MultiOptPy 1.20.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (246) hide show
  1. multioptpy/Calculator/__init__.py +0 -0
  2. multioptpy/Calculator/ase_calculation_tools.py +424 -0
  3. multioptpy/Calculator/ase_tools/__init__.py +0 -0
  4. multioptpy/Calculator/ase_tools/fairchem.py +28 -0
  5. multioptpy/Calculator/ase_tools/gamess.py +19 -0
  6. multioptpy/Calculator/ase_tools/gaussian.py +165 -0
  7. multioptpy/Calculator/ase_tools/mace.py +28 -0
  8. multioptpy/Calculator/ase_tools/mopac.py +19 -0
  9. multioptpy/Calculator/ase_tools/nwchem.py +31 -0
  10. multioptpy/Calculator/ase_tools/orca.py +22 -0
  11. multioptpy/Calculator/ase_tools/pygfn0.py +37 -0
  12. multioptpy/Calculator/dxtb_calculation_tools.py +344 -0
  13. multioptpy/Calculator/emt_calculation_tools.py +458 -0
  14. multioptpy/Calculator/gpaw_calculation_tools.py +183 -0
  15. multioptpy/Calculator/lj_calculation_tools.py +314 -0
  16. multioptpy/Calculator/psi4_calculation_tools.py +334 -0
  17. multioptpy/Calculator/pwscf_calculation_tools.py +189 -0
  18. multioptpy/Calculator/pyscf_calculation_tools.py +327 -0
  19. multioptpy/Calculator/sqm1_calculation_tools.py +611 -0
  20. multioptpy/Calculator/sqm2_calculation_tools.py +376 -0
  21. multioptpy/Calculator/tblite_calculation_tools.py +352 -0
  22. multioptpy/Calculator/tersoff_calculation_tools.py +818 -0
  23. multioptpy/Constraint/__init__.py +0 -0
  24. multioptpy/Constraint/constraint_condition.py +834 -0
  25. multioptpy/Coordinate/__init__.py +0 -0
  26. multioptpy/Coordinate/polar_coordinate.py +199 -0
  27. multioptpy/Coordinate/redundant_coordinate.py +638 -0
  28. multioptpy/IRC/__init__.py +0 -0
  29. multioptpy/IRC/converge_criteria.py +28 -0
  30. multioptpy/IRC/dvv.py +544 -0
  31. multioptpy/IRC/euler.py +439 -0
  32. multioptpy/IRC/hpc.py +564 -0
  33. multioptpy/IRC/lqa.py +540 -0
  34. multioptpy/IRC/modekill.py +662 -0
  35. multioptpy/IRC/rk4.py +579 -0
  36. multioptpy/Interpolation/__init__.py +0 -0
  37. multioptpy/Interpolation/adaptive_interpolation.py +283 -0
  38. multioptpy/Interpolation/binomial_interpolation.py +179 -0
  39. multioptpy/Interpolation/geodesic_interpolation.py +785 -0
  40. multioptpy/Interpolation/interpolation.py +156 -0
  41. multioptpy/Interpolation/linear_interpolation.py +473 -0
  42. multioptpy/Interpolation/savitzky_golay_interpolation.py +252 -0
  43. multioptpy/Interpolation/spline_interpolation.py +353 -0
  44. multioptpy/MD/__init__.py +0 -0
  45. multioptpy/MD/thermostat.py +185 -0
  46. multioptpy/MEP/__init__.py +0 -0
  47. multioptpy/MEP/pathopt_bneb_force.py +443 -0
  48. multioptpy/MEP/pathopt_dmf_force.py +448 -0
  49. multioptpy/MEP/pathopt_dneb_force.py +130 -0
  50. multioptpy/MEP/pathopt_ewbneb_force.py +207 -0
  51. multioptpy/MEP/pathopt_gpneb_force.py +512 -0
  52. multioptpy/MEP/pathopt_lup_force.py +113 -0
  53. multioptpy/MEP/pathopt_neb_force.py +225 -0
  54. multioptpy/MEP/pathopt_nesb_force.py +205 -0
  55. multioptpy/MEP/pathopt_om_force.py +153 -0
  56. multioptpy/MEP/pathopt_qsm_force.py +174 -0
  57. multioptpy/MEP/pathopt_qsmv2_force.py +304 -0
  58. multioptpy/ModelFunction/__init__.py +7 -0
  59. multioptpy/ModelFunction/avoiding_model_function.py +29 -0
  60. multioptpy/ModelFunction/binary_image_ts_search_model_function.py +47 -0
  61. multioptpy/ModelFunction/conical_model_function.py +26 -0
  62. multioptpy/ModelFunction/opt_meci.py +50 -0
  63. multioptpy/ModelFunction/opt_mesx.py +47 -0
  64. multioptpy/ModelFunction/opt_mesx_2.py +49 -0
  65. multioptpy/ModelFunction/seam_model_function.py +27 -0
  66. multioptpy/ModelHessian/__init__.py +0 -0
  67. multioptpy/ModelHessian/approx_hessian.py +147 -0
  68. multioptpy/ModelHessian/calc_params.py +227 -0
  69. multioptpy/ModelHessian/fischer.py +236 -0
  70. multioptpy/ModelHessian/fischerd3.py +360 -0
  71. multioptpy/ModelHessian/fischerd4.py +398 -0
  72. multioptpy/ModelHessian/gfn0xtb.py +633 -0
  73. multioptpy/ModelHessian/gfnff.py +709 -0
  74. multioptpy/ModelHessian/lindh.py +165 -0
  75. multioptpy/ModelHessian/lindh2007d2.py +707 -0
  76. multioptpy/ModelHessian/lindh2007d3.py +822 -0
  77. multioptpy/ModelHessian/lindh2007d4.py +1030 -0
  78. multioptpy/ModelHessian/morse.py +106 -0
  79. multioptpy/ModelHessian/schlegel.py +144 -0
  80. multioptpy/ModelHessian/schlegeld3.py +322 -0
