MultiOptPy 1.20.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- multioptpy/Calculator/__init__.py +0 -0
- multioptpy/Calculator/ase_calculation_tools.py +424 -0
- multioptpy/Calculator/ase_tools/__init__.py +0 -0
- multioptpy/Calculator/ase_tools/fairchem.py +28 -0
- multioptpy/Calculator/ase_tools/gamess.py +19 -0
- multioptpy/Calculator/ase_tools/gaussian.py +165 -0
- multioptpy/Calculator/ase_tools/mace.py +28 -0
- multioptpy/Calculator/ase_tools/mopac.py +19 -0
- multioptpy/Calculator/ase_tools/nwchem.py +31 -0
- multioptpy/Calculator/ase_tools/orca.py +22 -0
- multioptpy/Calculator/ase_tools/pygfn0.py +37 -0
- multioptpy/Calculator/dxtb_calculation_tools.py +344 -0
- multioptpy/Calculator/emt_calculation_tools.py +458 -0
- multioptpy/Calculator/gpaw_calculation_tools.py +183 -0
- multioptpy/Calculator/lj_calculation_tools.py +314 -0
- multioptpy/Calculator/psi4_calculation_tools.py +334 -0
- multioptpy/Calculator/pwscf_calculation_tools.py +189 -0
- multioptpy/Calculator/pyscf_calculation_tools.py +327 -0
- multioptpy/Calculator/sqm1_calculation_tools.py +611 -0
- multioptpy/Calculator/sqm2_calculation_tools.py +376 -0
- multioptpy/Calculator/tblite_calculation_tools.py +352 -0
- multioptpy/Calculator/tersoff_calculation_tools.py +818 -0
- multioptpy/Constraint/__init__.py +0 -0
- multioptpy/Constraint/constraint_condition.py +834 -0
- multioptpy/Coordinate/__init__.py +0 -0
- multioptpy/Coordinate/polar_coordinate.py +199 -0
- multioptpy/Coordinate/redundant_coordinate.py +638 -0
- multioptpy/IRC/__init__.py +0 -0
- multioptpy/IRC/converge_criteria.py +28 -0
- multioptpy/IRC/dvv.py +544 -0
- multioptpy/IRC/euler.py +439 -0
- multioptpy/IRC/hpc.py +564 -0
- multioptpy/IRC/lqa.py +540 -0
- multioptpy/IRC/modekill.py +662 -0
- multioptpy/IRC/rk4.py +579 -0
- multioptpy/Interpolation/__init__.py +0 -0
- multioptpy/Interpolation/adaptive_interpolation.py +283 -0
- multioptpy/Interpolation/binomial_interpolation.py +179 -0
- multioptpy/Interpolation/geodesic_interpolation.py +785 -0
- multioptpy/Interpolation/interpolation.py +156 -0
- multioptpy/Interpolation/linear_interpolation.py +473 -0
- multioptpy/Interpolation/savitzky_golay_interpolation.py +252 -0
- multioptpy/Interpolation/spline_interpolation.py +353 -0
- multioptpy/MD/__init__.py +0 -0
- multioptpy/MD/thermostat.py +185 -0
- multioptpy/MEP/__init__.py +0 -0
- multioptpy/MEP/pathopt_bneb_force.py +443 -0
- multioptpy/MEP/pathopt_dmf_force.py +448 -0
- multioptpy/MEP/pathopt_dneb_force.py +130 -0
- multioptpy/MEP/pathopt_ewbneb_force.py +207 -0
- multioptpy/MEP/pathopt_gpneb_force.py +512 -0
- multioptpy/MEP/pathopt_lup_force.py +113 -0
- multioptpy/MEP/pathopt_neb_force.py +225 -0
- multioptpy/MEP/pathopt_nesb_force.py +205 -0
- multioptpy/MEP/pathopt_om_force.py +153 -0
- multioptpy/MEP/pathopt_qsm_force.py +174 -0
- multioptpy/MEP/pathopt_qsmv2_force.py +304 -0
- multioptpy/ModelFunction/__init__.py +7 -0
- multioptpy/ModelFunction/avoiding_model_function.py +29 -0
- multioptpy/ModelFunction/binary_image_ts_search_model_function.py +47 -0
- multioptpy/ModelFunction/conical_model_function.py +26 -0
- multioptpy/ModelFunction/opt_meci.py +50 -0
- multioptpy/ModelFunction/opt_mesx.py +47 -0
- multioptpy/ModelFunction/opt_mesx_2.py +49 -0
- multioptpy/ModelFunction/seam_model_function.py +27 -0
- multioptpy/ModelHessian/__init__.py +0 -0
- multioptpy/ModelHessian/approx_hessian.py +147 -0
- multioptpy/ModelHessian/calc_params.py +227 -0
- multioptpy/ModelHessian/fischer.py +236 -0
- multioptpy/ModelHessian/fischerd3.py +360 -0
- multioptpy/ModelHessian/fischerd4.py +398 -0
- multioptpy/ModelHessian/gfn0xtb.py +633 -0
- multioptpy/ModelHessian/gfnff.py +709 -0
- multioptpy/ModelHessian/lindh.py +165 -0
- multioptpy/ModelHessian/lindh2007d2.py +707 -0
- multioptpy/ModelHessian/lindh2007d3.py +822 -0
- multioptpy/ModelHessian/lindh2007d4.py +1030 -0
- multioptpy/ModelHessian/morse.py +106 -0
- multioptpy/ModelHessian/schlegel.py +144 -0
- multioptpy/ModelHessian/schlegeld3.py +322 -0
- multioptpy/ModelHessian/schlegeld4.py +559 -0
- multioptpy/ModelHessian/shortrange.py +346 -0
- multioptpy/ModelHessian/swartd2.py +496 -0
- multioptpy/ModelHessian/swartd3.py +706 -0
- multioptpy/ModelHessian/swartd4.py +918 -0
- multioptpy/ModelHessian/tshess.py +40 -0
- multioptpy/Optimizer/QHAdam.py +61 -0
- multioptpy/Optimizer/__init__.py +0 -0
- multioptpy/Optimizer/abc_fire.py +83 -0
- multioptpy/Optimizer/adabelief.py +58 -0
- multioptpy/Optimizer/adabound.py +68 -0
- multioptpy/Optimizer/adadelta.py +65 -0
- multioptpy/Optimizer/adaderivative.py +56 -0
- multioptpy/Optimizer/adadiff.py +68 -0
- multioptpy/Optimizer/adafactor.py +70 -0
- multioptpy/Optimizer/adam.py +65 -0
- multioptpy/Optimizer/adamax.py +62 -0
- multioptpy/Optimizer/adamod.py +83 -0
- multioptpy/Optimizer/adamw.py +65 -0
- multioptpy/Optimizer/adiis.py +523 -0
- multioptpy/Optimizer/afire_neb.py +282 -0
- multioptpy/Optimizer/block_hessian_update.py +709 -0
- multioptpy/Optimizer/c2diis.py +491 -0
- multioptpy/Optimizer/component_wise_scaling.py +405 -0
- multioptpy/Optimizer/conjugate_gradient.py +82 -0
- multioptpy/Optimizer/conjugate_gradient_neb.py +345 -0
- multioptpy/Optimizer/coordinate_locking.py +405 -0
- multioptpy/Optimizer/dic_rsirfo.py +1015 -0
- multioptpy/Optimizer/ediis.py +417 -0
- multioptpy/Optimizer/eve.py +76 -0
- multioptpy/Optimizer/fastadabelief.py +61 -0
- multioptpy/Optimizer/fire.py +77 -0
- multioptpy/Optimizer/fire2.py +249 -0
- multioptpy/Optimizer/fire_neb.py +92 -0
- multioptpy/Optimizer/gan_step.py +486 -0
- multioptpy/Optimizer/gdiis.py +609 -0
- multioptpy/Optimizer/gediis.py +203 -0
- multioptpy/Optimizer/geodesic_step.py +433 -0
- multioptpy/Optimizer/gpmin.py +633 -0
- multioptpy/Optimizer/gpr_step.py +364 -0
- multioptpy/Optimizer/gradientdescent.py +78 -0
- multioptpy/Optimizer/gradientdescent_neb.py +52 -0
- multioptpy/Optimizer/hessian_update.py +433 -0
- multioptpy/Optimizer/hybrid_rfo.py +998 -0
- multioptpy/Optimizer/kdiis.py +625 -0
- multioptpy/Optimizer/lars.py +21 -0
- multioptpy/Optimizer/lbfgs.py +253 -0
- multioptpy/Optimizer/lbfgs_neb.py +355 -0
- multioptpy/Optimizer/linesearch.py +236 -0
- multioptpy/Optimizer/lookahead.py +40 -0
- multioptpy/Optimizer/nadam.py +64 -0
- multioptpy/Optimizer/newton.py +200 -0
- multioptpy/Optimizer/prodigy.py +70 -0
- multioptpy/Optimizer/purtubation.py +16 -0
- multioptpy/Optimizer/quickmin_neb.py +245 -0
- multioptpy/Optimizer/radam.py +75 -0
- multioptpy/Optimizer/rfo_neb.py +302 -0
