MultiOptPy 1.20.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- multioptpy/Calculator/__init__.py +0 -0
- multioptpy/Calculator/ase_calculation_tools.py +424 -0
- multioptpy/Calculator/ase_tools/__init__.py +0 -0
- multioptpy/Calculator/ase_tools/fairchem.py +28 -0
- multioptpy/Calculator/ase_tools/gamess.py +19 -0
- multioptpy/Calculator/ase_tools/gaussian.py +165 -0
- multioptpy/Calculator/ase_tools/mace.py +28 -0
- multioptpy/Calculator/ase_tools/mopac.py +19 -0
- multioptpy/Calculator/ase_tools/nwchem.py +31 -0
- multioptpy/Calculator/ase_tools/orca.py +22 -0
- multioptpy/Calculator/ase_tools/pygfn0.py +37 -0
- multioptpy/Calculator/dxtb_calculation_tools.py +344 -0
- multioptpy/Calculator/emt_calculation_tools.py +458 -0
- multioptpy/Calculator/gpaw_calculation_tools.py +183 -0
- multioptpy/Calculator/lj_calculation_tools.py +314 -0
- multioptpy/Calculator/psi4_calculation_tools.py +334 -0
- multioptpy/Calculator/pwscf_calculation_tools.py +189 -0
- multioptpy/Calculator/pyscf_calculation_tools.py +327 -0
- multioptpy/Calculator/sqm1_calculation_tools.py +611 -0
- multioptpy/Calculator/sqm2_calculation_tools.py +376 -0
- multioptpy/Calculator/tblite_calculation_tools.py +352 -0
- multioptpy/Calculator/tersoff_calculation_tools.py +818 -0
- multioptpy/Constraint/__init__.py +0 -0
- multioptpy/Constraint/constraint_condition.py +834 -0
- multioptpy/Coordinate/__init__.py +0 -0
- multioptpy/Coordinate/polar_coordinate.py +199 -0
- multioptpy/Coordinate/redundant_coordinate.py +638 -0
- multioptpy/IRC/__init__.py +0 -0
- multioptpy/IRC/converge_criteria.py +28 -0
- multioptpy/IRC/dvv.py +544 -0
- multioptpy/IRC/euler.py +439 -0
- multioptpy/IRC/hpc.py +564 -0
- multioptpy/IRC/lqa.py +540 -0
- multioptpy/IRC/modekill.py +662 -0
- multioptpy/IRC/rk4.py +579 -0
- multioptpy/Interpolation/__init__.py +0 -0
- multioptpy/Interpolation/adaptive_interpolation.py +283 -0
- multioptpy/Interpolation/binomial_interpolation.py +179 -0
- multioptpy/Interpolation/geodesic_interpolation.py +785 -0
- multioptpy/Interpolation/interpolation.py +156 -0
- multioptpy/Interpolation/linear_interpolation.py +473 -0
- multioptpy/Interpolation/savitzky_golay_interpolation.py +252 -0
- multioptpy/Interpolation/spline_interpolation.py +353 -0
- multioptpy/MD/__init__.py +0 -0
- multioptpy/MD/thermostat.py +185 -0
- multioptpy/MEP/__init__.py +0 -0
- multioptpy/MEP/pathopt_bneb_force.py +443 -0
- multioptpy/MEP/pathopt_dmf_force.py +448 -0
- multioptpy/MEP/pathopt_dneb_force.py +130 -0
- multioptpy/MEP/pathopt_ewbneb_force.py +207 -0
- multioptpy/MEP/pathopt_gpneb_force.py +512 -0
- multioptpy/MEP/pathopt_lup_force.py +113 -0
- multioptpy/MEP/pathopt_neb_force.py +225 -0
- multioptpy/MEP/pathopt_nesb_force.py +205 -0
- multioptpy/MEP/pathopt_om_force.py +153 -0
- multioptpy/MEP/pathopt_qsm_force.py +174 -0
- multioptpy/MEP/pathopt_qsmv2_force.py +304 -0
- multioptpy/ModelFunction/__init__.py +7 -0
- multioptpy/ModelFunction/avoiding_model_function.py +29 -0
- multioptpy/ModelFunction/binary_image_ts_search_model_function.py +47 -0
- multioptpy/ModelFunction/conical_model_function.py +26 -0
- multioptpy/ModelFunction/opt_meci.py +50 -0
- multioptpy/ModelFunction/opt_mesx.py +47 -0
- multioptpy/ModelFunction/opt_mesx_2.py +49 -0
- multioptpy/ModelFunction/seam_model_function.py +27 -0
- multioptpy/ModelHessian/__init__.py +0 -0
- multioptpy/ModelHessian/approx_hessian.py +147 -0
- multioptpy/ModelHessian/calc_params.py +227 -0
- multioptpy/ModelHessian/fischer.py +236 -0
- multioptpy/ModelHessian/fischerd3.py +360 -0
- multioptpy/ModelHessian/fischerd4.py +398 -0
- multioptpy/ModelHessian/gfn0xtb.py +633 -0
- multioptpy/ModelHessian/gfnff.py +709 -0
- multioptpy/ModelHessian/lindh.py +165 -0
- multioptpy/ModelHessian/lindh2007d2.py +707 -0
- multioptpy/ModelHessian/lindh2007d3.py +822 -0
- multioptpy/ModelHessian/lindh2007d4.py +1030 -0
- multioptpy/ModelHessian/morse.py +106 -0
- multioptpy/ModelHessian/schlegel.py +144 -0
- multioptpy/ModelHessian/schlegeld3.py +322 -0
- multioptpy/ModelHessian/schlegeld4.py +559 -0
- multioptpy/ModelHessian/shortrange.py +346 -0
- multioptpy/ModelHessian/swartd2.py +496 -0
- multioptpy/ModelHessian/swartd3.py +706 -0
- multioptpy/ModelHessian/swartd4.py +918 -0
- multioptpy/ModelHessian/tshess.py +40 -0
- multioptpy/Optimizer/QHAdam.py +61 -0
- multioptpy/Optimizer/__init__.py +0 -0