  81. multioptpy/ModelHessian/schlegeld4.py +559 -0
  82. multioptpy/ModelHessian/shortrange.py +346 -0
  83. multioptpy/ModelHessian/swartd2.py +496 -0
  84. multioptpy/ModelHessian/swartd3.py +706 -0
  85. multioptpy/ModelHessian/swartd4.py +918 -0
  86. multioptpy/ModelHessian/tshess.py +40 -0
  87. multioptpy/Optimizer/QHAdam.py +61 -0
  88. multioptpy/Optimizer/__init__.py +0 -0
  89. multioptpy/Optimizer/abc_fire.py +83 -0
  90. multioptpy/Optimizer/adabelief.py +58 -0
  91. multioptpy/Optimizer/adabound.py +68 -0
  92. multioptpy/Optimizer/adadelta.py +65 -0
  93. multioptpy/Optimizer/adaderivative.py +56 -0
  94. multioptpy/Optimizer/adadiff.py +68 -0
  95. multioptpy/Optimizer/adafactor.py +70 -0
  96. multioptpy/Optimizer/adam.py +65 -0
  97. multioptpy/Optimizer/adamax.py +62 -0
  98. multioptpy/Optimizer/adamod.py +83 -0
  99. multioptpy/Optimizer/adamw.py +65 -0
  100. multioptpy/Optimizer/adiis.py +523 -0
  101. multioptpy/Optimizer/afire_neb.py +282 -0
  102. multioptpy/Optimizer/block_hessian_update.py +709 -0
  103. multioptpy/Optimizer/c2diis.py +491 -0
  104. multioptpy/Optimizer/component_wise_scaling.py +405 -0
  105. multioptpy/Optimizer/conjugate_gradient.py +82 -0
  106. multioptpy/Optimizer/conjugate_gradient_neb.py +345 -0
  107. multioptpy/Optimizer/coordinate_locking.py +405 -0
  108. multioptpy/Optimizer/dic_rsirfo.py +1015 -0
  109. multioptpy/Optimizer/ediis.py +417 -0
  110. multioptpy/Optimizer/eve.py +76 -0
  111. multioptpy/Optimizer/fastadabelief.py +61 -0
  112. multioptpy/Optimizer/fire.py +77 -0
  113. multioptpy/Optimizer/fire2.py +249 -0
  114. multioptpy/Optimizer/fire_neb.py +92 -0
  115. multioptpy/Optimizer/gan_step.py +486 -0
  116. multioptpy/Optimizer/gdiis.py +609 -0
  117. multioptpy/Optimizer/gediis.py +203 -0
  118. multioptpy/Optimizer/geodesic_step.py +433 -0
  119. multioptpy/Optimizer/gpmin.py +633 -0
  120. multioptpy/Optimizer/gpr_step.py +364 -0
  121. multioptpy/Optimizer/gradientdescent.py +78 -0
  122. multioptpy/Optimizer/gradientdescent_neb.py +52 -0
  123. multioptpy/Optimizer/hessian_update.py +433 -0
  124. multioptpy/Optimizer/hybrid_rfo.py +998 -0
  125. multioptpy/Optimizer/kdiis.py +625 -0
  126. multioptpy/Optimizer/lars.py +21 -0
  127. multioptpy/Optimizer/lbfgs.py +253 -0
  128. multioptpy/Optimizer/lbfgs_neb.py +355 -0
  129. multioptpy/Optimizer/linesearch.py +236 -0
  130. multioptpy/Optimizer/lookahead.py +40 -0
  131. multioptpy/Optimizer/nadam.py +64 -0
  132. multioptpy/Optimizer/newton.py +200 -0
  133. multioptpy/Optimizer/prodigy.py +70 -0
  134. multioptpy/Optimizer/purtubation.py +16 -0
  135. multioptpy/Optimizer/quickmin_neb.py +245 -0
  136. multioptpy/Optimizer/radam.py +75 -0
  137. multioptpy/Optimizer/rfo_neb.py +302 -0
  138. multioptpy/Optimizer/ric_rfo.py +842 -0
  139. multioptpy/Optimizer/rl_step.py +627 -0
  140. multioptpy/Optimizer/rmspropgrave.py +65 -0
  141. multioptpy/Optimizer/rsirfo.py +1647 -0
  142. multioptpy/Optimizer/rsprfo.py +1056 -0
  143. multioptpy/Optimizer/sadam.py +60 -0
  144. multioptpy/Optimizer/samsgrad.py +63 -0
  145. multioptpy/Optimizer/tr_lbfgs.py +678 -0
  146. multioptpy/Optimizer/trim.py +273 -0
  147. multioptpy/Optimizer/trust_radius.py +207 -0
  148. multioptpy/Optimizer/trust_radius_neb.py +121 -0
  149. multioptpy/Optimizer/yogi.py +60 -0
  150. multioptpy/OtherMethod/__init__.py +0 -0
  151. multioptpy/OtherMethod/addf.py +1150 -0
  152. multioptpy/OtherMethod/dimer.py +895 -0
  153. multioptpy/OtherMethod/elastic_image_pair.py +629 -0
  154. multioptpy/OtherMethod/modelfunction.py +456 -0
  155. multioptpy/OtherMethod/newton_traj.py +454 -0
  156. multioptpy/OtherMethod/twopshs.py +1095 -0
  157. multioptpy/PESAnalyzer/__init__.py +0 -0
  158. multioptpy/PESAnalyzer/calc_irc_curvature.py +125 -0
  159. multioptpy/PESAnalyzer/cmds_analysis.py +152 -0
  160. multioptpy/PESAnalyzer/koopman_analysis.py +268 -0
  161. multioptpy/PESAnalyzer/pca_analysis.py +314 -0
  162. multioptpy/Parameters/__init__.py +0 -0
  163. multioptpy/Parameters/atomic_mass.py +20 -0
  164. multioptpy/Parameters/atomic_number.py +22 -0
  165. multioptpy/Parameters/covalent_radii.py +44 -0
  166. multioptpy/Parameters/d2.py +61 -0
  167. multioptpy/Parameters/d3.py +63 -0
  168. multioptpy/Parameters/d4.py +103 -0
  169. multioptpy/Parameters/dreiding.py +34 -0
