MultiOptPy 1.20.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (246) hide show
  1. multioptpy/Calculator/__init__.py +0 -0
  2. multioptpy/Calculator/ase_calculation_tools.py +424 -0
  3. multioptpy/Calculator/ase_tools/__init__.py +0 -0
  4. multioptpy/Calculator/ase_tools/fairchem.py +28 -0
  5. multioptpy/Calculator/ase_tools/gamess.py +19 -0
  6. multioptpy/Calculator/ase_tools/gaussian.py +165 -0
  7. multioptpy/Calculator/ase_tools/mace.py +28 -0
  8. multioptpy/Calculator/ase_tools/mopac.py +19 -0
  9. multioptpy/Calculator/ase_tools/nwchem.py +31 -0
  10. multioptpy/Calculator/ase_tools/orca.py +22 -0
  11. multioptpy/Calculator/ase_tools/pygfn0.py +37 -0
  12. multioptpy/Calculator/dxtb_calculation_tools.py +344 -0
  13. multioptpy/Calculator/emt_calculation_tools.py +458 -0
  14. multioptpy/Calculator/gpaw_calculation_tools.py +183 -0
  15. multioptpy/Calculator/lj_calculation_tools.py +314 -0
  16. multioptpy/Calculator/psi4_calculation_tools.py +334 -0
  17. multioptpy/Calculator/pwscf_calculation_tools.py +189 -0
  18. multioptpy/Calculator/pyscf_calculation_tools.py +327 -0
  19. multioptpy/Calculator/sqm1_calculation_tools.py +611 -0
  20. multioptpy/Calculator/sqm2_calculation_tools.py +376 -0
  21. multioptpy/Calculator/tblite_calculation_tools.py +352 -0
  22. multioptpy/Calculator/tersoff_calculation_tools.py +818 -0
  23. multioptpy/Constraint/__init__.py +0 -0
  24. multioptpy/Constraint/constraint_condition.py +834 -0
  25. multioptpy/Coordinate/__init__.py +0 -0
  26. multioptpy/Coordinate/polar_coordinate.py +199 -0
  27. multioptpy/Coordinate/redundant_coordinate.py +638 -0
  28. multioptpy/IRC/__init__.py +0 -0
  29. multioptpy/IRC/converge_criteria.py +28 -0
  30. multioptpy/IRC/dvv.py +544 -0
  31. multioptpy/IRC/euler.py +439 -0
  32. multioptpy/IRC/hpc.py +564 -0
  33. multioptpy/IRC/lqa.py +540 -0
  34. multioptpy/IRC/modekill.py +662 -0
  35. multioptpy/IRC/rk4.py +579 -0
  36. multioptpy/Interpolation/__init__.py +0 -0
  37. multioptpy/Interpolation/adaptive_interpolation.py +283 -0
  38. multioptpy/Interpolation/binomial_interpolation.py +179 -0
  39. multioptpy/Interpolation/geodesic_interpolation.py +785 -0
  40. multioptpy/Interpolation/interpolation.py +156 -0
  41. multioptpy/Interpolation/linear_interpolation.py +473 -0
  42. multioptpy/Interpolation/savitzky_golay_interpolation.py +252 -0
  43. multioptpy/Interpolation/spline_interpolation.py +353 -0
  44. multioptpy/MD/__init__.py +0 -0
  45. multioptpy/MD/thermostat.py +185 -0
  46. multioptpy/MEP/__init__.py +0 -0
  47. multioptpy/MEP/pathopt_bneb_force.py +443 -0
  48. multioptpy/MEP/pathopt_dmf_force.py +448 -0
  49. multioptpy/MEP/pathopt_dneb_force.py +130 -0
  50. multioptpy/MEP/pathopt_ewbneb_force.py +207 -0
  51. multioptpy/MEP/pathopt_gpneb_force.py +512 -0
  52. multioptpy/MEP/pathopt_lup_force.py +113 -0
  53. multioptpy/MEP/pathopt_neb_force.py +225 -0
  54. multioptpy/MEP/pathopt_nesb_force.py +205 -0
  55. multioptpy/MEP/pathopt_om_force.py +153 -0
  56. multioptpy/MEP/pathopt_qsm_force.py +174 -0
  57. multioptpy/MEP/pathopt_qsmv2_force.py +304 -0
  58. multioptpy/ModelFunction/__init__.py +7 -0
  59. multioptpy/ModelFunction/avoiding_model_function.py +29 -0
  60. multioptpy/ModelFunction/binary_image_ts_search_model_function.py +47 -0
  61. multioptpy/ModelFunction/conical_model_function.py +26 -0
  62. multioptpy/ModelFunction/opt_meci.py +50 -0
  63. multioptpy/ModelFunction/opt_mesx.py +47 -0
  64. multioptpy/ModelFunction/opt_mesx_2.py +49 -0
  65. multioptpy/ModelFunction/seam_model_function.py +27 -0
  66. multioptpy/ModelHessian/__init__.py +0 -0
  67. multioptpy/ModelHessian/approx_hessian.py +147 -0
  68. multioptpy/ModelHessian/calc_params.py +227 -0
  69. multioptpy/ModelHessian/fischer.py +236 -0
  70. multioptpy/ModelHessian/fischerd3.py +360 -0
  71. multioptpy/ModelHessian/fischerd4.py +398 -0
  72. multioptpy/ModelHessian/gfn0xtb.py +633 -0
  73. multioptpy/ModelHessian/gfnff.py +709 -0
  74. multioptpy/ModelHessian/lindh.py +165 -0
  75. multioptpy/ModelHessian/lindh2007d2.py +707 -0
  76. multioptpy/ModelHessian/lindh2007d3.py +822 -0
  77. multioptpy/ModelHessian/lindh2007d4.py +1030 -0
  78. multioptpy/ModelHessian/morse.py +106 -0
  79. multioptpy/ModelHessian/schlegel.py +144 -0
  80. multioptpy/ModelHessian/schlegeld3.py +322 -0
  81. multioptpy/ModelHessian/schlegeld4.py +559 -0
  82. multioptpy/ModelHessian/shortrange.py +346 -0
  83. multioptpy/ModelHessian/swartd2.py +496 -0
  84. multioptpy/ModelHessian/swartd3.py +706 -0
  85. multioptpy/ModelHessian/swartd4.py +918 -0
  86. multioptpy/ModelHessian/tshess.py +40 -0
  87. multioptpy/Optimizer/QHAdam.py +61 -0
  88. multioptpy/Optimizer/__init__.py +0 -0
  89. multioptpy/Optimizer/abc_fire.py +83 -0
  90. multioptpy/Optimizer/adabelief.py +58 -0
  91. multioptpy/Optimizer/adabound.py +68 -0
  92. multioptpy/Optimizer/adadelta.py +65 -0
  93. multioptpy/Optimizer/adaderivative.py +56 -0
  94. multioptpy/Optimizer/adadiff.py +68 -0
  95. multioptpy/Optimizer/adafactor.py +70 -0
  96. multioptpy/Optimizer/adam.py +65 -0
  97. multioptpy/Optimizer/adamax.py +62 -0
  98. multioptpy/Optimizer/adamod.py +83 -0
  99. multioptpy/Optimizer/adamw.py +65 -0