- multioptpy/Optimizer/abc_fire.py +83 -0
- multioptpy/Optimizer/adabelief.py +58 -0
- multioptpy/Optimizer/adabound.py +68 -0
- multioptpy/Optimizer/adadelta.py +65 -0
- multioptpy/Optimizer/adaderivative.py +56 -0
- multioptpy/Optimizer/adadiff.py +68 -0
- multioptpy/Optimizer/adafactor.py +70 -0
- multioptpy/Optimizer/adam.py +65 -0
- multioptpy/Optimizer/adamax.py +62 -0
- multioptpy/Optimizer/adamod.py +83 -0
- multioptpy/Optimizer/adamw.py +65 -0
- multioptpy/Optimizer/adiis.py +523 -0
- multioptpy/Optimizer/afire_neb.py +282 -0
- multioptpy/Optimizer/block_hessian_update.py +709 -0
- multioptpy/Optimizer/c2diis.py +491 -0
- multioptpy/Optimizer/component_wise_scaling.py +405 -0
- multioptpy/Optimizer/conjugate_gradient.py +82 -0
- multioptpy/Optimizer/conjugate_gradient_neb.py +345 -0
- multioptpy/Optimizer/coordinate_locking.py +405 -0
- multioptpy/Optimizer/dic_rsirfo.py +1015 -0
- multioptpy/Optimizer/ediis.py +417 -0
- multioptpy/Optimizer/eve.py +76 -0
- multioptpy/Optimizer/fastadabelief.py +61 -0
- multioptpy/Optimizer/fire.py +77 -0
- multioptpy/Optimizer/fire2.py +249 -0
- multioptpy/Optimizer/fire_neb.py +92 -0
- multioptpy/Optimizer/gan_step.py +486 -0
- multioptpy/Optimizer/gdiis.py +609 -0
- multioptpy/Optimizer/gediis.py +203 -0
- multioptpy/Optimizer/geodesic_step.py +433 -0
- multioptpy/Optimizer/gpmin.py +633 -0
- multioptpy/Optimizer/gpr_step.py +364 -0
- multioptpy/Optimizer/gradientdescent.py +78 -0
- multioptpy/Optimizer/gradientdescent_neb.py +52 -0
- multioptpy/Optimizer/hessian_update.py +433 -0
- multioptpy/Optimizer/hybrid_rfo.py +998 -0
- multioptpy/Optimizer/kdiis.py +625 -0
- multioptpy/Optimizer/lars.py +21 -0
- multioptpy/Optimizer/lbfgs.py +253 -0
- multioptpy/Optimizer/lbfgs_neb.py +355 -0
- multioptpy/Optimizer/linesearch.py +236 -0
- multioptpy/Optimizer/lookahead.py +40 -0
- multioptpy/Optimizer/nadam.py +64 -0
- multioptpy/Optimizer/newton.py +200 -0
- multioptpy/Optimizer/prodigy.py +70 -0
- multioptpy/Optimizer/purtubation.py +16 -0
- multioptpy/Optimizer/quickmin_neb.py +245 -0
- multioptpy/Optimizer/radam.py +75 -0
- multioptpy/Optimizer/rfo_neb.py +302 -0
- multioptpy/Optimizer/ric_rfo.py +842 -0
- multioptpy/Optimizer/rl_step.py +627 -0
- multioptpy/Optimizer/rmspropgrave.py +65 -0
- multioptpy/Optimizer/rsirfo.py +1647 -0
- multioptpy/Optimizer/rsprfo.py +1056 -0
- multioptpy/Optimizer/sadam.py +60 -0
- multioptpy/Optimizer/samsgrad.py +63 -0
- multioptpy/Optimizer/tr_lbfgs.py +678 -0
- multioptpy/Optimizer/trim.py +273 -0
- multioptpy/Optimizer/trust_radius.py +207 -0
- multioptpy/Optimizer/trust_radius_neb.py +121 -0
- multioptpy/Optimizer/yogi.py +60 -0
- multioptpy/OtherMethod/__init__.py +0 -0
- multioptpy/OtherMethod/addf.py +1150 -0
- multioptpy/OtherMethod/dimer.py +895 -0
- multioptpy/OtherMethod/elastic_image_pair.py +629 -0
- multioptpy/OtherMethod/modelfunction.py +456 -0
- multioptpy/OtherMethod/newton_traj.py +454 -0
- multioptpy/OtherMethod/twopshs.py +1095 -0
- multioptpy/PESAnalyzer/__init__.py +0 -0
- multioptpy/PESAnalyzer/calc_irc_curvature.py +125 -0
- multioptpy/PESAnalyzer/cmds_analysis.py +152 -0
- multioptpy/PESAnalyzer/koopman_analysis.py +268 -0
- multioptpy/PESAnalyzer/pca_analysis.py +314 -0
- multioptpy/Parameters/__init__.py +0 -0
- multioptpy/Parameters/atomic_mass.py +20 -0
- multioptpy/Parameters/atomic_number.py +22 -0
- multioptpy/Parameters/covalent_radii.py +44 -0
- multioptpy/Parameters/d2.py +61 -0
- multioptpy/Parameters/d3.py +63 -0
- multioptpy/Parameters/d4.py +103 -0
- multioptpy/Parameters/dreiding.py +34 -0
- multioptpy/Parameters/gfn0xtb_param.py +137 -0
- multioptpy/Parameters/gfnff_param.py +315 -0
- multioptpy/Parameters/gnb.py +104 -0
- multioptpy/Parameters/parameter.py +22 -0
- multioptpy/Parameters/uff.py +72 -0
- multioptpy/Parameters/unit_values.py +20 -0
- multioptpy/Potential/AFIR_potential.py +55 -0
- multioptpy/Potential/LJ_repulsive_potential.py +345 -0
- multioptpy/Potential/__init__.py +0 -0
- multioptpy/Potential/anharmonic_keep_potential.py +28 -0
- multioptpy/Potential/asym_elllipsoidal_potential.py +718 -0
- multioptpy/Potential/electrostatic_potential.py +69 -0
- multioptpy/Potential/flux_potential.py +30 -0
- multioptpy/Potential/gaussian_potential.py +101 -0
- multioptpy/Potential/idpp.py +516 -0
- multioptpy/Potential/keep_angle_potential.py +146 -0
- multioptpy/Potential/keep_dihedral_angle_potential.py +105 -0