  170. multioptpy/Parameters/gfn0xtb_param.py +137 -0
  171. multioptpy/Parameters/gfnff_param.py +315 -0
  172. multioptpy/Parameters/gnb.py +104 -0
  173. multioptpy/Parameters/parameter.py +22 -0
  174. multioptpy/Parameters/uff.py +72 -0
  175. multioptpy/Parameters/unit_values.py +20 -0
  176. multioptpy/Potential/AFIR_potential.py +55 -0
  177. multioptpy/Potential/LJ_repulsive_potential.py +345 -0
  178. multioptpy/Potential/__init__.py +0 -0
  179. multioptpy/Potential/anharmonic_keep_potential.py +28 -0
  180. multioptpy/Potential/asym_elllipsoidal_potential.py +718 -0
  181. multioptpy/Potential/electrostatic_potential.py +69 -0
  182. multioptpy/Potential/flux_potential.py +30 -0
  183. multioptpy/Potential/gaussian_potential.py +101 -0
  184. multioptpy/Potential/idpp.py +516 -0
  185. multioptpy/Potential/keep_angle_potential.py +146 -0
  186. multioptpy/Potential/keep_dihedral_angle_potential.py +105 -0
  187. multioptpy/Potential/keep_outofplain_angle_potential.py +70 -0
  188. multioptpy/Potential/keep_potential.py +99 -0
  189. multioptpy/Potential/mechano_force_potential.py +74 -0
  190. multioptpy/Potential/nanoreactor_potential.py +52 -0
  191. multioptpy/Potential/potential.py +896 -0
  192. multioptpy/Potential/spacer_model_potential.py +221 -0
  193. multioptpy/Potential/switching_potential.py +258 -0
  194. multioptpy/Potential/universal_potential.py +34 -0
  195. multioptpy/Potential/value_range_potential.py +36 -0
  196. multioptpy/Potential/void_point_potential.py +25 -0
  197. multioptpy/SQM/__init__.py +0 -0
  198. multioptpy/SQM/sqm1/__init__.py +0 -0
  199. multioptpy/SQM/sqm1/sqm1_core.py +1792 -0
  200. multioptpy/SQM/sqm2/__init__.py +0 -0
  201. multioptpy/SQM/sqm2/calc_tools.py +95 -0
  202. multioptpy/SQM/sqm2/sqm2_basis.py +850 -0
  203. multioptpy/SQM/sqm2/sqm2_bond.py +119 -0
  204. multioptpy/SQM/sqm2/sqm2_core.py +303 -0
  205. multioptpy/SQM/sqm2/sqm2_data.py +1229 -0
  206. multioptpy/SQM/sqm2/sqm2_disp.py +65 -0
  207. multioptpy/SQM/sqm2/sqm2_eeq.py +243 -0
  208. multioptpy/SQM/sqm2/sqm2_overlapint.py +704 -0
  209. multioptpy/SQM/sqm2/sqm2_qm.py +578 -0
  210. multioptpy/SQM/sqm2/sqm2_rep.py +66 -0
  211. multioptpy/SQM/sqm2/sqm2_srb.py +70 -0
  212. multioptpy/Thermo/__init__.py +0 -0
  213. multioptpy/Thermo/normal_mode_analyzer.py +865 -0
  214. multioptpy/Utils/__init__.py +0 -0
  215. multioptpy/Utils/bond_connectivity.py +264 -0
  216. multioptpy/Utils/calc_tools.py +884 -0
  217. multioptpy/Utils/oniom.py +96 -0
  218. multioptpy/Utils/pbc.py +48 -0
  219. multioptpy/Utils/riemann_curvature.py +208 -0
  220. multioptpy/Utils/symmetry_analyzer.py +482 -0
  221. multioptpy/Visualization/__init__.py +0 -0
  222. multioptpy/Visualization/visualization.py +156 -0
  223. multioptpy/WFAnalyzer/MO_analysis.py +104 -0
  224. multioptpy/WFAnalyzer/__init__.py +0 -0
  225. multioptpy/Wrapper/__init__.py +0 -0
  226. multioptpy/Wrapper/autots.py +1239 -0
  227. multioptpy/Wrapper/ieip_wrapper.py +93 -0
  228. multioptpy/Wrapper/md_wrapper.py +92 -0
  229. multioptpy/Wrapper/neb_wrapper.py +94 -0
  230. multioptpy/Wrapper/optimize_wrapper.py +76 -0
  231. multioptpy/__init__.py +5 -0
  232. multioptpy/entrypoints.py +916 -0
  233. multioptpy/fileio.py +660 -0
  234. multioptpy/ieip.py +340 -0
  235. multioptpy/interface.py +1086 -0
  236. multioptpy/irc.py +529 -0
  237. multioptpy/moleculardynamics.py +432 -0
  238. multioptpy/neb.py +1267 -0
  239. multioptpy/optimization.py +1553 -0
  240. multioptpy/optimizer.py +709 -0
  241. multioptpy-1.20.2.dist-info/METADATA +438 -0
  242. multioptpy-1.20.2.dist-info/RECORD +246 -0
  243. multioptpy-1.20.2.dist-info/WHEEL +5 -0
  244. multioptpy-1.20.2.dist-info/entry_points.txt +9 -0
  245. multioptpy-1.20.2.dist-info/licenses/LICENSE +674 -0
  246. multioptpy-1.20.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,456 @@
1
+ import numpy as np
2
+ import os
3
+
4
+ from multioptpy.Potential.potential import BiasPotentialCalculation
5
+ from multioptpy.Utils.calc_tools import Calculationtools
6
+ from multioptpy.Visualization.visualization import Graph
7
+ from multioptpy.optimizer import CalculateMoveVector
8
+ import multioptpy.ModelFunction as MF
9
+
10
+
11
+ class ModelFunctionOptimizer:
12
+ """
13
+ Implementation of model function optimization for iEIP method.
