llama_cpp 0.16.2 → 0.17.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +18 -0
- data/README.md +7 -12
- data/ext/llama_cpp/extconf.rb +2 -43
- data/ext/llama_cpp/llama_cpp.cpp +8 -0
- data/lib/llama_cpp/version.rb +3 -3
- data/sig/llama_cpp.rbs +3 -0
- metadata +2 -171
- data/vendor/include/.gitkeep +0 -0
- data/vendor/lib/.gitkeep +0 -0
- data/vendor/tmp/llama.cpp/LICENSE +0 -21
- data/vendor/tmp/llama.cpp/Makefile +0 -1124
- data/vendor/tmp/llama.cpp/ggml-alloc.c +0 -1041
- data/vendor/tmp/llama.cpp/ggml-alloc.h +0 -76
- data/vendor/tmp/llama.cpp/ggml-backend-impl.h +0 -153
- data/vendor/tmp/llama.cpp/ggml-backend.c +0 -2225
- data/vendor/tmp/llama.cpp/ggml-backend.h +0 -236
- data/vendor/tmp/llama.cpp/ggml-blas.cpp +0 -363
- data/vendor/tmp/llama.cpp/ggml-blas.h +0 -23
- data/vendor/tmp/llama.cpp/ggml-common.h +0 -1805
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +0 -280
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +0 -196
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +0 -686
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +0 -490
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +0 -674
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +0 -319
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +0 -312
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +0 -345
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +0 -178
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +0 -88
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +0 -419
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +0 -221
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +0 -49
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +0 -94
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +0 -112
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +0 -271
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +0 -31
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +0 -206
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +0 -9
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +0 -8
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q2_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q3_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q6_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +0 -314
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +0 -51
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +0 -3069
- data/vendor/tmp/llama.cpp/ggml-cuda.h +0 -44
- data/vendor/tmp/llama.cpp/ggml-impl.h +0 -651
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +0 -2038
- data/vendor/tmp/llama.cpp/ggml-kompute.h +0 -46
- data/vendor/tmp/llama.cpp/ggml-metal.h +0 -66
- data/vendor/tmp/llama.cpp/ggml-metal.m +0 -3273
- data/vendor/tmp/llama.cpp/ggml-metal.metal +0 -6540
- data/vendor/tmp/llama.cpp/ggml-quants.c +0 -14994
- data/vendor/tmp/llama.cpp/ggml-quants.h +0 -133
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +0 -1178
- data/vendor/tmp/llama.cpp/ggml-rpc.h +0 -24
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +0 -6351
- data/vendor/tmp/llama.cpp/ggml-sycl.h +0 -40
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +0 -144508
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +0 -7183
- data/vendor/tmp/llama.cpp/ggml-vulkan.h +0 -29
- data/vendor/tmp/llama.cpp/ggml.c +0 -22506
- data/vendor/tmp/llama.cpp/ggml.h +0 -2458
- data/vendor/tmp/llama.cpp/llama.cpp +0 -18985
- data/vendor/tmp/llama.cpp/llama.h +0 -1147
- data/vendor/tmp/llama.cpp/scripts/get-flags.mk +0 -38
- data/vendor/tmp/llama.cpp/sgemm.cpp +0 -1032
- data/vendor/tmp/llama.cpp/sgemm.h +0 -14
- data/vendor/tmp/llama.cpp/unicode-data.cpp +0 -7033
- data/vendor/tmp/llama.cpp/unicode-data.h +0 -20
- data/vendor/tmp/llama.cpp/unicode.cpp +0 -810
- data/vendor/tmp/llama.cpp/unicode.h +0 -63
@@ -1,686 +0,0 @@
|
|
1
|
-
#include "convert.cuh"
|
2
|
-
#include "dequantize.cuh"
|
3
|
-
|
4
|
-
#define CUDA_Q8_0_NE_ALIGN 2048
