MultiOptPy 1.20.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- multioptpy/Calculator/__init__.py +0 -0
- multioptpy/Calculator/ase_calculation_tools.py +424 -0
- multioptpy/Calculator/ase_tools/__init__.py +0 -0
- multioptpy/Calculator/ase_tools/fairchem.py +28 -0
- multioptpy/Calculator/ase_tools/gamess.py +19 -0
- multioptpy/Calculator/ase_tools/gaussian.py +165 -0
- multioptpy/Calculator/ase_tools/mace.py +28 -0
- multioptpy/Calculator/ase_tools/mopac.py +19 -0
- multioptpy/Calculator/ase_tools/nwchem.py +31 -0
- multioptpy/Calculator/ase_tools/orca.py +22 -0
- multioptpy/Calculator/ase_tools/pygfn0.py +37 -0
- multioptpy/Calculator/dxtb_calculation_tools.py +344 -0
- multioptpy/Calculator/emt_calculation_tools.py +458 -0
- multioptpy/Calculator/gpaw_calculation_tools.py +183 -0
- multioptpy/Calculator/lj_calculation_tools.py +314 -0
- multioptpy/Calculator/psi4_calculation_tools.py +334 -0
- multioptpy/Calculator/pwscf_calculation_tools.py +189 -0
- multioptpy/Calculator/pyscf_calculation_tools.py +327 -0
- multioptpy/Calculator/sqm1_calculation_tools.py +611 -0
- multioptpy/Calculator/sqm2_calculation_tools.py +376 -0
- multioptpy/Calculator/tblite_calculation_tools.py +352 -0
- multioptpy/Calculator/tersoff_calculation_tools.py +818 -0
- multioptpy/Constraint/__init__.py +0 -0
- multioptpy/Constraint/constraint_condition.py +834 -0
- multioptpy/Coordinate/__init__.py +0 -0
- multioptpy/Coordinate/polar_coordinate.py +199 -0
- multioptpy/Coordinate/redundant_coordinate.py +638 -0
- multioptpy/IRC/__init__.py +0 -0
- multioptpy/IRC/converge_criteria.py +28 -0
- multioptpy/IRC/dvv.py +544 -0
- multioptpy/IRC/euler.py +439 -0
- multioptpy/IRC/hpc.py +564 -0
- multioptpy/IRC/lqa.py +540 -0
- multioptpy/IRC/modekill.py +662 -0
- multioptpy/IRC/rk4.py +579 -0
- multioptpy/Interpolation/__init__.py +0 -0
- multioptpy/Interpolation/adaptive_interpolation.py +283 -0
- multioptpy/Interpolation/binomial_interpolation.py +179 -0
- multioptpy/Interpolation/geodesic_interpolation.py +785 -0
- multioptpy/Interpolation/interpolation.py +156 -0
- multioptpy/Interpolation/linear_interpolation.py +473 -0
- multioptpy/Interpolation/savitzky_golay_interpolation.py +252 -0
- multioptpy/Interpolation/spline_interpolation.py +353 -0
- multioptpy/MD/__init__.py +0 -0
- multioptpy/MD/thermostat.py +185 -0
- multioptpy/MEP/__init__.py +0 -0
- multioptpy/MEP/pathopt_bneb_force.py +443 -0
- multioptpy/MEP/pathopt_dmf_force.py +448 -0
- multioptpy/MEP/pathopt_dneb_force.py +130 -0
- multioptpy/MEP/pathopt_ewbneb_force.py +207 -0
- multioptpy/MEP/pathopt_gpneb_force.py +512 -0
- multioptpy/MEP/pathopt_lup_force.py +113 -0
- multioptpy/MEP/pathopt_neb_force.py +225 -0
- multioptpy/MEP/pathopt_nesb_force.py +205 -0
- multioptpy/MEP/pathopt_om_force.py +153 -0
- multioptpy/MEP/pathopt_qsm_force.py +174 -0
- multioptpy/MEP/pathopt_qsmv2_force.py +304 -0
- multioptpy/ModelFunction/__init__.py +7 -0
- multioptpy/ModelFunction/avoiding_model_function.py +29 -0
- multioptpy/ModelFunction/binary_image_ts_search_model_function.py +47 -0
- multioptpy/ModelFunction/conical_model_function.py +26 -0
- multioptpy/ModelFunction/opt_meci.py +50 -0
- multioptpy/ModelFunction/opt_mesx.py +47 -0
- multioptpy/ModelFunction/opt_mesx_2.py +49 -0
- multioptpy/ModelFunction/seam_model_function.py +27 -0
- multioptpy/ModelHessian/__init__.py +0 -0
- multioptpy/ModelHessian/approx_hessian.py +147 -0
- multioptpy/ModelHessian/calc_params.py +227 -0
- multioptpy/ModelHessian/fischer.py +236 -0
- multioptpy/ModelHessian/fischerd3.py +360 -0
- multioptpy/ModelHessian/fischerd4.py +398 -0
- multioptpy/ModelHessian/gfn0xtb.py +633 -0
- multioptpy/ModelHessian/gfnff.py +709 -0
- multioptpy/ModelHessian/lindh.py +165 -0
- multioptpy/ModelHessian/lindh2007d2.py +707 -0
- multioptpy/ModelHessian/lindh2007d3.py +822 -0
- multioptpy/ModelHessian/lindh2007d4.py +1030 -0
- multioptpy/ModelHessian/morse.py +106 -0
- multioptpy/ModelHessian/schlegel.py +144 -0
- multioptpy/ModelHessian/schlegeld3.py +322 -0
- multioptpy/ModelHessian/schlegeld4.py +559 -0
- multioptpy/ModelHessian/shortrange.py +346 -0
- multioptpy/ModelHessian/swartd2.py +496 -0
- multioptpy/ModelHessian/swartd3.py +706 -0
- multioptpy/ModelHessian/swartd4.py +918 -0
- multioptpy/ModelHessian/tshess.py +40 -0
- multioptpy/Optimizer/QHAdam.py +61 -0
- multioptpy/Optimizer/__init__.py +0 -0
- multioptpy/Optimizer/abc_fire.py +83 -0
- multioptpy/Optimizer/adabelief.py +58 -0
- multioptpy/Optimizer/adabound.py +68 -0
- multioptpy/Optimizer/adadelta.py +65 -0
- multioptpy/Optimizer/adaderivative.py +56 -0
- multioptpy/Optimizer/adadiff.py +68 -0
- multioptpy/Optimizer/adafactor.py +70 -0
- multioptpy/Optimizer/adam.py +65 -0
- multioptpy/Optimizer/adamax.py +62 -0
- multioptpy/Optimizer/adamod.py +83 -0
- multioptpy/Optimizer/adamw.py +65 -0
- multioptpy/Optimizer/adiis.py +523 -0
- multioptpy/Optimizer/afire_neb.py +282 -0