- multioptpy/Optimizer/ric_rfo.py +842 -0
- multioptpy/Optimizer/rl_step.py +627 -0
- multioptpy/Optimizer/rmspropgrave.py +65 -0
- multioptpy/Optimizer/rsirfo.py +1647 -0
- multioptpy/Optimizer/rsprfo.py +1056 -0
- multioptpy/Optimizer/sadam.py +60 -0
- multioptpy/Optimizer/samsgrad.py +63 -0
- multioptpy/Optimizer/tr_lbfgs.py +678 -0
- multioptpy/Optimizer/trim.py +273 -0
- multioptpy/Optimizer/trust_radius.py +207 -0
- multioptpy/Optimizer/trust_radius_neb.py +121 -0
- multioptpy/Optimizer/yogi.py +60 -0
- multioptpy/OtherMethod/__init__.py +0 -0
- multioptpy/OtherMethod/addf.py +1150 -0
- multioptpy/OtherMethod/dimer.py +895 -0
- multioptpy/OtherMethod/elastic_image_pair.py +629 -0
- multioptpy/OtherMethod/modelfunction.py +456 -0
- multioptpy/OtherMethod/newton_traj.py +454 -0
- multioptpy/OtherMethod/twopshs.py +1095 -0
- multioptpy/PESAnalyzer/__init__.py +0 -0
- multioptpy/PESAnalyzer/calc_irc_curvature.py +125 -0
- multioptpy/PESAnalyzer/cmds_analysis.py +152 -0
- multioptpy/PESAnalyzer/koopman_analysis.py +268 -0
- multioptpy/PESAnalyzer/pca_analysis.py +314 -0
- multioptpy/Parameters/__init__.py +0 -0
- multioptpy/Parameters/atomic_mass.py +20 -0
- multioptpy/Parameters/atomic_number.py +22 -0
- multioptpy/Parameters/covalent_radii.py +44 -0
- multioptpy/Parameters/d2.py +61 -0
- multioptpy/Parameters/d3.py +63 -0
- multioptpy/Parameters/d4.py +103 -0
- multioptpy/Parameters/dreiding.py +34 -0
- multioptpy/Parameters/gfn0xtb_param.py +137 -0
- multioptpy/Parameters/gfnff_param.py +315 -0
- multioptpy/Parameters/gnb.py +104 -0
- multioptpy/Parameters/parameter.py +22 -0
- multioptpy/Parameters/uff.py +72 -0
- multioptpy/Parameters/unit_values.py +20 -0
- multioptpy/Potential/AFIR_potential.py +55 -0
- multioptpy/Potential/LJ_repulsive_potential.py +345 -0
- multioptpy/Potential/__init__.py +0 -0
- multioptpy/Potential/anharmonic_keep_potential.py +28 -0
- multioptpy/Potential/asym_elllipsoidal_potential.py +718 -0
- multioptpy/Potential/electrostatic_potential.py +69 -0
- multioptpy/Potential/flux_potential.py +30 -0
- multioptpy/Potential/gaussian_potential.py +101 -0
- multioptpy/Potential/idpp.py +516 -0
- multioptpy/Potential/keep_angle_potential.py +146 -0
- multioptpy/Potential/keep_dihedral_angle_potential.py +105 -0
- multioptpy/Potential/keep_outofplain_angle_potential.py +70 -0
- multioptpy/Potential/keep_potential.py +99 -0
- multioptpy/Potential/mechano_force_potential.py +74 -0
- multioptpy/Potential/nanoreactor_potential.py +52 -0
- multioptpy/Potential/potential.py +896 -0
- multioptpy/Potential/spacer_model_potential.py +221 -0
- multioptpy/Potential/switching_potential.py +258 -0
- multioptpy/Potential/universal_potential.py +34 -0
- multioptpy/Potential/value_range_potential.py +36 -0
- multioptpy/Potential/void_point_potential.py +25 -0
- multioptpy/SQM/__init__.py +0 -0
- multioptpy/SQM/sqm1/__init__.py +0 -0
- multioptpy/SQM/sqm1/sqm1_core.py +1792 -0
- multioptpy/SQM/sqm2/__init__.py +0 -0
- multioptpy/SQM/sqm2/calc_tools.py +95 -0
- multioptpy/SQM/sqm2/sqm2_basis.py +850 -0
- multioptpy/SQM/sqm2/sqm2_bond.py +119 -0
- multioptpy/SQM/sqm2/sqm2_core.py +303 -0
- multioptpy/SQM/sqm2/sqm2_data.py +1229 -0
- multioptpy/SQM/sqm2/sqm2_disp.py +65 -0
- multioptpy/SQM/sqm2/sqm2_eeq.py +243 -0
- multioptpy/SQM/sqm2/sqm2_overlapint.py +704 -0
- multioptpy/SQM/sqm2/sqm2_qm.py +578 -0
- multioptpy/SQM/sqm2/sqm2_rep.py +66 -0
- multioptpy/SQM/sqm2/sqm2_srb.py +70 -0
- multioptpy/Thermo/__init__.py +0 -0
- multioptpy/Thermo/normal_mode_analyzer.py +865 -0
- multioptpy/Utils/__init__.py +0 -0
- multioptpy/Utils/bond_connectivity.py +264 -0
- multioptpy/Utils/calc_tools.py +884 -0
- multioptpy/Utils/oniom.py +96 -0
- multioptpy/Utils/pbc.py +48 -0
- multioptpy/Utils/riemann_curvature.py +208 -0
- multioptpy/Utils/symmetry_analyzer.py +482 -0
- multioptpy/Visualization/__init__.py +0 -0
- multioptpy/Visualization/visualization.py +156 -0
- multioptpy/WFAnalyzer/MO_analysis.py +104 -0
- multioptpy/WFAnalyzer/__init__.py +0 -0
- multioptpy/Wrapper/__init__.py +0 -0
- multioptpy/Wrapper/autots.py +1239 -0
- multioptpy/Wrapper/ieip_wrapper.py +93 -0
- multioptpy/Wrapper/md_wrapper.py +92 -0
- multioptpy/Wrapper/neb_wrapper.py +94 -0
- multioptpy/Wrapper/optimize_wrapper.py +76 -0
- multioptpy/__init__.py +5 -0
- multioptpy/entrypoints.py +916 -0
- multioptpy/fileio.py +660 -0
- multioptpy/ieip.py +340 -0
- multioptpy/interface.py +1086 -0
- multioptpy/irc.py +529 -0
- multioptpy/moleculardynamics.py +432 -0
- multioptpy/neb.py +1267 -0
- multioptpy/optimization.py +1553 -0
- multioptpy/optimizer.py +709 -0
- multioptpy-1.20.2.dist-info/METADATA +438 -0
- multioptpy-1.20.2.dist-info/RECORD +246 -0
- multioptpy-1.20.2.dist-info/WHEEL +5 -0
- multioptpy-1.20.2.dist-info/entry_points.txt +9 -0
- multioptpy-1.20.2.dist-info/licenses/LICENSE +674 -0
- multioptpy-1.20.2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,718 @@
|
|
|
1
|
+
from multioptpy.Parameters.parameter import UnitValueLib, UFF_VDW_distance_lib, UFF_VDW_well_depth_lib, GNB_VDW_radii_lib, GNB_VDW_well_depth_lib
|
|
2
|
+
from multioptpy.Utils.calc_tools import torch_rotate_around_axis, torch_align_vector_with_z
|
|
3
|
+
from multioptpy.Optimizer.fire import FIRE
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
import copy
|
|
7
|
+
import random
|
|
8
|
+
import math
|
|
9
|
+
|
|
10
|
+
class AsymmetricEllipsoidalLJPotential:
|
|
11
|
+
def __init__(self, **kwarg):
|
|
12
|
+
#ref.: https://doi.org/10.26434/chemrxiv-2024-6www6
|
|
13
|
+
self.config = kwarg
|
|
14
|
+
UVL = UnitValueLib()
|
|
15
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
16
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
17
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
18
|
+
self.element_list = self.config["element_list"]
|
|
19
|
+
self.file_directory = self.config["file_directory"]
|
|
20
|
+
self.rot_angle_list = []
|
|
21
|
+
npot = len(self.config["asymmetric_ellipsoidal_repulsive_potential_eps"])
|
|
22
|
+
for i in range(npot):
|
|
23
|
+
self.rot_angle_list.append(random.uniform(0, 2*math.pi))
|
|
24
|
+
self.nangle = npot
|
|
25
|
+
self.rot_angle_list = torch.tensor([self.rot_angle_list], dtype=torch.float64, requires_grad=True)
|
|
26
|
+
|
|
27
|
+
self.lj_repulsive_order = 12.0
|
|
28
|
+
self.lj_attractive_order = 6.0
|
|
29
|
+
|
|
30
|
+
self.micro_iteration = 15000 * npot
|
|
31
|
+
self.rand_search_iteration = 1000 * npot
|
|
32
|
+
self.threshold = 1e-7
|
|
33
|
+
self.init = True
|
|
34
|
+
|
|
35
|
+
