MultiOptPy 1.20.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (246) hide show
  1. multioptpy/Calculator/__init__.py +0 -0
  2. multioptpy/Calculator/ase_calculation_tools.py +424 -0
  3. multioptpy/Calculator/ase_tools/__init__.py +0 -0
  4. multioptpy/Calculator/ase_tools/fairchem.py +28 -0
  5. multioptpy/Calculator/ase_tools/gamess.py +19 -0
  6. multioptpy/Calculator/ase_tools/gaussian.py +165 -0
  7. multioptpy/Calculator/ase_tools/mace.py +28 -0
  8. multioptpy/Calculator/ase_tools/mopac.py +19 -0
  9. multioptpy/Calculator/ase_tools/nwchem.py +31 -0
  10. multioptpy/Calculator/ase_tools/orca.py +22 -0
  11. multioptpy/Calculator/ase_tools/pygfn0.py +37 -0
  12. multioptpy/Calculator/dxtb_calculation_tools.py +344 -0
  13. multioptpy/Calculator/emt_calculation_tools.py +458 -0
  14. multioptpy/Calculator/gpaw_calculation_tools.py +183 -0
  15. multioptpy/Calculator/lj_calculation_tools.py +314 -0
  16. multioptpy/Calculator/psi4_calculation_tools.py +334 -0
  17. multioptpy/Calculator/pwscf_calculation_tools.py +189 -0
  18. multioptpy/Calculator/pyscf_calculation_tools.py +327 -0
  19. multioptpy/Calculator/sqm1_calculation_tools.py +611 -0
  20. multioptpy/Calculator/sqm2_calculation_tools.py +376 -0
  21. multioptpy/Calculator/tblite_calculation_tools.py +352 -0
  22. multioptpy/Calculator/tersoff_calculation_tools.py +818 -0
  23. multioptpy/Constraint/__init__.py +0 -0
  24. multioptpy/Constraint/constraint_condition.py +834 -0
  25. multioptpy/Coordinate/__init__.py +0 -0
  26. multioptpy/Coordinate/polar_coordinate.py +199 -0
  27. multioptpy/Coordinate/redundant_coordinate.py +638 -0
  28. multioptpy/IRC/__init__.py +0 -0
  29. multioptpy/IRC/converge_criteria.py +28 -0
  30. multioptpy/IRC/dvv.py +544 -0
  31. multioptpy/IRC/euler.py +439 -0
  32. multioptpy/IRC/hpc.py +564 -0
  33. multioptpy/IRC/lqa.py +540 -0
  34. multioptpy/IRC/modekill.py +662 -0
  35. multioptpy/IRC/rk4.py +579 -0
  36. multioptpy/Interpolation/__init__.py +0 -0
  37. multioptpy/Interpolation/adaptive_interpolation.py +283 -0
  38. multioptpy/Interpolation/binomial_interpolation.py +179 -0
  39. multioptpy/Interpolation/geodesic_interpolation.py +785 -0
  40. multioptpy/Interpolation/interpolation.py +156 -0
  41. multioptpy/Interpolation/linear_interpolation.py +473 -0
  42. multioptpy/Interpolation/savitzky_golay_interpolation.py +252 -0
  43. multioptpy/Interpolation/spline_interpolation.py +353 -0
  44. multioptpy/MD/__init__.py +0 -0
  45. multioptpy/MD/thermostat.py +185 -0
  46. multioptpy/MEP/__init__.py +0 -0
  47. multioptpy/MEP/pathopt_bneb_force.py +443 -0
  48. multioptpy/MEP/pathopt_dmf_force.py +448 -0
  49. multioptpy/MEP/pathopt_dneb_force.py +130 -0
  50. multioptpy/MEP/pathopt_ewbneb_force.py +207 -0
  51. multioptpy/MEP/pathopt_gpneb_force.py +512 -0
  52. multioptpy/MEP/pathopt_lup_force.py +113 -0
  53. multioptpy/MEP/pathopt_neb_force.py +225 -0
  54. multioptpy/MEP/pathopt_nesb_force.py +205 -0
  55. multioptpy/MEP/pathopt_om_force.py +153 -0
  56. multioptpy/MEP/pathopt_qsm_force.py +174 -0
  57. multioptpy/MEP/pathopt_qsmv2_force.py +304 -0
  58. multioptpy/ModelFunction/__init__.py +7 -0
  59. multioptpy/ModelFunction/avoiding_model_function.py +29 -0
  60. multioptpy/ModelFunction/binary_image_ts_search_model_function.py +47 -0
  61. multioptpy/ModelFunction/conical_model_function.py +26 -0
  62. multioptpy/ModelFunction/opt_meci.py +50 -0
  63. multioptpy/ModelFunction/opt_mesx.py +47 -0
  64. multioptpy/ModelFunction/opt_mesx_2.py +49 -0
  65. multioptpy/ModelFunction/seam_model_function.py +27 -0
  66. multioptpy/ModelHessian/__init__.py +0 -0
  67. multioptpy/ModelHessian/approx_hessian.py +147 -0
  68. multioptpy/ModelHessian/calc_params.py +227 -0
  69. multioptpy/ModelHessian/fischer.py +236 -0
  70. multioptpy/ModelHessian/fischerd3.py +360 -0
  71. multioptpy/ModelHessian/fischerd4.py +398 -0
  72. multioptpy/ModelHessian/gfn0xtb.py +633 -0
  73. multioptpy/ModelHessian/gfnff.py +709 -0
  74. multioptpy/ModelHessian/lindh.py +165 -0
  75. multioptpy/ModelHessian/lindh2007d2.py +707 -0
  76. multioptpy/ModelHessian/lindh2007d3.py +822 -0
  77. multioptpy/ModelHessian/lindh2007d4.py +1030 -0
  78. multioptpy/ModelHessian/morse.py +106 -0
  79. multioptpy/ModelHessian/schlegel.py +144 -0
  80. multioptpy/ModelHessian/schlegeld3.py +322 -0
  81. multioptpy/ModelHessian/schlegeld4.py +559 -0
  82. multioptpy/ModelHessian/shortrange.py +346 -0
  83. multioptpy/ModelHessian/swartd2.py +496 -0
  84. multioptpy/ModelHessian/swartd3.py +706 -0
  85. multioptpy/ModelHessian/swartd4.py +918 -0
  86. multioptpy/ModelHessian/tshess.py +40 -0
  87. multioptpy/Optimizer/QHAdam.py +61 -0
  88. multioptpy/Optimizer/__init__.py +0 -0
  89. multioptpy/Optimizer/abc_fire.py +83 -0
  90. multioptpy/Optimizer/adabelief.py +58 -0
  91. multioptpy/Optimizer/adabound.py +68 -0
  92. multioptpy/Optimizer/adadelta.py +65 -0
  93. multioptpy/Optimizer/adaderivative.py +56 -0
  94. multioptpy/Optimizer/adadiff.py +68 -0
  95. multioptpy/Optimizer/adafactor.py +70 -0
  96. multioptpy/Optimizer/adam.py +65 -0
  97. multioptpy/Optimizer/adamax.py +62 -0
  98. multioptpy/Optimizer/adamod.py +83 -0
  99. multioptpy/Optimizer/adamw.py +65 -0
  100. multioptpy/Optimizer/adiis.py +523 -0
  101. multioptpy/Optimizer/afire_neb.py +282 -0
  102. multioptpy/Optimizer/block_hessian_update.py +709 -0
  103. multioptpy/Optimizer/c2diis.py +491 -0
  104. multioptpy/Optimizer/component_wise_scaling.py +405 -0
  105. multioptpy/Optimizer/conjugate_gradient.py +82 -0
  106. multioptpy/Optimizer/conjugate_gradient_neb.py +345 -0
  107. multioptpy/Optimizer/coordinate_locking.py +405 -0
  108. multioptpy/Optimizer/dic_rsirfo.py +1015 -0
  109. multioptpy/Optimizer/ediis.py +417 -0
  110. multioptpy/Optimizer/eve.py +76 -0
  111. multioptpy/Optimizer/fastadabelief.py +61 -0
  112. multioptpy/Optimizer/fire.py +77 -0
  113. multioptpy/Optimizer/fire2.py +249 -0
  114. multioptpy/Optimizer/fire_neb.py +92 -0
  115. multioptpy/Optimizer/gan_step.py +486 -0
  116. multioptpy/Optimizer/gdiis.py +609 -0
  117. multioptpy/Optimizer/gediis.py +203 -0
  118. multioptpy/Optimizer/geodesic_step.py +433 -0
  119. multioptpy/Optimizer/gpmin.py +633 -0
  120. multioptpy/Optimizer/gpr_step.py +364 -0
  121. multioptpy/Optimizer/gradientdescent.py +78 -0
  122. multioptpy/Optimizer/gradientdescent_neb.py +52 -0
  123. multioptpy/Optimizer/hessian_update.py +433 -0
  124. multioptpy/Optimizer/hybrid_rfo.py +998 -0
  125. multioptpy/Optimizer/kdiis.py +625 -0
  126. multioptpy/Optimizer/lars.py +21 -0
  127. multioptpy/Optimizer/lbfgs.py +253 -0
  128. multioptpy/Optimizer/lbfgs_neb.py +355 -0
  129. multioptpy/Optimizer/linesearch.py +236 -0
  130. multioptpy/Optimizer/lookahead.py +40 -0
  131. multioptpy/Optimizer/nadam.py +64 -0
  132. multioptpy/Optimizer/newton.py +200 -0
  133. multioptpy/Optimizer/prodigy.py +70 -0
  134. multioptpy/Optimizer/purtubation.py +16 -0
  135. multioptpy/Optimizer/quickmin_neb.py +245 -0
  136. multioptpy/Optimizer/radam.py +75 -0
  137. multioptpy/Optimizer/rfo_neb.py +302 -0
  138. multioptpy/Optimizer/ric_rfo.py +842 -0
  139. multioptpy/Optimizer/rl_step.py +627 -0
  140. multioptpy/Optimizer/rmspropgrave.py +65 -0
  141. multioptpy/Optimizer/rsirfo.py +1647 -0
  142. multioptpy/Optimizer/rsprfo.py +1056 -0
  143. multioptpy/Optimizer/sadam.py +60 -0
  144. multioptpy/Optimizer/samsgrad.py +63 -0
  145. multioptpy/Optimizer/tr_lbfgs.py +678 -0
  146. multioptpy/Optimizer/trim.py +273 -0
  147. multioptpy/Optimizer/trust_radius.py +207 -0
  148. multioptpy/Optimizer/trust_radius_neb.py +121 -0
  149. multioptpy/Optimizer/yogi.py +60 -0
  150. multioptpy/OtherMethod/__init__.py +0 -0
  151. multioptpy/OtherMethod/addf.py +1150 -0
  152. multioptpy/OtherMethod/dimer.py +895 -0
  153. multioptpy/OtherMethod/elastic_image_pair.py +629 -0
  154. multioptpy/OtherMethod/modelfunction.py +456 -0
  155. multioptpy/OtherMethod/newton_traj.py +454 -0
  156. multioptpy/OtherMethod/twopshs.py +1095 -0
  157. multioptpy/PESAnalyzer/__init__.py +0 -0
  158. multioptpy/PESAnalyzer/calc_irc_curvature.py +125 -0
  159. multioptpy/PESAnalyzer/cmds_analysis.py +152 -0
  160. multioptpy/PESAnalyzer/koopman_analysis.py +268 -0
  161. multioptpy/PESAnalyzer/pca_analysis.py +314 -0
  162. multioptpy/Parameters/__init__.py +0 -0
  163. multioptpy/Parameters/atomic_mass.py +20 -0
  164. multioptpy/Parameters/atomic_number.py +22 -0
  165. multioptpy/Parameters/covalent_radii.py +44 -0
  166. multioptpy/Parameters/d2.py +61 -0
  167. multioptpy/Parameters/d3.py +63 -0
  168. multioptpy/Parameters/d4.py +103 -0
  169. multioptpy/Parameters/dreiding.py +34 -0
  170. multioptpy/Parameters/gfn0xtb_param.py +137 -0
  171. multioptpy/Parameters/gfnff_param.py +315 -0
  172. multioptpy/Parameters/gnb.py +104 -0
  173. multioptpy/Parameters/parameter.py +22 -0
  174. multioptpy/Parameters/uff.py +72 -0