- multioptpy/Optimizer/block_hessian_update.py +709 -0
- multioptpy/Optimizer/c2diis.py +491 -0
- multioptpy/Optimizer/component_wise_scaling.py +405 -0
- multioptpy/Optimizer/conjugate_gradient.py +82 -0
- multioptpy/Optimizer/conjugate_gradient_neb.py +345 -0
- multioptpy/Optimizer/coordinate_locking.py +405 -0
- multioptpy/Optimizer/dic_rsirfo.py +1015 -0
- multioptpy/Optimizer/ediis.py +417 -0
- multioptpy/Optimizer/eve.py +76 -0
- multioptpy/Optimizer/fastadabelief.py +61 -0
- multioptpy/Optimizer/fire.py +77 -0
- multioptpy/Optimizer/fire2.py +249 -0
- multioptpy/Optimizer/fire_neb.py +92 -0
- multioptpy/Optimizer/gan_step.py +486 -0
- multioptpy/Optimizer/gdiis.py +609 -0
- multioptpy/Optimizer/gediis.py +203 -0
- multioptpy/Optimizer/geodesic_step.py +433 -0
- multioptpy/Optimizer/gpmin.py +633 -0
- multioptpy/Optimizer/gpr_step.py +364 -0
- multioptpy/Optimizer/gradientdescent.py +78 -0
- multioptpy/Optimizer/gradientdescent_neb.py +52 -0
- multioptpy/Optimizer/hessian_update.py +433 -0
- multioptpy/Optimizer/hybrid_rfo.py +998 -0
- multioptpy/Optimizer/kdiis.py +625 -0
- multioptpy/Optimizer/lars.py +21 -0
- multioptpy/Optimizer/lbfgs.py +253 -0
- multioptpy/Optimizer/lbfgs_neb.py +355 -0
- multioptpy/Optimizer/linesearch.py +236 -0
- multioptpy/Optimizer/lookahead.py +40 -0
- multioptpy/Optimizer/nadam.py +64 -0
- multioptpy/Optimizer/newton.py +200 -0
- multioptpy/Optimizer/prodigy.py +70 -0
- multioptpy/Optimizer/purtubation.py +16 -0
- multioptpy/Optimizer/quickmin_neb.py +245 -0
- multioptpy/Optimizer/radam.py +75 -0
- multioptpy/Optimizer/rfo_neb.py +302 -0
- multioptpy/Optimizer/ric_rfo.py +842 -0
- multioptpy/Optimizer/rl_step.py +627 -0
- multioptpy/Optimizer/rmspropgrave.py +65 -0
- multioptpy/Optimizer/rsirfo.py +1647 -0
- multioptpy/Optimizer/rsprfo.py +1056 -0
- multioptpy/Optimizer/sadam.py +60 -0
- multioptpy/Optimizer/samsgrad.py +63 -0
- multioptpy/Optimizer/tr_lbfgs.py +678 -0
- multioptpy/Optimizer/trim.py +273 -0
- multioptpy/Optimizer/trust_radius.py +207 -0
- multioptpy/Optimizer/trust_radius_neb.py +121 -0
- multioptpy/Optimizer/yogi.py +60 -0
- multioptpy/OtherMethod/__init__.py +0 -0
- multioptpy/OtherMethod/addf.py +1150 -0
- multioptpy/OtherMethod/dimer.py +895 -0
- multioptpy/OtherMethod/elastic_image_pair.py +629 -0
- multioptpy/OtherMethod/modelfunction.py +456 -0
- multioptpy/OtherMethod/newton_traj.py +454 -0
- multioptpy/OtherMethod/twopshs.py +1095 -0
- multioptpy/PESAnalyzer/__init__.py +0 -0
- multioptpy/PESAnalyzer/calc_irc_curvature.py +125 -0
- multioptpy/PESAnalyzer/cmds_analysis.py +152 -0
- multioptpy/PESAnalyzer/koopman_analysis.py +268 -0
- multioptpy/PESAnalyzer/pca_analysis.py +314 -0
- multioptpy/Parameters/__init__.py +0 -0
- multioptpy/Parameters/atomic_mass.py +20 -0
- multioptpy/Parameters/atomic_number.py +22 -0
- multioptpy/Parameters/covalent_radii.py +44 -0
- multioptpy/Parameters/d2.py +61 -0
- multioptpy/Parameters/d3.py +63 -0
- multioptpy/Parameters/d4.py +103 -0
- multioptpy/Parameters/dreiding.py +34 -0
- multioptpy/Parameters/gfn0xtb_param.py +137 -0
- multioptpy/Parameters/gfnff_param.py +315 -0
- multioptpy/Parameters/gnb.py +104 -0
- multioptpy/Parameters/parameter.py +22 -0
- multioptpy/Parameters/uff.py +72 -0
- multioptpy/Parameters/unit_values.py +20 -0
- multioptpy/Potential/AFIR_potential.py +55 -0
- multioptpy/Potential/LJ_repulsive_potential.py +345 -0
- multioptpy/Potential/__init__.py +0 -0
- multioptpy/Potential/anharmonic_keep_potential.py +28 -0
- multioptpy/Potential/asym_elllipsoidal_potential.py +718 -0
- multioptpy/Potential/electrostatic_potential.py +69 -0
- multioptpy/Potential/flux_potential.py +30 -0
- multioptpy/Potential/gaussian_potential.py +101 -0
- multioptpy/Potential/idpp.py +516 -0
- multioptpy/Potential/keep_angle_potential.py +146 -0
- multioptpy/Potential/keep_dihedral_angle_potential.py +105 -0
- multioptpy/Potential/keep_outofplain_angle_potential.py +70 -0
- multioptpy/Potential/keep_potential.py +99 -0
- multioptpy/Potential/mechano_force_potential.py +74 -0
- multioptpy/Potential/nanoreactor_potential.py +52 -0
- multioptpy/Potential/potential.py +896 -0
- multioptpy/Potential/spacer_model_potential.py +221 -0
- multioptpy/Potential/switching_potential.py +258 -0
- multioptpy/Potential/universal_potential.py +34 -0
- multioptpy/Potential/value_range_potential.py +36 -0
- multioptpy/Potential/void_point_potential.py +25 -0
- multioptpy/SQM/__init__.py +0 -0
- multioptpy/SQM/sqm1/__init__.py +0 -0
- multioptpy/SQM/sqm1/sqm1_core.py +1792 -0
- multioptpy/SQM/sqm2/__init__.py +0 -0
- multioptpy/SQM/sqm2/calc_tools.py +95 -0
- multioptpy/SQM/sqm2/sqm2_basis.py +850 -0
- multioptpy/SQM/sqm2/sqm2_bond.py +119 -0
- multioptpy/SQM/sqm2/sqm2_core.py +303 -0
- multioptpy/SQM/sqm2/sqm2_data.py +1229 -0
- multioptpy/SQM/sqm2/sqm2_disp.py +65 -0
- multioptpy/SQM/sqm2/sqm2_eeq.py +243 -0