self.energy_analysis_dict = None
|
|
36
|
+
self.energy_save_flag = False
|
|
37
|
+
return
|
|
38
|
+
|
|
39
|
+
def save_state(self):
|
|
40
|
+
with open(self.file_directory + "/asym_ellipsoid_v1.xyz", "a") as f:
|
|
41
|
+
f.write(str(len(self.tmp_geom_num_list_for_save)) + "\n")
|
|
42
|
+
f.write("AsymmetricEllipsoid\n")
|
|
43
|
+
for i in range(len(self.tmp_geom_num_list_for_save)):
|
|
44
|
+
f.write(self.tmp_element_list_for_save[i] + " " + str(self.tmp_geom_num_list_for_save[i][0].item()) + " " + str(self.tmp_geom_num_list_for_save[i][1].item()) + " " + str(self.tmp_geom_num_list_for_save[i][2].item()) + "\n")
|
|
45
|
+
|
|
46
|
+
return
|
|
47
|
+
|
|
48
|
+
def save_part_ene(self):
|
|
49
|
+
with open(self.file_directory + "/asym_ellipsoid_p_ene.txt", "a") as f:
|
|
50
|
+
f.write(str(self.energy_analysis_dict)+"\n")
|
|
51
|
+
|
|
52
|
+
return
|
|
53
|
+
|
|
54
|
+
def calc_potential(self, geom_num_list, rot_angle_list, bias_pot_params):
|
|
55
|
+
energy = 0.0
|
|
56
|
+
"""
|
|
57
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_atoms"],
|
|
58
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_offtgt"],
|
|
59
|
+
|
|
60
|
+
"""
|
|
61
|
+
rot_angle_list = rot_angle_list[0]
|
|
62
|
+
tmp_geom_num_list_for_save = geom_num_list * self.bohr2angstroms # save the geometry with asymmetric ellipsoid
|
|
63
|
+
tmp_element_list_for_save = self.element_list
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
# interaction between substrate and asymmetric ellipsoid
|
|
67
|
+
for pot_i in range(len(bias_pot_params)):
|
|
68
|
+
|
|
69
|
+
tgt_atom_list = [i for i in range(len(geom_num_list)) if not i+1 in self.config["asymmetric_ellipsoidal_repulsive_potential_atoms"][pot_i] + self.config["asymmetric_ellipsoidal_repulsive_potential_offtgt"][pot_i]]
|
|
70
|
+
root_atom = self.config["asymmetric_ellipsoidal_repulsive_potential_atoms"][pot_i][0] - 1
|
|
71
|
+
LJ_atom = self.config["asymmetric_ellipsoidal_repulsive_potential_atoms"][pot_i][1] - 1
|
|
72
|
+
|
|
73
|
+
asym_elip_eps = bias_pot_params[pot_i][0] / self.hartree2kjmol
|
|
74
|
+
asym_elip_sig_xp = bias_pot_params[pot_i][1] / self.bohr2angstroms
|
|
75
|
+
asym_elip_sig_xm = bias_pot_params[pot_i][2] / self.bohr2angstroms
|
|
76
|
+
asym_elip_sig_yp = bias_pot_params[pot_i][3] / self.bohr2angstroms
|
|
77
|
+
asym_elip_sig_ym = bias_pot_params[pot_i][4] / self.bohr2angstroms
|
|
78
|
+
asym_elip_sig_zp = bias_pot_params[pot_i][5] / self.bohr2angstroms
|
|
79
|
+
asym_elip_sig_zm = bias_pot_params[pot_i][6] / self.bohr2angstroms
|
|
80
|
+
asym_elip_dist = bias_pot_params[pot_i][7] / self.bohr2angstroms
|
|
81
|
+
|
|
82
|
+
# rotate the asymmetric ellipsoid
|
|
83
|
+
LJ_vec = geom_num_list[LJ_atom] - geom_num_list[root_atom]
|
|
84
|
+
LJ_vec = LJ_vec / torch.norm(LJ_vec)
|
|
85
|
+
LJ_center = geom_num_list[root_atom] + LJ_vec * asym_elip_dist
|
|
86
|
+
z_axis_adjust_rot_mat = torch_align_vector_with_z(LJ_vec)
|
|
87
|
+
z_axis_adjusted_tmp_geom_num_list = torch.matmul(z_axis_adjust_rot_mat, (geom_num_list - geom_num_list[root_atom]).T).T
|
|
88
|
+
z_axis_adjusted_LJ_center = torch.matmul(z_axis_adjust_rot_mat, (LJ_center - geom_num_list[root_atom]).reshape(3, 1)).T
|
|
89
|
+
|
|
90
|
+
rot_mat = torch_rotate_around_axis(rot_angle_list[pot_i], axis="z")
|
|
91
|
+
rotated_z_axis_adjusted_tmp_geom_num_list = torch.matmul(rot_mat, z_axis_adjusted_tmp_geom_num_list.T).T
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
LJ_vec_for_save = tmp_geom_num_list_for_save[LJ_atom] - tmp_geom_num_list_for_save[root_atom]
|
|
95
|
+
LJ_vec_for_save = LJ_vec_for_save / torch.norm(LJ_vec_for_save)
|
|
96
|
+
LJ_center_for_save = tmp_geom_num_list_for_save[root_atom] + LJ_vec_for_save * asym_elip_dist * self.bohr2angstroms
|
|
97
|
+
z_axis_adjust_rot_mat_for_save = torch_align_vector_with_z(LJ_vec_for_save)
|
|
98
|
+
z_axis_adjusted_tmp_geom_num_list_for_save = torch.matmul(z_axis_adjust_rot_mat_for_save, (tmp_geom_num_list_for_save - tmp_geom_num_list_for_save[root_atom]).T).T
|
|
99
|
+
z_axis_adjusted_LJ_center_for_save = torch.matmul(z_axis_adjust_rot_mat_for_save, (LJ_center_for_save - tmp_geom_num_list_for_save[root_atom]).reshape(3, 1)).T
|
|
100
|
+
rotated_z_axis_adjusted_tmp_geom_num_list_for_save = torch.matmul(rot_mat, z_axis_adjusted_tmp_geom_num_list_for_save.T).T
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
tgt_atom_pos = rotated_z_axis_adjusted_tmp_geom_num_list[tgt_atom_list] - z_axis_adjusted_LJ_center[0]
|
|
104
|
+
tgt_atom_eps = torch.tensor([GNB_VDW_well_depth_lib(self.element_list[tgt_atom]) for tgt_atom in tgt_atom_list], dtype=torch.float64)
|
|
105
|
+
tgt_atom_sig = torch.tensor([GNB_VDW_radii_lib(self.element_list[tgt_atom]) / 2.0 for tgt_atom in tgt_atom_list], dtype=torch.float64)
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
x, y, z = tgt_atom_pos[:, 0], tgt_atom_pos[:, 1], tgt_atom_pos[:, 2]
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
x_sig = torch.where(x > 0, torch.sqrt(2 ** (14 / 6) * asym_elip_sig_xp * tgt_atom_sig), torch.sqrt(2 ** (14 / 6) * asym_elip_sig_xm * tgt_atom_sig))
|
|
112
|
+
y_sig = torch.where(y > 0, torch.sqrt(2 ** (14 / 6) * asym_elip_sig_yp * tgt_atom_sig), torch.sqrt(2 ** (14 / 6) * asym_elip_sig_ym * tgt_atom_sig))
|
|
113
|
+
z_sig = torch.where(z > 0, torch.sqrt(2 ** (14 / 6) * asym_elip_sig_zp * tgt_atom_sig), torch.sqrt(2 ** (14 / 6) * asym_elip_sig_zm * tgt_atom_sig))
|
|
114
|
+
|
|
115
|
+
x_eps = torch.sqrt(asym_elip_eps * tgt_atom_eps)
|
|
116
|
+
y_eps = torch.sqrt(asym_elip_eps * tgt_atom_eps)
|
|
117
|
+
z_eps = torch.sqrt(asym_elip_eps * tgt_atom_eps)
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
r_ell = torch.sqrt((x / x_sig) ** 2 + (y / y_sig) ** 2 + (z / z_sig) ** 2)
|
|
121
|
+
r_ell_norm = torch.linalg.norm(r_ell, dim=-1)
|
|
122
|
+
|
|
123
|
+
lj_eps = 1 / torch.sqrt((x / r_ell_norm / x_eps) ** 2 + (y / r_ell_norm / y_eps) ** 2 + (z / r_ell_norm / z_eps) ** 2)
|
|
124
|
+
eps = torch.sqrt(lj_eps * tgt_atom_eps)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
r_ell_inv = 1 / r_ell
|
|
128
|
+
tmp_ene = eps * ((r_ell_inv ** self.lj_repulsive_order) - 2 * (r_ell_inv ** self.lj_attractive_order))
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
if self.energy_save_flag:
|
|
132
|
+
for i, tgt_atom in enumerate(tgt_atom_list):
|
|
133
|
+
self.energy_analysis_dict["ell_" + str(pot_i) + "_atom" + str(tgt_atom + 1)] = tmp_ene[i].item()
|
|
134
|
+
|
|
135
|
+
energy = energy + torch.sum(tmp_ene)