  100. multioptpy/Optimizer/adiis.py +523 -0
  101. multioptpy/Optimizer/afire_neb.py +282 -0
  102. multioptpy/Optimizer/block_hessian_update.py +709 -0
  103. multioptpy/Optimizer/c2diis.py +491 -0
  104. multioptpy/Optimizer/component_wise_scaling.py +405 -0
  105. multioptpy/Optimizer/conjugate_gradient.py +82 -0
  106. multioptpy/Optimizer/conjugate_gradient_neb.py +345 -0
  107. multioptpy/Optimizer/coordinate_locking.py +405 -0
  108. multioptpy/Optimizer/dic_rsirfo.py +1015 -0
  109. multioptpy/Optimizer/ediis.py +417 -0
  110. multioptpy/Optimizer/eve.py +76 -0
  111. multioptpy/Optimizer/fastadabelief.py +61 -0
  112. multioptpy/Optimizer/fire.py +77 -0
  113. multioptpy/Optimizer/fire2.py +249 -0
  114. multioptpy/Optimizer/fire_neb.py +92 -0
  115. multioptpy/Optimizer/gan_step.py +486 -0
  116. multioptpy/Optimizer/gdiis.py +609 -0
  117. multioptpy/Optimizer/gediis.py +203 -0
  118. multioptpy/Optimizer/geodesic_step.py +433 -0
  119. multioptpy/Optimizer/gpmin.py +633 -0
  120. multioptpy/Optimizer/gpr_step.py +364 -0
  121. multioptpy/Optimizer/gradientdescent.py +78 -0
  122. multioptpy/Optimizer/gradientdescent_neb.py +52 -0
  123. multioptpy/Optimizer/hessian_update.py +433 -0
  124. multioptpy/Optimizer/hybrid_rfo.py +998 -0
  125. multioptpy/Optimizer/kdiis.py +625 -0
  126. multioptpy/Optimizer/lars.py +21 -0
  127. multioptpy/Optimizer/lbfgs.py +253 -0
  128. multioptpy/Optimizer/lbfgs_neb.py +355 -0
  129. multioptpy/Optimizer/linesearch.py +236 -0
  130. multioptpy/Optimizer/lookahead.py +40 -0
  131. multioptpy/Optimizer/nadam.py +64 -0
  132. multioptpy/Optimizer/newton.py +200 -0
  133. multioptpy/Optimizer/prodigy.py +70 -0
  134. multioptpy/Optimizer/purtubation.py +16 -0
  135. multioptpy/Optimizer/quickmin_neb.py +245 -0
  136. multioptpy/Optimizer/radam.py +75 -0
  137. multioptpy/Optimizer/rfo_neb.py +302 -0
  138. multioptpy/Optimizer/ric_rfo.py +842 -0
  139. multioptpy/Optimizer/rl_step.py +627 -0
  140. multioptpy/Optimizer/rmspropgrave.py +65 -0
  141. multioptpy/Optimizer/rsirfo.py +1647 -0
  142. multioptpy/Optimizer/rsprfo.py +1056 -0
  143. multioptpy/Optimizer/sadam.py +60 -0
  144. multioptpy/Optimizer/samsgrad.py +63 -0
  145. multioptpy/Optimizer/tr_lbfgs.py +678 -0
  146. multioptpy/Optimizer/trim.py +273 -0
  147. multioptpy/Optimizer/trust_radius.py +207 -0
  148. multioptpy/Optimizer/trust_radius_neb.py +121 -0
  149. multioptpy/Optimizer/yogi.py +60 -0
  150. multioptpy/OtherMethod/__init__.py +0 -0
  151. multioptpy/OtherMethod/addf.py +1150 -0
  152. multioptpy/OtherMethod/dimer.py +895 -0
  153. multioptpy/OtherMethod/elastic_image_pair.py +629 -0
  154. multioptpy/OtherMethod/modelfunction.py +456 -0
  155. multioptpy/OtherMethod/newton_traj.py +454 -0
  156. multioptpy/OtherMethod/twopshs.py +1095 -0
  157. multioptpy/PESAnalyzer/__init__.py +0 -0
  158. multioptpy/PESAnalyzer/calc_irc_curvature.py +125 -0
  159. multioptpy/PESAnalyzer/cmds_analysis.py +152 -0
  160. multioptpy/PESAnalyzer/koopman_analysis.py +268 -0
  161. multioptpy/PESAnalyzer/pca_analysis.py +314 -0
  162. multioptpy/Parameters/__init__.py +0 -0
  163. multioptpy/Parameters/atomic_mass.py +20 -0
  164. multioptpy/Parameters/atomic_number.py +22 -0
  165. multioptpy/Parameters/covalent_radii.py +44 -0
  166. multioptpy/Parameters/d2.py +61 -0
  167. multioptpy/Parameters/d3.py +63 -0
  168. multioptpy/Parameters/d4.py +103 -0
  169. multioptpy/Parameters/dreiding.py +34 -0
  170. multioptpy/Parameters/gfn0xtb_param.py +137 -0
  171. multioptpy/Parameters/gfnff_param.py +315 -0
  172. multioptpy/Parameters/gnb.py +104 -0
  173. multioptpy/Parameters/parameter.py +22 -0
  174. multioptpy/Parameters/uff.py +72 -0
  175. multioptpy/Parameters/unit_values.py +20 -0
  176. multioptpy/Potential/AFIR_potential.py +55 -0
  177. multioptpy/Potential/LJ_repulsive_potential.py +345 -0
  178. multioptpy/Potential/__init__.py +0 -0
  179. multioptpy/Potential/anharmonic_keep_potential.py +28 -0
  180. multioptpy/Potential/asym_elllipsoidal_potential.py +718 -0
  181. multioptpy/Potential/electrostatic_potential.py +69 -0
  182. multioptpy/Potential/flux_potential.py +30 -0
  183. multioptpy/Potential/gaussian_potential.py +101 -0
  184. multioptpy/Potential/idpp.py +516 -0
  185. multioptpy/Potential/keep_angle_potential.py +146 -0
  186. multioptpy/Potential/keep_dihedral_angle_potential.py +105 -0
  187. multioptpy/Potential/keep_outofplain_angle_potential.py +70 -0
  188. multioptpy/Potential/keep_potential.py +99 -0
  189. multioptpy/Potential/mechano_force_potential.py +74 -0
  190. multioptpy/Potential/nanoreactor_potential.py +52 -0
  191. multioptpy/Potential/potential.py +896 -0
  192. multioptpy/Potential/spacer_model_potential.py +221 -0
  193. multioptpy/Potential/switching_potential.py +258 -0
  194. multioptpy/Potential/universal_potential.py +34 -0
  195. multioptpy/Potential/value_range_potential.py +36 -0
  196. multioptpy/Potential/void_point_potential.py +25 -0
  197. multioptpy/SQM/__init__.py +0 -0
  198. multioptpy/SQM/sqm1/__init__.py +0 -0
  199. multioptpy/SQM/sqm1/sqm1_core.py +1792 -0
  200. multioptpy/SQM/sqm2/__init__.py +0 -0
  201. multioptpy/SQM/sqm2/calc_tools.py +95 -0