- multioptpy/SQM/sqm2/sqm2_overlapint.py +704 -0
- multioptpy/SQM/sqm2/sqm2_qm.py +578 -0
- multioptpy/SQM/sqm2/sqm2_rep.py +66 -0
- multioptpy/SQM/sqm2/sqm2_srb.py +70 -0
- multioptpy/Thermo/__init__.py +0 -0
- multioptpy/Thermo/normal_mode_analyzer.py +865 -0
- multioptpy/Utils/__init__.py +0 -0
- multioptpy/Utils/bond_connectivity.py +264 -0
- multioptpy/Utils/calc_tools.py +884 -0
- multioptpy/Utils/oniom.py +96 -0
- multioptpy/Utils/pbc.py +48 -0
- multioptpy/Utils/riemann_curvature.py +208 -0
- multioptpy/Utils/symmetry_analyzer.py +482 -0
- multioptpy/Visualization/__init__.py +0 -0
- multioptpy/Visualization/visualization.py +156 -0
- multioptpy/WFAnalyzer/MO_analysis.py +104 -0
- multioptpy/WFAnalyzer/__init__.py +0 -0
- multioptpy/Wrapper/__init__.py +0 -0
- multioptpy/Wrapper/autots.py +1239 -0
- multioptpy/Wrapper/ieip_wrapper.py +93 -0
- multioptpy/Wrapper/md_wrapper.py +92 -0
- multioptpy/Wrapper/neb_wrapper.py +94 -0
- multioptpy/Wrapper/optimize_wrapper.py +76 -0
- multioptpy/__init__.py +5 -0
- multioptpy/entrypoints.py +916 -0
- multioptpy/fileio.py +660 -0
- multioptpy/ieip.py +340 -0
- multioptpy/interface.py +1086 -0
- multioptpy/irc.py +529 -0
- multioptpy/moleculardynamics.py +432 -0
- multioptpy/neb.py +1267 -0
- multioptpy/optimization.py +1553 -0
- multioptpy/optimizer.py +709 -0
- multioptpy-1.20.2.dist-info/METADATA +438 -0
- multioptpy-1.20.2.dist-info/RECORD +246 -0
- multioptpy-1.20.2.dist-info/WHEEL +5 -0
- multioptpy-1.20.2.dist-info/entry_points.txt +9 -0
- multioptpy-1.20.2.dist-info/licenses/LICENSE +674 -0
- multioptpy-1.20.2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,456 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
from multioptpy.Potential.potential import BiasPotentialCalculation
|
|
5
|
+
from multioptpy.Utils.calc_tools import Calculationtools
|
|
6
|
+
from multioptpy.Visualization.visualization import Graph
|
|
7
|
+
from multioptpy.optimizer import CalculateMoveVector
|
|
8
|
+
import multioptpy.ModelFunction as MF
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class ModelFunctionOptimizer:
|
|
12
|
+
"""
|
|
13
|
+
Implementation of model function optimization for iEIP method.
|
|
14
|
+
Optimizes different model functions for locating transition states and
|
|
15
|
+
crossing points between potential energy surfaces.
|
|
16
|
+
"""
|
|
17
|
+
def __init__(self, config):
|
|
18
|
+
self.config = config
|
|
19
|
+
|
|
20
|
+
def print_info_for_model_func(self, optmethod, e, B_e, B_g, displacement_vector, pre_e, pre_B_e):
|
|
21
|
+
"""Print model function optimization information"""
|
|
22
|
+
print("calculation results (unit a.u.):")
|
|
23
|
+
print("OPT method : {} ".format(optmethod))
|
|
24
|
+
print(" Value Threshold ")
|
|
25
|
+
print("ENERGY : {:>15.12f} ".format(e))
|
|
26
|
+
print("BIAS ENERGY : {:>15.12f} ".format(B_e))
|
|
27
|
+
print("Maximum Force : {0:>15.12f} {1:>15.12f} ".format(
|
|
28
|
+
abs(B_g.max()), self.config.MAX_FORCE_THRESHOLD))
|
|
29
|
+
print("RMS Force : {0:>15.12f} {1:>15.12f} ".format(
|
|
30
|
+
abs(np.sqrt((B_g**2).mean())), self.config.RMS_FORCE_THRESHOLD))
|
|
31
|
+
print("Maximum Displacement : {0:>15.12f} {1:>15.12f} ".format(
|
|
32
|
+
abs(displacement_vector.max()), self.config.MAX_DISPLACEMENT_THRESHOLD))
|
|
33
|
+
print("RMS Displacement : {0:>15.12f} {1:>15.12f} ".format(
|
|
34
|
+
abs(np.sqrt((displacement_vector**2).mean())), self.config.RMS_DISPLACEMENT_THRESHOLD))
|
|
35
|
+
print("ENERGY SHIFT : {:>15.12f} ".format(e - pre_e))
|
|
36
|
+
print("BIAS ENERGY SHIFT : {:>15.12f} ".format(B_e - pre_B_e))
|
|
37
|
+
return
|
|
38
|
+
|
|
39
|
+
def check_converge_criteria(self, B_g, displacement_vector):
|
|
40
|
+
"""Check convergence criteria for model function optimization"""
|
|
41
|
+
max_force = abs(B_g.max())
|
|
42
|
+
max_force_threshold = self.config.MAX_FORCE_THRESHOLD
|
|
43
|
+
rms_force = abs(np.sqrt((B_g**2).mean()))
|
|
44
|
+
rms_force_threshold = self.config.RMS_FORCE_THRESHOLD
|
|
45
|
+
|
|
46
|
+
max_displacement = abs(displacement_vector.max())
|
|
47
|
+
max_displacement_threshold = self.config.MAX_DISPLACEMENT_THRESHOLD
|
|
48
|
+
rms_displacement = abs(np.sqrt((displacement_vector**2).mean()))
|
|
49
|
+
rms_displacement_threshold = self.config.RMS_DISPLACEMENT_THRESHOLD
|
|
50
|
+
|
|
51
|
+
if max_force < max_force_threshold and rms_force < rms_force_threshold and \
|
|
52
|
+
max_displacement < max_displacement_threshold and rms_displacement < rms_displacement_threshold:
|
|
53
|
+
return True, max_displacement_threshold, rms_displacement_threshold
|
|
54
|
+
|
|
55
|
+
return False, max_displacement_threshold, rms_displacement_threshold
|
|
56
|
+
|
|
57
|
+
def model_function_optimization(self, file_directory_list, SP_list, element_list_list, electric_charge_and_multiplicity_list, FIO_img_list):
|
|
58
|
+
"""
|
|
59
|
+
Perform model function optimization to locate specific points on PESs.