- multioptpy/Potential/keep_outofplain_angle_potential.py +70 -0
- multioptpy/Potential/keep_potential.py +99 -0
- multioptpy/Potential/mechano_force_potential.py +74 -0
- multioptpy/Potential/nanoreactor_potential.py +52 -0
- multioptpy/Potential/potential.py +896 -0
- multioptpy/Potential/spacer_model_potential.py +221 -0
- multioptpy/Potential/switching_potential.py +258 -0
- multioptpy/Potential/universal_potential.py +34 -0
- multioptpy/Potential/value_range_potential.py +36 -0
- multioptpy/Potential/void_point_potential.py +25 -0
- multioptpy/SQM/__init__.py +0 -0
- multioptpy/SQM/sqm1/__init__.py +0 -0
- multioptpy/SQM/sqm1/sqm1_core.py +1792 -0
- multioptpy/SQM/sqm2/__init__.py +0 -0
- multioptpy/SQM/sqm2/calc_tools.py +95 -0
- multioptpy/SQM/sqm2/sqm2_basis.py +850 -0
- multioptpy/SQM/sqm2/sqm2_bond.py +119 -0
- multioptpy/SQM/sqm2/sqm2_core.py +303 -0
- multioptpy/SQM/sqm2/sqm2_data.py +1229 -0
- multioptpy/SQM/sqm2/sqm2_disp.py +65 -0
- multioptpy/SQM/sqm2/sqm2_eeq.py +243 -0
- multioptpy/SQM/sqm2/sqm2_overlapint.py +704 -0
- multioptpy/SQM/sqm2/sqm2_qm.py +578 -0
- multioptpy/SQM/sqm2/sqm2_rep.py +66 -0
- multioptpy/SQM/sqm2/sqm2_srb.py +70 -0
- multioptpy/Thermo/__init__.py +0 -0
- multioptpy/Thermo/normal_mode_analyzer.py +865 -0
- multioptpy/Utils/__init__.py +0 -0
- multioptpy/Utils/bond_connectivity.py +264 -0
- multioptpy/Utils/calc_tools.py +884 -0
- multioptpy/Utils/oniom.py +96 -0
- multioptpy/Utils/pbc.py +48 -0
- multioptpy/Utils/riemann_curvature.py +208 -0
- multioptpy/Utils/symmetry_analyzer.py +482 -0
- multioptpy/Visualization/__init__.py +0 -0
- multioptpy/Visualization/visualization.py +156 -0
- multioptpy/WFAnalyzer/MO_analysis.py +104 -0
- multioptpy/WFAnalyzer/__init__.py +0 -0
- multioptpy/Wrapper/__init__.py +0 -0
- multioptpy/Wrapper/autots.py +1239 -0
- multioptpy/Wrapper/ieip_wrapper.py +93 -0
- multioptpy/Wrapper/md_wrapper.py +92 -0
- multioptpy/Wrapper/neb_wrapper.py +94 -0
- multioptpy/Wrapper/optimize_wrapper.py +76 -0
- multioptpy/__init__.py +5 -0
- multioptpy/entrypoints.py +916 -0
- multioptpy/fileio.py +660 -0
- multioptpy/ieip.py +340 -0
- multioptpy/interface.py +1086 -0
- multioptpy/irc.py +529 -0
- multioptpy/moleculardynamics.py +432 -0
- multioptpy/neb.py +1267 -0
- multioptpy/optimization.py +1553 -0
- multioptpy/optimizer.py +709 -0
- multioptpy-1.20.2.dist-info/METADATA +438 -0
- multioptpy-1.20.2.dist-info/RECORD +246 -0
- multioptpy-1.20.2.dist-info/WHEEL +5 -0
- multioptpy-1.20.2.dist-info/entry_points.txt +9 -0
- multioptpy-1.20.2.dist-info/licenses/LICENSE +674 -0
- multioptpy-1.20.2.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
|
|
3
|
+
class TransitionStateHessian:
|
|
4
|
+
"""
|
|
5
|
+
A class for modifying an existing Hessian matrix to introduce a negative eigenvalue
|
|
6
|
+
for transition state optimizations, but without using neg_eigenvalue directly as the replacement.
|
|
7
|
+
Instead, it applies a procedure to the targeted eigenvalue: first take its absolute value,
|
|
8
|
+
multiply by -1, and then add neg_eigenvalue.
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
def __init__(self):
|
|
12
|
+
pass
|
|
13
|
+
|
|
14
|
+
def create_ts_hessian(self, model_hessian, cart_gradient):
|
|
15
|
+
|
|
16
|
+
# Diagonalize the supplied Hessian
|
|
17
|
+
eigenvalues, eigenvectors = np.linalg.eigh(model_hessian)
|
|
18
|
+
|
|
19
|
+
if np.any(eigenvalues < -1e-8):
|
|
20
|
+
return model_hessian # No need to modify if negative eigenvalues already exist
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
count = 0
|
|
24
|
+
for i in range(len(eigenvalues)):
|
|
25
|
+
if abs(eigenvalues[i]) < 1e-8:
|
|
26
|
+
count += 1
|
|
27
|
+
else:
|
|
28
|
+
break
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
target_eigvec = eigenvectors[:, count]
|
|
32
|
+
|
|
33
|
+
P = np.eye(len(eigenvalues)) - 2.0 * np.outer(target_eigvec, target_eigvec)
|
|
34
|
+
|
|
35
|
+
ts_hessian = np.dot(P, model_hessian)
|
|
36
|
+
|
|
37
|
+
# Enforce symmetry
|
|
38
|
+
ts_hessian = 0.5 * (ts_hessian + ts_hessian.T)
|
|
39
|
+
|
|
40
|
+
return ts_hessian
|
|
@@ -0,0 +1,61 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import copy
|
|
3
|
+
|
|
4
|
+
class QHAdam:
|
|
5
|
+
def __init__(self, **config):
|
|
6
|
+
#arXiv:1810.06801v4
|
|
7
|
+
self.adam_count = 1
|
|
8
|
+
self.DELTA = 0.1
|
|
9
|
+
self.beta_m = 0.9
|
|
10
|
+
self.beta_v = 0.999
|