  202. multioptpy/SQM/sqm2/sqm2_basis.py +850 -0
  203. multioptpy/SQM/sqm2/sqm2_bond.py +119 -0
  204. multioptpy/SQM/sqm2/sqm2_core.py +303 -0
  205. multioptpy/SQM/sqm2/sqm2_data.py +1229 -0
  206. multioptpy/SQM/sqm2/sqm2_disp.py +65 -0
  207. multioptpy/SQM/sqm2/sqm2_eeq.py +243 -0
  208. multioptpy/SQM/sqm2/sqm2_overlapint.py +704 -0
  209. multioptpy/SQM/sqm2/sqm2_qm.py +578 -0
  210. multioptpy/SQM/sqm2/sqm2_rep.py +66 -0
  211. multioptpy/SQM/sqm2/sqm2_srb.py +70 -0
  212. multioptpy/Thermo/__init__.py +0 -0
  213. multioptpy/Thermo/normal_mode_analyzer.py +865 -0
  214. multioptpy/Utils/__init__.py +0 -0
  215. multioptpy/Utils/bond_connectivity.py +264 -0
  216. multioptpy/Utils/calc_tools.py +884 -0
  217. multioptpy/Utils/oniom.py +96 -0
  218. multioptpy/Utils/pbc.py +48 -0
  219. multioptpy/Utils/riemann_curvature.py +208 -0
  220. multioptpy/Utils/symmetry_analyzer.py +482 -0
  221. multioptpy/Visualization/__init__.py +0 -0
  222. multioptpy/Visualization/visualization.py +156 -0
  223. multioptpy/WFAnalyzer/MO_analysis.py +104 -0
  224. multioptpy/WFAnalyzer/__init__.py +0 -0
  225. multioptpy/Wrapper/__init__.py +0 -0
  226. multioptpy/Wrapper/autots.py +1239 -0
  227. multioptpy/Wrapper/ieip_wrapper.py +93 -0
  228. multioptpy/Wrapper/md_wrapper.py +92 -0
  229. multioptpy/Wrapper/neb_wrapper.py +94 -0
  230. multioptpy/Wrapper/optimize_wrapper.py +76 -0
  231. multioptpy/__init__.py +5 -0
  232. multioptpy/entrypoints.py +916 -0
  233. multioptpy/fileio.py +660 -0
  234. multioptpy/ieip.py +340 -0
  235. multioptpy/interface.py +1086 -0
  236. multioptpy/irc.py +529 -0
  237. multioptpy/moleculardynamics.py +432 -0
  238. multioptpy/neb.py +1267 -0
  239. multioptpy/optimization.py +1553 -0
  240. multioptpy/optimizer.py +709 -0
  241. multioptpy-1.20.2.dist-info/METADATA +438 -0
  242. multioptpy-1.20.2.dist-info/RECORD +246 -0
  243. multioptpy-1.20.2.dist-info/WHEEL +5 -0
  244. multioptpy-1.20.2.dist-info/entry_points.txt +9 -0
  245. multioptpy-1.20.2.dist-info/licenses/LICENSE +674 -0
  246. multioptpy-1.20.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,225 @@
1
+ import numpy as np
2
+ from scipy.signal import argrelextrema
3
+
4
+ def extremum_list_index(energy_list):
5
+ local_max_energy_list_index = argrelextrema(energy_list, np.greater)
6
+ inverse_energy_list = (-1)*energy_list
7
+ local_min_energy_list_index = argrelextrema(inverse_energy_list, np.greater)
8
+
9
+ local_max_energy_list_index = local_max_energy_list_index[0].tolist()
10
+ local_min_energy_list_index = local_min_energy_list_index[0].tolist()
11
+ local_max_energy_list_index.append(0)
12
+ local_min_energy_list_index.append(0)
13
+ local_max_energy_list_index.append(0)
14
+ local_min_energy_list_index.append(0)
15
+ return local_max_energy_list_index, local_min_energy_list_index
16
+
17
+
18
+ class CaluculationNEB2:
19
+ def __init__(self, APPLY_CI_NEB=99999):
20
+ self.spring_constant_k = 1e-6
21
+ self.APPLY_CI_NEB = APPLY_CI_NEB
22
+ self.force_const_for_cineb = 0.01
23
+
24
+ def calc_force(self, geometry_num_list, energy_list, gradient_list, optimize_num, element_list):
25
+ print("NEB2NEB2NEB2NEB2NEB2NEB2NEB2NEB2NEB2NEB2NEB2NEB2NEB2NEB2NEB2NEB2NEB2")
26
+ local_max_energy_list_index, local_min_energy_list_index = extremum_list_index(energy_list)
27
+
28
+
29
+ total_force_list = [((-1)*np.array(gradient_list[0], dtype = "float64")).tolist()]
30
+ for i in range(1,len(energy_list)-1):
31
+ tau_plus, tau_minus, tau = [], [], []
32
+
33
+ delta_max_energy = np.array(max([(energy_list[i+1]-energy_list[i]),(energy_list[i-1]-energy_list[i])]), dtype = "float64")
34
+ delta_min_energy = np.array(min([(energy_list[i+1]-energy_list[i]),(energy_list[i-1]-energy_list[i])]), dtype = "float64")
35
+
36
+ if (energy_list[i-1] < energy_list[i]) and (energy_list[i] < energy_list[i+1]):
37
+ for t in range(len(geometry_num_list[i])):
38
+ tau_vector = geometry_num_list[i+1][t]-geometry_num_list[i][t]
39
+ tau_norm = np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)
40
+ tau.append(np.divide(tau_vector, tau_norm, out=np.zeros_like(geometry_num_list[i][t]) ,where=np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)!=0).tolist())
41
+
42
+
43
+ elif (energy_list[i-1] > energy_list[i]) and (energy_list[i] > energy_list[i+1]):
44
+ for t in range(len(geometry_num_list[i])):
45
+ tau_vector = geometry_num_list[i][t]-geometry_num_list[i-1][t]
46
+ tau_norm = np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)
47
+ tau.append(np.divide(tau_vector, tau_norm, out=np.zeros_like(geometry_num_list[i][t]), where=np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)!=0).tolist())
48
+
49
+
50
+
51
+ else: #((energy_list[i-1] >= energy_list[i]) and (energy_list[i] <= energy_list[i+1])) or ((energy_list[i-1] <= energy_list[i]) and (energy_list[i] >= energy_list[i+1])):
52
+ for t in range(len(geometry_num_list[i])):
53
+ tau_minus_vector = geometry_num_list[i][t]-geometry_num_list[i-1][t]
54
+ tau_minus_norm = np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2) + 1e-15
55
+ tau_minus.append((tau_minus_vector / tau_minus_norm).tolist())
56
+
57
+ for t in range(len(geometry_num_list[i])):
58