14
+ Optimizes different model functions for locating transition states and
15
+ crossing points between potential energy surfaces.
16
+ """
17
+ def __init__(self, config):
18
+ self.config = config
19
+
20
+ def print_info_for_model_func(self, optmethod, e, B_e, B_g, displacement_vector, pre_e, pre_B_e):
21
+ """Print model function optimization information"""
22
+ print("calculation results (unit a.u.):")
23
+ print("OPT method : {} ".format(optmethod))
24
+ print(" Value Threshold ")
25
+ print("ENERGY : {:>15.12f} ".format(e))
26
+ print("BIAS ENERGY : {:>15.12f} ".format(B_e))
27
+ print("Maximum Force : {0:>15.12f} {1:>15.12f} ".format(
28
+ abs(B_g.max()), self.config.MAX_FORCE_THRESHOLD))
29
+ print("RMS Force : {0:>15.12f} {1:>15.12f} ".format(
30
+ abs(np.sqrt((B_g**2).mean())), self.config.RMS_FORCE_THRESHOLD))
31
+ print("Maximum Displacement : {0:>15.12f} {1:>15.12f} ".format(
32
+ abs(displacement_vector.max()), self.config.MAX_DISPLACEMENT_THRESHOLD))
33
+ print("RMS Displacement : {0:>15.12f} {1:>15.12f} ".format(
34
+ abs(np.sqrt((displacement_vector**2).mean())), self.config.RMS_DISPLACEMENT_THRESHOLD))
35
+ print("ENERGY SHIFT : {:>15.12f} ".format(e - pre_e))
36
+ print("BIAS ENERGY SHIFT : {:>15.12f} ".format(B_e - pre_B_e))
37
+ return
38
+
39
+ def check_converge_criteria(self, B_g, displacement_vector):
40
+ """Check convergence criteria for model function optimization"""
41
+ max_force = abs(B_g.max())
42
+ max_force_threshold = self.config.MAX_FORCE_THRESHOLD
43
+ rms_force = abs(np.sqrt((B_g**2).mean()))
44
+ rms_force_threshold = self.config.RMS_FORCE_THRESHOLD
45
+
46
+ max_displacement = abs(displacement_vector.max())
47
+ max_displacement_threshold = self.config.MAX_DISPLACEMENT_THRESHOLD
48
+ rms_displacement = abs(np.sqrt((displacement_vector**2).mean()))
49
+ rms_displacement_threshold = self.config.RMS_DISPLACEMENT_THRESHOLD
50
+
51
+ if max_force < max_force_threshold and rms_force < rms_force_threshold and \
52
+ max_displacement < max_displacement_threshold and rms_displacement < rms_displacement_threshold:
53
+ return True, max_displacement_threshold, rms_displacement_threshold
54
+
55
+ return False, max_displacement_threshold, rms_displacement_threshold
56
+
57
+ def model_function_optimization(self, file_directory_list, SP_list, element_list_list, electric_charge_and_multiplicity_list, FIO_img_list):
58
+ """
59
+ Perform model function optimization to locate specific points on PESs.
60
+
61
+ Supported model functions:
62
+ - seam: Finds seam between potential energy surfaces
63
+ - avoiding: Finds avoided crossing points
64
+ - conical: Finds conical intersections
65
+ - mesx/mesx2: Finds minimum energy crossing points
66
+ - meci: Finds minimum energy conical intersections
67
+ """
68
+ G = Graph(self.config.iEIP_FOLDER_DIRECTORY)
69
+ BIAS_GRAD_LIST_LIST = [[] for i in range(len(SP_list))]
70
+ BIAS_MF_GRAD_LIST = [[] for i in range(len(SP_list))]
71
+ BIAS_ENERGY_LIST_LIST = [[] for i in range(len(SP_list))]
72
+ BIAS_MF_ENERGY_LIST = []
73
+ GRAD_LIST_LIST = [[] for i in range(len(SP_list))]
74
+ MF_GRAD_LIST = [[] for i in range(len(SP_list))]
75
+ ENERGY_LIST_LIST = [[] for i in range(len(SP_list))]
76
+ MF_ENERGY_LIST = []
77
+
78
+ for iter in range(0, self.config.microiterlimit):
79
+ if os.path.isfile(self.config.iEIP_FOLDER_DIRECTORY+"end.txt"):
80
+ break
81
+ print("# ITR. "+str(iter))
82
+
83
+ tmp_gradient_list = []
84
+ tmp_energy_list = []
85
+ tmp_geometry_list = []
86
+ exit_flag = False
87
+
88
+ # Compute energy, gradient, and geometry for all systems
89
+ for j in range(len(SP_list)):
90
+ energy, gradient, geom_num_list, exit_flag = SP_list[j].single_point(
91
+ file_directory_list[j], element_list_list[j], iter,
92
+ electric_charge_and_multiplicity_list[j], self.config.force_data["xtb"])
93
+ if exit_flag:
94
+ break
95
+ tmp_gradient_list.append(gradient)
96
+ tmp_energy_list.append(energy)
97
+ tmp_geometry_list.append(geom_num_list)
98
+
99
+ if exit_flag:
100
+ break
101
+
102
+ tmp_gradient_list = np.array(tmp_gradient_list)
103
+ tmp_energy_list = np.array(tmp_energy_list)
104
+ tmp_geometry_list = np.array(tmp_geometry_list)
105
+
106
+ # Initialize on first iteration
107
+ if iter == 0:
108
+ PREV_GRAD_LIST = []
109
+ PREV_BIAS_GRAD_LIST = []
110
+ PREV_MOVE_VEC_LIST = []
111
+ PREV_GEOM_LIST = []
112
+ PREV_GRAD_LIST = []
113
+ PREV_MF_BIAS_GRAD_LIST = []
114
+ PREV_MF_GRAD_LIST = []
115
+ PREV_B_e_LIST = []
116
+ PREV_e_LIST = []
117
+ PREV_MF_e = 0.0
118
+ PREV_MF_B_e = 0.0
119
+ CMV = None
120
+
121
+ optimizer_instances = None
122
+ for j in range(len(SP_list)):
123
+ PREV_GRAD_LIST.append(tmp_gradient_list[j] * 0.0)
124
