MultiOptPy 1.20.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- multioptpy/Calculator/__init__.py +0 -0
- multioptpy/Calculator/ase_calculation_tools.py +424 -0
- multioptpy/Calculator/ase_tools/__init__.py +0 -0
- multioptpy/Calculator/ase_tools/fairchem.py +28 -0
- multioptpy/Calculator/ase_tools/gamess.py +19 -0
- multioptpy/Calculator/ase_tools/gaussian.py +165 -0
- multioptpy/Calculator/ase_tools/mace.py +28 -0
- multioptpy/Calculator/ase_tools/mopac.py +19 -0
- multioptpy/Calculator/ase_tools/nwchem.py +31 -0
- multioptpy/Calculator/ase_tools/orca.py +22 -0
- multioptpy/Calculator/ase_tools/pygfn0.py +37 -0
- multioptpy/Calculator/dxtb_calculation_tools.py +344 -0
- multioptpy/Calculator/emt_calculation_tools.py +458 -0
- multioptpy/Calculator/gpaw_calculation_tools.py +183 -0
- multioptpy/Calculator/lj_calculation_tools.py +314 -0
- multioptpy/Calculator/psi4_calculation_tools.py +334 -0
- multioptpy/Calculator/pwscf_calculation_tools.py +189 -0
- multioptpy/Calculator/pyscf_calculation_tools.py +327 -0
- multioptpy/Calculator/sqm1_calculation_tools.py +611 -0
- multioptpy/Calculator/sqm2_calculation_tools.py +376 -0
- multioptpy/Calculator/tblite_calculation_tools.py +352 -0
- multioptpy/Calculator/tersoff_calculation_tools.py +818 -0
- multioptpy/Constraint/__init__.py +0 -0
- multioptpy/Constraint/constraint_condition.py +834 -0
- multioptpy/Coordinate/__init__.py +0 -0
- multioptpy/Coordinate/polar_coordinate.py +199 -0
- multioptpy/Coordinate/redundant_coordinate.py +638 -0
- multioptpy/IRC/__init__.py +0 -0
- multioptpy/IRC/converge_criteria.py +28 -0
- multioptpy/IRC/dvv.py +544 -0
- multioptpy/IRC/euler.py +439 -0
- multioptpy/IRC/hpc.py +564 -0
- multioptpy/IRC/lqa.py +540 -0
- multioptpy/IRC/modekill.py +662 -0
- multioptpy/IRC/rk4.py +579 -0
- multioptpy/Interpolation/__init__.py +0 -0
- multioptpy/Interpolation/adaptive_interpolation.py +283 -0
- multioptpy/Interpolation/binomial_interpolation.py +179 -0
- multioptpy/Interpolation/geodesic_interpolation.py +785 -0
- multioptpy/Interpolation/interpolation.py +156 -0
- multioptpy/Interpolation/linear_interpolation.py +473 -0
- multioptpy/Interpolation/savitzky_golay_interpolation.py +252 -0
- multioptpy/Interpolation/spline_interpolation.py +353 -0
- multioptpy/MD/__init__.py +0 -0
- multioptpy/MD/thermostat.py +185 -0
- multioptpy/MEP/__init__.py +0 -0
- multioptpy/MEP/pathopt_bneb_force.py +443 -0
- multioptpy/MEP/pathopt_dmf_force.py +448 -0
- multioptpy/MEP/pathopt_dneb_force.py +130 -0
- multioptpy/MEP/pathopt_ewbneb_force.py +207 -0
- multioptpy/MEP/pathopt_gpneb_force.py +512 -0
- multioptpy/MEP/pathopt_lup_force.py +113 -0
- multioptpy/MEP/pathopt_neb_force.py +225 -0
- multioptpy/MEP/pathopt_nesb_force.py +205 -0
- multioptpy/MEP/pathopt_om_force.py +153 -0
- multioptpy/MEP/pathopt_qsm_force.py +174 -0
- multioptpy/MEP/pathopt_qsmv2_force.py +304 -0
- multioptpy/ModelFunction/__init__.py +7 -0
- multioptpy/ModelFunction/avoiding_model_function.py +29 -0
- multioptpy/ModelFunction/binary_image_ts_search_model_function.py +47 -0
- multioptpy/ModelFunction/conical_model_function.py +26 -0
- multioptpy/ModelFunction/opt_meci.py +50 -0
- multioptpy/ModelFunction/opt_mesx.py +47 -0
- multioptpy/ModelFunction/opt_mesx_2.py +49 -0