|
11
|
+
self.Epsilon = 1e-12
|
|
12
|
+
self.nu_m = 1.0
|
|
13
|
+
self.nu_v = 1.0
|
|
14
|
+
self.Initialization = True
|
|
15
|
+
self.config = config
|
|
16
|
+
self.hessian = None
|
|
17
|
+
self.bias_hessian = None
|
|
18
|
+
|
|
19
|
+
return
|
|
20
|
+
|
|
21
|
+
def run(self, geom_num_list, B_g, pre_B_g=[], pre_geom=[], B_e=0.0, pre_B_e=0.0, pre_move_vector=[], initial_geom_num_list=[], g=[], pre_g=[]):
|
|
22
|
+
print("QHAdam")
|
|
23
|
+
if self.Initialization:
|
|
24
|
+
self.adam_m = geom_num_list * 0.0
|
|
25
|
+
self.adam_v = geom_num_list * 0.0
|
|
26
|
+
self.Initialization = False
|
|
27
|
+
|
|
28
|
+
adam_count = self.adam_count
|
|
29
|
+
adam_m = self.adam_m
|
|
30
|
+
adam_v = self.adam_v
|
|
31
|
+
new_adam_m = adam_m*0.0
|
|
32
|
+
new_adam_v = adam_v*0.0
|
|
33
|
+
|
|
34
|
+
for i in range(len(geom_num_list)):
|
|
35
|
+
new_adam_m[i] = copy.copy(self.beta_m*adam_m[i] + (1.0-self.beta_m)*(B_g[i]))
|
|
36
|
+
new_adam_v[i] = copy.copy(self.beta_v*adam_v[i] + (1.0-self.beta_v)*(B_g[i])**2)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
move_vector = []
|
|
40
|
+
|
|
41
|
+
for i in range(len(geom_num_list)):
|
|
42
|
+
move_vector.append(self.DELTA*((1.0 - self.nu_m) * B_g[i] + new_adam_m[i] * self.nu_m)/np.sqrt(((1.0 - self.nu_v) * B_g[i] ** 2 + new_adam_v[i] * self.nu_v)+self.Epsilon))
|
|
43
|
+
|
|
44
|
+
self.adam_m = new_adam_m
|
|
45
|
+
self.adam_v = new_adam_v
|
|
46
|
+
self.adam_count += 1
|
|
47
|
+
|
|
48
|
+
return move_vector#Bohr
|
|
49
|
+
def set_hessian(self, hessian):
|
|
50
|
+
self.hessian = hessian
|
|
51
|
+
return
|
|
52
|
+
|
|
53
|
+
def set_bias_hessian(self, bias_hessian):
|
|
54
|
+
self.bias_hessian = bias_hessian
|
|
55
|
+
return
|
|
56
|
+
|
|
57
|
+
def get_hessian(self):
|
|
58
|
+
return self.hessian
|
|
59
|
+
|
|
60
|
+
def get_bias_hessian(self):
|
|
61
|
+
return self.bias_hessian
|
|
File without changes
|
|
@@ -0,0 +1,83 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import copy
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class ABC_FIRE:
|
|
7
|
+
def __init__(self, **config):#MD-like optimization method.
|
|
8
|
+
#ABC_FIRE
|
|
9
|
+
#Computational Materials Science Volume 218, 5 February 2023, 111978
|
|
10
|
+
self.iter = 0
|
|
11
|
+
self.sub_iter = 0
|
|
12
|
+
self.N_acc = 5
|
|
13
|
+
self.f_inc = 1.10
|
|
14
|
+
self.f_acc = 0.99
|
|
15
|
+
self.f_dec = 0.50
|
|
16
|
+
self.dt_max = 0.8
|
|
17
|
+
self.alpha_start = 0.1
|
|
18
|
+
|
|
19
|
+
self.display_flag = True
|
|
20
|
+
self.config = config
|
|
21
|
+
self.Initialization = True
|
|
22
|
+
self.hessian = None
|
|
23
|
+
self.bias_hessian = None
|
|
24
|
+
|
|
25
|
+
return
|
|
26
|
+
|
|
27
|
+
def run(self, geom_num_list, B_g, pre_B_g=[], pre_geom=[], B_e=0.0, pre_B_e=0.0, pre_move_vector=[], initial_geom_num_list=[], g=[], pre_g=[]):
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
if self.Initialization:
|
|
32
|
+
self.dt = 0.1
|
|
33
|
+
self.alpha = self.alpha_start
|
|
34
|
+
self.n_reset = 0
|
|
35
|
+
self.pre_velocity = geom_num_list * 0.0
|
|
36
|
+
self.Initialization = False
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
velocity = (1.0 / (1.0 - (1.0 - self.alpha) ** (self.sub_iter) + 1e-10)) * (1.0 - self.alpha) * self.pre_velocity + self.alpha * (np.linalg.norm(self.pre_velocity, ord=2)/np.linalg.norm(B_g, ord=2)) * B_g
|
|
41
|
+
|
|
42
|
+
if self.iter > 0 and np.dot(self.pre_velocity.reshape(1, len(geom_num_list)), B_g.reshape(len(geom_num_list), 1)) > 0:
|
|
43
|
+
if self.n_reset > self.N_acc:
|
|
44
|
+
self.dt = min(self.dt * self.f_inc, self.dt_max)
|
|
45
|
+
self.alpha = self.alpha * self.f_acc
|
|
46
|
+
self.n_reset += 1
|
|
47
|
+
else:
|
|
48
|
+
|
|
49
|
+
velocity *= 0.0
|
|
50
|
+
self.alpha = self.alpha_start
|
|
51
|
+
self.dt *= self.f_dec
|
|
52
|
+
self.n_reset = 0
|
|
53
|
+
|
|
54
|
+
velocity += self.dt*B_g
|
|
55
|
+
|
|
56
|
+
move_vector = copy.copy(self.dt * velocity)
|
|
57
|
+
|
|
58
|
+
if self.display_flag:
|
|
59
|
+
print("FIRE")
|
|
60
|
+
print("dt, alpha, n_reset :", self.dt, self.alpha, self.n_reset)
|
|
61
|
+
|
|
62
|
+
self.pre_velocity = velocity
|
|
63
|
+
self.iter += 1
|
|
64
|
+
self.sub_iter += 1
|
|
65
|
+
if self.iter > 0:
|
|
66
|
+
if np.dot(velocity.reshape(1, len(geom_num_list)), B_g.reshape(len(geom_num_list), 1)) < 0:
|
|
67
|
+
self.sub_iter = 0
|
|
68
|
+
return move_vector#Bohr.