|
|
60
|
+
|
|
61
|
+
Supported model functions:
|
|
62
|
+
- seam: Finds seam between potential energy surfaces
|
|
63
|
+
- avoiding: Finds avoided crossing points
|
|
64
|
+
- conical: Finds conical intersections
|
|
65
|
+
- mesx/mesx2: Finds minimum energy crossing points
|
|
66
|
+
- meci: Finds minimum energy conical intersections
|
|
67
|
+
"""
|
|
68
|
+
G = Graph(self.config.iEIP_FOLDER_DIRECTORY)
|
|
69
|
+
BIAS_GRAD_LIST_LIST = [[] for i in range(len(SP_list))]
|
|
70
|
+
BIAS_MF_GRAD_LIST = [[] for i in range(len(SP_list))]
|
|
71
|
+
BIAS_ENERGY_LIST_LIST = [[] for i in range(len(SP_list))]
|
|
72
|
+
BIAS_MF_ENERGY_LIST = []
|
|
73
|
+
GRAD_LIST_LIST = [[] for i in range(len(SP_list))]
|
|
74
|
+
MF_GRAD_LIST = [[] for i in range(len(SP_list))]
|
|
75
|
+
ENERGY_LIST_LIST = [[] for i in range(len(SP_list))]
|
|
76
|
+
MF_ENERGY_LIST = []
|
|
77
|
+
|
|
78
|
+
for iter in range(0, self.config.microiterlimit):
|
|
79
|
+
if os.path.isfile(self.config.iEIP_FOLDER_DIRECTORY+"end.txt"):
|
|
80
|
+
break
|
|
81
|
+
print("# ITR. "+str(iter))
|
|
82
|
+
|
|
83
|
+
tmp_gradient_list = []
|
|
84
|
+
tmp_energy_list = []
|
|
85
|
+
tmp_geometry_list = []
|
|
86
|
+
exit_flag = False
|
|
87
|
+
|
|
88
|
+
# Compute energy, gradient, and geometry for all systems
|
|
89
|
+
for j in range(len(SP_list)):
|
|
90
|
+
energy, gradient, geom_num_list, exit_flag = SP_list[j].single_point(
|
|
91
|
+
file_directory_list[j], element_list_list[j], iter,
|
|
92
|
+
electric_charge_and_multiplicity_list[j], self.config.force_data["xtb"])
|
|
93
|
+
if exit_flag:
|
|
94
|
+
break
|
|
95
|
+
tmp_gradient_list.append(gradient)
|
|
96
|
+
tmp_energy_list.append(energy)
|
|
97
|
+
tmp_geometry_list.append(geom_num_list)
|
|
98
|
+
|
|
99
|
+
if exit_flag:
|
|
100
|
+
break
|
|
101
|
+
|
|
102
|
+
tmp_gradient_list = np.array(tmp_gradient_list)
|
|
103
|
+
tmp_energy_list = np.array(tmp_energy_list)
|
|
104
|
+
tmp_geometry_list = np.array(tmp_geometry_list)
|
|
105
|
+
|
|
106
|
+
# Initialize on first iteration
|
|
107
|
+
if iter == 0:
|
|
108
|
+
PREV_GRAD_LIST = []
|
|
109
|
+
PREV_BIAS_GRAD_LIST = []
|
|
110
|
+
PREV_MOVE_VEC_LIST = []
|
|
111
|
+
PREV_GEOM_LIST = []
|
|
112
|
+
PREV_GRAD_LIST = []
|
|
113
|
+
PREV_MF_BIAS_GRAD_LIST = []
|
|
114
|
+
PREV_MF_GRAD_LIST = []
|
|
115
|
+
PREV_B_e_LIST = []
|
|
116
|
+
PREV_e_LIST = []
|
|
117
|
+
PREV_MF_e = 0.0
|
|
118
|
+
PREV_MF_B_e = 0.0
|
|
119
|
+
CMV = None
|
|
120
|
+
|
|
121
|
+
optimizer_instances = None
|
|
122
|
+
for j in range(len(SP_list)):
|
|
123
|
+
PREV_GRAD_LIST.append(tmp_gradient_list[j] * 0.0)
|
|
124
|
+
PREV_BIAS_GRAD_LIST.append(tmp_gradient_list[j] * 0.0)
|
|
125
|
+
PREV_MOVE_VEC_LIST.append(tmp_gradient_list[j] * 0.0)
|
|
126
|
+
PREV_MF_BIAS_GRAD_LIST.append(tmp_gradient_list[j] * 0.0)
|
|
127
|
+
PREV_MF_GRAD_LIST.append(tmp_gradient_list[j] * 0.0)
|
|
128
|
+
PREV_B_e_LIST.append(0.0)
|
|
129
|
+
PREV_e_LIST.append(0.0)
|
|
130
|
+
|
|
131
|
+
CMV = CalculateMoveVector("x", element_list_list[j], 0, SP_list[j].FC_COUNT, 0)
|
|
132
|
+
|
|
133
|
+
optimizer_instances = CMV.initialization(self.config.force_data["opt_method"])
|
|
134
|
+
for i in range(len(optimizer_instances)):
|
|
135
|
+
optimizer_instances[i].set_hessian(np.eye((len(geom_num_list)*3)))
|
|
136
|
+
|
|
137
|
+
init_geom_list = tmp_geometry_list
|
|
138
|
+
PREV_GEOM_LIST = tmp_geometry_list
|
|
139
|
+
|
|
140
|
+
# Initialize appropriate model function
|
|
141
|
+
if self.config.mf_mode == "seam":
|
|
142
|
+
SMF = MF.SeamModelFunction()
|
|
143
|
+
elif self.config.mf_mode == "avoiding":
|
|
144
|
+
AMF = MF.AvoidingModelFunction()
|
|
145
|
+
elif self.config.mf_mode == "conical":
|
|
146
|
+
CMF = MF.ConicalModelFunction()
|
|
147
|
+
elif self.config.mf_mode == "mesx2":
|
|
148
|
+
MESX = MF.OptMESX2()
|
|
149
|
+
elif self.config.mf_mode == "mesx":
|
|
150
|
+
MESX = MF.OptMESX()
|
|
151
|
+
elif self.config.mf_mode == "meci":
|
|
152
|
+
MECI_bare = MF.OptMECI()
|
|
153
|
+
MECI_bias = MF.OptMECI()
|
|
154
|
+
else:
|
|
155
|
+
print("Unexpected method. exit...")