- multioptpy/ModelFunction/seam_model_function.py +27 -0
- multioptpy/ModelHessian/__init__.py +0 -0
- multioptpy/ModelHessian/approx_hessian.py +147 -0
- multioptpy/ModelHessian/calc_params.py +227 -0
- multioptpy/ModelHessian/fischer.py +236 -0
- multioptpy/ModelHessian/fischerd3.py +360 -0
- multioptpy/ModelHessian/fischerd4.py +398 -0
- multioptpy/ModelHessian/gfn0xtb.py +633 -0
- multioptpy/ModelHessian/gfnff.py +709 -0
- multioptpy/ModelHessian/lindh.py +165 -0
- multioptpy/ModelHessian/lindh2007d2.py +707 -0
- multioptpy/ModelHessian/lindh2007d3.py +822 -0
- multioptpy/ModelHessian/lindh2007d4.py +1030 -0
- multioptpy/ModelHessian/morse.py +106 -0
- multioptpy/ModelHessian/schlegel.py +144 -0
- multioptpy/ModelHessian/schlegeld3.py +322 -0
- multioptpy/ModelHessian/schlegeld4.py +559 -0
- multioptpy/ModelHessian/shortrange.py +346 -0
- multioptpy/ModelHessian/swartd2.py +496 -0
- multioptpy/ModelHessian/swartd3.py +706 -0
- multioptpy/ModelHessian/swartd4.py +918 -0
- multioptpy/ModelHessian/tshess.py +40 -0
- multioptpy/Optimizer/QHAdam.py +61 -0
- multioptpy/Optimizer/__init__.py +0 -0
- multioptpy/Optimizer/abc_fire.py +83 -0
- multioptpy/Optimizer/adabelief.py +58 -0
- multioptpy/Optimizer/adabound.py +68 -0
- multioptpy/Optimizer/adadelta.py +65 -0
- multioptpy/Optimizer/adaderivative.py +56 -0
- multioptpy/Optimizer/adadiff.py +68 -0
- multioptpy/Optimizer/adafactor.py +70 -0
- multioptpy/Optimizer/adam.py +65 -0
- multioptpy/Optimizer/adamax.py +62 -0
- multioptpy/Optimizer/adamod.py +83 -0
- multioptpy/Optimizer/adamw.py +65 -0
- multioptpy/Optimizer/adiis.py +523 -0
- multioptpy/Optimizer/afire_neb.py +282 -0
- multioptpy/Optimizer/block_hessian_update.py +709 -0
- multioptpy/Optimizer/c2diis.py +491 -0
- multioptpy/Optimizer/component_wise_scaling.py +405 -0
- multioptpy/Optimizer/conjugate_gradient.py +82 -0
- multioptpy/Optimizer/conjugate_gradient_neb.py +345 -0
- multioptpy/Optimizer/coordinate_locking.py +405 -0
- multioptpy/Optimizer/dic_rsirfo.py +1015 -0
- multioptpy/Optimizer/ediis.py +417 -0
- multioptpy/Optimizer/eve.py +76 -0
- multioptpy/Optimizer/fastadabelief.py +61 -0
- multioptpy/Optimizer/fire.py +77 -0
- multioptpy/Optimizer/fire2.py +249 -0
- multioptpy/Optimizer/fire_neb.py +92 -0
- multioptpy/Optimizer/gan_step.py +486 -0
- multioptpy/Optimizer/gdiis.py +609 -0
- multioptpy/Optimizer/gediis.py +203 -0
- multioptpy/Optimizer/geodesic_step.py +433 -0
- multioptpy/Optimizer/gpmin.py +633 -0
- multioptpy/Optimizer/gpr_step.py +364 -0
- multioptpy/Optimizer/gradientdescent.py +78 -0
- multioptpy/Optimizer/gradientdescent_neb.py +52 -0
- multioptpy/Optimizer/hessian_update.py +433 -0
- multioptpy/Optimizer/hybrid_rfo.py +998 -0
- multioptpy/Optimizer/kdiis.py +625 -0
- multioptpy/Optimizer/lars.py +21 -0
- multioptpy/Optimizer/lbfgs.py +253 -0
- multioptpy/Optimizer/lbfgs_neb.py +355 -0
- multioptpy/Optimizer/linesearch.py +236 -0
- multioptpy/Optimizer/lookahead.py +40 -0
- multioptpy/Optimizer/nadam.py +64 -0
- multioptpy/Optimizer/newton.py +200 -0
- multioptpy/Optimizer/prodigy.py +70 -0
- multioptpy/Optimizer/purtubation.py +16 -0
- multioptpy/Optimizer/quickmin_neb.py +245 -0
- multioptpy/Optimizer/radam.py +75 -0
- multioptpy/Optimizer/rfo_neb.py +302 -0