|
5
|
-
|
6
|
-
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
7
|
-
static __global__ void dequantize_block(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) {
|
8
|
-
const int64_t i = (int64_t)2*(blockDim.x*blockIdx.x + threadIdx.x);
|
9
|
-
|
10
|
-
if (i >= k) {
|
11
|
-
return;
|
12
|
-
}
|
13
|
-
|
14
|
-
const int64_t ib = i/qk; // block index
|
15
|
-
const int64_t iqs = (i%qk)/qr; // quant index
|
16
|
-
const int64_t iybs = i - i%qk; // y block start index
|
17
|
-
const int64_t y_offset = qr == 1 ? 1 : qk/2;
|
18
|
-
|
19
|
-
// dequantize
|
20
|
-
dfloat2 v;
|
21
|
-
dequantize_kernel(vx, ib, iqs, v);
|
22
|
-
|
23
|
-
y[iybs + iqs + 0] = v.x;
|
24
|
-
y[iybs + iqs + y_offset] = v.y;
|
25
|
-
}
|
26
|
-
|
27
|
-
template <bool need_check>
|
28
|
-
static __global__ void dequantize_block_q8_0_f16(const void * __restrict__ vx, half * __restrict__ y, const int64_t k) {
|
29
|
-
#if __CUDA_ARCH__ >= CC_PASCAL
|
30
|
-
constexpr int nint = CUDA_Q8_0_NE_ALIGN/sizeof(int) + WARP_SIZE;
|
31
|
-
|
32
|
-
const int64_t i0 = CUDA_Q8_0_NE_ALIGN*blockIdx.x;
|
33
|
-
const int * x0 = ((int *) vx) + blockIdx.x * nint;
|
34
|
-
half2 * y2 = (half2 *) (y + i0);
|
35
|
-
|
36
|
-
__shared__ int vals[nint];
|
37
|
-
|
38
|
-
#pragma unroll
|
39
|
-
for (int ix0 = 0; ix0 < nint; ix0 += WARP_SIZE) {
|
40
|
-
if (need_check && i0*sizeof(block_q8_0)/QK8_0 + sizeof(int)*(ix0 + threadIdx.x) >= k*sizeof(block_q8_0)/QK8_0) {
|
41
|
-
break;
|
42
|
-
}
|
43
|
-
|
44
|
-
const int ix = ix0 + threadIdx.x;
|
45
|
-
vals[ix] = x0[ix];
|
46
|
-
}
|
47
|
-
|
48
|
-
__syncthreads();
|
49
|
-
|
50
|
-
#pragma unroll
|
51
|
-
for (int iy = 0; iy < CUDA_Q8_0_NE_ALIGN; iy += 2*WARP_SIZE) {
|
52
|
-
if (need_check && i0 + iy + 2*threadIdx.x >= k) {
|
53
|
-
return;
|
54
|
-
}
|
55
|
-
|
56
|
-
const half * b0 = ((const half *) vals) + (sizeof(block_q8_0)/sizeof(half)) * ((iy + 2*threadIdx.x)/QK8_0);
|
57
|
-
const half d = *b0;
|
58
|
-
const char2 qs = ((const char2 *) (b0 + 1))[threadIdx.x % (QK8_0/2)];
|
59
|
-
|
60
|
-
y2[iy/2 + threadIdx.x] = __hmul2(make_half2(qs.x, qs.y), __half2half2(d));
|
61
|
-
}
|
62
|
-
#else
|
63
|
-
GGML_UNUSED(vx);
|
64
|
-
GGML_UNUSED(y);
|
65
|
-
GGML_UNUSED(k);
|
66
|
-
NO_DEVICE_CODE;
|
67
|
-
#endif // __CUDA_ARCH__ >= CC_PASCAL
|
68
|
-
}
|
69
|
-
|
70
|
-
template<typename dst_t>
|
71
|
-
static __global__ void dequantize_block_q4_0(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
|
72
|
-
|
73
|
-
const int64_t i = blockIdx.x;
|
74
|
-
|
75
|
-
// assume 32 threads
|
76
|
-
const int64_t tid = threadIdx.x;
|
77
|
-
const int64_t il = tid/8;
|
78
|
-
const int64_t ir = tid%8;
|
79
|
-
const int64_t ib = 8*i + ir;
|
80
|
-
if (ib >= nb32) {
|
81
|
-
return;
|
82
|
-
}
|
83
|
-
|
84
|
-
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
85
|
-
|
86
|
-
const block_q4_0 * x = (const block_q4_0 *)vx + ib;
|
87
|
-
const float d = __half2float(x->d);
|
88
|
-
const float dm = -8*d;
|
89
|
-
|
90
|
-
const uint8_t * q = x->qs + 4*il;
|
91
|
-
|
92
|
-
for (int l = 0; l < 4; ++l) {
|
93
|
-
y[l+ 0] = d * (q[l] & 0xF) + dm;
|
94
|
-
y[l+16] = d * (q[l] >> 4) + dm;
|
95
|
-
}
|
96
|
-
}
|
97
|
-
|
98
|
-
template<typename dst_t>
|
99
|
-
static __global__ void dequantize_block_q4_1(const void * __restrict__ vx, dst_t * __restrict__ yy, int nb32) {
|
100
|
-
|
101
|
-
const int64_t i = blockIdx.x;
|
102
|
-
|
103
|
-
// assume 32 threads
|
104
|
-
const int64_t tid = threadIdx.x;
|
105
|
-
const int64_t il = tid/8;
|
106
|
-
const int64_t ir = tid%8;
|
107
|
-
const int64_t ib = 8*i + ir;
|
108
|
-
if (ib >= nb32) {
|
109
|
-
return;
|
110
|
-
}
|
111
|
-
|
112
|
-
dst_t * y = yy + 256*i + 32*ir + 4*il;
|
113
|
-
|
114
|
-
const block_q4_1 * x = (const block_q4_1 *)vx + ib;
|
115
|
-
const float2 d = __half22float2(x->dm);
|
116
|
-
|
117
|
-
const uint8_t * q = x->qs + 4*il;
|
118
|
-
|
119
|
-