  175. multioptpy/Parameters/unit_values.py +20 -0
  176. multioptpy/Potential/AFIR_potential.py +55 -0
  177. multioptpy/Potential/LJ_repulsive_potential.py +345 -0
  178. multioptpy/Potential/__init__.py +0 -0
  179. multioptpy/Potential/anharmonic_keep_potential.py +28 -0
  180. multioptpy/Potential/asym_elllipsoidal_potential.py +718 -0
  181. multioptpy/Potential/electrostatic_potential.py +69 -0
  182. multioptpy/Potential/flux_potential.py +30 -0
  183. multioptpy/Potential/gaussian_potential.py +101 -0
  184. multioptpy/Potential/idpp.py +516 -0
  185. multioptpy/Potential/keep_angle_potential.py +146 -0
  186. multioptpy/Potential/keep_dihedral_angle_potential.py +105 -0
  187. multioptpy/Potential/keep_outofplain_angle_potential.py +70 -0
  188. multioptpy/Potential/keep_potential.py +99 -0
  189. multioptpy/Potential/mechano_force_potential.py +74 -0
  190. multioptpy/Potential/nanoreactor_potential.py +52 -0
  191. multioptpy/Potential/potential.py +896 -0
  192. multioptpy/Potential/spacer_model_potential.py +221 -0
  193. multioptpy/Potential/switching_potential.py +258 -0
  194. multioptpy/Potential/universal_potential.py +34 -0
  195. multioptpy/Potential/value_range_potential.py +36 -0
  196. multioptpy/Potential/void_point_potential.py +25 -0
  197. multioptpy/SQM/__init__.py +0 -0
  198. multioptpy/SQM/sqm1/__init__.py +0 -0
  199. multioptpy/SQM/sqm1/sqm1_core.py +1792 -0
  200. multioptpy/SQM/sqm2/__init__.py +0 -0
  201. multioptpy/SQM/sqm2/calc_tools.py +95 -0
  202. multioptpy/SQM/sqm2/sqm2_basis.py +850 -0
  203. multioptpy/SQM/sqm2/sqm2_bond.py +119 -0
  204. multioptpy/SQM/sqm2/sqm2_core.py +303 -0
  205. multioptpy/SQM/sqm2/sqm2_data.py +1229 -0
  206. multioptpy/SQM/sqm2/sqm2_disp.py +65 -0
  207. multioptpy/SQM/sqm2/sqm2_eeq.py +243 -0
  208. multioptpy/SQM/sqm2/sqm2_overlapint.py +704 -0
  209. multioptpy/SQM/sqm2/sqm2_qm.py +578 -0
  210. multioptpy/SQM/sqm2/sqm2_rep.py +66 -0
  211. multioptpy/SQM/sqm2/sqm2_srb.py +70 -0
  212. multioptpy/Thermo/__init__.py +0 -0
  213. multioptpy/Thermo/normal_mode_analyzer.py +865 -0
  214. multioptpy/Utils/__init__.py +0 -0
  215. multioptpy/Utils/bond_connectivity.py +264 -0
  216. multioptpy/Utils/calc_tools.py +884 -0
  217. multioptpy/Utils/oniom.py +96 -0
  218. multioptpy/Utils/pbc.py +48 -0
  219. multioptpy/Utils/riemann_curvature.py +208 -0
  220. multioptpy/Utils/symmetry_analyzer.py +482 -0
  221. multioptpy/Visualization/__init__.py +0 -0
  222. multioptpy/Visualization/visualization.py +156 -0
  223. multioptpy/WFAnalyzer/MO_analysis.py +104 -0
  224. multioptpy/WFAnalyzer/__init__.py +0 -0
  225. multioptpy/Wrapper/__init__.py +0 -0
  226. multioptpy/Wrapper/autots.py +1239 -0
  227. multioptpy/Wrapper/ieip_wrapper.py +93 -0
  228. multioptpy/Wrapper/md_wrapper.py +92 -0
  229. multioptpy/Wrapper/neb_wrapper.py +94 -0
  230. multioptpy/Wrapper/optimize_wrapper.py +76 -0
  231. multioptpy/__init__.py +5 -0
  232. multioptpy/entrypoints.py +916 -0
  233. multioptpy/fileio.py +660 -0
  234. multioptpy/ieip.py +340 -0
  235. multioptpy/interface.py +1086 -0
  236. multioptpy/irc.py +529 -0
  237. multioptpy/moleculardynamics.py +432 -0
  238. multioptpy/neb.py +1267 -0
  239. multioptpy/optimization.py +1553 -0
  240. multioptpy/optimizer.py +709 -0
  241. multioptpy-1.20.2.dist-info/METADATA +438 -0
  242. multioptpy-1.20.2.dist-info/RECORD +246 -0
  243. multioptpy-1.20.2.dist-info/WHEEL +5 -0
  244. multioptpy-1.20.2.dist-info/entry_points.txt +9 -0
  245. multioptpy-1.20.2.dist-info/licenses/LICENSE +674 -0
  246. multioptpy-1.20.2.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1229 @@
1
+ import numpy as np
2
+
3
+
4
+ class SQM2Parameters:
5
+ def __init__(self):
6
+ self._set_global_params()
7
+ self._set_repulsion_params()
8
+ self._set_srb_params()
9
+ self._set_eeq_params()
10
+ self._set_basisfunc_param()
11
+ self._set_hamiltonian_params()
12
+ self._set_dispersion_params()
13
+ self._set_bond_param()
14
+
15
+ def _set_global_params(self):
16
+ # SRB parameters
17
+ self.k_srb = -0.013
18
+ self.eta_srb = 3.48
19
+ self.g_scal_srb = 0.51
20
+ self.c_1_srb = -1.71
21
+ self.c_2_srb = 2.11
22
+
23
+ # D3(0) 2-body dispersion parameters
24
+ self.s6 = 1.00
25
+ self.s8 = 0.58
26
+ self.beta_6 = 12
27
+ self.beta_8 = 14
28
+
29
+ # EHT parameters
30
+
31
+ self.k_ss_eht = 2.00
32
+ self.k_pp_eht = 2.49
33
+ self.k_dd_eht = 2.27
34
+ self.k_sp_eht = 0.5 * (self.k_ss_eht + self.k_pp_eht)
35
+ self.k_sd_eht = 0.5 * (self.k_ss_eht + self.k_dd_eht)
36
+ self.k_pd_eht = 0.5 * (self.k_pp_eht + self.k_dd_eht)
37
+
38
+ self.k_hh_2s2s = 0.00
39
+
40
+ self.k_ss_en_eht = 0.006
41
+ self.k_pp_en_eht = -0.001
42
+ self.k_dd_en_eht = -0.002
43
+ self.k_sp_en_eht = 0.5 * (self.k_ss_en_eht + self.k_pp_en_eht)
44
+ self.k_sd_en_eht = 0.5 * (self.k_ss_en_eht + self.k_dd_en_eht)
45
+ self.k_pd_en_eht = 0.5 * (self.k_pp_en_eht + self.k_dd_en_eht)
46
+
47
+ self.b_en_eht = 4.00
48
+
49
+ self.k_MM_pair = 1.10
50
+ self.k_g11_pair = 0.90 # for Cu, Ag, Au
51
+
52
+ # bond parameters
53
+ self.eta_bond = 1.0
54
+ self.k_en_bond = 1.0
55
+
56
+ return
57
+
58
+ def _set_repulsion_params(self):
59
+ #E_rep = ZeffA * ZeffB / R_AB * exp(-alpha_AB * R_AB ** 3)
60
+ self.repAlpha = np.array([
61
+ 2.1885472, 2.2714498, 0.6634645, 0.9267640, 1.1164621,
62
+ 1.2680750, 1.6211038, 2.1037547, 2.2062651, 1.9166982,
63
+ 0.8129781, 0.8408742, 0.8361156, 0.8859465, 1.0684151,
64
+ 1.1882871, 1.4429448, 1.1993811, 0.5700050, 0.8345430,
65
+ 0.6840185, 0.7915733, 1.0676223, 0.9216746, 1.1151815,
66
+ 1.1883881, 1.1895339, 1.2692713, 1.1734165, 1.0018764,
67
+ 1.1597304, 1.1708353, 1.2085038, 1.1161800, 1.3193094,
68
+ 0.7670615, 0.6171015, 0.8421909, 0.6513468, 0.6906528,
69
+ 0.8705783, 0.9711021, 1.0252504, 0.9847071, 1.0559061,
70
+ 1.0645317, 0.9139636, 0.9095541, 0.9965441, 1.0676257,
71
+ 1.0759855, 0.8659486, 0.9301733, 0.8139884, 0.5842740,
72
+ 0.8070627, 0.6961124, 0.7599095, 0.7667071, 0.7735047,
73
+ 0.7803023, 0.7870999, 0.7938975, 0.8006951, 0.8074927,
74
+ 0.8142903, 0.8210879, 0.8278855, 0.8346831, 0.8414808,
75
+ 0.8482784, 0.8803684, 0.9915500, 0.9875716, 1.1535600,
76
+ 1.1418384, 1.1434832, 1.1783705, 1.0591477, 0.9794378,
77
+ 1.2439938, 1.0437958, 1.1391049, 0.9115474, 0.9157573,
78
+ 0.8137168])
79
+
80
+ self.repZeff = np.array([
81
+ 1.2455414, 1.3440060, 1.1710492, 2.9064151, 4.4020866,
82
+ 4.3101011, 4.5460146, 4.7850603, 7.3393960, 4.2503997,
83
+ 10.5220970, 7.7916659, 11.3886282, 13.9495563, 16.7912135,
84
+ 13.3874290, 13.9700526, 14.4971987, 13.8061512, 13.9719788,
85
+ 10.9127447, 13.4067871, 16.7322903, 21.8192969, 22.8754319,
86
+ 25.2196212, 26.9753662, 27.2652026, 26.2195102, 14.3840374,
87
+ 25.4102208, 43.7565690, 34.9344472, 22.8724870, 34.2378269,
88
+ 15.1027639, 39.1086736, 32.7340796, 18.6398784, 22.6163764,
89
+ 27.6545601, 37.8625561, 40.9844265, 30.0686254, 35.5737255,
90
+ 28.4443233, 25.9740558, 28.8257081, 53.9657064, 88.0203443,
91
+ 82.7978295, 39.3120212, 49.7072042, 45.1199137, 55.2536842,
92
+ 50.0381164, 48.0939804, 46.1827790, 46.0844595, 45.9861400,
93
+ 45.8878205, 45.7895010, 45.6911815, 45.5928620, 45.4945424,
94
+ 45.3962229, 45.2979034, 45.1995839, 45.1012644, 45.0029449,
95
+ 44.9046254, 41.1538255, 46.6524574, 53.4995959, 73.8197012,
96
+ 59.6567627, 50.0720023, 49.4064531, 44.5201114, 39.7677937,
97
+ 58.8051943, 103.0123579, 85.5566053, 70.6036525, 82.8260761,
98
+ 68.9676875])
99
+
100
+ self.rep_cutoff = 40.0
101
+
102
+ def _set_srb_params(self):
103
+ self.en_data_srb = np.array([
104
+ 2.30085633, 2.78445145, 1.52956084, 1.51714704, 2.20568300,
105
+ 2.49640820, 2.81007174, 4.51078438, 4.67476223, 3.29383610,
106
+ 2.84505365, 2.20047950, 2.31739628, 2.03636974, 1.97558064,
107
+ 2.13446570, 2.91638164, 1.54098156, 2.91656301, 2.26312147,
108
+ 2.25621439, 1.32628677, 2.27050569, 1.86790977, 2.44759456,
109
+ 2.49480042, 2.91545568, 3.25897750, 2.68723778, 1.86132251,
110
+ 2.01200832, 1.97030722, 1.95495427, 2.68920990, 2.84503857,
111
+ 2.61591858, 2.64188286, 2.28442252, 1.33011187, 1.19809388,
112
+ 1.89181390, 2.40186898, 1.89282464, 3.09963488, 2.50677823,
113
+ 2.61196704, 2.09943450, 2.66930105, 1.78349472, 2.09634533,
114
+ 2.00028974, 1.99869908, 2.59072029, 2.54497829, 2.52387890,
115
+ 2.30204667, 1.60119300, 2.00000000, 2.00000000, 2.00000000,
116
+ 2.00000000, 2.00000000, 2.00000000, 2.00000000, 2.00000000,
117
+ 2.00000000, 2.00000000, 2.00000000, 2.00000000, 2.00000000,
118
+ 2.00000000, 2.30089349, 1.75039077, 1.51785130, 2.62972945,
119
+ 2.75372921, 2.62540906, 2.55860939, 3.32492356, 2.65140898,
120
+ 1.52014458, 2.54984804, 1.72021963, 2.69303422, 1.81031095,
121
+ 2.34224386])
122
+
123
+ self.r0_data_srb = np.array([
124
+ 0.55682207, 0.80966997, 2.49092101, 1.91705642, 1.35974851,
125
+ 0.98310699, 0.98423007, 0.76716063, 1.06139799, 1.17736822,
126
+ 2.85570926, 2.56149012, 2.31673425, 2.03181740, 1.82568535,