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
#--------------
|
|
139
|
+
tmp_geom_num_list_for_save = torch.cat([rotated_z_axis_adjusted_tmp_geom_num_list_for_save, z_axis_adjusted_LJ_center_for_save], dim=0)
|
|
140
|
+
|
|
141
|
+
ellipsoid_list = torch.tensor([[asym_elip_sig_xp, 0.0, 0.0+asym_elip_dist],
|
|
142
|
+
[-1*asym_elip_sig_xm, 0.0, 0.0+asym_elip_dist],
|
|
143
|
+
[0.0, asym_elip_sig_yp, 0.0+asym_elip_dist],
|
|
144
|
+
[0.0, -1*asym_elip_sig_ym, 0.0+asym_elip_dist],
|
|
145
|
+
[0.0, 0.0, asym_elip_sig_zp+asym_elip_dist],
|
|
146
|
+
[0.0, 0.0, -1*asym_elip_sig_zm+asym_elip_dist]], dtype=torch.float64) * self.bohr2angstroms
|
|
147
|
+
tmp_geom_num_list_for_save = torch.cat((tmp_geom_num_list_for_save, ellipsoid_list), dim=0)
|
|
148
|
+
tmp_element_list_for_save = tmp_element_list_for_save + ["x", "X", "X", "X", "X", "X", "X"]
|
|
149
|
+
|
|
150
|
+
#--------------
|
|
151
|
+
|
|
152
|
+
# interaction between asymmetric ellipsoid and asymmetric ellipsoid
|
|
153
|
+
if len(bias_pot_params) > 1:
|
|
154
|
+
for pot_i in range(len(bias_pot_params)):
|
|
155
|
+
root_atom_i = self.config["asymmetric_ellipsoidal_repulsive_potential_atoms"][pot_i][0] - 1
|
|
156
|
+
LJ_atom_i = self.config["asymmetric_ellipsoidal_repulsive_potential_atoms"][pot_i][1] - 1
|
|
157
|
+
asym_elip_eps_i = bias_pot_params[pot_i][0] / self.hartree2kjmol
|
|
158
|
+
asym_elip_sig_xp_i = bias_pot_params[pot_i][1] / self.bohr2angstroms
|
|
159
|
+
asym_elip_sig_xm_i = bias_pot_params[pot_i][2] / self.bohr2angstroms
|
|
160
|
+
asym_elip_sig_yp_i = bias_pot_params[pot_i][3] / self.bohr2angstroms
|
|
161
|
+
asym_elip_sig_ym_i = bias_pot_params[pot_i][4] / self.bohr2angstroms
|
|
162
|
+
asym_elip_sig_zp_i = bias_pot_params[pot_i][5] / self.bohr2angstroms
|
|
163
|
+
asym_elip_sig_zm_i = bias_pot_params[pot_i][6] / self.bohr2angstroms
|
|
164
|
+
asym_elip_dist_i = bias_pot_params[pot_i][7] / self.bohr2angstroms
|
|
165
|
+
# rotate the asymmetric ellipsoid
|
|
166
|
+
LJ_vec_i = geom_num_list[LJ_atom_i] - geom_num_list[root_atom_i]
|
|
167
|
+
LJ_vec_i = LJ_vec_i / torch.norm(LJ_vec_i)
|
|
168
|
+
LJ_center_i = geom_num_list[root_atom_i] + LJ_vec_i * asym_elip_dist_i
|
|
169
|
+
|
|
170
|
+
for pot_j in range(pot_i+1, len(bias_pot_params)):
|
|
171
|
+
if pot_i > pot_j:
|
|
172
|
+
continue
|
|
173
|
+
|
|
174
|
+
root_atom_j = self.config["asymmetric_ellipsoidal_repulsive_potential_atoms"][pot_j][0] - 1
|
|
175
|
+
LJ_atom_j = self.config["asymmetric_ellipsoidal_repulsive_potential_atoms"][pot_j][1] - 1
|
|
176
|
+
asym_elip_eps_j = bias_pot_params[pot_j][0] / self.hartree2kjmol
|
|
177
|
+
asym_elip_sig_xp_j = bias_pot_params[pot_j][1] / self.bohr2angstroms
|
|
178
|
+
asym_elip_sig_xm_j = bias_pot_params[pot_j][2] / self.bohr2angstroms
|
|
179
|
+
asym_elip_sig_yp_j = bias_pot_params[pot_j][3] / self.bohr2angstroms
|
|
180
|
+
asym_elip_sig_ym_j = bias_pot_params[pot_j][4] / self.bohr2angstroms
|
|
181
|
+
asym_elip_sig_zp_j = bias_pot_params[pot_j][5] / self.bohr2angstroms
|
|
182
|
+
asym_elip_sig_zm_j = bias_pot_params[pot_j][6] / self.bohr2angstroms
|
|
183
|
+
asym_elip_dist_j = bias_pot_params[pot_j][7] / self.bohr2angstroms
|
|
184
|
+
# rotate the asymmetric ellipsoid
|
|
185
|
+
LJ_vec_j = geom_num_list[LJ_atom_j] - geom_num_list[root_atom_j]
|
|
186
|
+
LJ_vec_j = LJ_vec_j / torch.norm(LJ_vec_j)
|
|
187
|
+
LJ_center_j = geom_num_list[root_atom_j] + LJ_vec_j * asym_elip_dist_j
|
|
188
|
+
|
|
189
|
+
|
|
190
|
+
#-----------------------------------
|
|
191
|
+
|
|
192
|
+
z_axis_adjust_rot_mat_i = torch_align_vector_with_z(LJ_vec_i)
|
|
193
|
+
z_axis_adjusted_LJ_center_j_i = torch.matmul(z_axis_adjust_rot_mat_i, (LJ_center_j - geom_num_list[root_atom_i]).reshape(3, 1)).T
|
|
194
|
+
|
|
195
|
+
z_axis_adjusted_LJ_center_i = torch.matmul(z_axis_adjust_rot_mat_i, (LJ_center_i - geom_num_list[root_atom_i]).reshape(3, 1)).T
|
|
196
|
+
|
|
197
|
+
rot_mat_i = torch_rotate_around_axis(rot_angle_list[pot_i])
|
|
198
|
+
rotated_z_axis_adjusted_LJ_center_j_i = torch.matmul(rot_mat_i, z_axis_adjusted_LJ_center_j_i.T).T
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
z_axis_adjust_rot_mat_j = torch_align_vector_with_z(LJ_vec_j)
|
|
203
|
+
z_axis_adjusted_LJ_center_i_j = torch.matmul(z_axis_adjust_rot_mat_j, (LJ_center_i - geom_num_list[root_atom_j]).reshape(3, 1)).T
|
|
204
|
+
|
|
205
|
+
z_axis_adjusted_LJ_center_j = torch.matmul(z_axis_adjust_rot_mat_j, (LJ_center_j - geom_num_list[root_atom_j]).reshape(3, 1)).T
|
|
206
|
+
|
|
207
|
+
rot_mat_j = torch_rotate_around_axis(rot_angle_list[pot_j])
|
|
208
|
+
rotated_z_axis_adjusted_LJ_center_i_j = torch.matmul(rot_mat_j, z_axis_adjusted_LJ_center_i_j.T).T
|
|
209
|
+
|
|
210
|
+
pos_j = rotated_z_axis_adjusted_LJ_center_j_i[0] - z_axis_adjusted_LJ_center_i[0]
|
|
211
|
+
|
|
212
|
+
x_j = pos_j[0]
|
|
213
|
+
y_j = pos_j[1]
|
|
214
|
+
z_j = pos_j[2]
|
|
215
|
+
|
|
216
|
+
if x_j > 0:
|
|
217
|
+
x_i_sig = 2 ** (7 / 6) * asym_elip_sig_xp_i
|
|
218
|
+
x_i_eps = asym_elip_eps_i
|
|
219
|
+
else:
|
|
220
|
+
x_i_sig = 2 ** (7 / 6) * asym_elip_sig_xm_i
|
|
221
|
+
x_i_eps = asym_elip_eps_i
|
|
222
|
+
|
|
223
|
+
if y_j > 0:
|
|
224
|
+
y_i_sig = 2 ** (7 / 6) * asym_elip_sig_yp_i
|
|
225
|
+
y_i_eps = asym_elip_eps_i
|
|
226
|
+
else:
|
|
227
|
+
y_i_sig = 2 ** (7 / 6) * asym_elip_sig_ym_i
|
|
228
|
+
y_i_eps = asym_elip_eps_i
|
|
229
|
+
|
|
230
|
+
if z_j > 0:
|
|
231
|
+
z_i_sig = 2 ** (7 / 6) * asym_elip_sig_zp_i
|
|
232
|
+
z_i_eps = asym_elip_eps_i
|
|
233
|
+
else:
|
|
234
|
+
z_i_sig = 2 ** (7 / 6) * asym_elip_sig_zm_i
|
|
235
|
+
z_i_eps = asym_elip_eps_i
|
|
236
|
+
|
|
237
|
+
r_ell_i = torch.sqrt((x_j / x_i_sig) ** 2 + (y_j / y_i_sig) ** 2 + (z_j / z_i_sig) ** 2)
|
|
238
|
+
r_ell_i_norm = torch.linalg.norm(r_ell_i)
|
|
239
|
+
lj_eps_i = 1 / torch.sqrt((x_j / r_ell_i_norm / x_i_eps) ** 2 + (y_j / r_ell_i_norm / y_i_eps) ** 2 + (z_j / r_ell_i_norm / z_i_eps) ** 2 )
|
|
240
|
+
|
|
241
|
+
pos_i = rotated_z_axis_adjusted_LJ_center_i_j[0] - z_axis_adjusted_LJ_center_j[0]
|
|
242
|
+
|
|
243
|
+
x_i = pos_i[0]
|
|
244
|
+
y_i = pos_i[1]
|
|
245
|
+
z_i = pos_i[2]
|
|
246
|
+
|
|
247
|
+
if x_i > 0:
|
|
248
|
+
x_j_sig = 2 ** (7 / 6) * asym_elip_sig_xp_j
|
|
249
|
+
x_j_eps = asym_elip_eps_j
|
|
250
|
+
else:
|
|
251
|
+
x_j_sig = 2 ** (7 / 6) * asym_elip_sig_xm_j
|
|
252
|
+
x_j_eps = asym_elip_eps_j
|
|
253
|
+
|
|
254
|
+
if y_i > 0:
|
|
255
|
+
y_j_sig = 2 ** (7 / 6) * asym_elip_sig_yp_j
|
|
256
|
+
y_j_eps = asym_elip_eps_j
|
|
257
|
+
else:
|
|