+ PREV_BIAS_GRAD_LIST.append(tmp_gradient_list[j] * 0.0)
125
+ PREV_MOVE_VEC_LIST.append(tmp_gradient_list[j] * 0.0)
126
+ PREV_MF_BIAS_GRAD_LIST.append(tmp_gradient_list[j] * 0.0)
127
+ PREV_MF_GRAD_LIST.append(tmp_gradient_list[j] * 0.0)
128
+ PREV_B_e_LIST.append(0.0)
129
+ PREV_e_LIST.append(0.0)
130
+
131
+ CMV = CalculateMoveVector("x", element_list_list[j], 0, SP_list[j].FC_COUNT, 0)
132
+
133
+ optimizer_instances = CMV.initialization(self.config.force_data["opt_method"])
134
+ for i in range(len(optimizer_instances)):
135
+ optimizer_instances[i].set_hessian(np.eye((len(geom_num_list)*3)))
136
+
137
+ init_geom_list = tmp_geometry_list
138
+ PREV_GEOM_LIST = tmp_geometry_list
139
+
140
+ # Initialize appropriate model function
141
+ if self.config.mf_mode == "seam":
142
+ SMF = MF.SeamModelFunction()
143
+ elif self.config.mf_mode == "avoiding":
144
+ AMF = MF.AvoidingModelFunction()
145
+ elif self.config.mf_mode == "conical":
146
+ CMF = MF.ConicalModelFunction()
147
+ elif self.config.mf_mode == "mesx2":
148
+ MESX = MF.OptMESX2()
149
+ elif self.config.mf_mode == "mesx":
150
+ MESX = MF.OptMESX()
151
+ elif self.config.mf_mode == "meci":
152
+ MECI_bare = MF.OptMECI()
153
+ MECI_bias = MF.OptMECI()
154
+ else:
155
+ print("Unexpected method. exit...")
156
+ raise ValueError(f"Unsupported model function: {self.config.mf_mode}")
157
+
158
+ # Calculate bias potential and gradient
159
+ BPC_LIST = []
160
+ for j in range(len(SP_list)):
161
+ BPC_LIST.append(BiasPotentialCalculation(self.config.iEIP_FOLDER_DIRECTORY))
162
+
163
+ tmp_bias_energy_list = []
164
+ tmp_bias_gradient_list = []
165
+ tmp_bias_hessian_list = []
166
+
167
+ for j in range(len(SP_list)):
168
+ _, bias_energy, bias_gradient, BPA_hessian = BPC_LIST[j].main(
169
+ tmp_energy_list[j], tmp_gradient_list[j], tmp_geometry_list[j],
170
+ element_list_list[j], self.config.force_data)
171
+
172
+ for l in range(len(optimizer_instances)):
173
+ optimizer_instances[l].set_bias_hessian(BPA_hessian)
174
+
175
+ tmp_bias_hessian_list.append(BPA_hessian)
176
+ tmp_bias_energy_list.append(bias_energy)
177
+ tmp_bias_gradient_list.append(bias_gradient)
178
+
179
+ tmp_bias_energy_list = np.array(tmp_bias_energy_list)
180
+ tmp_bias_gradient_list = np.array(tmp_bias_gradient_list)
181
+
182
+ ##-----
183
+ ## Calculate model function energy, gradient and hessian
184
+ ##-----
185
+ if self.config.mf_mode == "seam":
186
+ mf_energy = SMF.calc_energy(tmp_energy_list[0], tmp_energy_list[1])
187
+ mf_bias_energy = SMF.calc_energy(tmp_bias_energy_list[0], tmp_bias_energy_list[1])
188
+ smf_grad_1, smf_grad_2 = SMF.calc_grad(tmp_energy_list[0], tmp_energy_list[1],
189
+ tmp_gradient_list[0], tmp_gradient_list[1])
190
+ smf_bias_grad_1, smf_bias_grad_2 = SMF.calc_grad(tmp_bias_energy_list[0], tmp_bias_energy_list[1],
191
+ tmp_bias_gradient_list[0], tmp_bias_gradient_list[1])
192
+ tmp_smf_bias_grad_list = [smf_bias_grad_1, smf_bias_grad_2]
193
+ tmp_smf_grad_list = [smf_grad_1, smf_grad_2]
194
+
195
+ # Calculate Hessian if needed
196
+ if iter % self.config.FC_COUNT == 0 and self.config.FC_COUNT > 0:
197
+ hess_list = []
198
+ for l in range(len(SP_list)):
199
+ tmp_hess = 0.5 * (SP_list[l].Model_hess + SP_list[l].Model_hess.T)
200
+ hess_list.append(tmp_hess)
201
+ gp_hess = SMF.calc_hess(tmp_energy_list[0], tmp_energy_list[1],
202
+ tmp_gradient_list[0], tmp_gradient_list[1],
203
+ hess_list[0], hess_list[1])
204
+
205
+ for l in range(len(optimizer_instances)):
206
+ optimizer_instances[l].set_hessian(gp_hess)
207
+
208
+ bias_gp_hess = SMF.calc_hess(
209
+ tmp_bias_energy_list[0] - tmp_energy_list[0],
210
+ tmp_bias_energy_list[1] - tmp_energy_list[1],
211
+ tmp_bias_gradient_list[0] - tmp_gradient_list[0],
212
+ tmp_bias_gradient_list[1] - tmp_gradient_list[1],
213
+ tmp_bias_hessian_list[0], tmp_bias_hessian_list[1])
214
+
215
+ for l in range(len(optimizer_instances)):
216
+ optimizer_instances[l].set_bias_hessian(bias_gp_hess)
217
+
218
+ elif self.config.mf_mode == "avoiding":
219
+ mf_energy = AMF.calc_energy(tmp_energy_list[0], tmp_energy_list[1])
220
+ mf_bias_energy = AMF.calc_energy(tmp_bias_energy_list[0], tmp_bias_energy_list[1])
221
+ smf_grad_1, smf_grad_2 = AMF.calc_grad(tmp_energy_list[0], tmp_energy_list[1],
222
+ tmp_gradient_list[0], tmp_gradient_list[1])
223
+ smf_bias_grad_1, smf_bias_grad_2 = AMF.calc_grad(tmp_bias_energy_list[0], tmp_bias_energy_list[1],
224
+ tmp_bias_gradient_list[0], tmp_bias_gradient_list[1])
225
+ tmp_smf_bias_grad_list = [smf_bias_grad_1, smf_bias_grad_2]
226
+ tmp_smf_grad_list = [smf_grad_1, smf_grad_2]
227
+
228
+ if iter % self.config.FC_COUNT == 0 and self.config.FC_COUNT > 0:
229
+ raise NotImplementedError("Not implemented Hessian of AMF.")