- multioptpy/Optimizer/ric_rfo.py +842 -0
- multioptpy/Optimizer/rl_step.py +627 -0
- multioptpy/Optimizer/rmspropgrave.py +65 -0
- multioptpy/Optimizer/rsirfo.py +1647 -0
- multioptpy/Optimizer/rsprfo.py +1056 -0
- multioptpy/Optimizer/sadam.py +60 -0
- multioptpy/Optimizer/samsgrad.py +63 -0
- multioptpy/Optimizer/tr_lbfgs.py +678 -0
- multioptpy/Optimizer/trim.py +273 -0
- multioptpy/Optimizer/trust_radius.py +207 -0
- multioptpy/Optimizer/trust_radius_neb.py +121 -0
- multioptpy/Optimizer/yogi.py +60 -0
- multioptpy/OtherMethod/__init__.py +0 -0
- multioptpy/OtherMethod/addf.py +1150 -0
- multioptpy/OtherMethod/dimer.py +895 -0
- multioptpy/OtherMethod/elastic_image_pair.py +629 -0
- multioptpy/OtherMethod/modelfunction.py +456 -0
- multioptpy/OtherMethod/newton_traj.py +454 -0
- multioptpy/OtherMethod/twopshs.py +1095 -0
- multioptpy/PESAnalyzer/__init__.py +0 -0
- multioptpy/PESAnalyzer/calc_irc_curvature.py +125 -0
- multioptpy/PESAnalyzer/cmds_analysis.py +152 -0
- multioptpy/PESAnalyzer/koopman_analysis.py +268 -0
- multioptpy/PESAnalyzer/pca_analysis.py +314 -0
- multioptpy/Parameters/__init__.py +0 -0
- multioptpy/Parameters/atomic_mass.py +20 -0
- multioptpy/Parameters/atomic_number.py +22 -0
- multioptpy/Parameters/covalent_radii.py +44 -0
- multioptpy/Parameters/d2.py +61 -0
- multioptpy/Parameters/d3.py +63 -0
- multioptpy/Parameters/d4.py +103 -0
- multioptpy/Parameters/dreiding.py +34 -0
- multioptpy/Parameters/gfn0xtb_param.py +137 -0
- multioptpy/Parameters/gfnff_param.py +315 -0
- multioptpy/Parameters/gnb.py +104 -0
- multioptpy/Parameters/parameter.py +22 -0
- multioptpy/Parameters/uff.py +72 -0
- multioptpy/Parameters/unit_values.py +20 -0
- multioptpy/Potential/AFIR_potential.py +55 -0
- multioptpy/Potential/LJ_repulsive_potential.py +345 -0
- multioptpy/Potential/__init__.py +0 -0
- multioptpy/Potential/anharmonic_keep_potential.py +28 -0
- multioptpy/Potential/asym_elllipsoidal_potential.py +718 -0
- multioptpy/Potential/electrostatic_potential.py +69 -0
- multioptpy/Potential/flux_potential.py +30 -0
- multioptpy/Potential/gaussian_potential.py +101 -0
- multioptpy/Potential/idpp.py +516 -0
- multioptpy/Potential/keep_angle_potential.py +146 -0
- multioptpy/Potential/keep_dihedral_angle_potential.py +105 -0
- multioptpy/Potential/keep_outofplain_angle_potential.py +70 -0
- multioptpy/Potential/keep_potential.py +99 -0
- multioptpy/Potential/mechano_force_potential.py +74 -0
- multioptpy/Potential/nanoreactor_potential.py +52 -0
- multioptpy/Potential/potential.py +896 -0
- multioptpy/Potential/spacer_model_potential.py +221 -0
- multioptpy/Potential/switching_potential.py +258 -0
- multioptpy/Potential/universal_potential.py +34 -0
- multioptpy/Potential/value_range_potential.py +36 -0
- multioptpy/Potential/void_point_potential.py +25 -0
- multioptpy/SQM/__init__.py +0 -0
- multioptpy/SQM/sqm1/__init__.py +0 -0
- multioptpy/SQM/sqm1/sqm1_core.py +1792 -0
- multioptpy/SQM/sqm2/__init__.py +0 -0
- multioptpy/SQM/sqm2/calc_tools.py +95 -0
- multioptpy/SQM/sqm2/sqm2_basis.py +850 -0
- multioptpy/SQM/sqm2/sqm2_bond.py +119 -0
- multioptpy/SQM/sqm2/sqm2_core.py +303 -0
- multioptpy/SQM/sqm2/sqm2_data.py +1229 -0
- multioptpy/SQM/sqm2/sqm2_disp.py +65 -0