258
|
+
y_j_sig = 2 ** (7 / 6) * asym_elip_sig_ym_j
|
|
259
|
+
y_j_eps = asym_elip_eps_j
|
|
260
|
+
|
|
261
|
+
if z_i > 0:
|
|
262
|
+
z_j_sig = 2 ** (7 / 6) * asym_elip_sig_zp_j
|
|
263
|
+
z_j_eps = asym_elip_eps_j
|
|
264
|
+
else:
|
|
265
|
+
z_j_sig = 2 ** (7 / 6) * asym_elip_sig_zm_j
|
|
266
|
+
z_j_eps = asym_elip_eps_j
|
|
267
|
+
|
|
268
|
+
r_ell_j = torch.sqrt((x_i / x_j_sig) ** 2 + (y_i / y_j_sig) ** 2 + (z_i / z_j_sig) ** 2)
|
|
269
|
+
r_ell_j_norm = torch.linalg.norm(r_ell_j)
|
|
270
|
+
lj_eps_j = 1 / torch.sqrt((x_i / r_ell_j_norm / x_j_eps) ** 2 + (y_i / r_ell_j_norm / y_j_eps) ** 2 + (z_i / r_ell_j_norm / z_j_eps) ** 2 )
|
|
271
|
+
|
|
272
|
+
eps = torch.sqrt(lj_eps_i * lj_eps_j)
|
|
273
|
+
r_ell = torch.sqrt(r_ell_i * r_ell_j)
|
|
274
|
+
|
|
275
|
+
energy = energy + eps * (((1/r_ell) ** self.lj_repulsive_order) -2 * ((1/r_ell) ** self.lj_attractive_order))
|
|
276
|
+
|
|
277
|
+
self.tmp_geom_num_list_for_save = tmp_geom_num_list_for_save
|
|
278
|
+
self.tmp_element_list_for_save = tmp_element_list_for_save
|
|
279
|
+
return energy
|
|
280
|
+
|
|
281
|
+
def rand_search(self, geom_num_list, bias_pot_params):
|
|
282
|
+
max_energy = 1e+10
|
|
283
|
+
print("rand_search")
|
|
284
|
+
|
|
285
|
+
for i in range(self.rand_search_iteration):
|
|
286
|
+
tmp_rot_angle_list = [random.uniform(0, 2*math.pi) for j in range(len(self.config["asymmetric_ellipsoidal_repulsive_potential_eps"]))]
|
|
287
|
+
tmp_rot_angle_list = torch.tensor([tmp_rot_angle_list], dtype=torch.float64, requires_grad=True)
|
|
288
|
+
energy = self.calc_potential(geom_num_list, tmp_rot_angle_list, bias_pot_params)
|
|
289
|
+
if energy < max_energy:
|
|
290
|
+
print("energy: ", energy.item())
|
|
291
|
+
max_energy = energy
|
|
292
|
+
self.rot_angle_list = tmp_rot_angle_list
|
|
293
|
+
print("rand_search done")
|
|
294
|
+
print("max_energy: ", max_energy.item())
|
|
295
|
+
return
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
def microiteration(self, geom_num_list, bias_pot_params):
|
|
299
|
+
if self.init:
|
|
300
|
+
self.rand_search(geom_num_list, bias_pot_params)
|
|
301
|
+
self.init = False
|
|
302
|
+
|
|
303
|
+
prev_rot_grad = torch.zeros_like(self.rot_angle_list)
|
|
304
|
+
Opt = FIRE()
|
|
305
|
+
Opt.display_flag = False
|
|
306
|
+
|
|
307
|
+
for j in range(self.micro_iteration):
|
|
308
|
+
rot_grad = torch.func.jacrev(self.calc_potential, argnums=1)(geom_num_list, self.rot_angle_list, bias_pot_params)
|
|
309
|
+
if torch.linalg.norm(rot_grad) < self.threshold:
|
|
310
|
+
print("Converged!")
|
|
311
|
+
print("M. itr: ", j)
|
|
312
|
+
print("energy: ", self.calc_potential(geom_num_list, self.rot_angle_list, bias_pot_params).item())
|
|
313
|
+
break
|
|
314
|
+
|
|
315
|
+
tmp_rot_angle_list = copy.copy(self.rot_angle_list.clone().detach().numpy())
|
|
316
|
+
tmp_rot_grad = copy.copy(rot_grad.clone().detach().numpy())
|
|
317
|
+
tmp_prev_rot_grad = copy.copy(prev_rot_grad.clone().detach().numpy())
|
|
318
|
+
move_vector = Opt.run(tmp_rot_angle_list[0], tmp_rot_grad[0], tmp_prev_rot_grad[0])
|
|
319
|
+
move_vector = torch.tensor(move_vector, dtype=torch.float64)
|
|
320
|
+
self.rot_angle_list = self.rot_angle_list - 1.0 * move_vector
|
|
321
|
+
# update rot_angle_list
|
|
322
|
+
if j % 100 == 0:
|
|
323
|
+
print("M. itr: ", j)
|
|
324
|
+
print("energy: ", self.calc_potential(geom_num_list, self.rot_angle_list, bias_pot_params).item())
|
|
325
|
+
print("rot_angle_list: ", self.rot_angle_list.detach().numpy())
|
|
326
|
+
print("rot_grad: ", rot_grad.detach().numpy())
|
|
327
|
+
|
|
328
|
+
|
|
329
|
+
prev_rot_grad = rot_grad
|
|
330
|
+
else:
|
|
331
|
+
print("Not converged...")
|
|
332
|
+
raise
|
|
333
|
+
|
|
334
|
+
self.energy_analysis_dict = {}
|
|
335
|
+
self.energy_save_flag = True
|
|
336
|
+
energy = self.calc_potential(geom_num_list, self.rot_angle_list, bias_pot_params)
|
|
337
|
+
self.energy_save_flag = False
|
|
338
|
+
self.save_part_ene()
|
|
339
|
+
return energy
|
|
340
|
+
|
|
341
|
+
|
|
342
|
+
def calc_energy(self, geom_num_list, bias_pot_params):
|
|
343
|
+
"""
|
|
344
|
+
# required variables: self.config["asymmetric_ellipsoidal_repulsive_potential_eps"],
|
|
345
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_sig"],
|
|
346
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_dist"],
|
|
347
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_atoms"],
|
|
348
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_offtgt"],
|
|
349
|
+
bias_pot_params[n][0] : asymmetric_ellipsoidal_repulsive_potential_eps
|
|
350
|
+
bias_pot_params[n][1:7] : asymmetric_ellipsoidal_repulsive_potential_sig
|
|
351
|
+
bias_pot_params[n][7] : asymmetric_ellipsoidal_repulsive_potential_dist
|
|
352
|
+
"""
|
|
353
|
+
energy = self.microiteration(geom_num_list, bias_pot_params)
|
|
354
|
+
return energy
|
|
355
|
+
|
|
356
|
+
def calc_pot_for_eff_hess(self, coord_and_ell_angle, bias_pot_params):
|
|
357
|
+
geom_num_list = coord_and_ell_angle[:len(self.element_list)*3].reshape(-1, 3)
|
|
358
|
+
rot_angle_list = coord_and_ell_angle[len(self.element_list)*3:].reshape(1, self.nangle)
|
|
359
|
+
energy = self.calc_potential(geom_num_list, rot_angle_list, bias_pot_params)
|
|
360
|
+
return energy
|
|
361
|
+
|
|
362
|
+
|
|
363
|
+
def calc_eff_hessian(self, geom_num_list, bias_pot_params):# effective hessian
|
|
364
|
+
transformed_geom_num_list = geom_num_list.reshape(-1, 1)
|
|
365
|
+
transformed_angle_list = self.rot_angle_list.reshape(-1, 1)
|
|
366
|
+
coord_and_ell_angle = torch.cat((transformed_geom_num_list, transformed_angle_list), dim=0)
|
|
367
|
+
combined_hess = torch.func.hessian(self.calc_pot_for_eff_hess, argnums=0)(coord_and_ell_angle, bias_pot_params).reshape(len(self.element_list)*3+self.nangle, len(self.element_list)*3+self.nangle)
|
|
368
|
+
coupling_hess_1 = combined_hess[:len(self.element_list)*3, len(self.element_list)*3:]
|
|
369
|
+
coupling_hess_2 = combined_hess[len(self.element_list)*3:, :len(self.element_list)*3]
|
|
370
|
+
angle_hess = combined_hess[len(self.element_list)*3:, len(self.element_list)*3:]
|
|
371
|
+
eff_hess = -1 * torch.matmul(torch.matmul(coupling_hess_1, torch.linalg.inv(angle_hess)), coupling_hess_2)
|
|
372
|
+
return eff_hess
|
|
373
|
+
|
|
374
|
+
|
|
375
|
+
class AsymmetricEllipsoidalLJPotentialv2:
|
|
376
|
+
def __init__(self, **kwarg):
|
|
377
|
+
#ref.: https://doi.org/10.26434/chemrxiv-2024-6www6
|
|
378
|
+
self.config = kwarg
|
|
379
|
+
UVL = UnitValueLib()
|
|
380
|
+