230
+
231
+ elif self.config.mf_mode == "conical":
232
+ mf_energy = CMF.calc_energy(tmp_energy_list[0], tmp_energy_list[1])
233
+ mf_bias_energy = CMF.calc_energy(tmp_bias_energy_list[0], tmp_bias_energy_list[1])
234
+ smf_grad_1, smf_grad_2 = CMF.calc_grad(tmp_energy_list[0], tmp_energy_list[1],
235
+ tmp_gradient_list[0], tmp_gradient_list[1])
236
+ smf_bias_grad_1, smf_bias_grad_2 = CMF.calc_grad(tmp_bias_energy_list[0], tmp_bias_energy_list[1],
237
+ tmp_bias_gradient_list[0], tmp_bias_gradient_list[1])
238
+ tmp_smf_bias_grad_list = [smf_bias_grad_1, smf_bias_grad_2]
239
+ tmp_smf_grad_list = [smf_grad_1, smf_grad_2]
240
+
241
+ if iter % self.config.FC_COUNT == 0 and self.config.FC_COUNT > 0:
242
+ raise NotImplementedError("Not implemented Hessian of CMF.")
243
+
244
+ elif self.config.mf_mode == "mesx" or self.config.mf_mode == "mesx2":
245
+ mf_energy = MESX.calc_energy(tmp_energy_list[0], tmp_energy_list[1])
246
+ mf_bias_energy = MESX.calc_energy(tmp_bias_energy_list[0], tmp_bias_energy_list[1])
247
+ gp_grad = MESX.calc_grad(tmp_energy_list[0], tmp_energy_list[1],
248
+ tmp_gradient_list[0], tmp_gradient_list[1])
249
+ gp_bias_grad = MESX.calc_grad(tmp_bias_energy_list[0], tmp_bias_energy_list[1],
250
+ tmp_bias_gradient_list[0], tmp_bias_gradient_list[1])
251
+ tmp_smf_bias_grad_list = [gp_bias_grad, gp_bias_grad]
252
+ tmp_smf_grad_list = [gp_grad, gp_grad]
253
+
254
+ if iter % self.config.FC_COUNT == 0 and self.config.FC_COUNT > 0:
255
+ hess_list = []
256
+ for l in range(len(SP_list)):
257
+ tmp_hess = 0.5 * (SP_list[l].Model_hess + SP_list[l].Model_hess.T)
258
+ hess_list.append(tmp_hess)
259
+ gp_hess = MESX.calc_hess(tmp_gradient_list[0], tmp_gradient_list[1],
260
+ hess_list[0], hess_list[1])
261
+
262
+ for l in range(len(optimizer_instances)):
263
+ optimizer_instances[l].set_hessian(gp_hess)
264
+
265
+ elif self.config.mf_mode == "meci":
266
+ mf_energy = MECI_bare.calc_energy(tmp_energy_list[0], tmp_energy_list[1])
267
+ mf_bias_energy = MECI_bias.calc_energy(tmp_bias_energy_list[0], tmp_bias_energy_list[1])
268
+ gp_grad = MECI_bare.calc_grad(tmp_energy_list[0], tmp_energy_list[1],
269
+ tmp_gradient_list[0], tmp_gradient_list[1])
270
+ gp_bias_grad = MECI_bias.calc_grad(tmp_bias_energy_list[0], tmp_bias_energy_list[1],
271
+ tmp_bias_gradient_list[0], tmp_bias_gradient_list[1])
272
+ tmp_smf_bias_grad_list = [gp_bias_grad, gp_bias_grad]
273
+ tmp_smf_grad_list = [gp_grad, gp_grad]
274
+
275
+ if iter % self.config.FC_COUNT == 0 and self.config.FC_COUNT > 0:
276
+ hess_list = []
277
+ for l in range(len(SP_list)):
278
+ tmp_hess = 0.5 * (SP_list[l].Model_hess + SP_list[l].Model_hess.T)
279
+ hess_list.append(tmp_hess)
280
+ gp_hess = MECI_bare.calc_hess(tmp_gradient_list[0], tmp_gradient_list[1],
281
+ hess_list[0], hess_list[1])
282
+
283
+ for l in range(len(optimizer_instances)):
284
+ optimizer_instances[l].set_hessian(gp_hess)
285
+
286
+ else:
287
+ print("No model function is selected.")