- multioptpy/SQM/sqm2/sqm2_eeq.py +243 -0
- multioptpy/SQM/sqm2/sqm2_overlapint.py +704 -0
- multioptpy/SQM/sqm2/sqm2_qm.py +578 -0
- multioptpy/SQM/sqm2/sqm2_rep.py +66 -0
- multioptpy/SQM/sqm2/sqm2_srb.py +70 -0
- multioptpy/Thermo/__init__.py +0 -0
- multioptpy/Thermo/normal_mode_analyzer.py +865 -0
- multioptpy/Utils/__init__.py +0 -0
- multioptpy/Utils/bond_connectivity.py +264 -0
- multioptpy/Utils/calc_tools.py +884 -0
- multioptpy/Utils/oniom.py +96 -0
- multioptpy/Utils/pbc.py +48 -0
- multioptpy/Utils/riemann_curvature.py +208 -0
- multioptpy/Utils/symmetry_analyzer.py +482 -0
- multioptpy/Visualization/__init__.py +0 -0
- multioptpy/Visualization/visualization.py +156 -0
- multioptpy/WFAnalyzer/MO_analysis.py +104 -0
- multioptpy/WFAnalyzer/__init__.py +0 -0
- multioptpy/Wrapper/__init__.py +0 -0
- multioptpy/Wrapper/autots.py +1239 -0
- multioptpy/Wrapper/ieip_wrapper.py +93 -0
- multioptpy/Wrapper/md_wrapper.py +92 -0
- multioptpy/Wrapper/neb_wrapper.py +94 -0
- multioptpy/Wrapper/optimize_wrapper.py +76 -0
- multioptpy/__init__.py +5 -0
- multioptpy/entrypoints.py +916 -0
- multioptpy/fileio.py +660 -0
- multioptpy/ieip.py +340 -0
- multioptpy/interface.py +1086 -0
- multioptpy/irc.py +529 -0
- multioptpy/moleculardynamics.py +432 -0
- multioptpy/neb.py +1267 -0
- multioptpy/optimization.py +1553 -0
- multioptpy/optimizer.py +709 -0
- multioptpy-1.20.2.dist-info/METADATA +438 -0
- multioptpy-1.20.2.dist-info/RECORD +246 -0
- multioptpy-1.20.2.dist-info/WHEEL +5 -0
- multioptpy-1.20.2.dist-info/entry_points.txt +9 -0
- multioptpy-1.20.2.dist-info/licenses/LICENSE +674 -0
- multioptpy-1.20.2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
class DispersionCalculator:
|
|
4
|
+
def __init__(self, element_list, params):
|
|
5
|
+
self.element_list = element_list
|
|
6
|
+
|
|
7
|
+
self.c6_list = []
|
|
8
|
+
self.r4r2_list = []
|
|
9
|
+
self.d2_vdw_list = []
|
|
10
|
+
|
|
11
|
+
for element in element_list:
|
|
12
|
+
self.c6_list.append(params.c6[element])
|
|
13
|
+
self.r4r2_list.append(params.r4r2[element])
|
|
14
|
+
self.d2_vdw_list.append(params.d2_vdw[element])
|
|
15
|
+
|
|
16
|
+
self.c6_list = torch.tensor(self.c6_list, dtype=torch.float64)
|
|
17
|
+
self.r4r2_list = torch.tensor(self.r4r2_list, dtype=torch.float64)
|
|
18
|
+
self.d2_vdw_list = torch.tensor(self.d2_vdw_list, dtype=torch.float64)
|
|
19
|
+
|
|
20
|
+
self.s6 = params.s6
|
|
21
|
+
self.s8 = params.s8
|
|
22
|
+
self.beta_6 = params.beta_6
|
|
23
|
+
self.beta_8 = params.beta_8
|
|
24
|
+
|
|
25
|
+
return
|
|
26
|
+
|
|
27
|
+
def calculation(self, xyz): # xyz: (N,3) torch tensor
|
|
28
|
+
import torch
|
|
29
|
+
N = xyz.shape[0]
|
|
30
|
+
diff = xyz.unsqueeze(1) - xyz.unsqueeze(0)
|
|
31
|
+
r = torch.linalg.norm(diff, dim=-1)
|
|
32
|
+
# Avoid division by zero on diagonal by setting a large value
|
|
33
|
+
r = r + torch.eye(N, device=xyz.device) * 1e10
|
|
34
|
+
|
|
35
|
+
c6_ij = torch.sqrt(self.c6_list.unsqueeze(1) * self.c6_list.unsqueeze(0))
|
|
36
|
+
r4r2_ij = torch.sqrt(self.r4r2_list.unsqueeze(1) * self.r4r2_list.unsqueeze(0))
|
|
37
|
+
c8_ij = 3.0 * c6_ij * r4r2_ij
|
|
38
|
+
d2_sum = self.d2_vdw_list.unsqueeze(1) + self.d2_vdw_list.unsqueeze(0)
|
|
39
|
+
|
|
40
|
+
tmp6 = 6.0 * (d2_sum / r) * self.beta_6