127
+ 1.73685958, 1.97498207, 2.00136196, 3.58772537, 2.68096221,
128
+ 2.23355957, 2.33135502, 2.15870365, 2.10522128, 2.16376162,
129
+ 2.10804037, 1.96460045, 2.00476257, 2.22628712, 2.43846700,
130
+ 2.39408483, 2.24245792, 2.05751204, 2.15427677, 2.27191920,
131
+ 2.19722638, 3.80910350, 3.26020971, 2.99716916, 2.71707818,
132
+ 2.34950167, 2.11644818, 2.47180659, 2.32198800, 2.32809515,
133
+ 2.15244869, 2.55958313, 2.59141300, 2.62030465, 2.39935278,
134
+ 2.56912355, 2.54374096, 2.56914830, 2.53680807, 4.24537037,
135
+ 3.66542289, 3.19903011, 2.80000000, 2.80000000, 2.80000000,
136
+ 2.80000000, 2.80000000, 2.80000000, 2.80000000, 2.80000000,
137
+ 2.80000000, 2.80000000, 2.80000000, 2.80000000, 2.80000000,
138
+ 2.80000000, 2.34880037, 2.37597108, 2.49067697, 2.14100577,
139
+ 2.33473532, 2.19498900, 2.12678348, 2.34895048, 2.33422774,
140
+ 2.86560827, 2.62488837, 2.88376127, 2.75174124, 2.83054552,
141
+ 2.63264944])
142
+
143
+
144
+ return
145
+
146
+ def _set_dispersion_params(self):
147
+ # D3(0) 2-body dispersion parameters
148
+ self.r4r2 = np.array([8.0589, 3.4698, 29.0974, 14.8517, 11.8799, 7.8715, 5.5588,
149
+ 4.7566, 3.8025, 3.1036,
150
+ 26.1552, 17.2304, 17.7210, 12.7442, 9.5361,
151
+ 8.1652, 6.7463, 5.6004,
152
+ 29.2012, 22.3934,
153
+ 19.0598, 16.8590, 15.4023, 12.5589, 13.4788,
154
+ 12.2309, 11.2809, 10.5569, 10.1428, 9.4907,
155
+ 13.4606, 10.8544, 8.9386, 8.1350, 7.1251, 6.1971,
156
+ 30.0162, 24.4103,
157
+ 20.3537, 17.4780, 13.5528, 11.8451, 11.0355,
158
+ 10.1997, 9.5414, 9.0061, 8.6417, 8.9975,
159
+ 14.0834, 11.8333, 10.0179, 9.3844, 8.4110, 7.5152,
160
+ 32.7622, 27.5708,
161
+ 23.1671, 21.6003, 20.9615, 20.4562, 20.1010,
162
+ 19.7475, 19.4828,
163
+ 15.6013, 19.2362, 17.4717, 17.8321, 17.4237,
164
+ 17.1954, 17.1631,
165
+ 14.5716, 15.8758, 13.8989, 12.4834, 11.4421,
166
+ 10.2671, 8.3549, 7.8496, 7.3278, 7.4820,
167
+ 13.5124, 11.6554, 10.0959, 9.7340, 8.8584, 8.0125])
168
+
169
+ self.d2_vdw = np.array([1.001, 1.012, 0.825, 1.408, 1.485, 1.452, 1.397, 1.342, 1.287, 1.243,
170
+ 1.144, 1.364, 1.639, 1.716, 1.705, 1.683, 1.639, 1.595,
171
+ 1.485, 1.474, 1.562, 1.562, 1.562, 1.562, 1.562, 1.562, 1.562, 1.562, 1.562,
172
+ 1.650, 1.727, 1.760, 1.771, 1.749, 1.727, 1.628, 1.606, 1.639, 1.639, 1.639, 1.639,
173
+ 1.639, 1.639, 1.639, 1.639, 1.639, 1.639, 1.639, 1.639, 1.639, 1.639, 1.639, 1.639,
174
+ 1.881, 1.892, 1.892, 1.881, 1.802, 1.762, 1.720, 1.753, 1.753, 1.753, 1.753, 1.753,
175
+ 1.753, 1.753, 1.753, 1.753, 1.753, 1.753, 1.753, 1.753, 1.753, 1.753, 1.753, 1.753,
176
+ 1.753, 1.753, 1.753, 1.753, 1.753, 1.788, 1.772, 1.772, 1.772, 1.772, 1.772, 1.772,
177
+ 1.772, 1.772, 1.772, 1.772, 1.772, 1.772, 1.772, 1.772, 1.772, 1.772, 1.772, 1.772,
178
+ 1.898, 2.005, 1.991, 1.924]) * 1.88972612463# Bohr
179
+
180
+ bohr2angstroms = 0.52917721067
181
+ hartree2j = 4.3597447222071 * 10 ** (-18)
182
+ mol2au = 6.02214076 * 10 ** 23
183
+
184
+ self.c6 = np.array([0.14, 0.08, 1.61, 1.61, 3.13, 1.75, 1.23, 0.70, 0.75, 0.63,
185
+ 5.71, 5.71, 10.79, 9.23, 7.84, 5.57, 5.07, 4.61,
186
+ 10.80, 10.80,
187
+ 10.80, 10.80, 10.80, 10.80, 10.80,
188
+ 10.80, 10.80, 10.80, 10.80, 10.80,
189
+ 16.99, 17.10, 16.37, 12.64, 12.47, 12.01,
190
+ 24.67, 24.67,
191
+ 24.67, 24.67, 24.67, 24.67, 24.67,
192
+ 24.67, 24.67, 24.67, 24.67, 24.67,
193
+ 37.32, 38.71, 38.44, 31.74, 31.50, 29.99,
194
+ 50.00, 50.00,
195
+ 50.00, 50.00, 50.00, 50.00, 50.00, 50.00,
196
+ 50.00, 50.00, 50.00, 50.00, 50.00,
197
+ 50.00, 50.00, 50.00,
198
+ 50.00, 50.00, 50.00, 50.00, 50.00,
199
+ 50.00, 50.00, 50.00, 50.00,
200
+ 50.00, 50.00, 50.00, 50.00, 50.00]) * 10 ** 6 / bohr2angstroms ** 6 / hartree2j / mol2au # in Hartree·Bohr^6
201
+
202
+
203
+ def _set_eeq_params(self):
204
+ # Electronegativity parameters
205
+ self.eeqChi = np.array([
206
+ 1.2500000, 1.2912463, 0.8540050, 1.1723939, 1.1094487,
207
+ 1.3860275, 1.5341534, 1.5378836, 1.5890750, 1.2893646,
208
+ 0.7891208, 0.9983021, 0.9620847, 1.0441134, 1.4789559,
209
+ 1.3926377, 1.4749100, 1.2250415, 0.8162292, 1.1252036,
210
+ 0.9641451, 0.8810155, 0.9741986, 1.1029038, 1.0076949,
211
+ 0.7744353, 0.7554040, 1.0182630, 1.0316167, 1.6317474,
212
+ 1.1186739, 1.0345958, 1.3090772, 1.4119283, 1.4500674,
213
+ 1.1746889, 0.6686200, 1.0744648, 0.9107813, 0.7876056,
214
+ 1.0039889, 0.9225265, 0.9035515, 1.0332301, 1.0293975,
215
+ 1.0549549, 1.2356867, 1.2793315, 1.1145650, 1.1214927,
216
+ 1.2123167, 1.4003158, 1.4255511, 1.1640198, 0.4685133,
217
+ 1.0687873, 0.9335398, 1.0573550, 1.0532043, 1.0490537,
218
+ 1.0449031, 1.0407524, 1.0366018, 1.0324512, 1.0283005,
219
+ 1.0241499, 1.0199992, 1.0158486, 1.0116980, 1.0075473,
220
+ 1.0033967, 0.8612827, 1.0422031, 0.7633168, 0.6019707,
221
+ 0.7499393, 0.9511744, 0.9357472, 1.3555382, 1.2006726,
222
+ 1.2092025, 1.1736669, 1.1936584, 1.3045488, 1.1964604,
223
+ 1.2653792
224
+ ])
225
+ # Chemical hardness parameters
226
+ self.eeqGam = np.array([
227
+ -0.3023159, 0.7743046, 0.5303164, 0.2176474, 0.1956176,
228
+ 0.0308461, 0.0559522, 0.0581228, 0.1574017, 0.6825784,
229
+ 0.3922376, 0.5581866, 0.3017510, 0.1039137, 0.2124917,
230
+ 0.0580720, 0.2537467, 0.5780354, 0.3920658, -0.0024897,
231
+ -0.0061520, 0.1663252, 0.1051751, 0.0009900, 0.0976543,
232
+ 0.0612028, 0.0561526, 0.0899774, 0.1313171, 0.5728071,
233
+ 0.1741615, 0.2671888, 0.2351989, 0.0718104, 0.3458143,
234
+ 0.8203265, 0.4287770, 0.2667067, 0.0873658, 0.0599431,
235
+ 0.1581972, 0.1716374, 0.2721649, 0.2817608, 0.1391572,
236
+ 0.1175925, 0.2316104, 0.2256303, 0.1230459, 0.0141941,
237
+ 0.0188612, 0.0230207, 0.3644113, 0.1668461, 0.5167533,
238
+ 0.1979578, 0.0345176, 0.0240233, 0.0246333, 0.0252433,
239
+ 0.0258532, 0.0264632, 0.0270732, 0.0276832, 0.0282931,
240
+ 0.0289031, 0.0295131, 0.0301230, 0.0307330, 0.0313430,
241
+ 0.0319529, 0.0262881, 0.1715396, 0.1803633, 0.3631824,
242
+ 0.3010980, 0.1100299, 0.0277514, 0.0554975, 0.7723231,
243
+ 0.1287718, 0.1034598, 0.0114935, 0.0160842, 0.3369611,
244
+ 0.1844179
245
+ ])
246
+ # element_dependent_factor for the element_vector X
247
+ self.eeqkCN = np.array([
248
+ 0.0248762, 0.1342276, 0.0103048, -0.0352374, -0.0980031,
249
+ 0.0643920, 0.1053273, 0.1394809, 0.1276675, -0.1081936,
250
+ -0.0008132, -0.0279860, -0.0521436, -0.0257206, 0.1651461,
251
+ 0.0914418, 0.1213634, -0.0636298, -0.0045838, 0.0007509,
252
+ -0.0307730, -0.0286150, -0.0341465, -0.0419655, -0.0088536,
253
+ -0.1001069, -0.1190502, -0.0726233, -0.0219233, 0.0641913,
254
+ -0.0103130, 0.0262628, 0.0222202, 0.0709954, 0.0422244,
255
+ -0.0308245, 0.0086249, -0.0237146, -0.0721798, -0.0848810,
256
+ -0.0402828, -0.0372396, -0.0027043, 0.0525839, 0.0051192,
257
+ 0.0188401, 0.0103998, 0.0000549, 0.0087717, -0.0237228,
258
+ 0.0169656, 0.0924186, 0.0352884, -0.0091444, 0.0192916,
259
+ -0.0154483, -0.0736833, -0.0064191, -0.0093012, -0.0121833,
260
+ -0.0150654, -0.0179475, -0.0208296, -0.0237117, -0.0265938,
261
+ -0.0294759, -0.0323580, -0.0352400, -0.0381221, -0.0410042,
262
+ -0.0438863, -0.0894776, -0.0333583, -0.0154963, -0.0121092,
263
+ -0.0744239, 0.0050138, -0.0153757, -0.0029221, 0.0239125,
264
+ 0.0183012, -0.0238011, -0.0268025, 0.0136505, -0.0132199,
265
+ -0.0439890
266
+ ])
267
+ # atomic radii for eeq model
268
+ self.eeqAlp = np.array([
269
+ 0.7490227, 0.4196569, 1.4256190, 2.0698743, 1.7358798,
270
+ 1.8288757, 1.9346081, 1.6974795, 0.8169179, 0.6138441,
271
+ 1.7294046, 1.7925036, 1.2156739, 1.5314457, 1.3730859,
272
+ 1.7936326, 2.4255996, 1.5891656, 2.1829647, 1.4177623,
273
+ 1.5181399, 1.9919805, 1.7171675, 2.0655063, 1.3318009,
274
+ 1.3660068, 1.5694128, 1.2762644, 1.0039549, 0.7338863,
275
+ 3.2596250, 1.7530299, 1.5281792, 2.1837813, 2.1642027,
276
+ 2.7280594, 0.7838049, 1.4274742, 1.8023947, 1.6093288,
277
+ 1.3834349, 1.1740977, 1.5768259, 1.3205263, 1.4259466,
278
+ 1.1499748, 0.7013009, 1.2374416, 1.3799991, 1.8528424,
279
+ 1.8497568, 2.0159294, 1.2903708, 2.0199161, 0.9530522,
280
+ 1.5015025, 2.1917012, 1.9134370, 1.9897910, 2.0661450,
281
+ 2.1424991, 2.2188531, 2.2952071, 2.3715611, 2.4479151,
282
+ 2.5242691, 2.6006231, 2.6769771, 2.7533312, 2.8296852,
283
+ 2.9060392, 1.6423047, 1.3567622, 1.8966648, 0.8253100,
284
+ 0.7412219, 1.0350883, 0.9692278, 1.0048087, 2.3138674,
285
+ 2.8055966, 3.0968677, 1.6597596, 3.2191575, 1.5388148,
286
+ 2.1222013
287
+ ])
288
+ self.eeq_covalent_radii = np.array([0.32, 0.46, 1.33, 1.02, 0.85, 0.75, 0.71, 0.63, 0.64, 0.67,
289
+ 1.55, 1.39, 1.26, 1.16, 1.11, 1.03, 0.99, 0.96,
290
+ 1.96, 1.71, 1.48, 1.36, 1.34, 1.22, 1.19, 1.16, 1.11, 1.10, 1.12, 1.18, 1.24, 1.24, 1.21, 1.16, 1.14, 1.17,
291
+ 2.10, 1.85, 1.63, 1.54, 1.47, 1.38, 1.28, 1.25, 1.25, 1.20, 1.28, 1.36, 1.42, 1.40, 1.40, 1.36, 1.33, 1.31,
292
+ 2.32, 1.96, 1.80, 1.63, 1.76, 1.74, 1.73, 1.72, 1.68, 1.69, 1.68, 1.67, 1.66, 1.65, 1.64, 1.70, 1.62, 1.52, 1.46, 1.37, 1.31, 1.29, 1.22, 1.23, 1.24, 1.33, 1.44, 1.44, 1.51, 1.45, 1.47, 1.42]) * 1.889726134 #Bohr.