for (int l = 0; l < 4; ++l) {
|
120
|
-
y[l+ 0] = d.x * (q[l] & 0xF) + d.y;
|
121
|
-
y[l+16] = d.x * (q[l] >> 4) + d.y;
|
122
|
-
}
|
123
|
-
}
|
124
|
-
|
125
|
-
//================================== k-quants
|
126
|
-
|
127
|
-
template<typename dst_t>
|
128
|
-
static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
129
|
-
|
130
|
-
const int64_t i = blockIdx.x;
|
131
|
-
const block_q2_K * x = (const block_q2_K *) vx;
|
132
|
-
|
133
|
-
const int64_t tid = threadIdx.x;
|
134
|
-
const int64_t n = tid/32;
|
135
|
-
const int64_t l = tid - 32*n;
|
136
|
-
const int64_t is = 8*n + l/16;
|
137
|
-
|
138
|
-
const uint8_t q = x[i].qs[32*n + l];
|
139
|
-
dst_t * y = yy + i*QK_K + 128*n;
|
140
|
-
|
141
|
-
float dall = __low2half(x[i].dm);
|
142
|
-
float dmin = __high2half(x[i].dm);
|
143
|
-
y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
|
144
|
-
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
|
145
|
-
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
|
146
|
-
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
|
147
|
-
}
|
148
|
-
|
149
|
-
template<typename dst_t>
|
150
|
-
static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
151
|
-
|
152
|
-
const int64_t i = blockIdx.x;
|
153
|
-
const block_q3_K * x = (const block_q3_K *) vx;
|
154
|
-
|
155
|
-
const int64_t r = threadIdx.x/4;
|
156
|
-
const int64_t tid = r/2;
|
157
|
-
const int64_t is0 = r%2;
|
158
|
-
const int64_t l0 = 16*is0 + 4*(threadIdx.x%4);
|
159
|
-
const int64_t n = tid / 4;
|
160
|
-
const int64_t j = tid - 4*n;
|
161
|
-
|
162
|
-
uint8_t m = 1 << (4*n + j);
|
163
|
-
int64_t is = 8*n + 2*j + is0;
|
164
|
-
int shift = 2*j;
|
165
|
-
|
166
|
-
int8_t us = is < 4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
|
167
|
-
is < 8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
|
168
|
-
is < 12 ? (x[i].scales[is-8] >> 4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
|
169
|
-
(x[i].scales[is-8] >> 4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
|
170
|
-
float d_all = x[i].d;
|
171
|
-
float dl = d_all * (us - 32);
|
172
|
-
|
173
|
-
dst_t * y = yy + i*QK_K + 128*n + 32*j;
|
174
|
-
const uint8_t * q = x[i].qs + 32*n;
|
175
|
-
const uint8_t * hm = x[i].hmask;
|
176
|
-
|
177
|
-
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
178
|
-
}
|
179
|
-
|
180
|
-
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
|
181
|
-
if (j < 4) {
|
182
|
-
d = q[j] & 63; m = q[j + 4] & 63;
|
183
|
-
} else {
|
184
|
-
d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
185
|
-
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
186
|
-
}
|
187
|
-
}
|
188
|
-
|
189
|
-
template<typename dst_t>
|
190
|
-
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
191
|
-
const block_q4_K * x = (const block_q4_K *) vx;
|
192
|
-
|
193
|
-
const int64_t i = blockIdx.x;
|
194
|
-
|
195
|
-
// assume 32 threads
|
196
|
-
const int64_t tid = threadIdx.x;
|
197
|
-
const int64_t il = tid/8;
|
198
|
-
const int64_t ir = tid%8;
|
199
|
-
const int64_t is = 2*il;
|
200
|
-
const int64_t n = 4;
|
201
|
-
|
202
|
-
dst_t * y = yy + i*QK_K + 64*il + n*ir;
|
203
|
-
|
204
|
-
const float dall = __low2half(x[i].dm);
|
205
|
-
const float dmin = __high2half(x[i].dm);
|
206
|
-
|
207
|
-
const uint8_t * q = x[i].qs + 32*il + n*ir;
|
208
|
-
|
209
|
-
uint8_t sc, m;
|
210
|
-
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
211
|
-
const float d1 = dall * sc; const float m1 = dmin * m;
|
212
|
-
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
213
|
-
const float d2 = dall * sc; const float m2 = dmin * m;
|
214
|
-
for (int l = 0; l < n; ++l) {
|
215
|
-
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
216
|
-
y[l +32] = d2 * (q[l] >> 4) - m2;
|
217
|
-
}
|
218
|
-
}
|
219
|
-
|
220
|
-
template<typename dst_t>
|
221
|
-
static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
222
|
-
const block_q5_K * x = (const block_q5_K *) vx;