+ tau_plus_vector = geometry_num_list[i+1][t]-geometry_num_list[i][t]
59
+ tau_plus_norm = np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2) + 1e-15
60
+ tau_plus.append((tau_plus_vector / tau_plus_norm).tolist())
61
+
62
+ if energy_list[i-1] > energy_list[i+1]:
63
+ for t in range(len(geometry_num_list[i])):
64
+ tau_vector = (tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy)
65
+ tau_norm = np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2) + 1e-15
66
+ tau.append((tau_vector / tau_norm).tolist())
67
+ else:
68
+ for t in range(len(geometry_num_list[i])):
69
+ tau_vector = (tau_plus[t]*delta_max_energy+tau_minus[t]*delta_min_energy)
70
+ tau_norm = np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2) + 1e-15
71
+ tau.append((tau_vector / tau_norm).tolist())
72
+
73
+ tau_plus, tau_minus, tau = np.array(tau_plus, dtype = "float64"), np.array(tau_minus, dtype = "float64"), np.array(tau, dtype = "float64")
74
+ #print("tau_minus:\n",tau_minus)
75
+ #print("tau_plus:\n",tau_plus)
76
+ #print("tau:\n",str(tau))
77
+ force_perpendicularity, force_parallelism = [], []
78
+
79
+
80
+ if energy_list[i] == energy_list[local_max_energy_list_index[0]] and self.APPLY_CI_NEB < optimize_num: #CI-NEB
81
+ for f in range(len(geometry_num_list[i])):
82
+ force_perpendicularity.append(np.array((-1)*self.force_const_for_cineb*(gradient_list[i][f]-2.0*(np.dot(gradient_list[i][f], tau[f]))*tau[f]), dtype = "float64"))
83
+ #print(str(force_perpendicularity))
84
+ total_force = np.array(force_perpendicularity, dtype="float64")
85
+ del local_max_energy_list_index[0]
86
+ else:
87
+ tau_x = []
88
+ tau_y = []
89
+ tau_z = []
90
+ for i in range(len(tau)):
91
+ tau_x.extend([tau[i][0], 0.0, 0.0])
92
+ tau_y.extend([0.0, tau[i][1], 0.0])
93
+ tau_z.extend([0.0, 0.0, tau[i][2]])
94
+ tau_x = np.array(tau_x, dtype = "float64")
95
+ tau_y = np.array(tau_y, dtype = "float64")
96
+ tau_z = np.array(tau_z, dtype = "float64")
97
+
98
+ orthogonal_normalized_tau, _ = np.linalg.qr(np.array([tau_x, tau_y, tau_z], dtype = "float64").T)
99
+
100
+ projection_operator = np.dot(orthogonal_normalized_tau, orthogonal_normalized_tau.T)
101
+ tmp_gradient = np.array(gradient_list[i], dtype = "float64").reshape(len(gradient_list[i]) * 3, 1)
102
+
103
+ force_perpendicularity = (np.eye(len(gradient_list[i]) * 3) - projection_operator).dot(tmp_gradient).reshape(len(gradient_list[i]), 3)
104
+ force_parallelism = projection_operator.dot(tmp_gradient).reshape(len(gradient_list[i]), 3) * self.spring_constant_k
105
+
106
+ total_force = np.array((-1)*force_perpendicularity - force_parallelism, dtype = "float64")
107
+
108
+
109
+ total_force_list.append(total_force.tolist())
110
+
111
+
112
+ total_force_list.append(((-1)*np.array(gradient_list[-1], dtype = "float64")).tolist())
113
+
114
+ return np.array(total_force_list, dtype = "float64")
115
+
116
+ class CaluculationNEB:
117
+ def __init__(self, APPLY_CI_NEB=99999):
118
+ self.spring_constant_k = 0.01
119
+ self.APPLY_CI_NEB = APPLY_CI_NEB
120
+ self.force_const_for_cineb = 0.01
121
+
122
+ def calc_force(self, geometry_num_list, energy_list, gradient_list, optimize_num, element_list):
123
+ print("NEBNEBNEBNEBNEBNEBNEBNEBNEBNEBNEBNEBNEBNEBNEBNEBNEB")
124
+ local_max_energy_list_index, local_min_energy_list_index = extremum_list_index(energy_list)
125
+
126
+
127
+ total_force_list = [((-1)*np.array(gradient_list[0], dtype = "float64")).tolist()]
128
+ for i in range(1,len(energy_list)-1):
129
+ tau_plus, tau_minus, tau = [], [], []
130
+
131
+ delta_max_energy = np.array(max([(energy_list[i+1]-energy_list[i]),(energy_list[i-1]-energy_list[i])]), dtype = "float64")
132
+ delta_min_energy = np.array(min([(energy_list[i+1]-energy_list[i]),(energy_list[i-1]-energy_list[i])]), dtype = "float64")
133
+
134
+ if (energy_list[i-1] < energy_list[i]) and (energy_list[i] < energy_list[i+1]):
135
+ for t in range(len(geometry_num_list[i])):
136
+ tau_vector = geometry_num_list[i+1][t]-geometry_num_list[i][t]
137
+ tau_norm = np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)
138
+ tau.append(np.divide(tau_vector, tau_norm, out=np.zeros_like(geometry_num_list[i][t]) ,where=np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)!=0).tolist())
139
+
140
+
141
+ elif (energy_list[i-1] > energy_list[i]) and (energy_list[i] > energy_list[i+1]):
142
+ for t in range(len(geometry_num_list[i])):
143
+ tau_vector = geometry_num_list[i][t]-geometry_num_list[i-1][t]
144
+ tau_norm = np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)
145
+ tau.append(np.divide(tau_vector, tau_norm, out=np.zeros_like(geometry_num_list[i][t]), where=np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)!=0).tolist())
146
+
147
+
148
+
149
+ else: #((energy_list[i-1] >= energy_list[i]) and (energy_list[i] <= energy_list[i+1])) or ((energy_list[i-1] <= energy_list[i]) and (energy_list[i] >= energy_list[i+1])):
150
+ for t in range(len(geometry_num_list[i])):
151
+ tau_minus_vector = geometry_num_list[i][t]-geometry_num_list[i-1][t]
152
+ tau_minus_norm = np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)
153
+ tau_minus.append(np.divide(tau_minus_vector, tau_minus_norm
154
+ ,out=np.zeros_like(geometry_num_list[i][t]),
155