293
+ # ref. Pekka Pyykkö; Michiko Atsumi (2009). “Molecular single-bond covalent radii for elements 1 - 118”. Chemistry: A European Journal 15: 186–197. doi:10.1002/chem.200800987. (H...Rn)
294
+
295
+
296
+ def _set_hamiltonian_params(self):
297
+ # Number of shells
298
+ self.nShell = np.array([
299
+ 2, 2, 2, 2, 2, 2, 2,
300
+ 2, 2, 3, 2, 3, 3, 3,
301
+ 3, 3, 3, 3, 2, 3, 3,
302
+ 3, 3, 3, 3, 3, 3, 3,
303
+ 3, 2, 3, 3, 3, 3, 3,
304
+ 3, 2, 3, 3, 3, 3, 3,
305
+ 3, 3, 3, 3, 3, 2, 3,
306
+ 3, 3, 3, 3, 3, 2, 3,
307
+ 3, 3, 3, 3, 3, 3, 3,
308
+ 3, 3, 3, 3, 3, 3, 3,
309
+ 3, 3, 3, 3, 3, 3, 3,
310
+ 2, 2, 2, 2, 2, 3, 3], dtype=np.int64)
311
+
312
+ # Angular momentum of each shell
313
+ self.angShell = np.array([
314
+ [0, 0, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0],
315
+ [0, 1, 0], [0, 1, 0], [0, 1, 2], [0, 1, 0], [0, 1, 2], [0, 1, 2], [0, 1, 2],
316
+ [0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 0], [0, 1, 2], [2, 0, 1],
317
+ [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1],
318
+ [2, 0, 1], [0, 1, 0], [0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2],
319
+ [0, 1, 2], [0, 1, 0], [0, 1, 2], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1],
320
+ [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [0, 1, 0], [0, 1, 2],
321
+ [0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 2], [0, 1, 0], [0, 1, 2],
322
+ [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1],
323
+ [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1],
324
+ [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1], [2, 0, 1],
325
+ [2, 0, 1], [2, 0, 1], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 1, 0],
326
+ [0, 1, 2], [0, 1, 2]], dtype=np.int64)
327
+
328
+ # Principal quantum number of each shell
329
+ self.principalQuantumNumber = np.array([
330
+ [1, 2, 0], [1, 2, 0], [2, 2, 0], [2, 2, 0], [2, 2, 0], [2, 2, 0], [2, 2, 0],
331
+ [2, 2, 0], [2, 2, 0], [2, 2, 3], [3, 3, 0], [3, 3, 3], [3, 3, 3], [3, 3, 3],
332
+ [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [4, 4, 0], [4, 4, 3], [3, 4, 4],
333
+ [3, 4, 4], [3, 4, 4], [3, 4, 4], [3, 4, 4], [3, 4, 4], [3, 4, 4], [3, 4, 4],
334
+ [3, 4, 4], [4, 4, 0], [4, 4, 4], [4, 4, 4], [4, 4, 4], [4, 4, 4], [4, 4, 4],
335
+ [4, 4, 4], [5, 5, 0], [5, 5, 4], [4, 5, 5], [4, 5, 5], [4, 5, 5], [4, 5, 5],
336
+ [4, 5, 5], [4, 5, 5], [4, 5, 5], [4, 5, 5], [4, 5, 5], [5, 5, 0], [5, 5, 5],
337
+ [5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5], [6, 6, 0], [6, 6, 5],
338
+ [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6],
339
+ [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6],
340
+ [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6], [5, 6, 6],
341
+ [5, 6, 6], [5, 6, 6], [6, 6, 0], [6, 6, 0], [6, 6, 0], [6, 6, 0], [6, 6, 0],
342
+ [6, 6, 5], [6, 6, 5]], dtype=np.int64)
343
+
344
+ # Electronegativity
345
+ self.electronegativity = np.array([
346
+ 1.92, 3.00, 0.98, 1.57, 2.04,
347
+ 2.48, 2.97, 3.44, 3.50, 3.50,
348
+ 0.93, 1.31, 1.61, 1.90, 2.19,
349
+ 2.58, 3.16, 3.50, 1.45, 1.80,
350
+ 1.73, 1.54, 1.63, 1.66, 1.55,
351
+ 1.83, 1.88, 1.91, 1.90, 1.65,
352
+ 1.81, 2.01, 2.18, 2.55, 2.96,
353
+ 3.00, 1.50, 1.50, 1.55, 1.33,
354
+ 1.60, 2.16, 1.90, 2.20, 2.28,
355
+ 2.20, 1.93, 1.69, 1.78, 1.96,
356
+ 2.05, 2.10, 2.66, 2.60, 1.50,
357
+ 1.60, 1.50, 1.50, 1.50, 1.50,
358
+ 1.50, 1.50, 1.50, 1.50, 1.50,
359
+ 1.50, 1.50, 1.50, 1.50, 1.50,
360
+ 1.50, 1.30, 1.50, 2.36, 1.90,
361
+ 2.20, 2.20, 2.28, 2.54, 2.00,
362
+ 1.62, 2.33, 2.02, 2.00, 2.20,
363
+ 2.20], dtype=np.float64)
364
+
365
+ self.shellPoly = np.array([
366
+ [-3.6355142, 0.00000000, 0.0000000, 0.0000000],
367
+ [-12.4694067, 5.12004200, 0.0000000, 0.0000000],
368
+ [-9.1309270, 26.45499410, 0.0000000, 0.0000000],
369
+ [-23.0556019, 12.29400490, 0.0000000, 0.0000000],
370
+ [-13.0296301, -3.80008460, 0.0000000, 0.0000000],
371
+ [-12.8096830, -8.82326510, 0.0000000, 0.0000000],
372
+ [-12.6808155, -8.80380760, 0.0000000, 0.0000000],
373
+ [-16.1325184, -5.51085690, 0.0000000, 0.0000000],
374
+ [-1.9980582, -15.34156120, 0.0000000, 0.0000000],
375
+ [-19.0634182, -17.94052850, 2.9172938, 0.0000000],
376
+ [-1.9038223, 20.51582340, 0.0000000, 0.0000000],
377
+ [-23.8821588, 6.21983350, 16.9907381, 0.0000000],
378
+ [-25.9314993, 10.02183490, 5.7458163, 0.0000000],
379
+ [-14.0752116, -18.03006400, 13.1379417, 0.0000000],
380
+ [-22.5131801, -15.13429710, 31.3131980, 0.0000000],
381
+ [-27.9640046, -12.62869290, 25.8298106, 0.0000000],
382
+ [-25.6075631, -14.26984150, 37.2632140, 0.0000000],
383
+ [-26.8745198, -16.37147400, 21.6207312, 0.0000000],
384
+ [1.7106901, 24.43233360, 0.0000000, 0.0000000],
385
+ [-21.2288327, -3.23987870, 13.9882752, 0.0000000],
386
+ [5.3449585, 25.37163520, -31.0302574, 0.0000000],
387
+ [21.1807596, 24.93452780, -26.2283413, 0.0000000],
388
+ [7.0558197, 26.90006100, -31.3799774, 0.0000000],
389
+ [2.0452996, 27.02537350, -15.1553980, 0.0000000],
390
+ [-2.9359221, 29.37855170, -27.4411979, 0.0000000],
391
+ [6.2785647, 28.40737540, -25.0617776, 0.0000000],
392
+ [2.7815688, 22.85568860, -22.1545572, 0.0000000],
393
+ [-6.3873757, 18.50679430, -20.6965198, 0.0000000],
394
+ [-9.3513228, 8.03612800, -25.4274699, 0.0000000],
395
+ [-20.5283728, 18.31637340, 0.0000000, 0.0000000],
396
+ [-25.9659007, 0.24932040, 31.9811359, 0.0000000],
397
+ [-22.5969796, -13.07779110, 29.8243400, 0.0000000],
398
+ [-27.5975320, -20.15791270, 33.9750529, 0.0000000],
399
+ [-24.4009201, -18.49323350, 31.6569329, 0.0000000],
400
+ [-22.8480620, -20.46239210, 32.3160404, 0.0000000],
401
+ [-29.6544708, -11.81015280, 26.3649672, 0.0000000],
402
+ [-3.9550260, 17.81029220, 0.0000000, 0.0000000],
403
+ [-20.4705547, -5.66237750, 1.1533441, 0.0000000],
404
+ [-14.8904419, 32.75122970, -24.8248233, 0.0000000],
405
+ [-1.2323670, 31.35218880, -25.4108005, 0.0000000],
406
+ [-20.1589551, 23.91255900, -28.9368791, 0.0000000],
407
+ [10.4647630, 25.70713940, -27.1881494, 0.0000000],
408
+ [17.2824035, 26.97508400, -27.0119119, 0.0000000],
409
+ [6.3119382, 27.76646610, -26.3813902, 0.0000000],
410
+ [1.1913117, 25.13980880, -19.0998367, 0.0000000],
411
+ [7.5528381, 31.60282550, -24.7810390, 0.0000000],
412
+ [-7.4614740, 11.91715850, -24.0147360, 0.0000000],
413
+ [-21.1131335, 24.22912690, 0.0000000, 0.0000000],
414
+ [-28.0671409, -2.16073050, 30.6807055, 0.0000000],
415
+ [-21.2192117, -7.23565880, 12.8333865, 0.0000000],
416
+ [-25.9808690, -16.80154040, 34.5734795, 0.0000000],
417
+ [-21.3500803, -20.83440960, 36.7357631, 0.0000000],
418
+ [-27.3671183, -19.62221140, 33.1425727, 0.0000000],
419
+ [-29.8202170, -16.61175030, 21.1953313, 0.0000000],
420
+ [-12.1334296, 18.86964700, 0.0000000, 0.0000000],
421
+ [-22.8455123, -9.98368600, 3.4483973, 0.0000000],
422
+ [-15.6183059, 33.47909370, -25.5526873, 0.0000000],
423
+ [-15.6451743, 25.92955660, -31.4845028, 0.0000000],
424
+ [-15.6344636, 26.14183290, -31.4071167, 0.0000000],
425
+ [-15.6237528, 26.35410920, -31.3297306, 0.0000000],
426
+ [-15.6130421, 26.56638560, -31.2523445, 0.0000000],
427
+ [-15.6023314, 26.77866190, -31.1749584, 0.0000000],
428
+ [-15.5916207, 26.99093820, -31.0975723, 0.0000000],
429
+ [-15.5809100, 27.20321460, -31.0201862, 0.0000000],
430
+ [-15.5701992, 27.41549090, -30.9428001, 0.0000000],
431
+ [-15.5594885, 27.62776720, -30.8654140, 0.0000000],
432
+ [-15.5487778, 27.84004360, -30.7880279, 0.0000000],
433
+ [-15.5380671, 28.05231990, -30.7106418, 0.0000000],
434
+ [-15.5273563, 28.26459620, -30.6332557, 0.0000000],
435
+ [-15.5166456, 28.47687260, -30.5558696, 0.0000000],
436
+ [-15.5059349, 28.68914890, -30.4784835, 0.0000000],
437
+ [-3.9147090, 32.69618100, -32.9129200, 0.0000000],
438
+ [-22.3008469, 29.83540160, -29.6033096, 0.0000000],
439
+ [0.9644129, 45.94330280, -24.8055364, 0.0000000],
440
+ [30.3500314, 38.21103860, -28.0450462, 0.0000000],
441
+ [7.6941848, 24.23188770, -27.3810511, 0.0000000],
442
+ [2.4984632, 17.48460760, -24.0537099, 0.0000000],
443
+ [3.2909380, 15.99839670, -23.9093136, 0.0000000],
444
+ [-10.1996894, 15.40677260, -18.2423967, 0.0000000],
445
+ [-20.1460848, 21.07209230, 0.0000000, 0.0000000],
446
+ [-24.8474969, 5.50304010, 0.0000000, 0.0000000],
447
+ [-27.4676742, -6.24492100, 0.0000000, 0.0000000],
448
+ [-27.3029972, -13.99614710, 0.0000000, 0.0000000],
449
+ [-19.9670108, -18.36130340, 0.0000000, 0.0000000],
450
+ [-32.1472952, -20.79729510, 27.0343912, 0.0000000],
451
+ [-33.4702358, -18.44551930, 22.5007703, 0.0000000],
452
+ ], dtype=np.float64)
453
+
454
+
455
+ self.kCN = np.array([
456
+ [0.07116904, 0.00000000, 0.00000000],
457
+ [-0.21046272, -0.37377613, 0.00000000],
458
+ [-0.00588643, 0.01229940, 0.00000000],
459
+ [0.03659056, -0.00543602, 0.00000000],
460
+ [-0.30472261, 0.00556489, 0.00000000],
461
+ [-0.55477603, 0.15631408, 0.00000000],
462
+ [-0.02818725, 0.06027542, 0.00000000],
463
+ [-0.12537900, -0.02934837, 0.00000000],
464
+ [0.11952872, -0.02001469, 0.00000000],
465
+ [-0.07969349, -0.03183102, -0.02598776],
466
+ [0.06047597, 0.01676901, 0.00000000],
467
+ [0.03066908, -0.00315587, 0.03687894],
468
+ [-0.07913111, 0.03614827, -0.08703979],
469
+ [0.18789681, -0.08229514, -0.03042044],
470
+ [0.07048836, -0.02076245, -0.09160855],
471
+ [-0.01240442, -0.00611739, -0.00694984],
472
+ [0.11846012, -0.00422548, -0.10808918],
473
+ [-0.08330348, 0.01406891, -0.02103496],
474
+ [0.00431781, 0.02249671, 0.00000000],
475
+ [0.09861689, 0.08916793, 0.03360490],
476
+ [-0.04244589, -0.01039491, 0.11290272],
477
+ [-0.26131513, -0.09668192, 0.17000000],
478
+ [-0.03811876, -0.03240250, 0.02890820],
479
+ [-0.48366149, -0.00547793, 0.00727051],
480
+ [-0.15528487, -0.00750273, 0.01000000],
481
+ [-0.30453727, -0.06034576, 0.07000000],
482
+ [-0.08636611, 0.05404216, 0.10000000],
483
+ [0.17130286, -0.08594284, 0.02045707],
484
+ [0.02336012, -0.03151736, 0.01150023],
485
+ [0.04980615, 0.05813466, 0.00000000],
486
+ [0.05567111, 0.05748990, -0.02131931],
487
+ [0.18775492, -0.11667497, -0.01468127],
488
+ [0.03228237, -0.06260172, 0.01759185],
489
+ [-0.00314322, -0.04075826, 0.06444935],
490