|
223
|
-
|
224
|
-
const int64_t i = blockIdx.x;
|
225
|
-
|
226
|
-
// assume 64 threads - this is very slightly better than the one below
|
227
|
-
const int64_t tid = threadIdx.x;
|
228
|
-
const int64_t il = tid/16; // il is in 0...3
|
229
|
-
const int64_t ir = tid%16; // ir is in 0...15
|
230
|
-
const int64_t is = 2*il; // is is in 0...6
|
231
|
-
|
232
|
-
dst_t * y = yy + i*QK_K + 64*il + 2*ir;
|
233
|
-
|
234
|
-
const float dall = __low2half(x[i].dm);
|
235
|
-
const float dmin = __high2half(x[i].dm);
|
236
|
-
|
237
|
-
const uint8_t * ql = x[i].qs + 32*il + 2*ir;
|
238
|
-
const uint8_t * qh = x[i].qh + 2*ir;
|
239
|
-
|
240
|
-
uint8_t sc, m;
|
241
|
-
get_scale_min_k4(is + 0, x[i].scales, sc, m);
|
242
|
-
const float d1 = dall * sc; const float m1 = dmin * m;
|
243
|
-
get_scale_min_k4(is + 1, x[i].scales, sc, m);
|
244
|
-
const float d2 = dall * sc; const float m2 = dmin * m;
|
245
|
-
|
246
|
-
uint8_t hm = 1 << (2*il);
|
247
|
-
y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
|
248
|
-
y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
|
249
|
-
hm <<= 1;
|
250
|
-
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
|
251
|
-
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
|
252
|
-
}
|
253
|
-
|
254
|
-
template<typename dst_t>
|
255
|
-
static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
256
|
-
const block_q6_K * x = (const block_q6_K *) vx;
|
257
|
-
|
258
|
-
const int64_t i = blockIdx.x;
|
259
|
-
|
260
|
-
// assume 64 threads - this is very slightly better than the one below
|
261
|
-
const int64_t tid = threadIdx.x;
|
262
|
-
const int64_t ip = tid/32; // ip is 0 or 1
|
263
|
-
const int64_t il = tid - 32*ip; // 0...32
|
264
|
-
const int64_t is = 8*ip + il/16;
|
265
|
-
|
266
|
-
dst_t * y = yy + i*QK_K + 128*ip + il;
|
267
|
-
|
268
|
-
const float d = x[i].d;
|
269
|
-
|
270
|
-
const uint8_t * ql = x[i].ql + 64*ip + il;
|
271
|
-
const uint8_t qh = x[i].qh[32*ip + il];
|
272
|
-
const int8_t * sc = x[i].scales + is;
|
273
|
-
|
274
|
-
y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
275
|
-
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
276
|
-
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
277
|
-
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
278
|
-
}
|
279
|
-
|
280
|
-
template<typename dst_t>
|
281
|
-
static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
282
|
-
|
283
|
-
const int64_t i = blockIdx.x;
|
284
|
-
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
|
285
|
-
|
286
|
-
const int64_t tid = threadIdx.x;
|
287
|
-
const int64_t il = tid/8; // 0...3
|
288
|
-
const int64_t ib = tid%8; // 0...7
|
289
|
-
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
290
|
-
const uint16_t * q2 = x[i].qs + 4*ib;
|
291
|
-
const uint8_t * aux8 = (const uint8_t *)q2;
|
292
|
-
const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[il]);
|
293
|
-
const uint32_t aux32 = q2[2] | (q2[3] << 16);
|
294
|
-
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
|
295
|
-
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
296
|
-
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
297
|
-
}
|
298
|
-
|
299
|
-
template<typename dst_t>
|
300
|
-
static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
301
|
-
|
302
|
-
const int64_t i = blockIdx.x;
|
303
|
-
const block_iq2_xs * x = (const block_iq2_xs *) vx;
|
304
|
-
|
305
|
-
const int64_t tid = threadIdx.x;
|
306
|
-
const int64_t il = tid/8; // 0...3
|
307
|
-
const int64_t ib = tid%8; // 0...7
|
308
|
-
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
309
|
-
const uint16_t * q2 = x[i].qs + 4*ib;
|
310
|
-
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[il] & 511));
|
311
|
-
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
312
|
-
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
|
313
|
-
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