+ where=np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)!=0).tolist())
156
+
157
+ for t in range(len(geometry_num_list[i])):
158
+ tau_plus_vector = geometry_num_list[i+1][t]-geometry_num_list[i][t]
159
+ tau_plus_norm = np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)
160
+ tau_plus.append(np.divide(tau_plus_vector, tau_plus_norm, out=np.zeros_like(geometry_num_list[i][t]), where=np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)!=0).tolist())
161
+
162
+ if energy_list[i-1] > energy_list[i+1]:
163
+ for t in range(len(geometry_num_list[i])):
164
+ tau_vector = (tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy)
165
+ tau_norm = np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2)
166
+ tau.append(np.divide(tau_vector,tau_norm, out=np.zeros_like(tau_plus[0]) ,where=np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy!=0)).tolist())
167
+ else:
168
+ for t in range(len(geometry_num_list[i])):
169
+ tau_vector = (tau_plus[t]*delta_max_energy+tau_minus[t]*delta_min_energy)
170
+ tau_norm = np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2)
171
+ tau.append(np.divide(tau_vector, tau_norm,out=np.zeros_like(tau_minus[0]) ,where=np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2)!=0 ).tolist())
172
+
173
+ tau_plus, tau_minus, tau = np.array(tau_plus, dtype = "float64"), np.array(tau_minus, dtype = "float64"), np.array(tau, dtype = "float64")
174
+ #print("tau_minus:\n",tau_minus)
175
+ #print("tau_plus:\n",tau_plus)
176
+ #print("tau:\n",str(tau))
177
+ force_perpendicularity, force_parallelism = [], []
178
+
179
+ if energy_list[i] == energy_list[local_max_energy_list_index[0]] and self.APPLY_CI_NEB < optimize_num: #CI-NEB
180
+ for f in range(len(geometry_num_list[i])):
181
+ force_perpendicularity.append(np.array((-1)*self.force_const_for_cineb*(gradient_list[i][f]-2.0*(np.dot(gradient_list[i][f], tau[f]))*tau[f]), dtype = "float64"))
182
+ #print(str(force_perpendicularity))
183
+ total_force = np.array(force_perpendicularity, dtype="float64")
184
+ del local_max_energy_list_index[0]
185
+ #print(str(total_force))
186
+ #elif energy_list[i] == energy_list[local_min_energy_list_index[0]]: #for discovering intermidiate
187
+ # for f in range(len(geometry_num_list[i])):
188
+ # force_perpendicularity.append(np.array(((-1)*(gradient_list[i][f])), dtype = "float64"))
189
+ # #print(str(force_perpendicularity))
190
+ # total_force = np.array(force_perpendicularity, dtype="float64")
191
+ # del local_min_energy_list_index[0]
192
+ else:
193
+ for f in range(len(geometry_num_list[i])):
194
+ grad = 0.0
195
+
196
+ for gg in range(len(gradient_list[i])):
197
+ grad += np.linalg.norm(gradient_list[i][gg], ord=2)
198
+
199
+ grad = grad/len(gradient_list[i])
200
+
201
+
202
+ #print("spring_constant:",self.spring_constant_k)
203
+
204
+ force_parallelism.append(np.array((self.spring_constant_k*(np.linalg.norm(geometry_num_list[i+1][f]-geometry_num_list[i][f], ord=2))+(-1.0)*self.spring_constant_k*(np.linalg.norm(geometry_num_list[i][f]-geometry_num_list[i-1][f], ord=2)))*tau[f], dtype = "float64"))
205
+
206
+ force_perpendicularity.append(np.array(gradient_list[i][f]-(np.dot(gradient_list[i][f], tau[f]))*tau[f], dtype = "float64"))
207
+ #doubly nudged elastic band method :https://doi.org/10.1063/1.1636455
208
+
209
+
210
+
211
+
212
+ force_perpendicularity, force_parallelism = np.array(force_perpendicularity, dtype = "float64"), np.array(force_parallelism, dtype = "float64")
213
+ total_force = np.array((-1)*force_perpendicularity - force_parallelism, dtype = "float64")
214
+
215
+ if np.nanmean(np.nanmean(total_force)) > 10:
216
+ total_force = total_force / np.nanmean(np.nanmean(total_force))
217
+
218
+ total_force_list.append(total_force.tolist())
219
+
220
+
221
+
222
+
223
+ total_force_list.append(((-1)*np.array(gradient_list[-1], dtype = "float64")).tolist())
224
+
225
+ return np.array(total_force_list, dtype = "float64")
@@ -0,0 +1,205 @@
1
+ import numpy as np
2
+ from scipy.signal import argrelextrema
3
+
4
+ def extremum_list_index(energy_list):
5
+ local_max_energy_list_index = argrelextrema(energy_list, np.greater)
6
+ inverse_energy_list = (-1)*energy_list
7
+ local_min_energy_list_index = argrelextrema(inverse_energy_list, np.greater)
8
+
9
+ local_max_energy_list_index = local_max_energy_list_index[0].tolist()
10
+ local_min_energy_list_index = local_min_energy_list_index[0].tolist()
11
+ local_max_energy_list_index.append(0)
12
+ local_min_energy_list_index.append(0)
13
+ local_max_energy_list_index.append(0)
14
+ local_min_energy_list_index.append(0)
15
+ return local_max_energy_list_index, local_min_energy_list_index
16
+
17
+
18
+
19
+
20
+
21
+ class CaluculationNESB:
22
+ def __init__(self, APPLY_CI_NEB=99999):
23
+ self.spring_constant_k = 0.01
24
+ self.APPLY_CI_NEB = APPLY_CI_NEB
25
+ self.force_const_for_cineb = 0.01
26
+ self.NESB_band_width = 0.1
27
+
28
+ def calc_force(self, geometry_num_list, energy_list, gradient_list, optimize_num, element_list):
29
+ #Nudged elastic stiffness band method
30
+ #ref.: J Comput Chem. 2023;44:1884–1897. https://doi.org/10.1002/jcc.27169
31
+ print("NESBNESBNESBNESBNESBNESBNESBNESBNESBNESBNESBNESBNESBNESB")
32