|
|
41
|
+
damp_6 = 1.0 / (1.0 + tmp6)
|
|
42
|
+
tmp8 = 6.0 * (d2_sum / r) * self.beta_8
|
|
43
|
+
damp_8 = 1.0 / (1.0 + tmp8)
|
|
44
|
+
|
|
45
|
+
term_6 = self.s6 * (c6_ij / (r ** 6)) * damp_6
|
|
46
|
+
term_8 = self.s8 * (c8_ij / (r ** 8)) * damp_8
|
|
47
|
+
|
|
48
|
+
energy = -torch.sum(term_6 + term_8) / 2.0
|
|
49
|
+
return energy # shape: scalar
|
|
50
|
+
|
|
51
|
+
def energy(self, xyz):
|
|
52
|
+
energy = self.calculation(torch.tensor(xyz, dtype=torch.float64))
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
return energy
|
|
56
|
+
|
|
57
|
+
def gradient(self, xyz):
|
|
58
|
+
energy = self.calculation(torch.tensor(xyz, dtype=torch.float64))
|
|
59
|
+
gradient = torch.func.jacrev(self.calculation)(torch.tensor(xyz, dtype=torch.float64))
|
|
60
|
+
return energy, gradient
|
|
61
|
+
|
|
62
|
+
def hessian(self, xyz):
|
|
63
|
+
energy = self.calculation(torch.tensor(xyz, dtype=torch.float64))
|
|
64
|
+
hessian = torch.func.hessian(self.calculation)(torch.tensor(xyz, dtype=torch.float64)).reshape(xyz.shape[0] * 3, xyz.shape[0] * 3)
|
|
65
|
+
return energy, hessian
|
|
@@ -0,0 +1,243 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
|
|
3
|
+
class IESEnergyCalculator():
|
|
4
|
+
def __init__(self, element_list, tot_charge, params):
|
|
5
|
+
|
|
6
|
+
self.tot_charge = tot_charge
|
|
7
|
+
self.element_list = element_list
|
|
8
|
+
|
|
9
|
+
eeq_alpha = params.eeqAlp # atomic radius alpha
|
|
10
|
+
eeq_kcn = params.eeqkCN # element_dependent_factor for the element_vector X
|
|
11
|
+
eeq_gamma = params.eeqGam # chemical hardness J_AA
|
|
12
|
+
eeq_kappa = params.eeqChi # electronegativity for eeq model
|
|
13
|
+
covalent_radii = params.eeq_covalent_radii
|
|
14
|
+
self.cov_radii_list = []
|
|
15
|
+
self.eeq_alpha_list = []
|
|
16
|
+
self.eeq_kcn_list = []
|
|
17
|
+
self.eeq_gamma_list = []
|
|
18
|
+
self.eeq_en_list = []
|
|
19
|
+
|
|
20
|
+
for elem in element_list:# 0-indexed
|
|
21
|
+
self.cov_radii_list.append(covalent_radii[elem])
|
|
22
|
+
self.eeq_alpha_list.append(eeq_alpha[elem])
|
|
23
|
+
self.eeq_kcn_list.append(eeq_kcn[elem])
|
|
24
|
+
self.eeq_gamma_list.append(eeq_gamma[elem])
|
|
25
|
+
self.eeq_en_list.append(eeq_kappa[elem])
|
|
26
|
+
|
|
27
|
+
self.cov_radii_list = torch.tensor(self.cov_radii_list, dtype=torch.float64)
|
|
28
|
+
self.eeq_alpha_list = torch.tensor(self.eeq_alpha_list, dtype=torch.float64)
|
|
29
|
+
self.eeq_kcn_list = torch.tensor(self.eeq_kcn_list, dtype=torch.float64)
|
|
30
|
+
self.eeq_gamma_list = torch.tensor(self.eeq_gamma_list, dtype=torch.float64)
|
|
31
|
+
self.eeq_en_list = torch.tensor(self.eeq_en_list, dtype=torch.float64)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
def get_coulomb_matrix(self, xyz):
|
|
35
|
+
|
|
36
|
+
N = xyz.shape[0]
|
|
37
|
+
|
|
38
|
+
r_ij_vec = (xyz.unsqueeze(1) - xyz.unsqueeze(0)).clone()
|
|
39
|
+
r_ij_sq = torch.sum(r_ij_vec**2, dim=2)
|
|
40
|
+
eps = torch.finfo(r_ij_sq.dtype).eps**0.5
|
|
41
|
+
|
|
42
|
+
r_ij = torch.sqrt(r_ij_sq.clone() + eps)
|
|
43
|
+
gammas = self.eeq_gamma_list
|
|
44
|
+
tmp_gamma_ij_sq = (gammas.unsqueeze(1)**2.0 + gammas.unsqueeze(0)**2.0).clone()
|
|
45
|
+
tmp_gamma_ij = torch.sqrt(tmp_gamma_ij_sq)
|
|
46
|