self.hartree2kcalmol = UVL.hartree2kcalmol
|
|
381
|
+
self.bohr2angstroms = UVL.bohr2angstroms
|
|
382
|
+
self.hartree2kjmol = UVL.hartree2kjmol
|
|
383
|
+
self.element_list = self.config["element_list"]
|
|
384
|
+
self.file_directory = self.config["file_directory"]
|
|
385
|
+
self.rot_angle_list = []
|
|
386
|
+
for i in range(len(self.config["asymmetric_ellipsoidal_repulsive_potential_v2_eps"])):
|
|
387
|
+
self.rot_angle_list.append(random.uniform(0, 2*math.pi))
|
|
388
|
+
self.nangle = len(self.config["asymmetric_ellipsoidal_repulsive_potential_v2_eps"])
|
|
389
|
+
self.rot_angle_list = torch.tensor([self.rot_angle_list], dtype=torch.float64, requires_grad=True)
|
|
390
|
+
|
|
391
|
+
self.lj_repulsive_order = 12.0
|
|
392
|
+
self.lj_attractive_order = 6.0
|
|
393
|
+
|
|
394
|
+
self.micro_iteration = 15000 * len(self.config["asymmetric_ellipsoidal_repulsive_potential_v2_eps"])
|
|
395
|
+
self.rand_search_iteration = 1000 * len(self.config["asymmetric_ellipsoidal_repulsive_potential_v2_eps"])
|
|
396
|
+
self.threshold = 1e-7
|
|
397
|
+
self.init = True
|
|
398
|
+
self.save_flag = False
|
|
399
|
+
return
|
|
400
|
+
|
|
401
|
+
def save_state(self):
|
|
402
|
+
with open(self.file_directory + "/asym_ellipsoid_v2.xyz", "a") as f:
|
|
403
|
+
f.write(str(len(self.tmp_geom_num_list_for_save)) + "\n")
|
|
404
|
+
f.write("AsymmetricEllipsoid\n")
|
|
405
|
+
for i in range(len(self.tmp_geom_num_list_for_save)):
|
|
406
|
+
f.write(self.tmp_element_list_for_save[i] + " " + str(self.tmp_geom_num_list_for_save[i][0].item()) + " " + str(self.tmp_geom_num_list_for_save[i][1].item()) + " " + str(self.tmp_geom_num_list_for_save[i][2].item()) + "\n")
|
|
407
|
+
|
|
408
|
+
return
|
|
409
|
+
|
|
410
|
+
def calc_potential(self, geom_num_list, rot_angle_list, bias_pot_params):
|
|
411
|
+
energy = 0.0
|
|
412
|
+
"""
|
|
413
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_v2_atoms"],
|
|
414
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_v2_offtgt"],
|
|
415
|
+
|
|
416
|
+
"""
|
|
417
|
+
rot_angle_list = rot_angle_list[0]
|
|
418
|
+
tmp_geom_num_list_for_save = geom_num_list * self.bohr2angstroms # save the geometry with asymmetric ellipsoid
|
|
419
|
+
tmp_element_list_for_save = self.element_list
|
|
420
|
+
|
|
421
|
+
|
|
422
|
+
# interaction between substrate and asymmetric ellipsoid
|
|
423
|
+
for pot_i in range(len(bias_pot_params)):
|
|
424
|
+
tgt_atom_list = [i for i in range(len(geom_num_list)) if not i+1 in self.config["asymmetric_ellipsoidal_repulsive_potential_v2_atoms"][pot_i] + self.config["asymmetric_ellipsoidal_repulsive_potential_v2_offtgt"][pot_i]]
|
|
425
|
+
root_atom = self.config["asymmetric_ellipsoidal_repulsive_potential_v2_atoms"][pot_i][0] - 1
|
|
426
|
+
LJ_atom = self.config["asymmetric_ellipsoidal_repulsive_potential_v2_atoms"][pot_i][1] - 1
|
|
427
|
+
|
|
428
|
+
asym_elip_eps = bias_pot_params[pot_i][0] / self.hartree2kjmol
|
|
429
|
+
asym_elip_sig_xp = bias_pot_params[pot_i][1] / self.bohr2angstroms
|
|
430
|
+
asym_elip_sig_xm = bias_pot_params[pot_i][2] / self.bohr2angstroms
|
|
431
|
+
asym_elip_sig_yp = bias_pot_params[pot_i][3] / self.bohr2angstroms
|
|
432
|
+
asym_elip_sig_ym = bias_pot_params[pot_i][4] / self.bohr2angstroms
|
|
433
|
+
asym_elip_sig_zp = bias_pot_params[pot_i][5] / self.bohr2angstroms
|
|
434
|
+
asym_elip_sig_zm = bias_pot_params[pot_i][6] / self.bohr2angstroms
|
|
435
|
+
asym_elip_dist = bias_pot_params[pot_i][7] / self.bohr2angstroms
|
|
436
|
+
|
|
437
|
+
# rotate the asymmetric ellipsoid
|
|
438
|
+
LJ_vec = geom_num_list[LJ_atom] - geom_num_list[root_atom]
|
|
439
|
+
LJ_vec = LJ_vec / torch.norm(LJ_vec)
|
|
440
|
+
LJ_center = geom_num_list[root_atom] + LJ_vec * asym_elip_dist
|
|
441
|
+
z_axis_adjust_rot_mat = torch_align_vector_with_z(LJ_vec)
|
|
442
|
+
z_axis_adjusted_tmp_geom_num_list = torch.matmul(z_axis_adjust_rot_mat, (geom_num_list - geom_num_list[root_atom]).T).T
|
|
443
|
+
z_axis_adjusted_LJ_center = torch.matmul(z_axis_adjust_rot_mat, (LJ_center - geom_num_list[root_atom]).reshape(3, 1)).T
|
|
444
|
+
|
|
445
|
+
rot_mat = torch_rotate_around_axis(rot_angle_list[pot_i], axis="z")
|
|
446
|
+
rotated_z_axis_adjusted_tmp_geom_num_list = torch.matmul(rot_mat, z_axis_adjusted_tmp_geom_num_list.T).T
|
|
447
|
+
|
|
448
|
+
if self.save_flag:
|
|
449
|
+
LJ_vec_for_save = tmp_geom_num_list_for_save[LJ_atom] - tmp_geom_num_list_for_save[root_atom]
|
|
450
|
+
LJ_vec_for_save = LJ_vec_for_save / torch.norm(LJ_vec_for_save)
|
|
451
|
+
LJ_center_for_save = tmp_geom_num_list_for_save[root_atom] + LJ_vec_for_save * asym_elip_dist * self.bohr2angstroms
|
|
452
|
+
z_axis_adjust_rot_mat_for_save = torch_align_vector_with_z(LJ_vec_for_save)
|
|
453
|
+
z_axis_adjusted_tmp_geom_num_list_for_save = torch.matmul(z_axis_adjust_rot_mat_for_save, (tmp_geom_num_list_for_save - tmp_geom_num_list_for_save[root_atom]).T).T
|
|
454
|
+
z_axis_adjusted_LJ_center_for_save = torch.matmul(z_axis_adjust_rot_mat_for_save, (LJ_center_for_save - tmp_geom_num_list_for_save[root_atom]).reshape(3, 1)).T
|
|
455
|
+
rotated_z_axis_adjusted_tmp_geom_num_list_for_save = torch.matmul(rot_mat, z_axis_adjusted_tmp_geom_num_list_for_save.T).T
|
|
456
|
+
|
|
457
|
+
tgt_atom_pos = rotated_z_axis_adjusted_tmp_geom_num_list[tgt_atom_list] - z_axis_adjusted_LJ_center[0]
|
|
458
|
+
tgt_atom_eps = torch.tensor([UFF_VDW_well_depth_lib(self.element_list[tgt_atom]) for tgt_atom in tgt_atom_list], dtype=torch.float64)
|
|
459
|
+
tgt_atom_sig = torch.tensor([UFF_VDW_distance_lib(self.element_list[tgt_atom]) / 2.0 for tgt_atom in tgt_atom_list], dtype=torch.float64)
|
|
460
|
+
|
|
461
|
+
x, y, z = tgt_atom_pos[:, 0], tgt_atom_pos[:, 1], tgt_atom_pos[:, 2]
|
|
462
|
+
|
|
463
|
+
x_sig = torch.where(x > 0, (asym_elip_sig_xp + tgt_atom_sig) ** (7 / 6), (asym_elip_sig_xm + tgt_atom_sig) ** (7 / 6))
|
|
464
|
+
y_sig = torch.where(y > 0, (asym_elip_sig_yp + tgt_atom_sig) ** (7 / 6), (asym_elip_sig_ym + tgt_atom_sig) ** (7 / 6))
|
|
465
|
+
z_sig = torch.where(z > 0, (asym_elip_sig_zp + tgt_atom_sig) ** (7 / 6), (asym_elip_sig_zm + tgt_atom_sig) ** (7 / 6))
|
|
466
|
+
|
|
467
|
+
x_eps = torch.sqrt(asym_elip_eps * tgt_atom_eps)
|
|
468
|
+
y_eps = torch.sqrt(asym_elip_eps * tgt_atom_eps)
|
|
469
|
+
z_eps = torch.sqrt(asym_elip_eps * tgt_atom_eps)
|
|
470
|
+
|
|
471
|
+
r_ell = torch.sqrt((x / x_sig) ** 2 + (y / y_sig) ** 2 + (z / z_sig) ** 2)
|
|
472
|
+
r_ell_norm = torch.linalg.norm(r_ell, dim=-1)
|
|
473
|
+
|
|
474
|
+