+ [-0.03614742, 0.03742490, -0.06477093],
491
+ [-0.03657585, -0.00288971, 0.00662612],
492
+ [0.02927284, 0.04327208, 0.00000000],
493
+ [0.08783924, 0.05717898, 0.03126696],
494
+ [0.08433168, -0.00730286, 0.03976138],
495
+ [0.10938012, -0.06167863, 0.01437786],
496
+ [0.15858874, -0.02495775, -0.07270306],
497
+ [0.01240865, -0.06514497, 0.08912258],
498
+ [-0.00695215, -0.02651591, 0.00906910],
499
+ [0.03318922, -0.02027599, 0.01037674],
500
+ [0.00444124, -0.02052962, 0.01091464],
501
+ [-0.06534170, 0.00773043, 0.01035578],
502
+ [-0.02041670, -0.04941126, 0.00507145],
503
+ [0.10104763, -0.10742210, 0.00000000],
504
+ [0.04647355, -0.00995082, -0.02852205],
505
+ [0.16446031, -0.10004245, -0.08549641],
506
+ [-0.05778929, 0.07863872, -0.00005389],
507
+ [0.12681267, -0.04141598, 0.03085079],
508
+ [-0.07187128, 0.04073371, -0.03576737],
509
+ [-0.01384278, 0.00156952, -0.00051988],
510
+ [0.01307258, 0.00901257, 0.00000000],
511
+ [0.05149152, 0.04850276, 0.02866773],
512
+ [0.06268874, -0.00242200, 0.02955699],
513
+ [0.07756608, -0.00004407, 0.06487575],
514
+ [0.07945053, -0.00004327, 0.06284641],
515
+ [0.08133498, -0.00004248, 0.06081707],
516
+ [0.08321944, -0.00004169, 0.05878773],
517
+ [0.08510389, -0.00004089, 0.05675839],
518
+ [0.08698834, -0.00004010, 0.05472904],
519
+ [0.08887279, -0.00003930, 0.05269970],
520
+ [0.09075725, -0.00003851, 0.05067036],
521
+ [0.09264170, -0.00003772, 0.04864102],
522
+ [0.09452615, -0.00003692, 0.04661168],
523
+ [0.09641060, -0.00003613, 0.04458234],
524
+ [0.09829505, -0.00003534, 0.04255300],
525
+ [0.10017951, -0.00003454, 0.04052365],
526
+ [0.10206396, -0.00003375, 0.03849431],
527
+ [0.14365678, -0.01607540, 0.02182218],
528
+ [0.10205952, -0.02748425, -0.03320988],
529
+ [0.29046502, 0.00361699, -0.01600400],
530
+ [0.11515463, -0.00359938, -0.03512912],
531
+ [0.03746916, -0.00800203, -0.01295399],
532
+ [-0.01285049, 0.01466161, 0.00829261],
533
+ [0.08632843, 0.13889222, -0.01831911],
534
+ [-0.03352364, -0.06229470, 0.00937469],
535
+ [0.06338123, -0.16974940, 0.00000000],
536
+ [-0.01035095, 0.02609025, 0.00000000],
537
+ [-0.19929968, 0.17808807, 0.00000000],
538
+ [-0.02029156, 0.04586688, 0.00000000],
539
+ [-0.02278953, 0.05476139, 0.00000000],
540
+ [-0.02597842, 0.00175268, 0.18437642],
541
+ [-0.00041023, 0.00074457, -0.03563225]
542
+ ], dtype=np.float64) * 0.0367493#eV to hartree conversion factor
543
+
544
+ self.selfEnergy = np.array([
545
+ [-11.9223639, -2.8061095, 0.0000000],
546
+ [-20.9532631, -1.1297785, 0.0000000],
547
+ [-6.9971696, -3.2655741, 0.0000000],
548
+ [-9.8114460, -4.1691241, 0.0000000],
549
+ [-11.5274724, -7.1785553, 0.0000000],
550
+ [-15.7545853, -9.7975356, 0.0000000],
551
+ [-18.8417536, -11.5390772, 0.0000000],
552
+ [-17.9332316, -11.8400363, 0.0000000],
553
+ [-21.1766889, -12.0966829, 0.0000000],
554
+ [-23.8117049, -12.7315278, -2.6152816],
555
+ [-8.0168587, -3.5357541, 0.0000000],
556
+ [-8.8996217, -3.3930267, -2.3704000],
557
+ [-11.4217432, -5.5010511, -3.7796816],
558
+ [-14.1305658, -8.2750304, -3.1140941],
559
+ [-15.7071105, -9.8725694, -1.6270802],
560
+ [-20.1581637, -11.1864809, -0.8356505],
561
+ [-26.2723861, -12.3657994, -1.9017158],
562
+ [-22.0270820, -14.3127631, -2.9389433],
563
+ [-6.6921296, -3.1081605, 0.0000000],
564
+ [-8.0531971, -2.1761231, -0.2675983],
565
+ [-8.7129730, -9.0228950, -2.3954879],
566
+ [-8.5703364, -9.4933734, -2.2959946],
567
+ [-8.7570928, -9.8674899, -1.2850031],
568
+ [-8.8203392, -7.1020286, -1.3383282],
569
+ [-9.5757701, -6.0802192, -3.7852117],
570
+ [-10.1463332, -5.5418598, -3.7951519],
571
+ [-10.5325577, -4.9644527, -2.6210546],
572
+ [-10.5903637, -6.6362657, -2.3476564],
573
+ [-11.3598265, -8.4558686, -3.0589423],
574
+ [-11.0505242, -2.7759459, 0.0000000],
575
+ [-11.2255436, -4.6379660, -0.5568933],
576
+ [-15.5640015, -9.1779578, -1.1917480],
577
+ [-16.8021037, -10.2020806, -0.1526587],
578
+ [-20.6883851, -11.3475165, -0.0925094],
579
+ [-19.8975374, -11.6316818, -1.1601961],
580
+ [-17.7445664, -13.3156057, -1.3999865],
581
+ [-6.6590644, -3.2967564, 0.0000000],
582
+ [-6.3552773, -1.6881756, -0.1094950],
583
+ [-7.3282377, -10.5232537, -1.2841045],
584
+ [-8.3528075, -9.4151949, -1.9905675],
585
+ [-8.9909092, -9.3825305, -1.0846865],
586
+ [-8.3391136, -5.0423265, -3.3157522],
587
+ [-9.5934551, -4.1238201, -2.8210863],
588
+ [-10.4178466, -4.6661993, -4.3910247],
589
+ [-11.2407436, -6.3230998, -2.7898020],
590
+ [-11.0477513, -7.5245955, -1.3458846],
591
+ [-10.7029327, -9.0008211, -3.1175174],
592
+ [-12.0082253, -2.6607618, 0.0000000],
593
+ [-12.8089312, -4.9517162, -0.6628616],
594
+ [-20.5912595, -8.8280995, -2.6074284],
595
+ [-19.1309518, -9.2461857, 0.3120269],
596
+ [-18.8494281, -11.4037354, -0.5155777],
597
+ [-17.9130306, -11.6266388, -1.4119025],
598
+ [-15.8963959, -12.6153098, -0.9187936],
599
+ [-6.2935338, -3.2602182, 0.0000000],
600
+ [-5.6796095, -2.5183292, -0.8391169],
601
+ [-8.1422087, -11.6440990, -0.8239123],
602
+ [-8.2709324, -11.3009295, -3.2425383],
603
+ [-8.3037702, -11.1705313, -3.1342334],
604
+ [-8.3366080, -11.0401330, -3.0259285],
605
+ [-8.3694458, -10.9097347, -2.9176236],
606
+ [-8.4022836, -10.7793365, -2.8093186],
607
+ [-8.4351215, -10.6489382, -2.7010137],
608
+ [-8.4679593, -10.5185399, -2.5927088],
609
+ [-8.5007971, -10.3881417, -2.4844039],
610
+ [-8.5336349, -10.2577434, -2.3760990],
611
+ [-8.5664727, -10.1273451, -2.2677941],
612
+ [-8.5993105, -9.9969469, -2.1594891],
613
+ [-8.6321483, -9.8665486, -2.0511842],
614
+ [-8.6649861, -9.7361503, -1.9428793],
615
+ [-8.6978239, -9.6057521, -1.8345744],
616
+ [-8.3270480, -9.2677188, -0.9691591],
617
+ [-9.1503016, -10.5247435, -0.9450823],
618
+ [-9.6425716, -8.4038882, -0.4830525],
619
+ [-10.2383908, -4.9432345, -1.3549000],
620
+ [-10.0139372, -5.4818074, -2.6947002],
621
+ [-11.1406750, -7.5775954, -3.8917827],
622
+ [-11.3162420, -8.8896294, -3.0510272],
623
+ [-12.1009764, -9.5056791, -2.2886714],
624
+ [-12.1695315, -2.6656574, 0.0000000],
625
+ [-20.1640068, -4.9875823, 0.0000000],
626
+ [-22.0691007, -8.1233437, 0.0000000],
627
+ [-19.8457402, -8.1841396, 0.0000000],
628
+ [-22.7267689, -10.6638874, 0.0000000],
629
+ [-16.2231111, -10.5823143, -0.4133880],
630
+ [-13.6425470, -12.1716393, -0.6534981]]) * 0.0367493#eV to hartree conversion factor
631
+
632
+ self.slaterExponent = np.array([
633
+ [1.2209169, 2.0165983, 0.0000000],
634
+ [1.5824890, 1.6000000, 0.0000000],
635
+ [0.5005719, 0.4658228, 0.0000000],
636
+ [0.9078603, 1.0039670, 0.0000000],
637
+ [1.7660778, 1.6244411, 0.0000000],
638
+ [1.9915841, 1.7845353, 0.0000000],
639
+ [2.3225221, 2.0626548, 0.0000000],
640
+ [2.6718248, 2.2239915, 0.0000000],
641
+ [2.6161081, 2.4319703, 0.0000000],
642
+ [2.9809477, 2.0785656, 1.8460393],
643
+ [0.5467934, 0.5633952, 0.0000000],
644
+ [1.0300807, 0.7916346, 0.8488197],
645
+ [1.2874433, 1.0904909, 0.8900769],
646
+ [1.4531665, 1.9693476, 1.0819287],
647
+ [1.8253512, 1.7857588, 1.6661366],
648
+ [1.8928587, 1.9498486, 1.6934107],
649
+ [2.4427851, 2.0467885, 2.2975192],
650
+ [2.4411522, 2.0047267, 1.9691892],
651
+ [0.7780770, 0.7000000, 0.0000000],
652
+ [1.1200000, 0.7483882, 1.5500000],
653
+ [1.6075504, 1.0933429, 1.0700000],
654
+ [1.5158150, 1.2148492, 1.0965783],
655
+ [1.7421878, 1.1888016, 0.8934693],
656
+ [1.8634588, 1.4228855, 1.4932821],
657
+ [1.7327124, 1.4062701, 1.2782309],
658
+ [1.9253779, 0.9262150, 1.2346615],
659
+ [2.1305990, 1.9253832, 1.3966367],
660
+ [2.3227981, 1.5682330, 1.5655420],
661
+ [2.3709891, 1.8409795, 1.7423898],
662
+ [1.4465300, 1.2040440, 0.0000000],
663
+ [1.5059368, 1.3063387, 1.0909195],
664
+ [1.8047369, 1.7982376, 1.0955633],
665
+ [2.0023112, 1.9021607, 1.3993110],
666
+ [2.2563431, 2.1483129, 1.8766631],
667
+ [2.5042181, 2.1106542, 1.9511992],
668
+ [2.7659636, 2.1692369, 1.8254810],
669
+ [0.6993851, 0.8209591, 0.0000000],
670
+ [1.1429377, 0.8089888, 1.5500000],
671
+ [1.7000000, 1.2510491, 1.0686497],
672
+ [1.7925035, 1.5123924, 1.1495969],
673
+ [1.7107755, 1.3747235, 0.7765805],
674
+ [1.7502703, 1.5772858, 1.4297760],
675
+ [1.9777411, 2.0982690, 1.4810776],
676
+ [2.0243462, 2.3480304, 1.6149520],
677
+ [2.3713759, 2.1418555, 1.5716934],
678
+ [2.3655400, 2.0465727, 1.7370737],
679
+ [3.1103872, 1.7772461, 1.2958832],
680
+ [1.7646331, 1.3127608, 0.0000000],
681
+ [1.7863485, 1.4997607, 1.1650646],
682
+ [2.2482408, 1.8768725, 1.1662079],
683
+ [2.5053498, 1.9880208, 1.7329511],
684
+ [2.5955339, 2.1294865, 1.8137622],
685
+ [2.1518600, 2.1826296, 1.7939636],
686
+ [3.1987630, 2.2995227, 1.7893151],
687
+ [0.7514304, 0.6791606, 0.0000000],
688
+ [1.2995061, 0.7121741, 1.6000000],
689
+ [1.9000000, 1.4262742, 1.3072774],
690
+ [1.8651798, 1.5610733, 1.2837815],
691
+ [1.8755508, 1.5679201, 1.2726347],
692
+ [1.8859217, 1.5747669, 1.2614880],
693
+ [1.8962926, 1.5816137, 1.2503412],
694
+ [1.9066636, 1.5884605, 1.2391944],
695
+ [1.9170345, 1.5953073, 1.2280476],
696
+ [1.9274054, 1.6021541, 1.2169008],
697
+ [1.9377764, 1.6090009, 1.2057541],
698
+ [1.9481473, 1.6158477, 1.1946073],
699
+ [1.9585183, 1.6226945, 1.1834605],
700
+ [1.9688892, 1.6295413, 1.1723137],
701
+ [1.9792601, 1.6363881, 1.1611670],
702
+ [1.9896311, 1.6432350, 1.1500202],
703
+ [2.0000020, 1.6500818, 1.1388734],
704
+ [2.0923623, 1.6165437, 1.2872624],
705
+ [1.7483083, 1.6551025, 1.0233550],
706
+ [2.0080568, 2.1084082, 1.7641136],
707
+ [2.3094018, 1.9812974, 1.7312087],
708
+ [2.3795997, 2.2387289, 1.9527035],
709
+ [2.5582242, 2.5114785, 1.8368726],
710
+ [2.7100253, 2.3315088, 1.8622968],
711
+ [3.1211282, 2.3912459, 1.9835079],
712
+ [2.1719281, 1.5852934, 0.0000000],
713
+ [2.5798532, 1.8750064, 0.0000000],
714
+ [2.8266565, 1.9846021, 0.0000000],
715
+ [3.0792898, 2.1104258, 0.0000000],
716
+ [3.2655001, 2.4581428, 0.0000000],
717
+ [2.3566483, 2.4476546, 1.7730006],
718
+ [3.5667425, 2.6010762, 1.9384224]
719
+ ])
720
+ #kQShell: The first-order coefficient with respect to charge $q$. It is a parameter related to an atom's "electron affinity" (more accurately, electronegativity).