314
|
-
}
|
315
|
-
|
316
|
-
template<typename dst_t>
|
317
|
-
static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
318
|
-
|
319
|
-
const int64_t i = blockIdx.x;
|
320
|
-
const block_iq2_s * x = (const block_iq2_s *) vx;
|
321
|
-
|
322
|
-
const int64_t tid = threadIdx.x;
|
323
|
-
const int64_t il = tid/8; // 0...3
|
324
|
-
const int64_t ib = tid%8; // 0...7
|
325
|
-
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
326
|
-
const uint8_t * grid = (const uint8_t *)(iq2s_grid + (x[i].qs[4*ib+il] | ((x[i].qh[ib] << (8-2*il)) & 0x300)));
|
327
|
-
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
|
328
|
-
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
|
329
|
-
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
|
330
|
-
}
|
331
|
-
|
332
|
-
template<typename dst_t>
|
333
|
-
static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
334
|
-
|
335
|
-
const int64_t i = blockIdx.x;
|
336
|
-
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
337
|
-
|
338
|
-
const int64_t tid = threadIdx.x;
|
339
|
-
const int64_t il = tid/8; // 0...3
|
340
|
-
const int64_t ib = tid%8; // 0...7
|
341
|
-
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
342
|
-
const uint8_t * q3 = x[i].qs + 8*ib;
|
343
|
-
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
|
344
|
-
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
|
345
|
-
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
|
346
|
-
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
347
|
-
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
|
348
|
-
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
349
|
-
for (int j = 0; j < 4; ++j) {
|
350
|
-
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
351
|
-
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
352
|
-
}
|
353
|
-
}
|
354
|
-
|
355
|
-
template<typename dst_t>
|
356
|
-
static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
357
|
-
|
358
|
-
const int64_t i = blockIdx.x;
|
359
|
-
const block_iq3_s * x = (const block_iq3_s *) vx;
|
360
|
-
|
361
|
-
const int64_t tid = threadIdx.x;
|
362
|
-
const int64_t il = tid/8; // 0...3
|
363
|
-
const int64_t ib = tid%8; // 0...7
|
364
|
-
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
365
|
-
const uint8_t * qs = x[i].qs + 8*ib;
|
366
|
-
const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*il+0] | ((x[i].qh[ib] << (8-2*il)) & 256)));
|
367
|
-
const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*il+1] | ((x[i].qh[ib] << (7-2*il)) & 256)));
|
368
|
-
const float d = (float)x[i].d * (1 + 2*((x[i].scales[ib/2] >> 4*(ib%2)) & 0xf));
|
369
|
-
const uint8_t signs = x[i].signs[4*ib + il];
|
370
|
-
for (int j = 0; j < 4; ++j) {
|
371
|
-
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
372
|
-
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
373
|
-
}
|
374
|
-
}
|
375
|
-
|
376
|
-
template<typename dst_t>
|
377
|
-
static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
378
|
-
|
379
|
-
const int64_t i = blockIdx.x;
|
380
|
-
const block_iq1_s * x = (const block_iq1_s *) vx;
|
381
|
-
|
382
|
-
const int64_t tid = threadIdx.x;
|
383
|
-
const int64_t il = tid/8; // 0...3
|
384
|
-
const int64_t ib = tid%8; // 0...7
|
385
|
-
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
386
|
-
const float delta = x[i].qh[ib] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA;
|
387
|
-
const float d = (float)x[i].d * (2*((x[i].qh[ib] >> 12) & 7) + 1);
|
388
|
-
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
389
|
-
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[ib] >> 3*il) & 7) << 8)];
|
390
|
-
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
391
|
-
grid32[0] &= 0x0f0f0f0f;
|
392
|
-
for (int j = 0; j < 8; ++j) {
|
393
|
-
y[j] = d * (q[j] + delta);
|
394
|
-
}
|
395
|
-
}
|
396
|
-
|
397
|
-
template<typename dst_t>
|
398
|
-
static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