lj_eps = 1 / torch.sqrt((x / r_ell_norm / x_eps) ** 2 + (y / r_ell_norm / y_eps) ** 2 + (z / r_ell_norm / z_eps) ** 2)
|
|
475
|
+
eps = torch.sqrt(lj_eps * tgt_atom_eps)
|
|
476
|
+
|
|
477
|
+
r_ell_inv = 1 / r_ell
|
|
478
|
+
tmp_ene = eps * ((r_ell_inv ** self.lj_repulsive_order) - 2 * (r_ell_inv ** self.lj_attractive_order))
|
|
479
|
+
|
|
480
|
+
energy = energy + torch.sum(tmp_ene)
|
|
481
|
+
|
|
482
|
+
#--------------
|
|
483
|
+
if self.save_flag:
|
|
484
|
+
tmp_geom_num_list_for_save = torch.cat([rotated_z_axis_adjusted_tmp_geom_num_list_for_save, z_axis_adjusted_LJ_center_for_save], dim=0)
|
|
485
|
+
|
|
486
|
+
ellipsoid_list = torch.tensor([[asym_elip_sig_xp, 0.0, 0.0+asym_elip_dist],
|
|
487
|
+
[-1*asym_elip_sig_xm, 0.0, 0.0+asym_elip_dist],
|
|
488
|
+
[0.0, asym_elip_sig_yp, 0.0+asym_elip_dist],
|
|
489
|
+
[0.0, -1*asym_elip_sig_ym, 0.0+asym_elip_dist],
|
|
490
|
+
[0.0, 0.0, asym_elip_sig_zp+asym_elip_dist],
|
|
491
|
+
[0.0, 0.0, -1*asym_elip_sig_zm+asym_elip_dist]], dtype=torch.float64) * self.bohr2angstroms
|
|
492
|
+
tmp_geom_num_list_for_save = torch.cat((tmp_geom_num_list_for_save, ellipsoid_list), dim=0)
|
|
493
|
+
tmp_element_list_for_save = tmp_element_list_for_save + ["x", "X", "X", "X", "X", "X", "X"]
|
|
494
|
+
|
|
495
|
+
#--------------
|
|
496
|
+
|
|
497
|
+
# interaction between asymmetric ellipsoid and asymmetric ellipsoid
|
|
498
|
+
if len(bias_pot_params) > 1:
|
|
499
|
+
for pot_i in range(len(bias_pot_params)):
|
|
500
|
+
asym_elip_eps_i = bias_pot_params[pot_i][0] / self.hartree2kjmol
|
|
501
|
+
asym_elip_sig_xp_i = bias_pot_params[pot_i][1] / self.bohr2angstroms
|
|
502
|
+
asym_elip_sig_xm_i = bias_pot_params[pot_i][2] / self.bohr2angstroms
|
|
503
|
+
asym_elip_sig_yp_i = bias_pot_params[pot_i][3] / self.bohr2angstroms
|
|
504
|
+
asym_elip_sig_ym_i = bias_pot_params[pot_i][4] / self.bohr2angstroms
|
|
505
|
+
asym_elip_sig_zp_i = bias_pot_params[pot_i][5] / self.bohr2angstroms
|
|
506
|
+
asym_elip_sig_zm_i = bias_pot_params[pot_i][6] / self.bohr2angstroms
|
|
507
|
+
asym_elip_dist_i = bias_pot_params[pot_i][7] / self.bohr2angstroms
|
|
508
|
+
|
|
509
|
+
root_atom_i = self.config["asymmetric_ellipsoidal_repulsive_potential_v2_atoms"][pot_i][0] - 1
|
|
510
|
+
LJ_atom_i = self.config["asymmetric_ellipsoidal_repulsive_potential_v2_atoms"][pot_i][1] - 1
|
|
511
|
+
|
|
512
|
+
# rotate the asymmetric ellipsoid
|
|
513
|
+
LJ_vec_i = geom_num_list[LJ_atom_i] - geom_num_list[root_atom_i]
|
|
514
|
+
LJ_vec_i = LJ_vec_i / torch.norm(LJ_vec_i)
|
|
515
|
+
LJ_center_i = geom_num_list[root_atom_i] + LJ_vec_i * asym_elip_dist_i
|
|
516
|
+
|
|
517
|
+
for pot_j in range(pot_i+1, len(bias_pot_params)):
|
|
518
|
+
if pot_i > pot_j:
|
|
519
|
+
continue
|
|
520
|
+
|
|
521
|
+
|
|
522
|
+
|
|
523
|
+
root_atom_j = self.config["asymmetric_ellipsoidal_repulsive_potential_v2_atoms"][pot_j][0] - 1
|
|
524
|
+
LJ_atom_j = self.config["asymmetric_ellipsoidal_repulsive_potential_v2_atoms"][pot_j][1] - 1
|
|
525
|
+
asym_elip_eps_j = bias_pot_params[pot_j][0] / self.hartree2kjmol
|
|
526
|
+
asym_elip_sig_xp_j = bias_pot_params[pot_j][1] / self.bohr2angstroms
|
|
527
|
+
asym_elip_sig_xm_j = bias_pot_params[pot_j][2] / self.bohr2angstroms
|
|
528
|
+
asym_elip_sig_yp_j = bias_pot_params[pot_j][3] / self.bohr2angstroms
|
|
529
|
+
asym_elip_sig_ym_j = bias_pot_params[pot_j][4] / self.bohr2angstroms
|
|
530
|
+
asym_elip_sig_zp_j = bias_pot_params[pot_j][5] / self.bohr2angstroms
|
|
531
|
+
asym_elip_sig_zm_j = bias_pot_params[pot_j][6] / self.bohr2angstroms
|
|
532
|
+
asym_elip_dist_j = bias_pot_params[pot_j][7] / self.bohr2angstroms
|
|
533
|
+
# rotate the asymmetric ellipsoid
|
|
534
|
+
LJ_vec_j = geom_num_list[LJ_atom_j] - geom_num_list[root_atom_j]
|
|
535
|
+
LJ_vec_j = LJ_vec_j / torch.norm(LJ_vec_j)
|
|
536
|
+
LJ_center_j = geom_num_list[root_atom_j] + LJ_vec_j * asym_elip_dist_j
|
|
537
|
+
|
|
538
|
+
|
|
539
|
+
#-----------------------------------
|
|
540
|
+
|
|
541
|
+
z_axis_adjust_rot_mat_i = torch_align_vector_with_z(LJ_vec_i)
|
|
542
|
+
z_axis_adjusted_LJ_center_j_i = torch.matmul(z_axis_adjust_rot_mat_i, (LJ_center_j - geom_num_list[root_atom_i]).reshape(3, 1)).T
|
|
543
|
+
|
|
544
|
+
z_axis_adjusted_LJ_center_i = torch.matmul(z_axis_adjust_rot_mat_i, (LJ_center_i - geom_num_list[root_atom_i]).reshape(3, 1)).T
|
|
545
|
+
|
|
546
|
+
rot_mat_i = torch_rotate_around_axis(rot_angle_list[pot_i])
|
|
547
|
+
rotated_z_axis_adjusted_LJ_center_j_i = torch.matmul(rot_mat_i, z_axis_adjusted_LJ_center_j_i.T).T
|
|
548
|
+
|
|
549
|
+
|
|
550
|
+
|
|
551
|
+
z_axis_adjust_rot_mat_j = torch_align_vector_with_z(LJ_vec_j)
|
|
552
|
+
z_axis_adjusted_LJ_center_i_j = torch.matmul(z_axis_adjust_rot_mat_j, (LJ_center_i - geom_num_list[root_atom_j]).reshape(3, 1)).T
|
|
553
|
+
|
|
554
|
+
z_axis_adjusted_LJ_center_j = torch.matmul(z_axis_adjust_rot_mat_j, (LJ_center_j - geom_num_list[root_atom_j]).reshape(3, 1)).T
|
|
555
|
+
|
|
556
|
+
rot_mat_j = torch_rotate_around_axis(rot_angle_list[pot_j])
|
|
557
|
+
rotated_z_axis_adjusted_LJ_center_i_j = torch.matmul(rot_mat_j, z_axis_adjusted_LJ_center_i_j.T).T
|
|
558
|
+
|
|
559
|
+
pos_j = rotated_z_axis_adjusted_LJ_center_j_i[0] - z_axis_adjusted_LJ_center_i[0]
|
|
560
|
+
|
|
561
|
+
x_j = pos_j[0]
|
|
562
|
+
y_j = pos_j[1]
|
|
563
|
+
z_j = pos_j[2]
|
|
564
|
+
|
|
565
|
+
if x_j > 0:
|
|
566
|
+
x_i_sig = asym_elip_sig_xp_i * 2 ** (7 / 6)
|
|
567
|
+
x_i_eps = asym_elip_eps_i
|
|
568
|
+
else:
|
|
569
|
+
x_i_sig = asym_elip_sig_xm_i * 2 ** (7 / 6)
|
|
570
|
+
x_i_eps = asym_elip_eps_i
|
|
571
|
+
|
|
572
|
+
if y_j > 0:
|
|
573
|
+
y_i_sig = asym_elip_sig_yp_i * 2 ** (7 / 6)
|
|
574
|
+
y_i_eps = asym_elip_eps_i
|
|
575
|
+
else:
|
|
576
|
+
y_i_sig = asym_elip_sig_ym_i * 2 ** (7 / 6)
|
|
577
|
+
y_i_eps = asym_elip_eps_i
|
|
578
|
+
|
|
579
|
+
if z_j > 0:
|
|
580
|
+
z_i_sig = asym_elip_sig_zp_i * 2 ** (7 / 6)
|
|
581
|
+
z_i_eps = asym_elip_eps_i
|
|
582
|
+
else:
|
|
583
|
+
z_i_sig = asym_elip_sig_zm_i * 2 ** (7 / 6)
|
|
584
|
+
z_i_eps = asym_elip_eps_i
|
|
585
|
+
|
|
586
|
+
r_ell_i = torch.sqrt((x_j / x_i_sig) ** 2 + (y_j / y_i_sig) ** 2 + (z_j / z_i_sig) ** 2)
|
|
587
|
+
r_ell_i_norm = torch.linalg.norm(r_ell_i)
|
|
588
|
+
lj_eps_i = 1 / torch.sqrt((x_j / r_ell_i_norm / x_i_eps) ** 2 + (y_j / r_ell_i_norm / y_i_eps) ** 2 + (z_j / r_ell_i_norm / z_i_eps) ** 2 )
|
|
589
|
+
|
|
590
|
+
pos_i = rotated_z_axis_adjusted_LJ_center_i_j[0] - z_axis_adjusted_LJ_center_j[0]
|
|
591
|
+
|
|
592
|
+
x_i = pos_i[0]
|
|
593
|
+