721
+ self.kQShell = np.array([
722
+ [0.2591008, 0.0000000, 0.0000000],
723
+ [0.0526662, -1.7836600, 0.0000000],
724
+ [0.9636068, 0.1933068, 0.0000000],
725
+ [0.8310555, 0.8910197, 0.0000000],
726
+ [3.1865592, 0.9002623, 0.0000000],
727
+ [0.1683176, 0.2988821, 0.0000000],
728
+ [1.6770083, -0.2856884, 0.0000000],
729
+ [0.5947188, 0.0916715, 0.0000000],
730
+ [0.8966240, 0.2645049, 0.0000000],
731
+ [0.1394174, 0.1181016, -0.1235510],
732
+ [1.4578927, -2.1216651, 0.0000000],
733
+ [-1.1457069, 0.6192238, -1.7052287],
734
+ [1.1373983, -0.5030043, -0.2180697],
735
+ [-1.6833805, 0.7676860, -0.3164855],
736
+ [0.0638088, -0.0488732, 0.1144146],
737
+ [-0.3628979, -0.1162502, 0.5229391],
738
+ [-0.1771804, 0.3541391, 0.1082906],
739
+ [0.0581999, 0.1172583, 0.2579057],
740
+ [1.4171788, 0.6090963, 0.0000000],
741
+ [-1.3567908, 0.7982482, -2.4352495],
742
+ [-1.2515726, -0.2288979, -0.1126341],
743
+ [-2.6329946, -0.5589503, -0.6584541],
744
+ [-2.8582869, -0.9497022, -0.1743943],
745
+ [-0.6557652, -1.1133287, 0.5864026],
746
+ [-2.1012472, 0.0931727, -0.2296589],
747
+ [-2.1531278, -1.3014729, -0.2054193],
748
+ [-1.6422305, -0.2413613, 0.1032325],
749
+ [0.0892590, 0.6269495, -0.0372394],
750
+ [0.0790442, 0.0667641, -0.2727800],
751
+ [0.5947695, -0.3462432, 0.0000000],
752
+ [0.8467361, -0.2584210, -0.5108585],
753
+ [0.2348166, -0.2410370, -0.2772269],
754
+ [1.1862714, 1.3281349, 0.6150681],
755
+ [0.1524644, 0.6961378, -1.0725308],
756
+ [-0.0337658, 0.3715817, -0.6430662],
757
+ [-0.0658049, 0.0634599, 1.3725483],
758
+ [-2.1110486, -1.3455843, 0.0000000],
759
+ [-0.7184537, 0.0777799, -0.8135551],
760
+ [1.1237295, -0.9370621, 0.1974924],
761
+ [-3.1290732, -0.6950275, 0.2953364],
762
+ [-1.5564962, -0.4070963, -0.0034815],
763
+ [-0.5021863, -2.0445824, 0.4028728],
764
+ [-3.2915311, -1.3215133, -0.0229317],
765
+ [-1.9247370, -3.0950796, 0.0242021],
766
+ [-1.6523781, -0.2966759, -0.2394570],
767
+ [-2.2410456, -1.0409758, -0.5186905],
768
+ [-2.6933989, 1.6377067, 0.4579394],
769
+ [0.6273704, -0.1339630, 0.0000000],
770
+ [0.6476509, -0.3983757, -0.5489296],
771
+ [0.3428358, -0.0107237, -0.0368582],
772
+ [0.2761934, 0.3213207, 0.8605258],
773
+ [-0.6640266, 0.6301827, -1.2044909],
774
+ [0.1264617, 0.1662148, 0.0032647],
775
+ [-0.1330582, 0.0494917, 2.8529059],
776
+ [-0.9632540, -0.3851189, 0.0000000],
777
+ [-0.9508608, -0.3461083, -1.0044558],
778
+ [0.8353349, -0.6965739, 0.1247060],
779
+ [0.2963503, -0.5819361, 0.2692711],
780
+ [0.3049667, -0.5242933, 0.2546408],
781
+ [0.3135831, -0.4666506, 0.2400105],
782
+ [0.3221996, -0.4090079, 0.2253803],
783
+ [0.3308160, -0.3513652, 0.2107500],
784
+ [0.3394324, -0.2937224, 0.1961197],
785
+ [0.3480488, -0.2360797, 0.1814894],
786
+ [0.3566653, -0.1784370, 0.1668591],
787
+ [0.3652817, -0.1207942, 0.1522288],
788
+ [0.3738981, -0.0631515, 0.1375985],
789
+ [0.3825146, -0.0055088, 0.1229683],
790
+ [0.3911310, 0.0521340, 0.1083380],
791
+ [0.3997474, 0.1097767, 0.0937077],
792
+ [0.4083638, 0.1674194, 0.0790774],
793
+ [0.2914598, 0.2000813, 0.1081073],
794
+ [-1.8120352, 1.5015902, -0.0324750],
795
+ [-1.5162303, -0.5627344, -0.0063703],
796
+ [-0.9565221, -0.4840866, -0.7237461],
797
+ [-1.7054596, -0.5268454, -0.2408914],
798
+ [-1.8847069, -0.4888169, -0.1606430],
799
+ [-1.7277302, -1.6224161, -0.4690687],
800
+ [-3.8714610, 1.0468549, 0.5645830],
801
+ [1.2916136, -0.3520016, 0.0000000],
802
+ [2.7768835, -1.1939420, 0.0000000],
803
+ [-0.1764125, 0.6143160, 0.0000000],
804
+ [0.1602211, 0.4235069, 0.0000000],
805
+ [-0.1211837, 0.6131814, 0.0000000],
806
+ [-0.7035045, 0.1660577, 0.6738787],
807
+ [0.2212935, 0.0793110, 1.3169147]]) * 0.0367493#eV to hartree conversion factor
808
+
809
+ #kQAtom: The second-order coefficient with respect to charge $q$. It is a parameter related to an atom's "resistance to charge accumulation" (known as chemical hardness or self-repulsion).
810
+ self.kQAtom = np.array([
811
+ 0.2473983, -0.7787934, -2.0181966, 0.2010595, 0.5604651,
812
+ 0.0908886, -0.0630602, -0.0504985, 0.0307638, -0.4585161,
813
+ -1.1795902, -0.5383484, -0.2891414, -0.2539732, -0.4636669,
814
+ 0.0175812, -0.4977269, -1.8034383, -0.2695403, 0.2084025,
815
+ -0.6961569, -0.0444615, -0.1157893, -0.1506473, -0.0193450,
816
+ 0.1358351, -0.0258463, -0.1389803, 0.1832504, 0.2795320,
817
+ -0.2653902, -0.3850791, -0.4048451, -0.0331375, -0.3771185,
818
+ -0.1964130, 1.5782426, 0.1783732, -0.5462958, -0.1563616,
819
+ 0.2100641, 0.5064106, 0.0670438, 0.2937971, 0.0788835,
820
+ 0.4874039, -0.4078822, 0.2261002, -0.4403034, -0.2304807,
821
+ -0.3614513, -0.0339759, -0.1031505, -0.1821550, 0.9414952,
822
+ 0.7618755, -0.7252284, -0.8403891, -0.8014986, -0.7626081,
823
+ -0.7237176, -0.6848271, -0.6459366, -0.6070461, -0.5681557,
824
+ -0.5292652, -0.4903747, -0.4514842, -0.4125937, -0.3737032,
825
+ -0.3348127, -0.1572535, 0.0625598, -0.1822002, -0.0546542,
826
+ 0.3585959, 0.0403085, 0.4160851, 0.5364732, 0.1234906,
827
+ -0.5902190, 0.0731828, 0.1795929, -0.0924653, -0.3033414,
828
+ -0.0946010]) * 0.0367493#eV to hartree conversion factor
829
+
830
+ self.referenceOcc = np.array([
831
+ [1.0, 0.0, 0.0], [2.0, 0.0, 0.0], [1.0, 0.0, 0.0],
832
+ [2.0, 0.0, 0.0], [2.0, 1.0, 0.0], [1.0, 3.0, 0.0],
833
+ [1.5, 3.5, 0.0], [2.0, 4.0, 0.0], [2.0, 5.0, 0.0],
834
+ [2.0, 6.0, 0.0], [1.0, 0.0, 0.0], [2.0, 0.0, 0.0],
835
+ [2.0, 1.0, 0.0], [1.5, 2.5, 0.0], [1.5, 3.5, 0.0],
836
+ [2.0, 4.0, 0.0], [2.0, 5.0, 0.0], [2.0, 6.0, 0.0],
837
+ [1.0, 0.0, 0.0], [2.0, 0.0, 0.0], [1.0, 1.0, 1.0],
838
+ [1.0, 1.0, 2.0], [1.0, 1.0, 3.0], [1.0, 1.0, 4.0],
839
+ [1.0, 1.0, 5.0], [1.0, 1.0, 6.0], [1.0, 1.0, 7.0],
840
+ [1.0, 1.0, 8.0], [1.0, 0.0, 10.0], [2.0, 0.0, 0.0],
841
+ [2.0, 1.0, 0.0], [1.5, 2.5, 0.0], [1.5, 3.5, 0.0],
842
+ [2.0, 4.0, 0.0], [2.0, 5.0, 0.0], [2.0, 6.0, 0.0],
843
+ [1.0, 0.0, 0.0], [2.0, 0.0, 0.0], [1.0, 1.0, 1.0],
844
+ [1.0, 1.0, 2.0], [1.0, 1.0, 3.0], [1.0, 1.0, 4.0],
845
+ [1.0, 1.0, 5.0], [1.0, 1.0, 6.0], [1.0, 1.0, 7.0],
846
+ [1.0, 1.0, 8.0], [1.0, 0.0, 10.0], [2.0, 0.0, 0.0],
847
+ [2.0, 1.0, 0.0], [2.0, 2.0, 0.0], [2.0, 3.0, 0.0],
848
+ [2.0, 4.0, 0.0], [2.0, 5.0, 0.0], [2.0, 6.0, 0.0],
849
+ [1.0, 0.0, 0.0], [2.0, 0.0, 0.0], [1.0, 1.0, 1.0],
850
+ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0],
851
+ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0],
852
+ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0],
853
+ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0],
854
+ [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 2.0],
855
+ [1.0, 1.0, 3.0], [1.0, 1.0, 4.0], [1.0, 1.0, 5.0],
856
+ [1.0, 1.0, 6.0], [1.0, 1.0, 7.0], [1.0, 1.0, 8.0],
857
+ [1.0, 0.0, 10.0], [2.0, 0.0, 0.0], [2.0, 1.0, 0.0],
858
+ [2.0, 2.0, 0.0], [2.0, 3.0, 0.0], [2.0, 4.0, 0.0],
859
+ [2.0, 5.0, 0.0], [2.0, 6.0, 0.0]])
860
+
861
+ # Atomic radii in Bohr
862
+ self.atomicRad = np.array([
863
+ 0.32, 0.37, 1.30, 0.99, 0.84, 0.75, 0.71, 0.64,
864
+ 0.60, 0.62, 1.60, 1.40, 1.24, 1.14, 1.09, 1.04,
865
+ 1.00, 1.01, 2.00, 1.74, 1.59, 1.48, 1.44, 1.30,
866
+ 1.29, 1.24, 1.18, 1.17, 1.22, 1.20, 1.23, 1.20,
867
+ 1.20, 1.18, 1.17, 1.16, 2.15, 1.90, 1.76, 1.64,
868
+ 1.56, 1.46, 1.38, 1.36, 1.34, 1.30, 1.36, 1.40,
869
+ 1.42, 1.40, 1.40, 1.37, 1.36, 1.36, 2.38, 2.06,
870
+ 1.94, 1.84, 1.90, 1.88, 1.86, 1.85, 1.83, 1.82,
871
+ 1.81, 1.80, 1.79, 1.77, 1.77, 1.78, 1.74, 1.64,
872
+ 1.58, 1.50, 1.41, 1.36, 1.32, 1.30, 1.30, 1.32,
873
+ 1.44, 1.45, 1.50, 1.42, 1.48, 1.46, 2.42, 2.11,
874
+ 2.01, 1.90, 1.84, 1.83, 1.80, 1.80, 1.73, 1.68,
875
+ 1.68, 1.68, 1.65, 1.67, 1.73, 1.76, 1.61, 1.57,
876
+ 1.49, 1.43, 1.41, 1.34, 1.29, 1.28, 1.21, 1.22,
877
+ 1.36, 1.43, 1.62, 1.75, 1.65, 1.57])# * 1.8897261246
878
+
879
+
880
+ # Pauling electronegativities, used for the covalent coordination number.