399
|
-
|
400
|
-
const int64_t i = blockIdx.x;
|
401
|
-
const block_iq1_m * x = (const block_iq1_m *) vx;
|
402
|
-
|
403
|
-
const int64_t tid = threadIdx.x;
|
404
|
-
const int64_t il = tid/8; // 0...3
|
405
|
-
const int64_t ib = tid%8; // 0...7
|
406
|
-
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
407
|
-
const uint16_t * sc = (const uint16_t *)x[i].scales;
|
408
|
-
iq1m_scale_t scale;
|
409
|
-
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
|
410
|
-
const int64_t ib16 = 2*ib + il/2; // sc[ib16/4] >> 3*(ib16%4) -> sc[ib/2] >> 3*((2*ib+il/2)%4);
|
411
|
-
const float d = (float)scale.f16 * (2*((sc[ib16/4] >> 3*(ib16%4)) & 0x7) + 1);
|
412
|
-
const float delta = x[i].qh[2*ib+il/2] & (0x08 << 4*(il%2)) ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA;
|
413
|
-
uint32_t grid32[2]; const int8_t * q = (const int8_t *)grid32;
|
414
|
-
grid32[0] = iq1s_grid_gpu[x[i].qs[4*ib+il] | (((x[i].qh[2*ib+il/2] >> 4*(il%2)) & 7) << 8)];
|
415
|
-
grid32[1] = (grid32[0] >> 4) & 0x0f0f0f0f;
|
416
|
-
grid32[0] &= 0x0f0f0f0f;
|
417
|
-
for (int j = 0; j < 8; ++j) {
|
418
|
-
y[j] = d * (q[j] + delta);
|
419
|
-
}
|
420
|
-
}
|
421
|
-
|
422
|
-
template<typename dst_t>
|
423
|
-
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
424
|
-
|
425
|
-
const int64_t i = blockIdx.x;
|
426
|
-
const block_iq4_nl * x = (const block_iq4_nl *) vx + i*(QK_K/QK4_NL);
|
427
|
-
|
428
|
-
const int64_t tid = threadIdx.x;
|
429
|
-
const int64_t il = tid/8; // 0...3
|
430
|
-
const int64_t ib = tid%8; // 0...7
|
431
|
-
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
432
|
-
const uint8_t * q4 = x[ib].qs + 4*il;
|
433
|
-
const float d = (float)x[ib].d;
|
434
|
-
for (int j = 0; j < 4; ++j) {
|
435
|
-
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
436
|
-
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
437
|
-
}
|
438
|
-
}
|
439
|
-
|
440
|
-
template<typename dst_t>
|
441
|
-
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
442
|
-
const int64_t i = blockIdx.x;
|
443
|
-
const block_iq4_xs * x = (const block_iq4_xs *)vx;
|
444
|
-
|
445
|
-
const int64_t tid = threadIdx.x;
|
446
|
-
const int64_t il = tid/8; // 0...3
|
447
|
-
const int64_t ib = tid%8; // 0...7
|
448
|
-
dst_t * y = yy + i*QK_K + 32*ib + 4*il;
|
449
|
-
const uint8_t * q4 = x[i].qs + 16*ib + 4*il;
|
450
|
-
const float d = (float)x[i].d * ((((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4)) - 32);
|
451
|
-
for (int j = 0; j < 4; ++j) {
|
452
|
-
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
|
453
|
-
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
|
454
|
-
}
|
455
|
-
}
|
456
|
-
|
457
|
-
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
|
458
|
-
static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
|
459
|
-
const int num_blocks = (k + 2*CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / (2*CUDA_DEQUANTIZE_BLOCK_SIZE);
|
460
|
-
dequantize_block<qk, qr, dequantize_kernel><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
461
|
-
}
|
462
|
-
|
463
|
-
static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half * __restrict__ y, const int64_t k, cudaStream_t stream) {
|
464
|
-
const int num_blocks = (k + CUDA_Q8_0_NE_ALIGN - 1) / CUDA_Q8_0_NE_ALIGN;
|
465
|
-
if (k % CUDA_Q8_0_NE_ALIGN == 0) {
|
466
|
-
const bool need_check = false;
|
467
|
-
dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
|
468
|
-
} else {
|
469
|
-
const bool need_check = true;
|
470
|
-
dequantize_block_q8_0_f16<need_check><<<num_blocks, WARP_SIZE, 0, stream>>>(vx, y, k);
|
471
|
-
}
|
472
|
-
}
|
473
|
-
|
474
|
-
template<typename dst_t>
|
475
|
-
static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
476
|
-
const int nb = k / QK_K;
|
477
|
-
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
478
|
-
}
|
479
|
-
|
480
|
-
template<typename dst_t>
|
481
|
-
static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