y_i = pos_i[1]
|
|
594
|
+
z_i = pos_i[2]
|
|
595
|
+
|
|
596
|
+
if x_i > 0:
|
|
597
|
+
x_j_sig = asym_elip_sig_xp_j * 2 ** (7 / 6)
|
|
598
|
+
x_j_eps = asym_elip_eps_j
|
|
599
|
+
else:
|
|
600
|
+
x_j_sig = asym_elip_sig_xm_j * 2 ** (7 / 6)
|
|
601
|
+
x_j_eps = asym_elip_eps_j
|
|
602
|
+
|
|
603
|
+
if y_i > 0:
|
|
604
|
+
y_j_sig = asym_elip_sig_yp_j * 2 ** (7 / 6)
|
|
605
|
+
y_j_eps = asym_elip_eps_j
|
|
606
|
+
else:
|
|
607
|
+
y_j_sig = asym_elip_sig_ym_j * 2 ** (7 / 6)
|
|
608
|
+
y_j_eps = asym_elip_eps_j
|
|
609
|
+
|
|
610
|
+
if z_i > 0:
|
|
611
|
+
z_j_sig = asym_elip_sig_zp_j * 2 ** (7 / 6)
|
|
612
|
+
z_j_eps = asym_elip_eps_j
|
|
613
|
+
else:
|
|
614
|
+
z_j_sig = asym_elip_sig_zm_j * 2 ** (7 / 6)
|
|
615
|
+
z_j_eps = asym_elip_eps_j
|
|
616
|
+
|
|
617
|
+
r_ell_j = torch.sqrt((x_i / x_j_sig) ** 2 + (y_i / y_j_sig) ** 2 + (z_i / z_j_sig) ** 2)
|
|
618
|
+
r_ell_j_norm = torch.linalg.norm(r_ell_j)
|
|
619
|
+
lj_eps_j = 1 / torch.sqrt((x_i / r_ell_j_norm / x_j_eps) ** 2 + (y_i / r_ell_j_norm / y_j_eps) ** 2 + (z_i / r_ell_j_norm / z_j_eps) ** 2 )
|
|
620
|
+
|
|
621
|
+
eps = torch.sqrt(lj_eps_i * lj_eps_j)
|
|
622
|
+
r_ell = torch.sqrt(r_ell_i * r_ell_j)
|
|
623
|
+
|
|
624
|
+
energy = energy + eps * (((1/r_ell) ** self.lj_repulsive_order) -2 * ((1/r_ell) ** self.lj_attractive_order))
|
|
625
|
+
|
|
626
|
+
self.tmp_geom_num_list_for_save = tmp_geom_num_list_for_save
|
|
627
|
+
self.tmp_element_list_for_save = tmp_element_list_for_save
|
|
628
|
+
return energy
|
|
629
|
+
|
|
630
|
+
def rand_search(self, geom_num_list, bias_pot_params):
|
|
631
|
+
max_energy = 1e+10
|
|
632
|
+
print("rand_search")
|
|
633
|
+
for i in range(self.rand_search_iteration):
|
|
634
|
+
tmp_rot_angle_list = [random.uniform(0, 2*math.pi) for j in range(len(self.config["asymmetric_ellipsoidal_repulsive_potential_v2_eps"]))]
|
|
635
|
+
tmp_rot_angle_list = torch.tensor([tmp_rot_angle_list], dtype=torch.float64, requires_grad=True)
|
|
636
|
+
energy = self.calc_potential(geom_num_list, tmp_rot_angle_list, bias_pot_params)
|
|
637
|
+
if energy < max_energy:
|
|
638
|
+
print("Energy: ", energy)
|
|
639
|
+
max_energy = energy
|
|
640
|
+
self.rot_angle_list = tmp_rot_angle_list
|
|
641
|
+
print("rand_search done")
|
|
642
|
+
print("max_energy: ", max_energy.item())
|
|
643
|
+
return
|
|
644
|
+
|
|
645
|
+
|
|
646
|
+
def microiteration(self, geom_num_list, bias_pot_params):
|
|
647
|
+
if self.init:
|
|
648
|
+
self.rand_search(geom_num_list, bias_pot_params)
|
|
649
|
+
self.init = False
|
|
650
|
+
|
|
651
|
+
prev_rot_grad = torch.zeros_like(self.rot_angle_list)
|
|
652
|
+
Opt = FIRE()
|
|
653
|
+
Opt.display_flag = False
|
|
654
|
+
|
|
655
|
+
for j in range(self.micro_iteration):
|
|
656
|
+
rot_grad = torch.func.jacrev(self.calc_potential, argnums=1)(geom_num_list, self.rot_angle_list, bias_pot_params)
|
|
657
|
+
if torch.linalg.norm(rot_grad) < self.threshold:
|
|
658
|
+
print("Converged!")
|
|
659
|
+
print("M. itr: ", j)
|
|
660
|
+
self.save_flag = True
|
|
661
|
+
energy = self.calc_potential(geom_num_list, self.rot_angle_list, bias_pot_params)
|
|
662
|
+
print("energy: ", energy.item())
|
|
663
|
+
break
|
|
664
|
+
|
|
665
|
+
tmp_rot_angle_list = copy.copy(self.rot_angle_list.clone().detach().numpy())
|
|
666
|
+
tmp_rot_grad = copy.copy(rot_grad.clone().detach().numpy())
|
|
667
|
+
tmp_prev_rot_grad = copy.copy(prev_rot_grad.clone().detach().numpy())
|
|
668
|
+
move_vector = Opt.run(tmp_rot_angle_list[0], tmp_rot_grad[0], tmp_prev_rot_grad[0])
|
|
669
|
+
move_vector = torch.tensor(move_vector, dtype=torch.float64)
|
|
670
|
+
self.rot_angle_list = self.rot_angle_list - 1.0 * move_vector
|
|
671
|
+
# update rot_angle_list
|
|
672
|
+
if j % 100 == 0:
|
|
673
|
+
print("M. itr: ", j)
|
|
674
|
+
print("energy: ", self.calc_potential(geom_num_list, self.rot_angle_list, bias_pot_params).item())
|
|
675
|
+
print("rot_angle_list: ", self.rot_angle_list.detach().numpy())
|
|
676
|
+
print("rot_grad: ", rot_grad.detach().numpy())
|
|
677
|
+
|
|
678
|
+
prev_rot_grad = rot_grad
|
|
679
|
+
else:
|
|
680
|
+
print("Not converged...")
|
|
681
|
+
energy = None
|
|
682
|
+
raise
|
|
683
|
+
|
|
684
|
+
|
|
685
|
+
return energy
|
|
686
|
+
|
|
687
|
+
|
|
688
|
+
def calc_energy(self, geom_num_list, bias_pot_params):
|
|
689
|
+
"""
|
|
690
|
+
# required variables: self.config["asymmetric_ellipsoidal_repulsive_potential_v2_eps"],
|
|
691
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_v2_sig"],
|
|
692
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_v2_dist"],
|
|
693
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_v2_atoms"],
|
|
694
|
+
self.config["asymmetric_ellipsoidal_repulsive_potential_v2_offtgt"],
|
|
695
|
+
bias_pot_params[n][0] : asymmetric_ellipsoidal_repulsive_potential_v2_eps
|
|
696
|
+
bias_pot_params[n][1:7] : asymmetric_ellipsoidal_repulsive_potential_v2_sig
|
|
697
|
+
bias_pot_params[n][7] : asymmetric_ellipsoidal_repulsive_potential_v2_dist
|
|
698
|
+
"""
|
|
699
|
+
energy = self.microiteration(geom_num_list, bias_pot_params)
|
|
700
|
+
return energy
|
|
701
|
+
|
|
702
|
+
def calc_pot_for_eff_hess(self, coord_and_ell_angle, bias_pot_params):
|
|
703
|
+
geom_num_list = coord_and_ell_angle[:len(self.element_list)*3].reshape(-1, 3)
|
|
704
|
+
rot_angle_list = coord_and_ell_angle[len(self.element_list)*3:].reshape(1, self.nangle)
|
|
705
|
+
energy = self.calc_potential(geom_num_list, rot_angle_list, bias_pot_params)
|
|
706
|
+
return energy
|
|
707
|
+
|
|
708
|
+
|
|
709
|
+
def calc_eff_hessian(self, geom_num_list, bias_pot_params):# effective hessian
|
|
710
|
+
transformed_geom_num_list = geom_num_list.reshape(-1, 1)
|
|
711
|
+
transformed_angle_list = self.rot_angle_list.reshape(-1, 1)
|
|
712
|
+
coord_and_ell_angle = torch.cat((transformed_geom_num_list, transformed_angle_list), dim=0)
|
|
713
|
+
combined_hess = torch.func.hessian(self.calc_pot_for_eff_hess, argnums=0)(coord_and_ell_angle, bias_pot_params).reshape(len(self.element_list)*3+self.nangle, len(self.element_list)*3+self.nangle)
|
|
714
|
+
coupling_hess_1 = combined_hess[:len(self.element_list)*3, len(self.element_list)*3:]
|
|
715
|
+
coupling_hess_2 = combined_hess[len(self.element_list)*3:, :len(self.element_list)*3]
|
|
716
|
+
angle_hess = combined_hess[len(self.element_list)*3:, len(self.element_list)*3:]
|
|
717
|
+
eff_hess = -1 * torch.matmul(torch.matmul(coupling_hess_1, torch.linalg.inv(angle_hess)), coupling_hess_2)
|
|
718
|
+
return eff_hess
|