+ local_max_energy_list_index, local_min_energy_list_index = extremum_list_index(energy_list)
33
+
34
+
35
+ tau_list = [np.array(gradient_list[0], dtype = "float64") * 0.0]
36
+ total_force_list = [((-1)*np.array(gradient_list[0], dtype = "float64")).tolist()]
37
+ for i in range(1,len(energy_list)-1):
38
+ tau_plus, tau_minus, tau = [], [], []
39
+
40
+ delta_max_energy = np.array(max([(energy_list[i+1]-energy_list[i]),(energy_list[i-1]-energy_list[i])]), dtype = "float64")
41
+ delta_min_energy = np.array(min([(energy_list[i+1]-energy_list[i]),(energy_list[i-1]-energy_list[i])]), dtype = "float64")
42
+
43
+ if (energy_list[i-1] < energy_list[i]) and (energy_list[i] < energy_list[i+1]):
44
+ for t in range(len(geometry_num_list[i])):
45
+ tau_vector = geometry_num_list[i+1][t]-geometry_num_list[i][t]
46
+ tau_norm = np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)
47
+ tau.append(np.divide(tau_vector, tau_norm, out=np.zeros_like(geometry_num_list[i][t]) ,where=np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)!=0).tolist())
48
+
49
+
50
+ elif (energy_list[i-1] > energy_list[i]) and (energy_list[i] > energy_list[i+1]):
51
+ for t in range(len(geometry_num_list[i])):
52
+ tau_vector = geometry_num_list[i][t]-geometry_num_list[i-1][t]
53
+ tau_norm = np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)
54
+ tau.append(np.divide(tau_vector, tau_norm, out=np.zeros_like(geometry_num_list[i][t]), where=np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)!=0).tolist())
55
+
56
+
57
+
58
+ else: #((energy_list[i-1] >= energy_list[i]) and (energy_list[i] <= energy_list[i+1])) or ((energy_list[i-1] <= energy_list[i]) and (energy_list[i] >= energy_list[i+1])):
59
+ for t in range(len(geometry_num_list[i])):
60
+ tau_minus_vector = geometry_num_list[i][t]-geometry_num_list[i-1][t]
61
+ tau_minus_norm = np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)
62
+ tau_minus.append(np.divide(tau_minus_vector, tau_minus_norm
63
+ ,out=np.zeros_like(geometry_num_list[i][t]),
64
+ where=np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)!=0).tolist())
65
+
66
+ for t in range(len(geometry_num_list[i])):
67
+ tau_plus_vector = geometry_num_list[i+1][t]-geometry_num_list[i][t]
68
+ tau_plus_norm = np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)
69
+ tau_plus.append(np.divide(tau_plus_vector, tau_plus_norm, out=np.zeros_like(geometry_num_list[i][t]), where=np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)!=0).tolist())
70
+
71
+ if energy_list[i-1] > energy_list[i+1]:
72
+ for t in range(len(geometry_num_list[i])):
73
+ tau_vector = (tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy)
74
+ tau_norm = np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2)
75
+ tau.append(np.divide(tau_vector,tau_norm, out=np.zeros_like(tau_plus[0]) ,where=np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy!=0)).tolist())
76
+ else:
77
+ for t in range(len(geometry_num_list[i])):
78
+ tau_vector = (tau_plus[t]*delta_max_energy+tau_minus[t]*delta_min_energy)
79
+ tau_norm = np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2)
80
+ tau.append(np.divide(tau_vector, tau_norm,out=np.zeros_like(tau_minus[0]) ,where=np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2)!=0 ).tolist())
81
+
82
+ tau_plus, tau_minus, tau = np.array(tau_plus, dtype = "float64"), np.array(tau_minus, dtype = "float64"), np.array(tau, dtype = "float64")
83
+ #print("tau_minus:\n",tau_minus)
84
+ #print("tau_plus:\n",tau_plus)
85
+ #print("tau:\n",str(tau))
86
+ tau_list.append(tau)
87
+ #-----------------------------------
88
+ tau_list.append(np.array(gradient_list[0], dtype = "float64") * 0.0)
89
+ tangent_tau_list = [np.array(gradient_list[0], dtype = "float64") * 0.0]
90
+ for i in range(1,len(energy_list)-1):
91
+ #NESB
92
+
93
+ tangent_tau = []
94
+
95
+ v_1 = geometry_num_list[i-1] - geometry_num_list[i]
96
+ v_2 = geometry_num_list[i+1] - geometry_num_list[i]
97
+
98
+
99
+ for l in range(len(geometry_num_list[i])):
100
+
101
+ v_1_tau = np.dot(v_1[l], tau_list[i][l].T)
102
+ v_2_tau = np.dot(v_2[l], tau_list[i][l].T)
103
+ if abs(v_1_tau) < 1e-8 and abs(v_2_tau) < 1e-8:
104
+ tangent_tau.append(v_1[l])
105
+
106
+ elif abs(v_1_tau) < 1e-8:
107
+ tmp_a = -1 * (v_1_tau / v_2_tau)
108
+ tangent_tau.append(v_1[l]+v_2[l]*tmp_a)
109
+
110
+ elif abs(v_1_tau) > 0.9 and abs(v_2_tau) > 0.9:
111
+
112
+ tmp_a = -1 * (np.dot(tangent_tau_list[i-1][l], tau_list[i][l].T) / np.dot(tau_list[i][l], tau_list[i][l].T))
113
+ tangent_tau.append(tmp_a*tau_list[i][l]+tangent_tau_list[i-1][l])
114
+
115
+ else:
116
+ tmp_a = -1 * (v_2_tau / v_1_tau)
117
+ tangent_tau.append(v_2[l]+v_1[l]*tmp_a)
118
+
119
+
120
+ tangent_tau = np.array(tangent_tau, dtype="float64")
121
+
122
+
123
+ if i > 1:
124
+ check_direction = np.sum(np.dot(tangent_tau, tangent_tau_list[i-1].T))
125
+ if check_direction <= 0:
126
+ tangent_tau *= -1
127
+ tangent_tau = tangent_tau/(np.linalg.norm(tangent_tau)+1e-8)
128
+
129
+ tangent_tau_list.append(tangent_tau)
130
+ #force_stiff
131
+
132
+ tangent_tau_list.append(np.array(gradient_list[0], dtype = "float64") * 0.0)
133
+
134
+ #-------------------------------------
135
+ force_stiff_list = [np.array(gradient_list[0], dtype = "float64") * 0.0, np.array(gradient_list[0], dtype = "float64") * 0.0]