881
+ self.paulingEN = np.array([
882
+ 2.20, 3.00, # H,He
883
+ 0.98, 1.57, 2.04, 2.55, 3.04, 3.44, 3.98, 4.50, # Li-Ne
884
+ 0.93, 1.31, 1.61, 1.90, 2.19, 2.58, 3.16, 3.50, # Na-Ar
885
+ 0.82, 1.00, # K,Ca
886
+ 1.36, 1.54, 1.63, 1.66, 1.55, # Sc-
887
+ 1.83, 1.88, 1.91, 1.90, 1.65, # -Zn
888
+ 1.81, 2.01, 2.18, 2.55, 2.96, 3.00, # Ga-Kr
889
+ 0.82, 0.95, # Rb,Sr
890
+ 1.22, 1.33, 1.60, 2.16, 1.90, # Y-
891
+ 2.20, 2.28, 2.20, 1.93, 1.69, # -Cd
892
+ 1.78, 1.96, 2.05, 2.10, 2.66, 2.60, # In-Xe
893
+ 0.79, 0.89, # Cs,Ba
894
+ 1.10, 1.12, 1.13, 1.14, 1.15, 1.17, 1.18, # La-Eu
895
+ 1.20, 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, # Gd-Yb
896
+ 1.27, 1.30, 1.50, 2.36, 1.90, # Lu-
897
+ 2.20, 2.20, 2.28, 2.54, 2.00, # -Hg
898
+ 1.62, 2.33, 2.02, 2.00, 2.20, 2.20,]) # Tl-Rn
899
+
900
+
901
+ def _set_basisfunc_param(self):
902
+
903
+
904
+ # Exponents from first row Table I-V.
905
+ self.pAlpha1 = np.array([
906
+ [2.709498091e-1], # 1s
907
+ [1.012151084e-1], # 2s
908
+ [5.296881757e-2], # 3s
909
+ [3.264600274e-2], # 4s
910
+ [2.216912938e-2], # 5s
911
+ [1.759666885e-1], # 2p
912
+ [9.113614253e-2], # 3p
913
+ [5.578350235e-2], # 4p
914
+ [3.769845216e-2], # 5p
915
+ [1.302270363e-1], # 3d
916
+ [7.941656339e-2], # 4d
917
+ [5.352200793e-2], # 5d
918
+ [1.033434062e-1], # 4f
919
+ [6.952785407e-2], # 5f
920
+ [8.565417784e-2]]) # 5g
921
+
922
+
923
+ # Exponents from second row Table I-V.
924
+ self.pAlpha2 = np.array([
925
+ [8.518186635e-1, 1.516232927e-1], # 1s
926
+ [1.292278611e-1, 4.908584205e-2], # 2s
927
+ [6.694095822e-1, 5.837135094e-2], # 3s
928
+ [2.441785453e-1, 4.051097664e-2], # 4s
929
+ [1.213425654e-1, 3.133152144e-2], # 5s
930
+ [4.323908358e-1, 1.069439065e-1], # 2p
931
+ [1.458620964e-1, 5.664210742e-2], # 3p
932
+ [6.190052680e-2, 2.648418407e-2], # 4p
933
+ [2.691294191e-1, 3.980805011e-2], # 5p
934
+ [2.777427345e-1, 8.336507714e-2], # 3d
935
+ [1.330958892e-1, 5.272119659e-2], # 4d
936
+ [6.906014388e-2, 3.399457777e-2], # 5d
937
+ [2.006693538e-1, 6.865384900e-2], # 4f
938
+ [1.156094555e-1, 4.778940916e-2], # 5f
939
+ [1.554531559e-1, 5.854079811e-2]])# 5g
940
+
941
+ # Coefficients from second row Table I-V.
942
+ self.pCoeff2 = np.array([
943
+ [ 4.301284983e-1, 6.789135305e-1], # 1s
944
+ [ 7.470867124e-1, 2.855980556e-1], # 2s
945
+ [-1.529645716e-1, 1.051370110e+0], # 3s
946
+ [-3.046656896e-1, 1.146877294e+0], # 4s
947
+ [-5.114756049e-1, 1.307377277e+0], # 5s
948
+ [ 4.522627513e-1, 6.713122642e-1], # 2p
949
+ [ 5.349653144e-1, 5.299607212e-1], # 3p
950
+ [ 8.743116767e-1, 1.513640107e-1], # 4p
951
+ [-1.034227010e-1, 1.033376378e+0], # 5p
952
+ [ 4.666137923e-1, 6.644706516e-1], # 3d
953
+ [ 4.932764167e-1, 5.918727866e-1], # 4d
954
+ [ 6.539405185e-1, 3.948945302e-1], # 5d
955
+ [ 4.769346276e-1, 6.587383976e-1], # 4f
956
+ [ 4.856637346e-1, 6.125980914e-1], # 5f
957
+ [ 4.848298074e-1, 6.539381621e-1]])# 5g
958
+
959
+
960
+ # Exponents from third row Table I-V.
961
+ self.pAlpha3 = np.array([
962
+ [2.227660584e+0, 4.057711562e-1, 1.098175104e-1], # 1s
963
+ [2.581578398e+0, 1.567622104e-1, 6.018332272e-2], # 2s
964
+ [5.641487709e-1, 6.924421391e-2, 3.269529097e-2], # 3s
965
+ [2.267938753e-1, 4.448178019e-2, 2.195294664e-2], # 4s
966
+ [1.080198458e-1, 4.408119382e-2, 2.610811810e-2], # 5s
967
+ [9.192379002e-1, 2.359194503e-1, 8.009805746e-2], # 2p
968
+ [2.692880368e+0, 1.489359592e-1, 5.739585040e-2], # 3p
969
+ [4.859692220e-1, 7.430216918e-2, 3.653340923e-2], # 4p
970
+ [2.127482317e-1, 4.729648620e-2, 2.604865324e-2], # 5p
971
+ [5.229112225e-1, 1.639595876e-1, 6.386630021e-2], # 3d
972
+ [1.777717219e-1, 8.040647350e-2, 3.949855551e-2], # 4d
973
+ [4.913352950e-1, 7.329090601e-2, 3.594209290e-2], # 5d
974
+ [3.483826963e-1, 1.249380537e-1, 5.349995725e-2], # 4f
975
+ [1.649233885e-1, 7.487066646e-2, 3.735787219e-2], # 5f
976
+ [2.545432122e-1, 1.006544376e-1, 4.624463922e-2]],) # 5g
977
+
978
+
979
+ # Coefficients from third row Table I-V.
980
+ self.pCoeff3 = np.array([
981
+ [ 1.543289673e-1, 5.353281423e-1, 4.446345422e-1], # 1s
982
+ [-5.994474934e-2, 5.960385398e-1, 4.581786291e-1], # 2s
983
+ [-1.782577972e-1, 8.612761663e-1, 2.261841969e-1], # 3s
984
+ [-3.349048323e-1, 1.056744667e+0, 1.256661680e-1], # 4s
985
+ [-6.617401158e-1, 7.467595004e-1, 7.146490945e-1], # 5s
986
+ [ 1.623948553e-1, 5.661708862e-1, 4.223071752e-1], # 2p
987
+ [-1.061945788e-2, 5.218564264e-1, 5.450015143e-1], # 3p
988
+ [-6.147823411e-2, 6.604172234e-1, 3.932639495e-1], # 4p
989
+ [-1.389529695e-1, 8.076691064e-1, 2.726029342e-1], # 5p
990
+ [ 1.686596060e-1, 5.847984817e-1, 4.056779523e-1], # 3d
991
+ [ 2.308552718e-1, 6.042409177e-1, 2.595768926e-1], # 4d
992
+ [-2.010175008e-2, 5.899370608e-1, 4.658445960e-1], # 5d
993
+ [ 1.737856685e-1, 5.973380628e-1, 3.929395614e-1], # 4f
994
+ [ 1.909729355e-1, 6.146060459e-1, 3.059611271e-1], # 5f
995
+ [ 1.780980905e-1, 6.063757846e-1, 3.828552923e-1]],) # 5g
996
+
997
+
998
+
999
+ # Exponents from forth row Table I-V.
1000
+ self.pAlpha4 = np.array([
1001
+ [5.216844534e+0, 9.546182760e-1, # 1s
1002
+ 2.652034102e-1, 8.801862774e-2],
1003
+ [1.161525551e+1, 2.000243111e+0, # 2s
1004
+ 1.607280687e-1, 6.125744532e-2],
1005
+ [1.513265591e+0, 4.262497508e-1, # 3s
1006
+ 7.643320863e-2, 3.760545063e-2],
1007
+ [3.242212833e-1, 1.663217177e-1, # 4s
1008
+ 5.081097451e-2, 2.829066600e-2],
1009
+ [8.602284252e-1, 1.189050200e-1, # 5s
1010
+ 3.446076176e-2, 1.974798796e-2],
1011
+ [1.798260992e+0, 4.662622228e-1, # 2p
1012
+ 1.643718620e-1, 6.543927065e-2],
1013
+ [1.853180239e+0, 1.915075719e-1, # 3p
1014
+ 8.655487938e-2, 4.184253862e-2],
1015
+ [1.492607880e+0, 4.327619272e-1, # 4p
1016
+ 7.553156064e-2, 3.706272183e-2],
1017
+ [3.962838833e-1, 1.838858552e-1, # 5p
1018
+ 4.943555157e-2, 2.750222273e-2],
1019
+ [9.185846715e-1, 2.920461109e-1, # 3d
1020
+ 1.187568890e-1, 5.286755896e-2],
1021
+ [1.995825422e+0, 1.823461280e-1, # 4d
1022
+ 8.197240896e-2, 4.000634951e-2],
1023
+ [4.230617826e-1, 8.293863702e-2, # 5d
1024
+ 4.590326388e-2, 2.628744797e-2],
1025
+ [5.691670217e-1, 2.074585819e-1, # 4f
1026
+ 9.298346885e-2, 4.473508853e-2],
1027
+ [2.017831152e-1, 1.001952178e-1, # 5f
1028
+ 5.447006630e-2, 3.037569283e-2],
1029
+ [3.945205573e-1, 1.588100623e-1, # 5g
1030
+ 7.646521729e-2, 3.898703611e-2]])
1031
+
1032
+ # Coefficients from forth row Table I-V.
1033
+ self.pCoeff4 = np.array([
1034
+ [ 5.675242080e-2, 2.601413550e-1, # 1s
1035
+ 5.328461143e-1, 2.916254405e-1],
1036
+ [-1.198411747e-2,-5.472052539e-2, # 2s
1037
+ 5.805587176e-1, 4.770079976e-1],
1038
+ [-3.295496352e-2,-1.724516959e-1, # 3s
1039
+ 7.518511194e-1, 3.589627317e-1],
1040
+ [-1.120682822e-1,-2.845426863e-1, # 4s
1041
+ 8.909873788e-1, 3.517811205e-1],
1042
+ [1.103657561e-2,-5.606519023e-1, # 5s
1043
+ 1.179429987e+0, 1.734974376e-1],
1044
+ [5.713170255e-2, 2.857455515e-1, # 2p
1045
+ 5.517873105e-1, 2.632314924e-1],
1046
+ [-1.434249391e-2, 2.755177589e-1, # 3p
1047
+ 5.846750879e-1, 2.144986514e-1],
1048
+ [-6.035216774e-3,-6.013310874e-2, # 4p
1049
+ 6.451518200e-1, 4.117923820e-1],
1050
+ [-1.801459207e-2,-1.360777372e-1, # 5p
1051
+ 7.533973719e-1, 3.409304859e-1],
1052
+ [ 5.799057705e-2, 3.045581349e-1, # 3d
1053
+ 5.601358038e-1, 2.432423313e-1],
1054
+ [-2.816702620e-3, 2.177095871e-1, # 4d
1055
+ 6.058047348e-1, 2.717811257e-1],
1056
+ [-2.421626009e-2, 3.937644956e-1, # 5d
1057
+ 5.489520286e-1, 1.190436963e-1],
1058
+ [5.902730589e-2, 3.191828952e-1, # 4f
1059
+ 5.639423893e-1, 2.284796537e-1],
1060
+ [9.174268830e-2, 4.023496947e-1, # 5f
1061
+ 4.937432100e-1, 1.254001522e-1],
1062
+ [6.010484250e-2, 3.309738329e-1, # 5g
1063
+ 5.655207585e-1, 2.171122608e-1]])
1064
+
1065
+
1066
+ # Exponents from fifth row Table I-V.