|
|
156
|
+
raise ValueError(f"Unsupported model function: {self.config.mf_mode}")
|
|
157
|
+
|
|
158
|
+
# Calculate bias potential and gradient
|
|
159
|
+
BPC_LIST = []
|
|
160
|
+
for j in range(len(SP_list)):
|
|
161
|
+
BPC_LIST.append(BiasPotentialCalculation(self.config.iEIP_FOLDER_DIRECTORY))
|
|
162
|
+
|
|
163
|
+
tmp_bias_energy_list = []
|
|
164
|
+
tmp_bias_gradient_list = []
|
|
165
|
+
tmp_bias_hessian_list = []
|
|
166
|
+
|
|
167
|
+
for j in range(len(SP_list)):
|
|
168
|
+
_, bias_energy, bias_gradient, BPA_hessian = BPC_LIST[j].main(
|
|
169
|
+
tmp_energy_list[j], tmp_gradient_list[j], tmp_geometry_list[j],
|
|
170
|
+
element_list_list[j], self.config.force_data)
|
|
171
|
+
|
|
172
|
+
for l in range(len(optimizer_instances)):
|
|
173
|
+
optimizer_instances[l].set_bias_hessian(BPA_hessian)
|
|
174
|
+
|
|
175
|
+
tmp_bias_hessian_list.append(BPA_hessian)
|
|
176
|
+
tmp_bias_energy_list.append(bias_energy)
|
|
177
|
+
tmp_bias_gradient_list.append(bias_gradient)
|
|
178
|
+
|
|
179
|
+
tmp_bias_energy_list = np.array(tmp_bias_energy_list)
|
|
180
|
+
tmp_bias_gradient_list = np.array(tmp_bias_gradient_list)
|
|
181
|
+
|
|
182
|
+
##-----
|
|
183
|
+
## Calculate model function energy, gradient and hessian
|
|
184
|
+
##-----
|
|
185
|
+
if self.config.mf_mode == "seam":
|
|
186
|
+
mf_energy = SMF.calc_energy(tmp_energy_list[0], tmp_energy_list[1])
|
|
187
|
+
mf_bias_energy = SMF.calc_energy(tmp_bias_energy_list[0], tmp_bias_energy_list[1])
|
|
188
|
+
smf_grad_1, smf_grad_2 = SMF.calc_grad(tmp_energy_list[0], tmp_energy_list[1],
|
|
189
|
+
tmp_gradient_list[0], tmp_gradient_list[1])
|
|
190
|
+
smf_bias_grad_1, smf_bias_grad_2 = SMF.calc_grad(tmp_bias_energy_list[0], tmp_bias_energy_list[1],
|
|
191
|
+
tmp_bias_gradient_list[0], tmp_bias_gradient_list[1])
|
|
192
|
+
tmp_smf_bias_grad_list = [smf_bias_grad_1, smf_bias_grad_2]
|
|
193
|
+
tmp_smf_grad_list = [smf_grad_1, smf_grad_2]
|
|
194
|
+
|
|
195
|
+
# Calculate Hessian if needed
|
|
196
|
+
if iter % self.config.FC_COUNT == 0 and self.config.FC_COUNT > 0:
|
|
197
|
+
hess_list = []
|
|
198
|
+
for l in range(len(SP_list)):
|
|
199
|
+
tmp_hess = 0.5 * (SP_list[l].Model_hess + SP_list[l].Model_hess.T)
|
|
200
|
+
hess_list.append(tmp_hess)
|
|
201
|
+
gp_hess = SMF.calc_hess(tmp_energy_list[0], tmp_energy_list[1],
|
|
202
|
+
tmp_gradient_list[0], tmp_gradient_list[1],
|
|
203
|
+
hess_list[0], hess_list[1])
|
|
204
|
+
|
|
205
|
+
for l in range(len(optimizer_instances)):
|
|
206
|
+
optimizer_instances[l].set_hessian(gp_hess)
|
|
207
|
+
|
|
208
|
+
bias_gp_hess = SMF.calc_hess(
|
|
209
|
+
tmp_bias_energy_list[0] - tmp_energy_list[0],
|
|
210
|
+
tmp_bias_energy_list[1] - tmp_energy_list[1],
|
|
211
|
+
tmp_bias_gradient_list[0] - tmp_gradient_list[0],
|
|
212
|
+
tmp_bias_gradient_list[1] - tmp_gradient_list[1],
|
|
213
|
+
tmp_bias_hessian_list[0], tmp_bias_hessian_list[1])
|
|
214
|
+
|
|
215
|
+
for l in range(len(optimizer_instances)):
|
|
216
|
+
optimizer_instances[l].set_bias_hessian(bias_gp_hess)
|
|
217
|
+
|
|
218
|
+
elif self.config.mf_mode == "avoiding":
|
|
219
|
+
mf_energy = AMF.calc_energy(tmp_energy_list[0], tmp_energy_list[1])
|
|
220
|
+
mf_bias_energy = AMF.calc_energy(tmp_bias_energy_list[0], tmp_bias_energy_list[1])
|
|
221
|
+
smf_grad_1, smf_grad_2 = AMF.calc_grad(tmp_energy_list[0], tmp_energy_list[1],
|
|
222
|
+
tmp_gradient_list[0], tmp_gradient_list[1])
|
|
223
|
+
smf_bias_grad_1, smf_bias_grad_2 = AMF.calc_grad(tmp_bias_energy_list[0], tmp_bias_energy_list[1],
|
|
224
|
+
tmp_bias_gradient_list[0], tmp_bias_gradient_list[1])
|
|
225
|
+
tmp_smf_bias_grad_list = [smf_bias_grad_1, smf_bias_grad_2]
|
|
226
|
+
tmp_smf_grad_list = [smf_grad_1, smf_grad_2]
|
|
227
|
+
|
|
228
|
+
if iter % self.config.FC_COUNT == 0 and self.config.FC_COUNT > 0:
|
|
229
|
+
raise NotImplementedError("Not implemented Hessian of AMF.")
