self.config["linear_mechano_force"],
|
|
22
|
+
self.config["linear_mechano_force_atoms_1"],
|
|
23
|
+
self.config["linear_mechano_force_atoms_2"],
|
|
24
|
+
bias_pot_params[0] : linear_mechano_force
|
|
25
|
+
"""
|
|
26
|
+
direction_1 = geom_num_list[self.config["linear_mechano_force_atoms_1"][1] - 1] - geom_num_list[self.config["linear_mechano_force_atoms_1"][0] - 1]
|
|
27
|
+
direction_2 = geom_num_list[self.config["linear_mechano_force_atoms_2"][1] - 1] - geom_num_list[self.config["linear_mechano_force_atoms_2"][0] - 1]
|
|
28
|
+
norm_direction_1 = torch.linalg.norm(direction_1)
|
|
29
|
+
norm_direction_2 = torch.linalg.norm(direction_2)
|
|
30
|
+
unit_direction_1 = direction_1 / norm_direction_1
|
|
31
|
+
unit_direction_2 = direction_2 / norm_direction_2
|
|
32
|
+
|
|
33
|
+
if len(bias_pot_params) == 0:
|
|
34
|
+
force_magnitude = 0.5 * self.config["linear_mechano_force"] * self.pN2au
|
|
35
|
+
energy = force_magnitude * torch.sum(unit_direction_1) + force_magnitude * torch.sum(unit_direction_2)
|
|
36
|
+
else:
|
|
37
|
+
force_magnitude = 0.5 * self.pN2au * bias_pot_params[0]
|
|
38
|
+
energy = force_magnitude * torch.sum(unit_direction_1) + force_magnitude * torch.sum(unit_direction_2)
|
|
39
|
+
return energy #hartree
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
class LinearMechanoForcePotentialv2:
|
|
43
|
+
def __init__(self, **kwarg):
|
|
44
|
+
#ref: J. Am. Chem. Soc. 2009, 131, 18, 6377–6379
|
|
45
|
+
#https://doi.org/10.1021/ja8095834
|
|
46
|
+
#FMPES
|
|
47
|
+
# This implementation is not tested yet.
|
|
48
|
+
self.config = kwarg
|
|
49
|
+
UVL = UnitValueLib()
|
|
50
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
51
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
52
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
53
|
+
self.pN2au = 1.213 * 10 ** (-5)
|
|
54
|
+
return
|
|
55
|
+
|
|
56
|
+
def calc_energy(self, geom_num_list, bias_pot_params=[]):
|
|
57
|
+
"""
|
|
58
|
+
# required variables: self.config["linear_mechano_force_v2"],
|
|
59
|
+
self.config["linear_mechano_force_atom_v2"],
|
|
60
|
+
bias_pot_params[0] : linear_mechano_force_v2
|
|
61
|
+
"""
|
|
62
|
+
|
|
63
|
+
direction = geom_num_list[self.config["linear_mechano_force_atom_v2"][0] - 1] - geom_num_list[self.config["linear_mechano_force_atom_v2"][1] - 1]
|
|
64
|
+
norm_direction = torch.linalg.norm(direction)
|
|
65
|
+
|
|
66
|
+
if len(bias_pot_params) == 0:
|
|
67
|
+
force_magnitude = self.config["linear_mechano_force"] * self.pN2au
|
|
68
|
+
energy = -1 * force_magnitude * norm_direction
|
|
69
|
+
else:
|
|
70
|
+
force_magnitude = self.pN2au * bias_pot_params[0]
|
|
71
|
+
energy = -1 * force_magnitude * norm_direction
|
|
72
|
+
|
|
73
|
+
return energy #hartree
|
|
74
|
+
|
|
@@ -0,0 +1,52 @@
|
|
|
1
|
+
|
|
2
|
+
from multioptpy.Parameters.parameter import UnitValueLib, atomic_mass
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class NanoReactorPotential:
|
|
9
|
+
def __init__(self, **kwarg):
|
|
10
|
+
# ref.:https://doi.org/10.1038/nchem.2099, https://doi.org/10.1021/acs.jctc.4c00826
|
|
11
|
+
self.config = kwarg
|
|
12
|
+
UVL = UnitValueLib()
|
|
13
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
14
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
15
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
16
|
+
self.au2sec = UVL.au2sec
|
|
17
|
+
self.inner_wall = torch.tensor(self.config["inner_wall"] / self.bohr2angstroms, dtype=torch.float64)
|
|
18
|
+
self.outer_wall = torch.tensor(self.config["outer_wall"] / self.bohr2angstroms, dtype=torch.float64)
|
|
19
|
+
self.contraction_time = torch.tensor(self.config["contraction_time"] * 10 ** -12 / self.au2sec, dtype=torch.float64) #pico-sec to au
|
|
20
|
+
self.expansion_time = torch.tensor(self.config["expansion_time"] * 10 ** -12 / self.au2sec, dtype=torch.float64) #pico-sec to au
|
|
21
|
+
|
|
22
|
+
self.contraction_force_const = self.config["contraction_force_const"] / self.hartree2kcalmol * self.bohr2angstroms ** 2 # kcal/mol/A^2 to hartree/bohr^2
|
|
23
|
+
self.expansion_force_const = self.config["expansion_force_const"] / self.hartree2kcalmol * self.bohr2angstroms ** 2 # kcal/mol/A^2 to hartree/bohr^2
|
|
24
|
+
self.element_list = self.config["element_list"]
|
|
25
|
+
self.atom_mass_list = torch.tensor([[atomic_mass(element)] for element in self.element_list], dtype=torch.float64)
|
|
26
|
+
|
|
27
|
+
return
|
|
28
|
+
|
|
29
|
+
def calc_energy(self, geom_num_list, time):#geom_num_list: (n_atoms, 3), bohr time: au
|
|
30
|
+
"""
|
|
31
|
+
# required variables: self.inner_wall,
|
|
32
|
+
self.outer_wall,
|
|
33
|
+
self.contraction_time,
|
|
34
|
+
self.expansion_time,
|
|
35
|
+
self.contraction_force_const,
|
|
36
|
+
self.expansion_force_const,
|
|
37
|
+
self.element_list
|
|
38
|
+
"""
|
|
39
|
+
distance_list = torch.linalg.norm(geom_num_list, ord=2, dim=1).reshape(-1, 1)
|
|
40
|
+
distance_inner = distance_list - self.inner_wall
|
|
41
|
+
distance_outer = distance_list - self.outer_wall
|
|
42
|
+
|
|
43
|
+
f_t = torch.heaviside(torch.floor(time / (self.contraction_time + self.expansion_time)) - (time / (self.contraction_time + self.expansion_time)) + (self.contraction_time / (self.contraction_time + self.expansion_time)), torch.tensor(0.5, dtype=torch.float64))
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
U_c = torch.where(distance_list < self.inner_wall, self.atom_mass_list * 0.5 * self.contraction_force_const * distance_inner ** 2, torch.zeros_like(distance_inner))
|
|
47
|
+
|
|
48
|
+
U_e = torch.where(distance_list > self.outer_wall, self.atom_mass_list * 0.5 * self.contraction_force_const * distance_outer ** 2,
|
|
49
|
+
torch.where(distance_list < self.inner_wall, self.atom_mass_list * 0.5 * self.expansion_force_const * distance_inner ** 2, torch.zeros_like(distance_list)))
|
|
50
|
+
energy = torch.sum(f_t * U_c + (1.0 - f_t) * U_e)
|
|
51
|
+
return energy #hartree
|
|
52
|
+
|