288
+ raise
289
+
290
+ tmp_smf_bias_grad_list = np.array(tmp_smf_bias_grad_list)
291
+ tmp_smf_grad_list = np.array(tmp_smf_grad_list)
292
+ tmp_move_vector_list = []
293
+ tmp_new_geometry_list = []
294
+
295
+ CMV.trust_radii = 0.1
296
+
297
+ _, tmp_move_vector, _ = CMV.calc_move_vector(iter, tmp_geometry_list[0],
298
+ tmp_smf_bias_grad_list[0],
299
+ PREV_MF_BIAS_GRAD_LIST[0],
300
+ PREV_GEOM_LIST[0],
301
+ PREV_MF_e,
302
+ PREV_MF_B_e,
303
+ PREV_MOVE_VEC_LIST[0],
304
+ init_geom_list[0],
305
+ tmp_smf_grad_list[0],
306
+ PREV_GRAD_LIST[0],
307
+ optimizer_instances)
308
+
309
+ for j in range(len(SP_list)):
310
+ tmp_move_vector_list.append(tmp_move_vector)
311
+ tmp_new_geometry_list.append((tmp_geometry_list[j]-tmp_move_vector)*self.config.bohr2angstroms)
312
+
313
+ tmp_move_vector_list = np.array(tmp_move_vector_list)
314
+ tmp_new_geometry_list = np.array(tmp_new_geometry_list)
315
+
316
+ for j in range(len(SP_list)):
317
+ tmp_new_geometry_list[j] -= Calculationtools().calc_center_of_mass(
318
+ tmp_new_geometry_list[j], element_list_list[j])
319
+ tmp_new_geometry_list[j], _ = Calculationtools().kabsch_algorithm(
320
+ tmp_new_geometry_list[j], PREV_GEOM_LIST[j])
321
+
322
+ tmp_new_geometry_list_to_list = tmp_new_geometry_list.tolist()
323
+
324
+ for j in range(len(SP_list)):
325
+ for i, elem in enumerate(element_list_list[j]):
326
+ tmp_new_geometry_list_to_list[j][i].insert(0, elem)
327
+
328
+ for j in range(len(SP_list)):
329
+ tmp_new_geometry_list_to_list[j].insert(0, electric_charge_and_multiplicity_list[j])
330
+
331
+ for j in range(len(SP_list)):
332
+ print(f"Input: {j}")
333
+ _ = FIO_img_list[j].print_geometry_list(
334
+ tmp_new_geometry_list[j], element_list_list[j], [])
335
+ file_directory_list[j] = FIO_img_list[j].make_psi4_input_file(
336
+ [tmp_new_geometry_list_to_list[j]], iter+1)
337
+ print()
338
+
339
+ # Store values for next iteration
340
+ PREV_GRAD_LIST = tmp_gradient_list
341
+ PREV_BIAS_GRAD_LIST = tmp_bias_gradient_list
342
+ PREV_MOVE_VEC_LIST = tmp_move_vector_list
343
+ PREV_GEOM_LIST = tmp_new_geometry_list
344
+
345
+ PREV_MF_BIAS_GRAD_LIST = tmp_bias_gradient_list
346
+ PREV_MF_GRAD_LIST = tmp_smf_grad_list
347
+ PREV_B_e_LIST = tmp_bias_energy_list
348
+ PREV_e_LIST = tmp_energy_list
349
+
350
+ # Record data for plotting
351
+ BIAS_MF_ENERGY_LIST.append(mf_bias_energy)
352
+ MF_ENERGY_LIST.append(mf_energy)
353
+ for j in range(len(SP_list)):
354
+ BIAS_GRAD_LIST_LIST[j].append(np.sqrt(np.sum(tmp_bias_gradient_list[j]**2)))
355
+ BIAS_ENERGY_LIST_LIST[j].append(tmp_bias_energy_list[j])
356
+ GRAD_LIST_LIST[j].append(np.sqrt(np.sum(tmp_gradient_list[j]**2)))
357
+ ENERGY_LIST_LIST[j].append(tmp_energy_list[j])
358
+ MF_GRAD_LIST[j].append(np.sqrt(np.sum(tmp_smf_grad_list[j]**2)))
359
+ BIAS_MF_GRAD_LIST[j].append(np.sqrt(np.sum(tmp_smf_bias_grad_list[j]**2)))
360
+
361
+ self.print_info_for_model_func(self.config.force_data["opt_method"],
362
+ mf_energy, mf_bias_energy,
363
+ tmp_smf_bias_grad_list, tmp_move_vector_list,
364
+ PREV_MF_e, PREV_MF_B_e)
365
+
366
+ PREV_MF_e = mf_energy
367
+ PREV_MF_B_e = mf_bias_energy
368
+
369
+ # Check convergence
370
+ converge_check_flag, _, _ = self.check_converge_criteria(tmp_smf_bias_grad_list, tmp_move_vector_list)
371
+ if converge_check_flag: # convergence criteria met
372
+ print("Converged!!!")