+
|
|
47
|
+
erf_term = torch.erf(tmp_gamma_ij * r_ij)
|
|
48
|
+
|
|
49
|
+
eye_mask = torch.eye(N, dtype=torch.bool, device=xyz.device)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
r_ij_safe = torch.where(eye_mask, 1.0, r_ij)
|
|
53
|
+
|
|
54
|
+
coulomb_matrix = torch.where(
|
|
55
|
+
eye_mask,
|
|
56
|
+
0.0,
|
|
57
|
+
erf_term / r_ij_safe
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
diag_values = self.eeq_gamma_list + (2.0 * self.eeq_alpha_list / (torch.pi ** 0.5))
|
|
62
|
+
|
|
63
|
+
coulomb_matrix = coulomb_matrix + torch.diag(diag_values)
|
|
64
|
+
|
|
65
|
+
return coulomb_matrix.clone()
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
def get_coulomb_matrix_legacy(self, xyz):# xyz: torch tensor, shape (N,3)
|
|
69
|
+
coulomb_matrix = torch.zeros((len(self.element_list), len(self.element_list)), dtype=torch.float64)
|
|
70
|
+
|
|
71
|
+
for i in range(len(self.element_list)):
|
|
72
|
+
for j in range(len(self.element_list)):
|
|
73
|
+
if i == j:
|
|
74
|
+
tmp_Jii = self.eeq_gamma_list[i]
|
|
75
|
+
tmp_Gii = 2.0 * self.eeq_alpha_list[i] / (torch.pi ** 0.5)
|
|
76
|
+
coulomb_matrix[i, j] = tmp_Jii + tmp_Gii
|
|
77
|
+
else:
|
|
78
|
+
r_ij_vec = xyz[i] - xyz[j]
|
|
79
|
+
r_ij = torch.linalg.norm(r_ij_vec)
|
|
80
|
+
tmp_gamma_ij = torch.sqrt(self.eeq_gamma_list[i] ** 2.0 + self.eeq_gamma_list[j] ** 2.0)
|
|
81
|
+
erf_term = torch.erf(tmp_gamma_ij * r_ij)
|
|
82
|
+
coulomb_matrix[i, j] = erf_term / r_ij
|
|
83
|
+
coulomb_matrix[j, i] = coulomb_matrix[i, j]
|
|
84
|
+
|
|
85
|
+
return coulomb_matrix # shape (N,N)
|
|
86
|
+
|
|
87
|
+
def get_cn_modified(self, xyz):
|
|
88
|
+
"""
|
|
89
|
+
Calculates the vectorized modified coordination number.
|
|
90
|
+
"""
|
|
91
|
+
|
|
92
|
+
N = xyz.shape[0]
|
|
93
|
+
r_ij_vec = (xyz.unsqueeze(1) - xyz.unsqueeze(0)).clone()
|
|
94
|
+
r_ij_sq = torch.sum(r_ij_vec**2, dim=2)
|
|
95
|
+
eps = torch.finfo(r_ij_sq.dtype).eps**0.5
|
|
96
|
+
r_ij = torch.sqrt(r_ij_sq.clone() + eps)
|
|
97
|
+
rij_cov = (self.cov_radii_list.unsqueeze(1) + self.cov_radii_list.unsqueeze(0)).clone()
|
|
98
|
+
ratio = r_ij / rij_cov
|
|
99
|
+
arg = -7.5 * (ratio - 1.0)
|
|
100
|
+
tmp_mcn_matrix = 0.5 * (1.0 + torch.erf(arg))
|
|
101
|
+
tmp_mcn_matrix.fill_diagonal_(0.0)
|
|
102
|
+
cn_mod_1d = torch.sum(tmp_mcn_matrix, dim=1).clone()
|
|
103
|
+
return cn_mod_1d.reshape(N, 1).clone() * 2.0
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
def get_cn_modified_legacy(self, xyz): # xyz: torch tensor, shape (N,3)
|
|
107
|
+
cn_mod = torch.zeros((len(self.element_list), 1), dtype=torch.float64)
|
|
108
|
+
|
|
109
|
+
for i in range(len(self.element_list)):
|
|
110
|
+
for j in range(len(self.element_list)):
|
|
111
|
+
if i != j:
|
|
112
|
+
r_ij_vec = xyz[i] - xyz[j]
|
|
113
|
+
r_ij = torch.linalg.norm(r_ij_vec)
|
|
114
|
+
rij_cov = self.cov_radii_list[i] + self.cov_radii_list[j]
|
|
115
|
+
tmp_mcn = 0.5 * (1.0 + torch.erf(-7.5 * ((r_ij / rij_cov) - 1.0)))
|
|
116
|
+
cn_mod[i, 0] += tmp_mcn
|
|
117
|
+
|
|
118
|
+
return cn_mod # shape (N,1)
|
|
119
|
+
|
|
120
|
+
def get_x_vector(self, xyz):
|
|
121
|
+
"""
|
|
122
|
+
Calculates the vectorized x_vector, cloning the result
|
|
123
|
+
to prevent UnsafeViewBackward0 errors.