136
+ for i in range(2,len(energy_list)-2):
137
+ virtual_image_in_geometry_num_list = geometry_num_list[i] + 0.5 * self.NESB_band_width * tangent_tau_list[i]
138
+ virtual_image_out_geometry_num_list = geometry_num_list[i] - 0.5 * self.NESB_band_width * tangent_tau_list[i]
139
+ next_virtual_image_in_geometry_num_list = geometry_num_list[i+1] + 0.5 * self.NESB_band_width * tangent_tau_list[i+1]
140
+ next_virtual_image_out_geometry_num_list = geometry_num_list[i+1] - 0.5 * self.NESB_band_width * tangent_tau_list[i+1]
141
+ vi_in_geom_dist = np.linalg.norm(virtual_image_in_geometry_num_list)
142
+ vi_out_geom_dist = np.linalg.norm(virtual_image_out_geometry_num_list)
143
+ next_vi_in_geom_dist = np.linalg.norm(next_virtual_image_in_geometry_num_list)
144
+ next_vi_out_geom_dist = np.linalg.norm(next_virtual_image_out_geometry_num_list)
145
+ force_stiff_plus = 0.5 * (next_vi_out_geom_dist - next_vi_in_geom_dist) * tangent_tau_list[i+1]
146
+ force_stiff_minus = 0.5 * (vi_out_geom_dist - vi_in_geom_dist) * tangent_tau_list[i]
147
+ force_stiff = force_stiff_minus + force_stiff_plus
148
+ force_stiff_list.append(force_stiff)
149
+
150
+ force_stiff_list.append(np.array(gradient_list[0], dtype = "float64") * 0.0)
151
+ force_stiff_list.append(np.array(gradient_list[0], dtype = "float64") * 0.0)
152
+
153
+ for i in range(1,len(energy_list)-1):
154
+ force_perpendicularity, force_parallelism = [], []
155
+
156
+ if energy_list[i] == energy_list[local_max_energy_list_index[0]] and self.APPLY_CI_NEB < optimize_num: #CI-NEB
157
+ for f in range(len(geometry_num_list[i])):
158
+ force_perpendicularity.append(np.array((-1)*self.force_const_for_cineb*(gradient_list[i][f]-2.0*(np.dot(gradient_list[i][f], tau_list[i][f]))*tau_list[i][f]), dtype = "float64"))
159
+ #print(str(force_perpendicularity))
160
+ total_force = np.array(force_perpendicularity, dtype="float64")
161
+ del local_max_energy_list_index[0]
162
+ #print(str(total_force))
163
+ #elif energy_list[i] == energy_list[local_min_energy_list_index[0]]: #for discovering intermidiate
164
+ # for f in range(len(geometry_num_list[i])):
165
+ # force_perpendicularity.append(np.array(((-1)*(gradient_list[i][f])), dtype = "float64"))
166
+ # #print(str(force_perpendicularity))
167
+ # total_force = np.array(force_perpendicularity, dtype="float64")
168
+ # del local_min_energy_list_index[0]
169
+ else:
170
+ for f in range(len(geometry_num_list[i])):
171
+ grad = 0.0
172
+
173
+ for gg in range(len(gradient_list[i])):
174
+ grad += np.linalg.norm(gradient_list[i][gg], ord=2)
175
+
176
+ grad = grad/len(gradient_list[i])
177
+
178
+
179
+ #print("spring_constant:",self.spring_constant_k)
180
+
181
+ force_parallelism.append(np.array((self.spring_constant_k*(np.linalg.norm(geometry_num_list[i+1][f]-geometry_num_list[i][f], ord=2))+(-1.0)*self.spring_constant_k*(np.linalg.norm(geometry_num_list[i][f]-geometry_num_list[i-1][f], ord=2)))*tau[f], dtype = "float64"))
182
+
183
+ force_perpendicularity.append(np.array(gradient_list[i][f]-(np.dot(gradient_list[i][f], tau_list[i][f]))*tau_list[i][f], dtype = "float64"))
184
+ #doubly nudged elastic band method :https://doi.org/10.1063/1.1636455
185
+
186
+
187
+
188
+
189
+ force_perpendicularity, force_parallelism = np.array(force_perpendicularity, dtype = "float64"), np.array(force_parallelism, dtype = "float64")
190
+ if np.sum(np.dot(force_parallelism, force_stiff_list[i].T)) > 0:
191
+ force_stiff_list[i] *= -1
192
+
193
+ total_force = np.array((-1)*force_perpendicularity - force_parallelism + force_stiff_list[i], dtype = "float64")
194
+
195
+ if np.nanmean(np.nanmean(total_force)) > 10:
196
+ total_force = total_force / np.nanmean(np.nanmean(total_force))
197
+
198
+ total_force_list.append(total_force.tolist())
199
+
200
+
201
+
202
+
203
+ total_force_list.append(((-1)*np.array(gradient_list[-1], dtype = "float64")).tolist())
204
+
205
+ return np.array(total_force_list, dtype = "float64")
@@ -0,0 +1,153 @@
1
+ import numpy as np
2
+ from scipy.signal import argrelextrema
3
+ from multioptpy.Parameters.parameter import atomic_mass
4
+
5
+ def extremum_list_index(energy_list):
6
+ local_max_energy_list_index = argrelextrema(energy_list, np.greater)
7
+ inverse_energy_list = (-1)*energy_list
8
+ local_min_energy_list_index = argrelextrema(inverse_energy_list, np.greater)
9
+
10
+ local_max_energy_list_index = local_max_energy_list_index[0].tolist()
11
+ local_min_energy_list_index = local_min_energy_list_index[0].tolist()
12
+ local_max_energy_list_index.append(0)
13
+ local_min_energy_list_index.append(0)
14
+ local_max_energy_list_index.append(0)
15
+ local_min_energy_list_index.append(0)
16
+ return local_max_energy_list_index, local_min_energy_list_index
17
+
18
+ class CaluculationOM:
19
+ def __init__(self, APPLY_CI_NEB=99999):
20
+ self.spring_constant_k = 0.01
21
+ self.APPLY_CI_NEB = APPLY_CI_NEB
22
+ self.force_const_for_cineb = 0.01
23
+
24
+ def calc_force(self, geometry_num_list, energy_list, gradient_list, optimize_num, element_list):#J. Chem. Phys. 155, 074103 (2021) doi:https://doi.org/10.1063/5.0059593
25
+ #This improved NEB method is inspired by the Onsager-Machlup (OM) action.