1067
+ self.pAlpha5 = np.array([
1068
+ [1.130563696e+1, 2.071728178e+0, 5.786484833e-1, # 1s
1069
+ 1.975724573e-1, 7.445271746e-2],
1070
+ [8.984956862e+0, 1.673710636e+0, 1.944726668e-1, # 2s
1071
+ 8.806345634e-2, 4.249068522e-2],
1072
+ [4.275877914e+0, 1.132409433e+0, 4.016256968e-1, # 3s
1073
+ 7.732370620e-2, 3.800708627e-2],
1074
+ [2.980263783e+0, 3.792228833e-1, 1.789717224e-1, # 4s
1075
+ 5.002110360e-2, 2.789361681e-2],
1076
+ [7.403763257e-1, 1.367990863e-1, 9.135301779e-2, # 5s
1077
+ 3.726907315e-2, 2.241490836e-2],
1078
+ [3.320386533e+0, 8.643257633e-1, 3.079819284e-1, # 2p
1079
+ 1.273309895e-1, 5.606243164e-2],
1080
+ [6.466803859e+0, 1.555914802e+0, 1.955925255e-1, # 3p
1081
+ 8.809647701e-2, 4.234835707e-2],
1082
+ [1.091977298e+0, 3.719985051e-1, 8.590019352e-2, # 4p
1083
+ 4.786503860e-2, 2.730479990e-2],
1084
+ [3.422168934e-1, 1.665099900e-1, 5.443732013e-2, # 5p
1085
+ 3.367775277e-2, 2.091949042e-2],
1086
+ [1.539033958e+0, 4.922090297e-1, 2.029756928e-1, # 3d
1087
+ 9.424112917e-2, 4.569058269e-2],
1088
+ [1.522122079e+0, 2.173041823e-1, 1.084876577e-1, # 4d
1089
+ 5.836797641e-2, 3.206682246e-2],
1090
+ [9.702946470e-1, 3.603270196e-1, 8.668717752e-2, # 5d
1091
+ 4.833708379e-2, 2.751899341e-2],
1092
+ [8.925960415e-1, 3.277589120e-1, 1.492869962e-1, # 4f
1093
+ 7.506099109e-2, 3.892475795e-2],
1094
+ [1.670735676e+0, 2.072477219e-1, 1.024709357e-1, # 5f
1095
+ 5.537913898e-2, 3.072866652e-2],
1096
+ [5.895429375e-1, 2.393343780e-1, 1.172646904e-1, # 5g
1097
+ 6.254074479e-2, 3.411243214e-2]])
1098
+
1099
+ # Coefficients from fifth row Table I-V.
1100
+ self.pCoeff5 = np.array([
1101
+ [2.214055312e-2, 1.135411520e-1, 3.318161484e-1, # 1s
1102
+ 4.825700713e-1, 1.935721966e-1],
1103
+ [-1.596349096e-2,-5.685884883e-2, 3.698265599e-1, # 2s
1104
+ 5.480512593e-1, 1.472634893e-1],
1105
+ [-3.920358850e-3,-4.168430506e-2,-1.637440990e-1, # 3s
1106
+ 7.419373723e-1, 3.724364929e-1],
1107
+ [1.513948997e-3,-7.316801518e-2,-3.143703799e-1, # 4s
1108
+ 9.032615169e-1, 3.294210848e-1],
1109
+ [1.375523371e-2,-3.097344179e-1,-3.199192259e-1, # 5s
1110
+ 1.084547038e+0, 3.345288361e-1],
1111
+ [ 2.079051117e-2, 1.235472099e-1, 3.667738886e-1, # 2p
1112
+ 4.834930290e-1, 1.653444074e-1],
1113
+ [-2.329023747e-3,-1.357395221e-2, 2.632185383e-1, # 3p
1114
+ 5.880427024e-1, 2.242794445e-1],
1115
+ [-1.143929558e-2,-6.322651538e-2, 4.398907721e-1, # 4p
1116
+ 5.245859166e-1, 1.017072253e-1],
1117
+ [-3.113958289e-2,-1.374007017e-1, 5.573881018e-1, # 5p
1118
+ 4.855428100e-1, 6.605423564e-2],
1119
+ [2.020869128e-2, 1.321157923e-1, 3.911240346e-1, # 3d
1120
+ 4.779609701e-1, 1.463662294e-1],
1121
+ [-3.673711876e-3, 1.167122499e-1, 4.216476416e-1, # 4d
1122
+ 4.547673415e-1, 1.037803318e-1],
1123
+ [-3.231527611e-3,-2.434931372e-2, 3.440817054e-1, # 5d
1124
+ 5.693674376e-1, 1.511340183e-1],
1125
+ [1.999839052e-2, 1.395427440e-1, 4.091508237e-1, # 4f
1126
+ 4.708252119e-1, 1.328082566e-1],
1127
+ [-7.301193568e-4, 8.414991343e-2, 3.923683153e-1, # 5f
1128
+ 5.040033146e-1, 1.328979300e-1],
1129
+ [1.998085812e-2, 1.460384050e-1, 4.230565459e-1, # 5g
1130
+ 4.635699665e-1, 1.226411691e-1]])
1131
+
1132
+
1133
+
1134
+ # Exponents from sixth row Table I-V.
1135
+ self.pAlpha6 = np.array([
1136
+ [2.310303149e+1, 4.235915534e+0, 1.185056519e+0, # 1s
1137
+ 4.070988982e-1, 1.580884151e-1, 6.510953954e-2],
1138
+ [2.768496241e+1, 5.077140627e+0, 1.426786050e+0, # 2s
1139
+ 2.040335729e-1, 9.260298399e-2, 4.416183978e-2],
1140
+ [3.273031938e+0, 9.200611311e-1, 3.593349765e-1, # 3s
1141
+ 8.636686991e-2, 4.797373812e-2, 2.724741144e-2],
1142
+ [1.365346e+00, 4.393213e-01, 1.877069e-01, # 4s (old)
1143
+ 9.360270e-02, 5.052263e-02, 2.809354e-02],
1144
+ [1.410128298e+0, 5.077878915e-1, 1.847926858e-1, # 5s
1145
+ 1.061070594e-1, 3.669584901e-2, 2.213558430e-2],
1146
+ [5.868285913e+0, 1.530329631e+0, 5.475665231e-1, # 2p
1147
+ 2.288932733e-1, 1.046655969e-1, 4.948220127e-2],
1148
+ [5.077973607e+0, 1.340786940e+0, 2.248434849e-1, # 3p
1149
+ 1.131741848e-1, 6.076408893e-2, 3.315424265e-2],
1150
+ [1.365346e+00, 4.393213e-01, 1.877069e-01, # 4p (old)
1151
+ 9.360270e-02, 5.052263e-02, 2.809354e-02],
1152
+ [3.778623374e+0, 3.499121109e-1, 1.683175469e-1, # 5p
1153
+ 5.404070736e-2, 3.328911801e-2, 2.063815019e-2],
1154
+ [2.488296923e+0, 7.981487853e-1, 3.311327490e-1, # 3d
1155
+ 1.559114463e-1, 7.877734732e-2, 4.058484363e-2],
1156
+ [4.634239420e+0, 1.341648295e+0, 2.209593028e-1, # 4d
1157
+ 1.101467943e-1, 5.904190370e-2, 3.232628887e-2],
1158
+ [8.820520428e-1, 3.410838409e-1, 9.204308840e-2, # 5d
1159
+ 5.472831774e-2, 3.391202830e-2, 2.108227374e-2],
1160
+ [1.357718039e+0, 5.004907278e-1, 2.296565064e-1, # 4f
1161
+ 1.173146814e-1, 6.350097171e-2, 3.474556673e-2],
1162
+ [1.334096840e+0, 2.372312347e-1, 1.269485744e-1, # 5f
1163
+ 7.290318381e-2, 4.351355997e-2, 2.598071843e-2],
1164
+ [8.574668996e-1, 3.497184772e-1, 1.727917060e-1, # 5g
1165
+ 9.373643151e-2, 5.340032759e-2, 3.057364464e-2]],)
1166
+
1167
+
1168
+ # Coefficients from sixth row Table I-V.
1169
+ self.pCoeff6 = np.array([
1170
+ [9.163596280e-3, 4.936149294e-2, 1.685383049e-1, # 1s
1171
+ 3.705627997e-1, 4.164915298e-1, 1.303340841e-1],
1172
+ [-4.151277819e-3,-2.067024148e-2,-5.150303337e-2, # 2s
1173
+ 3.346271174e-1, 5.621061301e-1, 1.712994697e-1],
1174
+ [-6.775596947e-3,-5.639325779e-2,-1.587856086e-1, # 3s
1175
+ 5.534527651e-1, 5.015351020e-1, 7.223633674e-2],
1176
+ [3.775056e-03, -5.585965e-02, -3.192946e-01, # 4s (old)
1177
+ -2.764780e-02, 9.049199e-01, 3.406258e-01],
1178
+ [2.695439582e-3, 1.850157487e-2,-9.588628125e-2, # 5s
1179
+ -5.200673560e-1, 1.087619490e+0, 3.103964343e-1],
1180
+ [7.924233646e-3, 5.144104825e-2, 1.898400060e-1, # 2p
1181
+ 4.049863191e-1, 4.012362861e-1, 1.051855189e-1],
1182
+ [-3.329929840e-3,-1.419488340e-2, 1.639395770e-1, # 3p
1183
+ 4.485358256e-1, 3.908813050e-1, 7.411456232e-2],
1184
+ [-7.052075e-03, -5.259505e-02, -3.773450e-02, # 4p (old)
1185
+ 3.874773e-01, 5.791672e-01, 1.221817e-01],
1186
+ [1.163246387e-4,-2.920771322e-2,-1.381051233e-1, # 5p
1187
+ 5.706134877e-1, 4.768808140e-1, 6.021665516e-2],
1188
+ [7.283828112e-3, 5.386799363e-2, 2.072139149e-1, # 3d
1189
+ 4.266269092e-1, 3.843100204e-1, 8.902827546e-2],
1190
+ [-4.749842876e-4,-3.566777891e-3, 1.108670481e-1, # 4d
1191
+ 4.159646930e-1, 4.621672517e-1, 1.081250196e-1],
1192
+ [-4.097377019e-3,-2.508271857e-2, 2.648458555e-1, # 5d
1193
+ 5.097437054e-1, 2.654483467e-1, 2.623132212e-2],
1194
+ [6.930234381e-3, 5.634263745e-2, 2.217065797e-1, # 4f
1195
+ 4.411388883e-1, 3.688112625e-1, 7.787514504e-2],
1196
+ [-9.486751531e-4, 4.624275998e-2, 2.373699784e-1, # 5f
1197
+ 4.589112231e-1, 3.205010548e-1, 5.077063693e-2],
1198
+ [6.729778096e-3, 5.874145170e-2, 2.339955227e-1, # 5g
1199
+ 4.512983737e-1, 3.552053926e-1, 6.974153145e-2]])
1200
+
1201
+ self.pAlpha6s = np.array([
1202
+ 5.800292686e-1, 2.718262251e-1, 7.938523262e-2, # 6s
1203
+ 4.975088254e-2, 2.983643556e-2, 1.886067216e-2])
1204
+ self.pCoeff6s = np.array([
1205
+ 4.554359511e-3, 5.286443143e-2,-7.561016358e-1, # 6s
1206
+ -2.269803820e-1, 1.332494651e+0, 3.622518293e-1])
1207
+
1208
+ self.pAlpha6p = np.array([
1209
+ 6.696537714e-1, 1.395089793e-1, 8.163894960e-2, # 6p
1210
+ 4.586329272e-2, 2.961305556e-2, 1.882221321e-2])
1211
+ self.pCoeff6p = np.array([
1212
+ 2.782723680e-3,-1.282887780e-1,-2.266255943e-1, #6p
1213
+ 4.682259383e-1, 6.752048848e-1, 1.091534212e-1])
1214
+
1215
+ def _set_bond_param(self):
1216
+ self.en_polynominal_param = 10 ** (-2) * np.array([
1217
+ [29.84522887,
1218
+ -1.70549806,
1219
+ 6.54013762,
1220
+ 6.39169003,
1221
+ 6.00000000,
1222
+ 5.60000000],
1223
+ [-8.87843763,
1224
+ 2.10878369,
1225
+ 0.08009374,
1226
+ -0.85808076,
1227
+ -1.15000000,
1228
+ -1.30000000]]).T
1229
+