|
|
69
|
+
|
|
70
|
+
def set_hessian(self, hessian):
|
|
71
|
+
self.hessian = hessian
|
|
72
|
+
return
|
|
73
|
+
|
|
74
|
+
def set_bias_hessian(self, bias_hessian):
|
|
75
|
+
self.bias_hessian = bias_hessian
|
|
76
|
+
return
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
def get_hessian(self):
|
|
80
|
+
return self.hessian
|
|
81
|
+
|
|
82
|
+
def get_bias_hessian(self):
|
|
83
|
+
return self.bias_hessian
|
|
@@ -0,0 +1,58 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import copy
|
|
3
|
+
|
|
4
|
+
class Adabelief:
|
|
5
|
+
def __init__(self, **config):
|
|
6
|
+
#AdaBelief
|
|
7
|
+
#ref. arXiv:2010.07468v5
|
|
8
|
+
self.adam_count = 1
|
|
9
|
+
self.DELTA = 0.03
|
|
10
|
+
self.beta_m = 0.9
|
|
11
|
+
self.beta_v = 0.999
|
|
12
|
+
self.Epsilon = 1e-15
|
|
13
|
+
self.Initialization = True
|
|
14
|
+
self.config = config
|
|
15
|
+
self.hessian = None
|
|
16
|
+
self.bias_hessian = None
|
|
17
|
+
return
|
|
18
|
+
|
|
19
|
+
def run(self, geom_num_list, B_g, pre_B_g=[], pre_geom=[], B_e=0.0, pre_B_e=0.0, pre_move_vector=[], initial_geom_num_list=[], g=[], pre_g=[]):
|
|
20
|
+
print("AdaBelief")
|
|
21
|
+
if self.Initialization:
|
|
22
|
+
self.adam_m = geom_num_list * 0.0
|
|
23
|
+
self.adam_v = geom_num_list * 0.0
|
|
24
|
+
self.Initialization = False
|
|
25
|
+
|
|
26
|
+
adam_count = self.adam_count
|
|
27
|
+
adam_m = self.adam_m
|
|
28
|
+
adam_v = self.adam_v
|
|
29
|
+
new_adam_m = adam_m*0.0
|
|
30
|
+
new_adam_v = adam_v*0.0
|
|
31
|
+
|
|
32
|
+
for i in range(len(geom_num_list)):
|
|
33
|
+
new_adam_m[i] = copy.copy(self.beta_m*adam_m[i] + (1.0-self.beta_m)*(B_g[i]))
|
|
34
|
+
new_adam_v[i] = copy.copy(self.beta_v*adam_v[i] + (1.0-self.beta_v)*(B_g[i]-new_adam_m[i])**2)
|
|
35
|
+
|
|
36
|
+
move_vector = []
|
|
37
|
+
|
|
38
|
+
for i in range(len(geom_num_list)):
|
|
39
|
+
move_vector.append(self.DELTA*new_adam_m[i]/np.sqrt(new_adam_v[i]+self.Epsilon))
|
|
40
|
+
|
|
41
|
+
self.adam_m = new_adam_m
|
|
42
|
+
self.adam_v = new_adam_v
|
|
43
|
+
self.adam_count += 1
|
|
44
|
+
|
|
45
|
+
return move_vector#Bohr
|
|
46
|
+
def set_hessian(self, hessian):
|
|
47
|
+
self.hessian = hessian
|
|
48
|
+
return
|
|
49
|
+
|
|
50
|
+
def set_bias_hessian(self, bias_hessian):
|
|
51
|
+
self.bias_hessian = bias_hessian
|
|
52
|
+
return
|
|
53
|
+
|
|
54
|
+
def get_hessian(self):
|
|
55
|
+
return self.hessian
|
|
56
|
+
|
|
57
|
+
def get_bias_hessian(self):
|
|
58
|
+
return self.bias_hessian
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import copy
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class AdaBound:
|
|
8
|
+
def __init__(self, **config):
|
|
9
|
+
#AdaBound
|
|
10
|
+
#arXiv:1902.09843v1
|
|
11
|
+
self.adam_count = 1
|
|
12
|
+
self.beta_m = 0.9
|
|
13
|
+
self.beta_v = 0.999
|
|
14
|
+
self.DELTA = 0.05
|
|
15
|
+
self.Epsilon = 1e-08
|
|
16
|
+
self.Initialization = True
|
|
17
|
+
self.config = config
|
|
18
|
+
self.hessian = None
|
|
19
|
+
self.bias_hessian = None
|
|
20
|
+
return
|
|
21
|
+
|
|
22
|
+
def run(self, geom_num_list, B_g, pre_B_g=[], pre_geom=[], B_e=0.0, pre_B_e=0.0, pre_move_vector=[], initial_geom_num_list=[], g=[], pre_g=[]):
|
|
23
|
+
print("AdaBound")
|
|
24
|
+
|
|
25
|
+
if self.Initialization:
|
|
26
|
+
self.adam_m = geom_num_list * 0.0
|
|
27
|
+
self.adam_v = np.zeros((len(geom_num_list), 3, 3))
|
|
28
|
+
|
|
29
|
+
self.Initialization = False
|
|
30
|
+
|
|
31
|
+
move_vector = []
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
new_adam_m = self.adam_m*0.0
|
|
35
|
+
new_adam_v = self.adam_v*0.0
|
|
36
|
+
V = self.adam_m*0.0
|
|
37
|
+
Eta = self.adam_m*0.0
|
|
38
|
+
Eta_hat = self.adam_m*0.0
|
|
39
|
+
|
|
40
|
+
for i in range(len(geom_num_list)):
|
|
41
|
+
new_adam_m[i] = copy.copy(self.beta_m*self.adam_m[i] + (1.0-self.beta_m)*(B_g[i]))
|
|
42
|
+
new_adam_v[i] = copy.copy(self.beta_v*self.adam_v[i] + (1.0-self.beta_v)*(np.dot(np.array([B_g[i]]).T, np.array([B_g[i]]))))