|
|
230
|
+
|
|
231
|
+
elif self.config.mf_mode == "conical":
|
|
232
|
+
mf_energy = CMF.calc_energy(tmp_energy_list[0], tmp_energy_list[1])
|
|
233
|
+
mf_bias_energy = CMF.calc_energy(tmp_bias_energy_list[0], tmp_bias_energy_list[1])
|
|
234
|
+
smf_grad_1, smf_grad_2 = CMF.calc_grad(tmp_energy_list[0], tmp_energy_list[1],
|
|
235
|
+
tmp_gradient_list[0], tmp_gradient_list[1])
|
|
236
|
+
smf_bias_grad_1, smf_bias_grad_2 = CMF.calc_grad(tmp_bias_energy_list[0], tmp_bias_energy_list[1],
|
|
237
|
+
tmp_bias_gradient_list[0], tmp_bias_gradient_list[1])
|
|
238
|
+
tmp_smf_bias_grad_list = [smf_bias_grad_1, smf_bias_grad_2]
|
|
239
|
+
tmp_smf_grad_list = [smf_grad_1, smf_grad_2]
|
|
240
|
+
|
|
241
|
+
if iter % self.config.FC_COUNT == 0 and self.config.FC_COUNT > 0:
|
|
242
|
+
raise NotImplementedError("Not implemented Hessian of CMF.")
|
|
243
|
+
|
|
244
|
+
elif self.config.mf_mode == "mesx" or self.config.mf_mode == "mesx2":
|
|
245
|
+
mf_energy = MESX.calc_energy(tmp_energy_list[0], tmp_energy_list[1])
|
|
246
|
+
mf_bias_energy = MESX.calc_energy(tmp_bias_energy_list[0], tmp_bias_energy_list[1])
|
|
247
|
+
gp_grad = MESX.calc_grad(tmp_energy_list[0], tmp_energy_list[1],
|
|
248
|
+
tmp_gradient_list[0], tmp_gradient_list[1])
|
|
249
|
+
gp_bias_grad = MESX.calc_grad(tmp_bias_energy_list[0], tmp_bias_energy_list[1],
|
|
250
|
+
tmp_bias_gradient_list[0], tmp_bias_gradient_list[1])
|
|
251
|
+
tmp_smf_bias_grad_list = [gp_bias_grad, gp_bias_grad]
|
|
252
|
+
tmp_smf_grad_list = [gp_grad, gp_grad]
|
|
253
|
+
|
|
254
|
+
if iter % self.config.FC_COUNT == 0 and self.config.FC_COUNT > 0:
|
|
255
|
+
hess_list = []
|
|
256
|
+
for l in range(len(SP_list)):
|
|
257
|
+
tmp_hess = 0.5 * (SP_list[l].Model_hess + SP_list[l].Model_hess.T)
|
|
258
|
+
hess_list.append(tmp_hess)
|
|
259
|
+
gp_hess = MESX.calc_hess(tmp_gradient_list[0], tmp_gradient_list[1],
|
|
260
|
+
hess_list[0], hess_list[1])
|
|
261
|
+
|
|
262
|
+
for l in range(len(optimizer_instances)):
|
|
263
|
+
optimizer_instances[l].set_hessian(gp_hess)
|
|
264
|
+
|
|
265
|
+
elif self.config.mf_mode == "meci":
|
|
266
|
+
mf_energy = MECI_bare.calc_energy(tmp_energy_list[0], tmp_energy_list[1])
|
|
267
|
+
mf_bias_energy = MECI_bias.calc_energy(tmp_bias_energy_list[0], tmp_bias_energy_list[1])
|
|
268
|
+
gp_grad = MECI_bare.calc_grad(tmp_energy_list[0], tmp_energy_list[1],
|
|
269
|
+
tmp_gradient_list[0], tmp_gradient_list[1])
|
|
270
|
+
gp_bias_grad = MECI_bias.calc_grad(tmp_bias_energy_list[0], tmp_bias_energy_list[1],
|
|
271
|
+
tmp_bias_gradient_list[0], tmp_bias_gradient_list[1])
|
|
272
|
+
tmp_smf_bias_grad_list = [gp_bias_grad, gp_bias_grad]
|
|
273
|
+
tmp_smf_grad_list = [gp_grad, gp_grad]
|
|
274
|
+
|
|
275
|
+
if iter % self.config.FC_COUNT == 0 and self.config.FC_COUNT > 0:
|
|
276
|
+
hess_list = []
|
|
277
|
+
for l in range(len(SP_list)):
|
|
278
|
+
tmp_hess = 0.5 * (SP_list[l].Model_hess + SP_list[l].Model_hess.T)
|
|
279
|
+
hess_list.append(tmp_hess)
|
|
280
|
+
gp_hess = MECI_bare.calc_hess(tmp_gradient_list[0], tmp_gradient_list[1],
|
|
281
|
+
hess_list[0], hess_list[1])
|
|
282
|
+
|
|
283
|
+
for l in range(len(optimizer_instances)):
|
|
284
|
+
optimizer_instances[l].set_hessian(gp_hess)
|
|
285
|
+
|
|
286
|
+
else:
|
|
287
|
+
print("No model function is selected.")