482
|
-
const int nb = k / QK_K;
|
483
|
-
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
484
|
-
}
|
485
|
-
|
486
|
-
template<typename dst_t>
|
487
|
-
static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
488
|
-
const int nb32 = k / 32;
|
489
|
-
const int nb = (k + 255) / 256;
|
490
|
-
dequantize_block_q4_0<<<nb, 32, 0, stream>>>(vx, y, nb32);
|
491
|
-
}
|
492
|
-
|
493
|
-
template<typename dst_t>
|
494
|
-
static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
495
|
-
const int nb32 = k / 32;
|
496
|
-
const int nb = (k + 255) / 256;
|
497
|
-
dequantize_block_q4_1<<<nb, 32, 0, stream>>>(vx, y, nb32);
|
498
|
-
}
|
499
|
-
|
500
|
-
template<typename dst_t>
|
501
|
-
static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
502
|
-
const int nb = k / QK_K;
|
503
|
-
dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
|
504
|
-
}
|
505
|
-
|
506
|
-
template<typename dst_t>
|
507
|
-
static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
508
|
-
const int nb = k / QK_K;
|
509
|
-
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
510
|
-
}
|
511
|
-
|
512
|
-
template<typename dst_t>
|
513
|
-
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
514
|
-
const int nb = k / QK_K;
|
515
|
-
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
516
|
-
}
|
517
|
-
|
518
|
-
template<typename dst_t>
|
519
|
-
static void dequantize_row_iq2_xxs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
520
|
-
const int nb = k / QK_K;
|
521
|
-
dequantize_block_iq2_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
522
|
-
}
|
523
|
-
|
524
|
-
template<typename dst_t>
|
525
|
-
static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
526
|
-
const int nb = k / QK_K;
|
527
|
-
dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
|
528
|
-
}
|
529
|
-
|
530
|
-
template<typename dst_t>
|
531
|
-
static void dequantize_row_iq2_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
532
|
-
const int nb = k / QK_K;
|
533
|
-
dequantize_block_iq2_s<<<nb, 32, 0, stream>>>(vx, y);
|
534
|
-
}
|
535
|
-
|
536
|
-
template<typename dst_t>
|
537
|
-
static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
538
|
-
const int nb = k / QK_K;
|
539
|
-
dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
540
|
-
}
|
541
|
-
|
542
|
-
template<typename dst_t>
|
543
|
-
static void dequantize_row_iq3_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
544
|
-
const int nb = k / QK_K;
|
545
|
-
dequantize_block_iq3_s<<<nb, 32, 0, stream>>>(vx, y);
|
546
|
-
}
|
547
|
-
|
548
|
-
template<typename dst_t>
|
549
|
-
static void dequantize_row_iq1_s_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
550
|
-
const int nb = k / QK_K;
|
551
|
-
dequantize_block_iq1_s<<<nb, 32, 0, stream>>>(vx, y);
|
552
|
-
}
|
553
|
-
|
554
|
-
template<typename dst_t>
|
555
|
-
static void dequantize_row_iq4_nl_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
556
|
-
const int nb = (k + QK_K - 1) / QK_K;
|
557
|
-
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
|
558
|
-
}
|
559
|
-
|
560
|
-
template<typename dst_t>
|
561
|
-
static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
562
|
-
const int nb = k / QK_K;
|
563
|
-
dequantize_block_iq1_m<<<nb, 32, 0, stream>>>(vx, y);
|
564
|
-
}
|
565
|
-
|
566
|
-
template<typename dst_t>
|
567
|
-
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
|
568
|
-
const int nb = (k + QK_K - 1) / QK_K;
|
569
|
-
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
|
570
|
-
}
|
571
|
-
|
572
|
-
template <typename src_t, typename dst_t>
|
573
|
-
static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k) {
|
574
|
-
const int64_t i = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
|
575
|
-
|
576
|
-
if (i >= k) {
|
577
|
-
return;
|
578
|
-
}
|
579
|
-
|
580
|
-
const src_t * x = (src_t *) vx;
|
581
|
-
|
582
|
-
y[i] = x[i];
|
583
|
-
}
|
584