|
|
43
|
+
V[i] = copy.copy(np.diag(new_adam_v[i]))
|
|
44
|
+
|
|
45
|
+
Eta_hat[i] = copy.copy(np.clip(self.DELTA/(np.sqrt(V[i]) + self.Epsilon), 0.1 - (0.1/((1.0 - self.beta_v) ** (self.adam_count + 1) + self.Epsilon)) ,0.1 + 0.1/((1.0 - self.beta_v) ** self.adam_count + self.Epsilon) ))
|
|
46
|
+
Eta[i] = copy.copy(Eta_hat[i]/np.sqrt(self.adam_count))
|
|
47
|
+
|
|
48
|
+
for i in range(len(geom_num_list)):
|
|
49
|
+
move_vector.append(Eta[i] * new_adam_m[i])
|
|
50
|
+
|
|
51
|
+
self.adam_m = new_adam_m
|
|
52
|
+
self.adam_v = new_adam_v
|
|
53
|
+
self.adam_count += 1
|
|
54
|
+
return move_vector
|
|
55
|
+
|
|
56
|
+
def set_hessian(self, hessian):
|
|
57
|
+
self.hessian = hessian
|
|
58
|
+
return
|
|
59
|
+
|
|
60
|
+
def set_bias_hessian(self, bias_hessian):
|
|
61
|
+
self.bias_hessian = bias_hessian
|
|
62
|
+
return
|
|
63
|
+
|
|
64
|
+
def get_hessian(self):
|
|
65
|
+
return self.hessian
|
|
66
|
+
|
|
67
|
+
def get_bias_hessian(self):
|
|
68
|
+
return self.bias_hessian
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import copy
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
class Adadelta:
|
|
6
|
+
def __init__(self, **config):
|
|
7
|
+
#Adadelta
|
|
8
|
+
#arXiv:1212.5701v1
|
|
9
|
+
self.adam_count = 1
|
|
10
|
+
self.beta_m = 0.9
|
|
11
|
+
self.beta_v = 0.999
|
|
12
|
+
self.DELTA = 0.03
|
|
13
|
+
self.Epsilon = 1e-06
|
|
14
|
+
self.RMS_DISPLACEMENT_THRESHOLD = 0.0
|
|
15
|
+
self.RMS_FORCE_THRESHOLD = 1e+10
|
|
16
|
+
self.Initialization = True
|
|
17
|
+
self.config = config
|
|
18
|
+
self.hessian = None
|
|
19
|
+
self.bias_hessian = None
|
|
20
|
+
return
|
|
21
|
+
|
|
22
|
+
def run(self, geom_num_list, B_g, pre_B_g=[], pre_geom=[], B_e=0.0, pre_B_e=0.0, pre_move_vector=[], initial_geom_num_list=[], g=[], pre_g=[]):#delta is not required. This method tends to converge local minima. This class doesnt work well.
|
|
23
|
+
print("Adadelta")
|
|
24
|
+
if self.Initialization:
|
|
25
|
+
self.adam_m = geom_num_list * 0.0
|
|
26
|
+
self.adam_v = geom_num_list * 0.0
|
|
27
|
+
|
|
28
|
+
self.Initialization = False
|
|
29
|
+
rho = 0.9
|
|
30
|
+
new_adam_m = self.adam_m*0.0
|
|
31
|
+
new_adam_v = self.adam_v*0.0
|
|
32
|
+
|
|
33
|
+
for i in range(len(geom_num_list)):
|
|
34
|
+
new_adam_m[i] = copy.copy(rho * self.adam_m[i] + (1.0 - rho)*(B_g[i]) ** 2)
|
|
35
|
+
move_vector = []
|
|
36
|
+
|
|
37
|
+
for i in range(len(geom_num_list)):
|
|
38
|
+
if self.adam_count > 1:
|
|
39
|
+
move_vector.append(B_g[i] * (np.sqrt(np.square(self.adam_v).mean()) + self.Epsilon)/(np.sqrt(np.square(new_adam_m).mean()) + self.Epsilon))
|
|
40
|
+
else:
|
|
41
|
+
move_vector.append(B_g[i])
|
|
42
|
+
if abs(np.sqrt(np.square(move_vector).mean())) < self.RMS_DISPLACEMENT_THRESHOLD and abs(np.sqrt(np.square(B_g).mean())) > self.RMS_FORCE_THRESHOLD:
|
|
43
|
+
move_vector = B_g
|
|
44
|
+
|
|
45
|
+
for i in range(len(geom_num_list)):
|
|
46
|
+
new_adam_v[i] = copy.copy(rho * self.adam_v[i] + (1.0 - rho) * (move_vector[i]) ** 2)
|
|
47
|
+
|
|
48
|
+
self.adam_m = new_adam_m
|
|
49
|
+
self.adam_v = new_adam_v
|
|
50
|
+
self.adam_count += 1
|
|
51
|
+
return move_vector
|
|
52
|
+
|
|
53
|
+
def set_hessian(self, hessian):
|
|
54
|
+
self.hessian = hessian
|
|
55
|
+
return
|
|
56
|
+
|
|
57
|
+
def set_bias_hessian(self, bias_hessian):
|
|
58
|
+
self.bias_hessian = bias_hessian
|
|
59
|
+
return
|
|
60
|
+
|
|
61
|
+
def get_hessian(self):
|
|
62
|
+
return self.hessian
|
|
63
|
+
|
|
64
|
+
def get_bias_hessian(self):
|
|
65
|
+
return self.bias_hessian
|
|
@@ -0,0 +1,56 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import copy
|
|
3
|
+
|
|
4
|
+
class Adaderivative:
|
|
5
|
+
def __init__(self, **config):
|
|
6
|
+
#Engineering Applications of Artificial Intelligence 2023, 119, 105755. https://doi.org/10.1016/j.engappai.2022.105755
|
|
7
|
+
self.adam_count = 1
|
|
8
|
+
self.DELTA = 0.0001
|
|
9
|
+
self.beta_m = 0.9
|
|
10
|
+