|
|
288
|
+
raise
|
|
289
|
+
|
|
290
|
+
tmp_smf_bias_grad_list = np.array(tmp_smf_bias_grad_list)
|
|
291
|
+
tmp_smf_grad_list = np.array(tmp_smf_grad_list)
|
|
292
|
+
tmp_move_vector_list = []
|
|
293
|
+
tmp_new_geometry_list = []
|
|
294
|
+
|
|
295
|
+
CMV.trust_radii = 0.1
|
|
296
|
+
|
|
297
|
+
_, tmp_move_vector, _ = CMV.calc_move_vector(iter, tmp_geometry_list[0],
|
|
298
|
+
tmp_smf_bias_grad_list[0],
|
|
299
|
+
PREV_MF_BIAS_GRAD_LIST[0],
|
|
300
|
+
PREV_GEOM_LIST[0],
|
|
301
|
+
PREV_MF_e,
|
|
302
|
+
PREV_MF_B_e,
|
|
303
|
+
PREV_MOVE_VEC_LIST[0],
|
|
304
|
+
init_geom_list[0],
|
|
305
|
+
tmp_smf_grad_list[0],
|
|
306
|
+
PREV_GRAD_LIST[0],
|
|
307
|
+
optimizer_instances)
|
|
308
|
+
|
|
309
|
+
for j in range(len(SP_list)):
|
|
310
|
+
tmp_move_vector_list.append(tmp_move_vector)
|
|
311
|
+
tmp_new_geometry_list.append((tmp_geometry_list[j]-tmp_move_vector)*self.config.bohr2angstroms)
|
|
312
|
+
|
|
313
|
+
tmp_move_vector_list = np.array(tmp_move_vector_list)
|
|
314
|
+
tmp_new_geometry_list = np.array(tmp_new_geometry_list)
|
|
315
|
+
|
|
316
|
+
for j in range(len(SP_list)):
|
|
317
|
+
tmp_new_geometry_list[j] -= Calculationtools().calc_center_of_mass(
|
|
318
|
+
tmp_new_geometry_list[j], element_list_list[j])
|
|
319
|
+
tmp_new_geometry_list[j], _ = Calculationtools().kabsch_algorithm(
|
|
320
|
+
tmp_new_geometry_list[j], PREV_GEOM_LIST[j])
|
|
321
|
+
|
|
322
|
+
tmp_new_geometry_list_to_list = tmp_new_geometry_list.tolist()
|
|
323
|
+
|
|
324
|
+
for j in range(len(SP_list)):
|
|
325
|
+
for i, elem in enumerate(element_list_list[j]):
|
|
326
|
+
tmp_new_geometry_list_to_list[j][i].insert(0, elem)
|
|
327
|
+
|
|
328
|
+
for j in range(len(SP_list)):
|
|
329
|
+
tmp_new_geometry_list_to_list[j].insert(0, electric_charge_and_multiplicity_list[j])
|
|
330
|
+
|
|
331
|
+
for j in range(len(SP_list)):
|
|
332
|
+
print(f"Input: {j}")
|
|
333
|
+
_ = FIO_img_list[j].print_geometry_list(
|
|
334
|
+
tmp_new_geometry_list[j], element_list_list[j], [])
|
|
335
|
+
file_directory_list[j] = FIO_img_list[j].make_psi4_input_file(
|
|
336
|
+
[tmp_new_geometry_list_to_list[j]], iter+1)
|
|
337
|
+
print()
|
|
338
|
+
|
|
339
|
+
# Store values for next iteration
|
|
340
|
+
PREV_GRAD_LIST = tmp_gradient_list
|
|
341
|
+
PREV_BIAS_GRAD_LIST = tmp_bias_gradient_list
|
|
342
|
+
PREV_MOVE_VEC_LIST = tmp_move_vector_list
|
|
343
|
+
PREV_GEOM_LIST = tmp_new_geometry_list
|
|
344
|
+
|
|
345
|
+
PREV_MF_BIAS_GRAD_LIST = tmp_bias_gradient_list
|
|
346
|
+
PREV_MF_GRAD_LIST = tmp_smf_grad_list
|
|
347
|
+
PREV_B_e_LIST = tmp_bias_energy_list
|
|
348
|
+
PREV_e_LIST = tmp_energy_list
|
|
349
|
+
|
|
350
|
+
# Record data for plotting
|
|
351
|
+
BIAS_MF_ENERGY_LIST.append(mf_bias_energy)
|
|
352
|
+
MF_ENERGY_LIST.append(mf_energy)
|
|
353
|
+
for j in range(len(SP_list)):
|
|
354
|
+
BIAS_GRAD_LIST_LIST[j].append(np.sqrt(np.sum(tmp_bias_gradient_list[j]**2)))
|
|
355
|
+
BIAS_ENERGY_LIST_LIST[j].append(tmp_bias_energy_list[j])
|
|
356
|
+
GRAD_LIST_LIST[j].append(np.sqrt(np.sum(tmp_gradient_list[j]**2)))
|
|
357
|
+
ENERGY_LIST_LIST[j].append(tmp_energy_list[j])
|
|
358
|
+
MF_GRAD_LIST[j].append(np.sqrt(np.sum(tmp_smf_grad_list[j]**2)))
|
|
359
|
+
BIAS_MF_GRAD_LIST[j].append(np.sqrt(np.sum(tmp_smf_bias_grad_list[j]**2)))
|
|
360
|
+
|
|
361
|
+
self.print_info_for_model_func(self.config.force_data["opt_method"],
|
|
362
|
+
mf_energy, mf_bias_energy,
|
|
363
|
+
tmp_smf_bias_grad_list, tmp_move_vector_list,
|
|
364
|
+
PREV_MF_e, PREV_MF_B_e)
|
|
365
|
+
|
|
366
|
+
PREV_MF_e = mf_energy
|
|
367
|
+
PREV_MF_B_e = mf_bias_energy
|
|
368
|
+
|
|
369
|
+
# Check convergence
|
|
370
|
+
converge_check_flag, _, _ = self.check_converge_criteria(tmp_smf_bias_grad_list, tmp_move_vector_list)
|
|
371
|
+
if converge_check_flag: # convergence criteria met
|
|
372
|
+
print("Converged!!!")