26
+ print("OMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOM")
27
+ local_max_energy_list_index, local_min_energy_list_index = extremum_list_index(energy_list)
28
+ delta_t = 1
29
+ damping_const = 1
30
+ OM_spring_const = 0.001
31
+
32
+ total_force_list = [((-1)*np.array(gradient_list[0], dtype = "float64")).tolist()]
33
+
34
+ for i in range(1,len(energy_list)-1):
35
+
36
+
37
+
38
+ tau_plus, tau_minus, tau = [], [], []
39
+
40
+ delta_max_energy = np.array(max([(energy_list[i+1]-energy_list[i]),(energy_list[i-1]-energy_list[i])]), dtype = "float64")
41
+ delta_min_energy = np.array(min([(energy_list[i+1]-energy_list[i]),(energy_list[i-1]-energy_list[i])]), dtype = "float64")
42
+
43
+ if (energy_list[i-1] < energy_list[i]) and (energy_list[i] < energy_list[i+1]):
44
+ for t in range(len(geometry_num_list[i])):
45
+ tau_vector = geometry_num_list[i+1][t]-geometry_num_list[i][t]
46
+ tau_norm = np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)
47
+ tau.append(np.divide(tau_vector, tau_norm, out=np.zeros_like(geometry_num_list[i][t]) ,where=np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)!=0).tolist())
48
+
49
+
50
+ elif (energy_list[i-1] > energy_list[i]) and (energy_list[i] > energy_list[i+1]):
51
+ for t in range(len(geometry_num_list[i])):
52
+ tau_vector = geometry_num_list[i][t]-geometry_num_list[i-1][t]
53
+ tau_norm = np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)
54
+ tau.append(np.divide(tau_vector, tau_norm, out=np.zeros_like(geometry_num_list[i][t]), where=np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)!=0).tolist())
55
+
56
+
57
+
58
+ else: #((energy_list[i-1] >= energy_list[i]) and (energy_list[i] <= energy_list[i+1])) or ((energy_list[i-1] <= energy_list[i]) and (energy_list[i] >= energy_list[i+1])):
59
+ for t in range(len(geometry_num_list[i])):
60
+ tau_minus_vector = geometry_num_list[i][t]-geometry_num_list[i-1][t]
61
+ tau_minus_norm = np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)
62
+ tau_minus.append(np.divide(tau_minus_vector, tau_minus_norm
63
+ ,out=np.zeros_like(geometry_num_list[i][t]),
64
+ where=np.linalg.norm(geometry_num_list[i][t]-geometry_num_list[i-1][t], ord=2)!=0).tolist())
65
+
66
+ for t in range(len(geometry_num_list[i])):
67
+ tau_plus_vector = geometry_num_list[i+1][t]-geometry_num_list[i][t]
68
+ tau_plus_norm = np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)
69
+ tau_plus.append(np.divide(tau_plus_vector, tau_plus_norm, out=np.zeros_like(geometry_num_list[i][t]), where=np.linalg.norm(geometry_num_list[i+1][t]-geometry_num_list[i][t], ord=2)!=0).tolist())
70
+
71
+ if energy_list[i-1] > energy_list[i+1]:
72
+ for t in range(len(geometry_num_list[i])):
73
+ tau_vector = (tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy)
74
+ tau_norm = np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2)
75
+ tau.append(np.divide(tau_vector,tau_norm, out=np.zeros_like(tau_plus[0]) ,where=np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy!=0)).tolist())
76
+ else:
77
+ for t in range(len(geometry_num_list[i])):
78
+ tau_vector = (tau_plus[t]*delta_max_energy+tau_minus[t]*delta_min_energy)
79
+ tau_norm = np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2)
80
+ tau.append(np.divide(tau_vector, tau_norm,out=np.zeros_like(tau_minus[0]) ,where=np.linalg.norm(tau_plus[t]*delta_min_energy+tau_minus[t]*delta_max_energy, ord=2)!=0 ).tolist())
81
+
82
+ tau_plus, tau_minus, tau = np.array(tau_plus, dtype = "float64"), np.array(tau_minus, dtype = "float64"), np.array(tau, dtype = "float64")
83
+
84
+ L_minus = []
85
+ L_neutral = []
86
+ for t in range(len(geometry_num_list[i])):
87
+ atom_mass = atomic_mass(element_list[t])
88
+ L_minus.append(-(delta_t/(atom_mass * damping_const)) * gradient_list[i-1][t])
89
+ L_neutral.append(-(delta_t/(atom_mass * damping_const)) * gradient_list[i][t])
90
+ L_minus = np.array(L_minus, dtype="float64")
91
+ L_neutral = np.array(L_neutral, dtype="float64")
92
+
93
+ OM_action_force = OM_spring_const * (geometry_num_list[i+1] + geometry_num_list[i-1] - 2 * geometry_num_list[i] + L_minus - L_neutral)
94
+
95
+ cos_phi = np.sum((geometry_num_list[i+1]-geometry_num_list[i]) * (geometry_num_list[i]-geometry_num_list[i-1])) /(np.linalg.norm(geometry_num_list[i+1]-geometry_num_list[i]) * np.linalg.norm(geometry_num_list[i]-geometry_num_list[i-1]))
96
+ phi = np.arccos(cos_phi)
97
+
98
+ if 0 <= phi and phi <= np.pi/2:
99
+ f_phi = 0.5 * (1 + np.cos(np.pi * cos_phi))
100
+ else:
101
+ f_phi = 1.0
102
+ OM_action_force_perpendicularity, OM_action_force_parallelism = [], []
103
+
104
+ force_perpendicularity, force_parallelism = [], []
105
+
106
+ if energy_list[i] == energy_list[local_max_energy_list_index[0]] and self.APPLY_CI_NEB < optimize_num: #CI-NEB
107
+ for f in range(len(geometry_num_list[i])):
108
+ force_perpendicularity.append(np.array((-1)*self.force_const_for_cineb*(gradient_list[i][f]-2.0*(np.dot(gradient_list[i][f], tau[f]))*tau[f]), dtype = "float64"))
109
+ #print(str(force_perpendicularity))
110
+ total_force = np.array(force_perpendicularity, dtype="float64")
111
+ del local_max_energy_list_index[0]
112
+
113
+ else:
114
+ for f in range(len(geometry_num_list[i])):
115
+ grad = 0.0
116
+
117
+ for gg in range(len(gradient_list[i])):
118
+ grad += np.linalg.norm(gradient_list[i][gg], ord=2)
119
+
120
+ grad = grad/len(gradient_list[i])
121
+
122
+
123
+ #print("spring_constant:",self.spring_constant_k)
124
+
125
+ force_parallelism.append(np.array((self.spring_constant_k*(np.linalg.norm(geometry_num_list[i+1][f]-geometry_num_list[i][f], ord=2))+(-1.0)*self.spring_constant_k*(np.linalg.norm(geometry_num_list[i][f]-geometry_num_list[i-1][f], ord=2)))*tau[f], dtype = "float64"))
126
+ OM_action_force_parallelism.append(np.array(OM_action_force[f] * np.dot(tau[f], tau[f]), dtype = "float64"))
127
+
128
+ force_perpendicularity.append(np.array(gradient_list[i][f]-(np.dot(gradient_list[i][f], tau[f]))*tau[f], dtype = "float64"))
129
+ OM_action_force_perpendicularity.append(f_phi * np.array(OM_action_force[f]-(np.dot(OM_action_force[f], tau[f]))*tau[f], dtype = "float64"))
130
+ #doubly nudged elastic band method :https://doi.org/10.1063/1.1636455
131
+
132
+
133
+ force_perpendicularity, force_parallelism = np.array(force_perpendicularity, dtype = "float64"), np.array(force_parallelism, dtype = "float64")
134
+
135
+ OM_action_force_perpendicularity, OM_action_force_parallelism = np.array(OM_action_force_perpendicularity, dtype = "float64"), np.array(OM_action_force_parallelism, dtype = "float64")
136
+
137
+
138
+
139
+
140
+ total_force = np.array((-1)*force_perpendicularity - force_parallelism + OM_action_force_parallelism + OM_action_force_perpendicularity, dtype = "float64")
141
+
142
+ if np.nanmean(np.nanmean(total_force)) > 10:
143
+ total_force = total_force / np.nanmean(np.nanmean(total_force))
144
+
145
+ total_force_list.append(total_force.tolist())
146
+
147
+
148
+
149
+ total_force_list.append(((-1)*np.array(gradient_list[-1], dtype = "float64")).tolist())
150
+
151
+ return np.array(total_force_list, dtype = "float64")
152
+
153
+