self.beta_v = 0.999
|
|
11
|
+
self.Epsilon = 1e-12
|
|
12
|
+
self.Initialization = True
|
|
13
|
+
self.config = config
|
|
14
|
+
self.hessian = None
|
|
15
|
+
self.bias_hessian = None
|
|
16
|
+
return
|
|
17
|
+
|
|
18
|
+
def run(self, geom_num_list, B_g, pre_B_g, pre_geom=[], B_e=0.0, pre_B_e=0.0, pre_move_vector=[], initial_geom_num_list=[], g=[], pre_g=[]):
|
|
19
|
+
print("Adaderivative")
|
|
20
|
+
if self.Initialization:
|
|
21
|
+
self.adam_m = geom_num_list * 0.0
|
|
22
|
+
self.adam_v = geom_num_list * 0.0
|
|
23
|
+
self.Initialization = False
|
|
24
|
+
|
|
25
|
+
adam_count = self.adam_count
|
|
26
|
+
adam_m = self.adam_m
|
|
27
|
+
adam_v = self.adam_v
|
|
28
|
+
new_adam_m = adam_m*0.0
|
|
29
|
+
new_adam_v = adam_v*0.0
|
|
30
|
+
|
|
31
|
+
for i in range(len(geom_num_list)):
|
|
32
|
+
new_adam_m[i] = copy.copy((self.beta_m * adam_m[i] + (1.0-self.beta_m) * (B_g[i]) ))
|
|
33
|
+
new_adam_v[i] = copy.copy((self.beta_v * adam_v[i] + (1.0-self.beta_v) * (B_g[i] - pre_B_g[i]) ** 2))
|
|
34
|
+
|
|
35
|
+
move_vector = []
|
|
36
|
+
|
|
37
|
+
for i in range(len(geom_num_list)):
|
|
38
|
+
move_vector.append(self.DELTA*new_adam_m[i]/np.sqrt(new_adam_v[i]+self.Epsilon))
|
|
39
|
+
self.adam_m = new_adam_m
|
|
40
|
+
self.adam_v = new_adam_v
|
|
41
|
+
self.adam_count += 1
|
|
42
|
+
|
|
43
|
+
return move_vector#Bohr
|
|
44
|
+
def set_hessian(self, hessian):
|
|
45
|
+
self.hessian = hessian
|
|
46
|
+
return
|
|
47
|
+
|
|
48
|
+
def set_bias_hessian(self, bias_hessian):
|
|
49
|
+
self.bias_hessian = bias_hessian
|
|
50
|
+
return
|
|
51
|
+
|
|
52
|
+
def get_hessian(self):
|
|
53
|
+
return self.hessian
|
|
54
|
+
|
|
55
|
+
def get_bias_hessian(self):
|
|
56
|
+
return self.bias_hessian
|
|
@@ -0,0 +1,68 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import copy
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
class AdaDiff:
|
|
8
|
+
def __init__(self, **config):
|
|
9
|
+
#AdaDiff
|
|
10
|
+
#ref. https://iopscience.iop.org/article/10.1088/1742-6596/2010/1/012027/pdf Dian Huang et al 2021 J. Phys.: Conf. Ser. 2010 012027
|
|
11
|
+
self.adam_count = 1
|
|
12
|
+
self.DELTA = 0.03
|
|
13
|
+
self.beta_m = 0.9
|
|
14
|
+
self.beta_v = 0.999
|
|
15
|
+
self.Epsilon = 1e-12
|
|
16
|
+
self.Initialization = True
|
|
17
|
+
self.config = config
|
|
18
|
+
self.hessian = None
|
|
19
|
+
self.bias_hessian = None
|
|
20
|
+
return
|
|
21
|
+
|
|
22
|
+
def run(self, geom_num_list, B_g, pre_B_g, pre_geom=[], B_e=0.0, pre_B_e=0.0, pre_move_vector=[], initial_geom_num_list=[], g=[], pre_g=[]):
|
|
23
|
+
print("AdaDiff")
|
|
24
|
+
if self.Initialization:
|
|
25
|
+
self.adam_m = geom_num_list * 0.0
|
|
26
|
+
self.adam_v = geom_num_list * 0.0
|
|
27
|
+
self.Initialization = False
|
|
28
|
+
|
|
29
|
+
adam_count = self.adam_count
|
|
30
|
+
adam_m = self.adam_m
|
|
31
|
+
adam_v = self.adam_v
|
|
32
|
+
new_adam_m = adam_m*0.0
|
|
33
|
+
new_adam_v = adam_v*0.0
|
|
34
|
+
new_adam_m_hat = adam_m*0.0
|
|
35
|
+
new_adam_v_hat = adam_v*0.0
|
|
36
|
+
|
|
37
|
+
for i in range(len(geom_num_list)):
|
|
38
|
+
new_adam_m[i] = copy.copy(self.beta_m*adam_m[i] + (1.0-self.beta_m)*(B_g[i]))
|
|
39
|
+
new_adam_v[i] = copy.copy(self.beta_v*adam_v[i] + (1.0-self.beta_v)*(B_g[i])**2 + (1.0-self.beta_v) * (B_g[i] - pre_B_g[i]) ** 2)
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
move_vector = []
|
|
43
|
+
for i in range(len(geom_num_list)):
|
|
44
|
+
new_adam_m_hat[i] = copy.copy(new_adam_m[i]/(1 - self.beta_m**adam_count))
|
|
45
|
+
new_adam_v_hat[i] = copy.copy((new_adam_v[i] + self.Epsilon)/(1 - self.beta_v**adam_count))
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
for i in range(len(geom_num_list)):
|
|
49
|
+
move_vector.append(self.DELTA*new_adam_m_hat[i]/np.sqrt(new_adam_v_hat[i]+self.Epsilon))
|
|
50
|
+
self.adam_m = new_adam_m
|
|
51
|
+
self.adam_v = new_adam_v
|
|
52
|
+
self.adam_count += 1
|
|
53
|
+
|
|
54
|
+
return move_vector#Bohr.