|
|
373
|
+
break
|
|
374
|
+
|
|
375
|
+
# Generate plots and save data
|
|
376
|
+
NUM_LIST = [i for i in range(len(BIAS_MF_ENERGY_LIST))]
|
|
377
|
+
MF_ENERGY_LIST = np.array(MF_ENERGY_LIST)
|
|
378
|
+
BIAS_MF_ENERGY_LIST = np.array(BIAS_MF_ENERGY_LIST)
|
|
379
|
+
ENERGY_LIST_LIST = np.array(ENERGY_LIST_LIST)
|
|
380
|
+
GRAD_LIST_LIST = np.array(GRAD_LIST_LIST)
|
|
381
|
+
BIAS_ENERGY_LIST_LIST = np.array(BIAS_ENERGY_LIST_LIST)
|
|
382
|
+
BIAS_GRAD_LIST_LIST = np.array(BIAS_GRAD_LIST_LIST)
|
|
383
|
+
MF_GRAD_LIST = np.array(MF_GRAD_LIST)
|
|
384
|
+
BIAS_MF_GRAD_LIST = np.array(BIAS_MF_GRAD_LIST)
|
|
385
|
+
|
|
386
|
+
# Create model function energy plots
|
|
387
|
+
G.single_plot(NUM_LIST, MF_ENERGY_LIST*self.config.hartree2kcalmol,
|
|
388
|
+
file_directory_list[0], "model_function_energy",
|
|
389
|
+
axis_name_2="energy [kcal/mol]", name="model_function_energy")
|
|
390
|
+
G.single_plot(NUM_LIST, BIAS_MF_ENERGY_LIST*self.config.hartree2kcalmol,
|
|
391
|
+
file_directory_list[0], "model_function_bias_energy",
|
|
392
|
+
axis_name_2="energy [kcal/mol]", name="model_function_bias_energy")
|
|
393
|
+
G.double_plot(NUM_LIST, MF_ENERGY_LIST*self.config.hartree2kcalmol,
|
|
394
|
+
BIAS_MF_ENERGY_LIST*self.config.hartree2kcalmol,
|
|
395
|
+
add_file_name="model_function_energy")
|
|
396
|
+
|
|
397
|
+
# Save model function energy data to CSV files
|
|
398
|
+
with open(self.config.iEIP_FOLDER_DIRECTORY+"model_function_energy_"+str(j+1)+".csv", "w") as f:
|
|
399
|
+
for k in range(len(NUM_LIST)):
|
|
400
|
+
f.write(str(NUM_LIST[k])+","+str(MF_ENERGY_LIST[k])+"\n")
|
|
401
|
+
with open(self.config.iEIP_FOLDER_DIRECTORY+"model_function_bias_energy_"+str(j+1)+".csv", "w") as f:
|
|
402
|
+
for k in range(len(NUM_LIST)):
|
|
403
|
+
f.write(str(NUM_LIST[k])+","+str(BIAS_MF_ENERGY_LIST[k])+"\n")
|
|
404
|
+
|
|
405
|
+
# Create and save plots and data for each state
|
|
406
|
+
for j in range(len(SP_list)):
|
|
407
|
+
G.single_plot(NUM_LIST, ENERGY_LIST_LIST[j]*self.config.hartree2kcalmol,
|
|
408
|
+
file_directory_list[j], "energy_"+str(j+1),
|
|
409
|
+
axis_name_2="energy [kcal/mol]", name="energy_"+str(j+1))
|
|
410
|
+
G.single_plot(NUM_LIST, GRAD_LIST_LIST[j],
|
|
411
|
+
file_directory_list[j], "gradient_"+str(j+1),
|
|
412
|
+
axis_name_2="grad (RMS) [a.u.]", name="gradient_"+str(j+1))
|
|
413
|
+
G.single_plot(NUM_LIST, BIAS_ENERGY_LIST_LIST[j]*self.config.hartree2kcalmol,
|
|
414
|
+
file_directory_list[j], "bias_energy_"+str(j+1),
|
|
415
|
+
axis_name_2="energy [kcal/mol]", name="bias_energy_"+str(j+1))
|
|
416
|
+
G.single_plot(NUM_LIST, BIAS_GRAD_LIST_LIST[j],
|
|
417
|
+
file_directory_list[j], "bias_gradient_"+str(j+1),
|
|
418
|
+
axis_name_2="grad (RMS) [a.u.]", name="bias_gradient_"+str(j+1))
|
|
419
|
+
G.single_plot(NUM_LIST, MF_GRAD_LIST[j],
|
|
420
|
+
file_directory_list[j], "model_func_gradient_"+str(j+1),
|
|
421
|
+
axis_name_2="grad (RMS) [a.u.]", name="model_func_gradient_"+str(j+1))
|
|
422
|
+
G.single_plot(NUM_LIST, BIAS_MF_GRAD_LIST[j],
|
|
423
|
+
file_directory_list[j], "model_func_bias_gradient_"+str(j+1),
|
|
424
|
+
axis_name_2="grad (RMS) [a.u.]", name="model_func_bias_gradient_"+str(j+1))
|
|
425
|
+
|
|
426
|
+
# Save energy data to CSV files
|
|
427
|
+
with open(self.config.iEIP_FOLDER_DIRECTORY+"energy_"+str(j+1)+".csv", "w") as f:
|
|
428
|
+
for k in range(len(NUM_LIST)):
|
|
429
|
+
f.write(str(NUM_LIST[k])+","+str(ENERGY_LIST_LIST[j][k])+"\n")
|
|
430
|
+
with open(self.config.iEIP_FOLDER_DIRECTORY+"gradient_"+str(j+1)+".csv", "w") as f:
|
|
431
|
+
for k in range(len(NUM_LIST)):
|
|
432
|
+
f.write(str(NUM_LIST[k])+","+str(GRAD_LIST_LIST[j][k])+"\n")
|
|
433
|
+
with open(self.config.iEIP_FOLDER_DIRECTORY+"bias_energy_"+str(j+1)+".csv", "w") as f:
|
|
434
|
+
for k in range(len(NUM_LIST)):
|
|
435
|
+
f.write(str(NUM_LIST[k])+","+str(BIAS_ENERGY_LIST_LIST[j][k])+"\n")
|
|
436
|
+
with open(self.config.iEIP_FOLDER_DIRECTORY+"bias_gradient_"+str(j+1)+".csv", "w") as f:
|
|
437
|
+
for k in range(len(NUM_LIST)):
|
|
438
|
+
f.write(str(NUM_LIST[k])+","+str(BIAS_GRAD_LIST_LIST[j][k])+"\n")
|
|
439
|
+
with open(self.config.iEIP_FOLDER_DIRECTORY+"model_func_gradient_"+str(j+1)+".csv", "w") as f:
|
|
440
|
+
for k in range(len(NUM_LIST)):
|
|
441
|
+
f.write(str(NUM_LIST[k])+","+str(MF_GRAD_LIST[j][k])+"\n")
|
|
442
|
+
with open(self.config.iEIP_FOLDER_DIRECTORY+"model_func_bias_gradient_"+str(j+1)+".csv", "w") as f:
|
|
443
|
+
for k in range(len(NUM_LIST)):
|
|
444
|
+
f.write(str(NUM_LIST[k])+","+str(BIAS_MF_GRAD_LIST[j][k])+"\n")
|
|
445
|
+
|
|
446
|
+
# Generate trajectory files and identify critical points
|
|
447
|
+
alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
448
|
+
|
|
449
|
+
for j in range(len(SP_list)):
|
|
450
|
+
FIO_img_list[j].argrelextrema_txt_save(ENERGY_LIST_LIST[j], "approx_TS_"+str(j+1), "max")
|
|
451
|
+
FIO_img_list[j].argrelextrema_txt_save(ENERGY_LIST_LIST[j], "approx_EQ_"+str(j+1), "min")
|
|
452
|
+
FIO_img_list[j].argrelextrema_txt_save(GRAD_LIST_LIST[j], "local_min_grad_"+str(j+1), "min")
|
|
453
|
+
|
|
454
|
+
FIO_img_list[j].make_traj_file(name=alphabet[j])
|
|
455
|
+
|
|
456
|
+
return
|