|
|
124
|
+
"""
|
|
125
|
+
|
|
126
|
+
m_CN_list = self.get_cn_modified(xyz)
|
|
127
|
+
|
|
128
|
+
sqrt_cn = torch.sqrt(m_CN_list)
|
|
129
|
+
|
|
130
|
+
kcn_list_col = self.eeq_kcn_list.reshape(-1, 1)
|
|
131
|
+
en_list_col = self.eeq_en_list.reshape(-1, 1)
|
|
132
|
+
|
|
133
|
+
x_vector = kcn_list_col * sqrt_cn - en_list_col
|
|
134
|
+
|
|
135
|
+
return x_vector.clone()
|
|
136
|
+
|
|
137
|
+
def get_x_vector_legacy(self, xyz): # xyz: torch tensor, shape (N,3)
|
|
138
|
+
x_vector = torch.zeros((len(self.element_list), 1), dtype=torch.float64)
|
|
139
|
+
|
|
140
|
+
m_CN_list = self.get_cn_modified(xyz)
|
|
141
|
+
|
|
142
|
+
for i in range(len(self.element_list)):
|
|
143
|
+
cn_i = m_CN_list[i]
|
|
144
|
+
x_vector[i, 0] = self.eeq_kcn_list[i] * (cn_i ** 0.5) - self.eeq_en_list[i]
|
|
145
|
+
|
|
146
|
+
return x_vector # shape (N,1)
|
|
147
|
+
|
|
148
|
+
def get_q(self, coulomb_matrix, x_vector):
|
|
149
|
+
|
|
150
|
+
N = len(self.element_list)
|
|
151
|
+
|
|
152
|
+
|
|
153
|
+
Q_matrix = torch.zeros((N + 1, N + 1), dtype=torch.float64, device=coulomb_matrix.device)
|
|
154
|
+
|
|
155
|
+
Q_matrix[:N, :N] = coulomb_matrix
|
|
156
|
+
Q_matrix[:N, N] = 1.0 # Broadcasting works
|
|
157
|
+
Q_matrix[N, :N] = 1.0 # Broadcasting works
|
|
158
|
+
|
|
159
|
+
X_vector = torch.zeros((N + 1, 1), dtype=torch.float64, device=x_vector.device)
|
|
160
|
+
|
|
161
|
+
X_vector[:N] = x_vector
|
|
162
|
+
|
|
163
|
+
if isinstance(self.tot_charge, (int, float)):
|
|
164
|
+
X_vector[N, 0] = torch.tensor(self.tot_charge, dtype=torch.float64, device=x_vector.device)
|
|
165
|
+
else:
|
|
166
|
+
X_vector[N, 0] = self.tot_charge
|
|
167
|
+
|
|
168
|
+
|
|
169
|
+
q_vector = torch.linalg.solve(Q_matrix, X_vector)
|
|
170
|
+
q = q_vector[:N].clone() # shape (N, 1)
|
|
171
|
+
# lambda_value = q_vector[N].clone() # scalar
|
|
172
|
+
return q
|
|
173
|
+
|
|
174
|
+
def energy_calculation(self, xyz):
|
|
175
|
+
x_vector = self.get_x_vector(xyz)
|
|
176
|
+
coulomb_matrix = self.get_coulomb_matrix(xyz)
|
|
177
|
+
q_vector = self.get_q(coulomb_matrix, x_vector)
|
|
178
|
+
energy = torch.matmul(q_vector.T, (0.5 * torch.matmul(coulomb_matrix, q_vector) - x_vector))
|
|
179
|
+
return energy
|
|
180
|
+
|
|
181
|
+
def q_calculation(self, xyz):
|
|
182
|
+
x_vector = self.get_x_vector(xyz)
|
|
183
|
+
coulomb_matrix = self.get_coulomb_matrix(xyz)
|
|
184
|
+
q_vector = self.get_q(coulomb_matrix, x_vector)
|
|
185
|
+
return q_vector
|
|
186
|
+
|
|
187
|
+
def energy(self, xyz): # xyz: numpy array, shape (N,3)
|
|
188
|
+
xyz = torch.tensor(xyz, dtype=torch.float64)
|
|
189
|
+
energy = self.energy_calculation(xyz)
|