|
|
55
|
+
|
|
56
|
+
def set_hessian(self, hessian):
|
|
57
|
+
self.hessian = hessian
|
|
58
|
+
return
|
|
59
|
+
|
|
60
|
+
def set_bias_hessian(self, bias_hessian):
|
|
61
|
+
self.bias_hessian = bias_hessian
|
|
62
|
+
return
|
|
63
|
+
|
|
64
|
+
def get_hessian(self):
|
|
65
|
+
return self.hessian
|
|
66
|
+
|
|
67
|
+
def get_bias_hessian(self):
|
|
68
|
+
return self.bias_hessian
|
|
@@ -0,0 +1,70 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import copy
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class Adafactor:
|
|
7
|
+
def __init__(self, **config):
|
|
8
|
+
#Adafactor
|
|
9
|
+
#arXiv:1804.04235v1
|
|
10
|
+
self.adam_count = 1
|
|
11
|
+
self.beta_m = 0.9
|
|
12
|
+
self.beta_v = 0.999
|
|
13
|
+
self.DELTA = 0.06
|
|
14
|
+
self.Epsilon_1 = 1e-08
|
|
15
|
+
self.Epsilon_2 = self.DELTA
|
|
16
|
+
self.Initialization = True
|
|
17
|
+
self.config = config
|
|
18
|
+
self.hessian = None
|
|
19
|
+
self.bias_hessian = None
|
|
20
|
+
return
|
|
21
|
+
|
|
22
|
+
def run(self, geom_num_list, B_g, pre_B_g=[], pre_geom=[], B_e=0.0, pre_B_e=0.0, pre_move_vector=[], initial_geom_num_list=[], g=[], pre_g=[]):
|
|
23
|
+
print("Adafactor")
|
|
24
|
+
|
|
25
|
+
if self.Initialization:
|
|
26
|
+
self.adam_m = geom_num_list * 0.0
|
|
27
|
+
self.adam_v = geom_num_list * 0.0
|
|
28
|
+
self.adam_u = geom_num_list * 0.0
|
|
29
|
+
|
|
30
|
+
self.Initialization = False
|
|
31
|
+
|
|
32
|
+
beta = 1 - self.adam_count ** (-0.8)
|
|
33
|
+
rho = min(0.01, 1/np.sqrt(self.adam_count))
|
|
34
|
+
alpha = max(np.sqrt(np.square(geom_num_list).mean()), self.Epsilon_2) * rho
|
|
35
|
+
new_adam_m = self.adam_m
|
|
36
|
+
new_adam_v = self.adam_v*0.0
|
|
37
|
+
new_adam_u = self.adam_u*0.0
|
|
38
|
+
new_adam_u_hat = self.adam_u*0.0
|
|
39
|
+
for i in range(len(geom_num_list)):
|
|
40
|
+
new_adam_v[i] = copy.copy(beta*self.adam_v[i] + (1.0-beta)*((B_g[i])**2 + np.array([1]) * self.Epsilon_1))
|
|
41
|
+
new_adam_u[i] = copy.copy(B_g[i]/np.sqrt(new_adam_v[i]))
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
move_vector = []
|
|
45
|
+
for i in range(len(geom_num_list)):
|
|
46
|
+
new_adam_u_hat[i] = copy.copy(new_adam_u[i] / max(1, np.sqrt(np.square(new_adam_u).mean())))
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
for i in range(len(geom_num_list)):
|
|
50
|
+
move_vector.append(alpha*new_adam_u_hat[i])
|
|
51
|
+
|
|
52
|
+
self.adam_m = new_adam_m
|
|
53
|
+
self.adam_v = new_adam_v
|
|
54
|
+
self.adam_u = new_adam_u
|
|
55
|
+
self.adam_count += 1
|
|
56
|
+
|
|
57
|
+
return move_vector
|
|
58
|
+
def set_hessian(self, hessian):
|
|
59
|
+
self.hessian = hessian
|
|
60
|
+
return
|
|
61
|
+
|
|
62
|
+
def set_bias_hessian(self, bias_hessian):
|
|
63
|
+
self.bias_hessian = bias_hessian
|
|
64
|
+
return
|
|
65
|
+
|
|
66
|
+
def get_hessian(self):
|
|
67
|
+
return self.hessian
|
|
68
|
+
|
|
69
|
+
def get_bias_hessian(self):
|
|
70
|
+
return self.bias_hessian
|
|
@@ -0,0 +1,65 @@
|
|
|
1
|
+
import numpy as np
|
|
2
|
+
import copy
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
|
|
6
|
+
class Adam:
|
|
7
|
+
def __init__(self, **config):
|
|
8
|
+
#Adam
|
|
9
|
+
#arXiv:1412.6980
|
|
10
|
+
self.adam_count = 1
|
|
11
|
+
self.beta_m = 0.9
|
|
12
|
+
self.beta_v = 0.999
|
|
13
|
+
self.DELTA = 0.03
|
|
14
|
+
self.Epsilon = 1e-08
|
|
15
|
+
self.Initialization = True
|
|
16
|
+
self.config = config
|
|
17
|
+
self.hessian = None
|
|
18
|
+
self.bias_hessian = None
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def run(self, geom_num_list, B_g, pre_B_g=[], pre_geom=[], B_e=0.0, pre_B_e=0.0, pre_move_vector=[], initial_geom_num_list=[], g=[], pre_g=[]):
|
|
22
|
+
print("Adam")
|
|
23
|
+
if self.Initialization:
|
|
24
|
+
self.adam_m = geom_num_list * 0.0
|
|
25
|
+
self.adam_v = geom_num_list * 0.0
|
|
26
|
+
|
|
27
|
+
self.Initialization = False
|
|
28
|
+
|
|
29
|
+
new_adam_m = self.adam_m*0.0
|
|
30
|
+
new_adam_v = self.adam_v*0.0
|
|
31
|
+
|
|
32
|
+
new_adam_m_hat = self.adam_m*0.0
|
|
33
|
+
new_adam_v_hat = self.adam_v*0.0
|
|
34
|
+
for i in range(len(geom_num_list)):
|
|
35
|
+
new_adam_m[i] = copy.copy(self.beta_m*self.adam_m[i] + (1.0-self.beta_m)*(B_g[i]))
|
|
36
|
+
new_adam_v[i] = copy.copy(self.beta_v*self.adam_v[i] + (1.0-self.beta_v)*(B_g[i])**2)
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
move_vector = []
|
|
40
|
+
for i in range(len(geom_num_list)):
|
|
41
|
+
new_adam_m_hat[i] = copy.copy(new_adam_m[i]/(1 - self.beta_m**self.adam_count))
|
|
42
|
+
new_adam_v_hat[i] = copy.copy((new_adam_v[i] + self.Epsilon)/(1 - self.beta_v**self.adam_count))
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
for i in range(len(geom_num_list)):
|
|
46
|
+
move_vector.append(self.DELTA*new_adam_m_hat[i]/np.sqrt(new_adam_v_hat[i]+self.Epsilon))
|
|
47
|
+
self.adam_m = new_adam_m
|
|
48
|
+
self.adam_v = new_adam_v
|
|
49
|
+
self.adam_count += 1
|
|
50
|
+
|
|
51
|
+
return move_vector#Bohr.
|
|
52
|
+
|
|
53
|
+
def set_hessian(self, hessian):
|
|
54
|
+
self.hessian = hessian
|
|
55
|
+
return
|
|
56
|
+
|
|
57
|
+
def set_bias_hessian(self, bias_hessian):
|
|
58
|
+
self.bias_hessian = bias_hessian
|
|
59
|
+
return
|
|
60
|
+
|
|
61
|
+
def get_hessian(self):
|
|
62
|
+
return self.hessian
|
|
63
|
+
|
|
64
|
+
def get_bias_hessian(self):
|
|
65
|
+
return self.bias_hessian
|