|
-
|
585
|
-
template <typename src_t, typename dst_t>
|
586
|
-
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
|
587
|
-
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
588
|
-
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
589
|
-
}
|
590
|
-
|
591
|
-
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
592
|
-
switch (type) {
|
593
|
-
case GGML_TYPE_Q4_0:
|
594
|
-
return dequantize_row_q4_0_cuda;
|
595
|
-
case GGML_TYPE_Q4_1:
|
596
|
-
return dequantize_row_q4_1_cuda;
|
597
|
-
case GGML_TYPE_Q5_0:
|
598
|
-
return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
|
599
|
-
case GGML_TYPE_Q5_1:
|
600
|
-
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
601
|
-
case GGML_TYPE_Q8_0:
|
602
|
-
if (ggml_cuda_info().devices[ggml_cuda_get_device()].cc >= CC_PASCAL) {
|
603
|
-
return dequantize_block_q8_0_f16_cuda;
|
604
|
-
}
|
605
|
-
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
606
|
-
case GGML_TYPE_Q2_K:
|
607
|
-
return dequantize_row_q2_K_cuda;
|
608
|
-
case GGML_TYPE_Q3_K:
|
609
|
-
return dequantize_row_q3_K_cuda;
|
610
|
-
case GGML_TYPE_Q4_K:
|
611
|
-
return dequantize_row_q4_K_cuda;
|
612
|
-
case GGML_TYPE_Q5_K:
|
613
|
-
return dequantize_row_q5_K_cuda;
|
614
|
-
case GGML_TYPE_Q6_K:
|
615
|
-
return dequantize_row_q6_K_cuda;
|
616
|
-
case GGML_TYPE_IQ2_XXS:
|
617
|
-
return dequantize_row_iq2_xxs_cuda;
|
618
|
-
case GGML_TYPE_IQ2_XS:
|
619
|
-
return dequantize_row_iq2_xs_cuda;
|
620
|
-
case GGML_TYPE_IQ2_S:
|
621
|
-
return dequantize_row_iq2_s_cuda;
|
622
|
-
case GGML_TYPE_IQ3_XXS:
|
623
|
-
return dequantize_row_iq3_xxs_cuda;
|
624
|
-
case GGML_TYPE_IQ1_S:
|
625
|
-
return dequantize_row_iq1_s_cuda;
|
626
|
-
case GGML_TYPE_IQ1_M:
|
627
|
-
return dequantize_row_iq1_m_cuda;
|
628
|
-
case GGML_TYPE_IQ4_NL:
|
629
|
-
return dequantize_row_iq4_nl_cuda;
|
630
|
-
case GGML_TYPE_IQ4_XS:
|
631
|
-
return dequantize_row_iq4_xs_cuda;
|
632
|
-
case GGML_TYPE_IQ3_S:
|
633
|
-
return dequantize_row_iq3_s_cuda;
|
634
|
-
case GGML_TYPE_F32:
|
635
|
-
return convert_unary_cuda<float>;
|
636
|
-
default:
|
637
|
-
return nullptr;
|
638
|
-
}
|
639
|
-
}
|
640
|
-
|
641
|
-
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
642
|
-
switch (type) {
|
643
|
-
case GGML_TYPE_Q4_0:
|
644
|
-
return dequantize_row_q4_0_cuda;
|
645
|
-
case GGML_TYPE_Q4_1:
|
646
|
-
return dequantize_row_q4_1_cuda;
|
647
|
-
case GGML_TYPE_Q5_0:
|
648
|
-
return dequantize_block_cuda<QK5_0, QR5_0, dequantize_q5_0>;
|
649
|
-
case GGML_TYPE_Q5_1:
|
650
|
-
return dequantize_block_cuda<QK5_1, QR5_1, dequantize_q5_1>;
|
651
|
-
case GGML_TYPE_Q8_0:
|
652
|
-
return dequantize_block_cuda<QK8_0, QR8_0, dequantize_q8_0>;
|
653
|
-
case GGML_TYPE_Q2_K:
|
654
|
-
return dequantize_row_q2_K_cuda;
|
655
|
-
case GGML_TYPE_Q3_K:
|
656
|
-
return dequantize_row_q3_K_cuda;
|
657
|
-
case GGML_TYPE_Q4_K:
|
658
|
-
return dequantize_row_q4_K_cuda;
|
659
|
-
case GGML_TYPE_Q5_K:
|
660
|
-
return dequantize_row_q5_K_cuda;
|
661
|
-
case GGML_TYPE_Q6_K:
|
662
|
-
return dequantize_row_q6_K_cuda;
|
663
|
-
case GGML_TYPE_IQ2_XXS:
|
664
|
-
return dequantize_row_iq2_xxs_cuda;
|
665
|
-
case GGML_TYPE_IQ2_XS:
|
666
|
-
return dequantize_row_iq2_xs_cuda;
|
667
|
-
case GGML_TYPE_IQ2_S:
|
668
|
-
return dequantize_row_iq2_s_cuda;
|
669
|
-
case GGML_TYPE_IQ3_XXS:
|
670
|
-
return dequantize_row_iq3_xxs_cuda;
|
671
|
-
case GGML_TYPE_IQ1_S:
|
672
|
-
return dequantize_row_iq1_s_cuda;
|
673
|
-
case GGML_TYPE_IQ1_M:
|
674
|
-
return dequantize_row_iq1_m_cuda;
|
675
|
-
case GGML_TYPE_IQ4_NL:
|
676
|
-
return dequantize_row_iq4_nl_cuda;
|
677
|
-
case GGML_TYPE_IQ4_XS:
|
678
|
-
return dequantize_row_iq4_xs_cuda;
|
679
|
-
case GGML_TYPE_IQ3_S:
|
680
|
-
return dequantize_row_iq3_s_cuda;
|
681
|
-
case GGML_TYPE_F16:
|
682
|
-
return convert_unary_cuda<half>;
|
683
|
-
default:
|
684
|
-
return nullptr;
|
685
|
-
}
|
686
|
-
}
|