373
+ break
374
+
375
+ # Generate plots and save data
376
+ NUM_LIST = [i for i in range(len(BIAS_MF_ENERGY_LIST))]
377
+ MF_ENERGY_LIST = np.array(MF_ENERGY_LIST)
378
+ BIAS_MF_ENERGY_LIST = np.array(BIAS_MF_ENERGY_LIST)
379
+ ENERGY_LIST_LIST = np.array(ENERGY_LIST_LIST)
380
+ GRAD_LIST_LIST = np.array(GRAD_LIST_LIST)
381
+ BIAS_ENERGY_LIST_LIST = np.array(BIAS_ENERGY_LIST_LIST)
382
+ BIAS_GRAD_LIST_LIST = np.array(BIAS_GRAD_LIST_LIST)
383
+ MF_GRAD_LIST = np.array(MF_GRAD_LIST)
384
+ BIAS_MF_GRAD_LIST = np.array(BIAS_MF_GRAD_LIST)
385
+
386
+ # Create model function energy plots
387
+ G.single_plot(NUM_LIST, MF_ENERGY_LIST*self.config.hartree2kcalmol,
388
+ file_directory_list[0], "model_function_energy",
389
+ axis_name_2="energy [kcal/mol]", name="model_function_energy")
390
+ G.single_plot(NUM_LIST, BIAS_MF_ENERGY_LIST*self.config.hartree2kcalmol,
391
+ file_directory_list[0], "model_function_bias_energy",
392
+ axis_name_2="energy [kcal/mol]", name="model_function_bias_energy")
393
+ G.double_plot(NUM_LIST, MF_ENERGY_LIST*self.config.hartree2kcalmol,
394
+ BIAS_MF_ENERGY_LIST*self.config.hartree2kcalmol,
395
+ add_file_name="model_function_energy")
396
+
397
+ # Save model function energy data to CSV files
398
+ with open(self.config.iEIP_FOLDER_DIRECTORY+"model_function_energy_"+str(j+1)+".csv", "w") as f:
399
+ for k in range(len(NUM_LIST)):
400
+ f.write(str(NUM_LIST[k])+","+str(MF_ENERGY_LIST[k])+"\n")
401
+ with open(self.config.iEIP_FOLDER_DIRECTORY+"model_function_bias_energy_"+str(j+1)+".csv", "w") as f:
402
+ for k in range(len(NUM_LIST)):
403
+ f.write(str(NUM_LIST[k])+","+str(BIAS_MF_ENERGY_LIST[k])+"\n")
404
+
405
+ # Create and save plots and data for each state
406
+ for j in range(len(SP_list)):
407
+ G.single_plot(NUM_LIST, ENERGY_LIST_LIST[j]*self.config.hartree2kcalmol,
408
+ file_directory_list[j], "energy_"+str(j+1),
409
+ axis_name_2="energy [kcal/mol]", name="energy_"+str(j+1))
410
+ G.single_plot(NUM_LIST, GRAD_LIST_LIST[j],
411
+ file_directory_list[j], "gradient_"+str(j+1),
412
+ axis_name_2="grad (RMS) [a.u.]", name="gradient_"+str(j+1))
413
+ G.single_plot(NUM_LIST, BIAS_ENERGY_LIST_LIST[j]*self.config.hartree2kcalmol,
414
+ file_directory_list[j], "bias_energy_"+str(j+1),
415
+ axis_name_2="energy [kcal/mol]", name="bias_energy_"+str(j+1))
416
+ G.single_plot(NUM_LIST, BIAS_GRAD_LIST_LIST[j],
417
+ file_directory_list[j], "bias_gradient_"+str(j+1),
418
+ axis_name_2="grad (RMS) [a.u.]", name="bias_gradient_"+str(j+1))
419
+ G.single_plot(NUM_LIST, MF_GRAD_LIST[j],
420
+ file_directory_list[j], "model_func_gradient_"+str(j+1),
421
+ axis_name_2="grad (RMS) [a.u.]", name="model_func_gradient_"+str(j+1))
422
+ G.single_plot(NUM_LIST, BIAS_MF_GRAD_LIST[j],
423
+ file_directory_list[j], "model_func_bias_gradient_"+str(j+1),
424
+ axis_name_2="grad (RMS) [a.u.]", name="model_func_bias_gradient_"+str(j+1))
425
+
426
+ # Save energy data to CSV files
427
+ with open(self.config.iEIP_FOLDER_DIRECTORY+"energy_"+str(j+1)+".csv", "w") as f:
428
+ for k in range(len(NUM_LIST)):
429
+ f.write(str(NUM_LIST[k])+","+str(ENERGY_LIST_LIST[j][k])+"\n")
430
+ with open(self.config.iEIP_FOLDER_DIRECTORY+"gradient_"+str(j+1)+".csv", "w") as f:
431
+ for k in range(len(NUM_LIST)):
432
+ f.write(str(NUM_LIST[k])+","+str(GRAD_LIST_LIST[j][k])+"\n")
433
+ with open(self.config.iEIP_FOLDER_DIRECTORY+"bias_energy_"+str(j+1)+".csv", "w") as f:
434
+ for k in range(len(NUM_LIST)):
435
+ f.write(str(NUM_LIST[k])+","+str(BIAS_ENERGY_LIST_LIST[j][k])+"\n")
436
+ with open(self.config.iEIP_FOLDER_DIRECTORY+"bias_gradient_"+str(j+1)+".csv", "w") as f:
437
+ for k in range(len(NUM_LIST)):
438
+ f.write(str(NUM_LIST[k])+","+str(BIAS_GRAD_LIST_LIST[j][k])+"\n")
439
+ with open(self.config.iEIP_FOLDER_DIRECTORY+"model_func_gradient_"+str(j+1)+".csv", "w") as f:
440
+ for k in range(len(NUM_LIST)):
441
+ f.write(str(NUM_LIST[k])+","+str(MF_GRAD_LIST[j][k])+"\n")
442
+ with open(self.config.iEIP_FOLDER_DIRECTORY+"model_func_bias_gradient_"+str(j+1)+".csv", "w") as f:
443
+ for k in range(len(NUM_LIST)):
444
+ f.write(str(NUM_LIST[k])+","+str(BIAS_MF_GRAD_LIST[j][k])+"\n")
445
+
446
+ # Generate trajectory files and identify critical points
447
+ alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
448
+
449
+ for j in range(len(SP_list)):
450
+ FIO_img_list[j].argrelextrema_txt_save(ENERGY_LIST_LIST[j], "approx_TS_"+str(j+1), "max")
451
+ FIO_img_list[j].argrelextrema_txt_save(ENERGY_LIST_LIST[j], "approx_EQ_"+str(j+1), "min")
452
+ FIO_img_list[j].argrelextrema_txt_save(GRAD_LIST_LIST[j], "local_min_grad_"+str(j+1), "min")
453
+
454
+ FIO_img_list[j].make_traj_file(name=alphabet[j])
455
+
456
+ return