|
190
|
+
return energy.item()
|
|
191
|
+
|
|
192
|
+
def gradient(self, xyz): # xyz: numpy array, shape (N,3)
|
|
193
|
+
xyz = torch.tensor(xyz, dtype=torch.float64, requires_grad=True)
|
|
194
|
+
energy = self.energy_calculation(xyz)
|
|
195
|
+
gradient = torch.func.jacrev(self.energy_calculation)(xyz)
|
|
196
|
+
gradient = gradient.reshape(xyz.shape[0], 3)
|
|
197
|
+
return energy, gradient
|
|
198
|
+
|
|
199
|
+
def hessian(self, xyz): # xyz: numpy array, shape (N,3)
|
|
200
|
+
xyz = torch.tensor(xyz, dtype=torch.float64, requires_grad=True)
|
|
201
|
+
energy = self.energy_calculation(xyz)
|
|
202
|
+
hessian = torch.func.hessian(self.energy_calculation)(xyz)
|
|
203
|
+
hessian = hessian.reshape(xyz.shape[0] * 3, xyz.shape[0] * 3)
|
|
204
|
+
|
|
205
|
+
return energy, hessian
|
|
206
|
+
|
|
207
|
+
def eeq_charge(self, xyz):
|
|
208
|
+
q_vector = self.q_calculation(torch.tensor(xyz, dtype=torch.float64, requires_grad=True))
|
|
209
|
+
return q_vector
|
|
210
|
+
|
|
211
|
+
def d_eeq_charge_d_xyz(self, xyz):
|
|
212
|
+
xyz = torch.tensor(xyz, dtype=torch.float64, requires_grad=True)
|
|
213
|
+
q_vector = self.q_calculation(xyz)
|
|
214
|
+
dq_dxyz = torch.func.jacrev(self.q_calculation)(xyz)
|
|
215
|
+
dq_dxyz = dq_dxyz.reshape(xyz.shape[0], xyz.shape[0], 3)
|
|
216
|
+
return q_vector, dq_dxyz
|
|
217
|
+
|
|
218
|
+
def d2_eeq_charge_d_xyz2(self, xyz):
|
|
219
|
+
xyz = torch.tensor(xyz, dtype=torch.float64, requires_grad=True)
|
|
220
|
+
q_vector = self.q_calculation(xyz)
|
|
221
|
+
d2q_dxyz2 = torch.func.hessian(self.q_calculation)(xyz)
|
|
222
|
+
d2q_dxyz2 = d2q_dxyz2.reshape(len(self.element_list), xyz.shape[0] * 3, xyz.shape[0] * 3)
|
|
223
|
+
|
|
224
|
+
return q_vector, d2q_dxyz2
|
|
225
|
+
|
|
226
|
+
def cn(self, xyz):
|
|
227
|
+
cn_mod = self.get_cn_modified(torch.tensor(xyz, dtype=torch.float64, requires_grad=True))
|
|
228
|
+
return cn_mod
|
|
229
|
+
|
|
230
|
+
def d_cn_d_xyz(self, xyz):
|
|
231
|
+
xyz = torch.tensor(xyz, dtype=torch.float64, requires_grad=True)
|
|
232
|
+
cn_mod = self.get_cn_modified(xyz)
|
|
233
|
+
dcn_dxyz = torch.func.jacrev(self.get_cn_modified)(xyz)
|
|
234
|
+
dcn_dxyz = dcn_dxyz.reshape(xyz.shape[0], xyz.shape[0], 3)
|
|
235
|
+
return cn_mod, dcn_dxyz
|
|
236
|
+
|
|
237
|
+
def d2_cn_d_xyz2(self, xyz):
|
|
238
|
+
xyz = torch.tensor(xyz, dtype=torch.float64, requires_grad=True)
|
|
239
|
+
cn_mod = self.get_cn_modified(xyz)
|
|
240
|
+
d2cn_dxyz2 = torch.func.hessian(self.get_cn_modified)(xyz)
|
|
241
|
+
d2cn_dxyz2 = d2cn_dxyz2.reshape(len(self.element_list), xyz.shape[0] * 3, xyz.shape[0] * 3)
|
|
242
|
+
|
|
243
|
+
return cn_mod, d2cn_dxyz2
|