llama_cpp 0.16.2 → 0.17.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +18 -0
- data/README.md +7 -12
- data/ext/llama_cpp/extconf.rb +2 -43
- data/ext/llama_cpp/llama_cpp.cpp +8 -0
- data/lib/llama_cpp/version.rb +3 -3
- data/sig/llama_cpp.rbs +3 -0
- metadata +2 -171
- data/vendor/include/.gitkeep +0 -0
- data/vendor/lib/.gitkeep +0 -0
- data/vendor/tmp/llama.cpp/LICENSE +0 -21
- data/vendor/tmp/llama.cpp/Makefile +0 -1124
- data/vendor/tmp/llama.cpp/ggml-alloc.c +0 -1041
- data/vendor/tmp/llama.cpp/ggml-alloc.h +0 -76
- data/vendor/tmp/llama.cpp/ggml-backend-impl.h +0 -153
- data/vendor/tmp/llama.cpp/ggml-backend.c +0 -2225
- data/vendor/tmp/llama.cpp/ggml-backend.h +0 -236
- data/vendor/tmp/llama.cpp/ggml-blas.cpp +0 -363
- data/vendor/tmp/llama.cpp/ggml-blas.h +0 -23
- data/vendor/tmp/llama.cpp/ggml-common.h +0 -1805
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +0 -280
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +0 -196
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +0 -686
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +0 -490
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +0 -674
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +0 -319
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +0 -312
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +0 -345
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +0 -178
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +0 -88
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +0 -419
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +0 -221
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +0 -49
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +0 -94
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +0 -112
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +0 -271
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +0 -31
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +0 -206
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +0 -9
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +0 -8
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q2_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q3_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q6_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +0 -314
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +0 -51
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +0 -3069
- data/vendor/tmp/llama.cpp/ggml-cuda.h +0 -44
- data/vendor/tmp/llama.cpp/ggml-impl.h +0 -651
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +0 -2038
- data/vendor/tmp/llama.cpp/ggml-kompute.h +0 -46
- data/vendor/tmp/llama.cpp/ggml-metal.h +0 -66
- data/vendor/tmp/llama.cpp/ggml-metal.m +0 -3273
- data/vendor/tmp/llama.cpp/ggml-metal.metal +0 -6540
- data/vendor/tmp/llama.cpp/ggml-quants.c +0 -14994
- data/vendor/tmp/llama.cpp/ggml-quants.h +0 -133
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +0 -1178
- data/vendor/tmp/llama.cpp/ggml-rpc.h +0 -24
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +0 -6351
- data/vendor/tmp/llama.cpp/ggml-sycl.h +0 -40
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +0 -144508
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +0 -7183
- data/vendor/tmp/llama.cpp/ggml-vulkan.h +0 -29
- data/vendor/tmp/llama.cpp/ggml.c +0 -22506
- data/vendor/tmp/llama.cpp/ggml.h +0 -2458
- data/vendor/tmp/llama.cpp/llama.cpp +0 -18985
- data/vendor/tmp/llama.cpp/llama.h +0 -1147
- data/vendor/tmp/llama.cpp/scripts/get-flags.mk +0 -38
- data/vendor/tmp/llama.cpp/sgemm.cpp +0 -1032
- data/vendor/tmp/llama.cpp/sgemm.h +0 -14
- data/vendor/tmp/llama.cpp/unicode-data.cpp +0 -7033
- data/vendor/tmp/llama.cpp/unicode-data.h +0 -20
- data/vendor/tmp/llama.cpp/unicode.cpp +0 -810
- data/vendor/tmp/llama.cpp/unicode.h +0 -63
@@ -1,3273 +0,0 @@
|
|
1
|
-
#import "ggml-metal.h"
|
2
|
-
|
3
|
-
#import "ggml-backend-impl.h"
|
4
|
-
#import "ggml.h"
|
5
|
-
|
6
|
-
#import <Foundation/Foundation.h>
|
7
|
-
|
8
|
-
#import <Metal/Metal.h>
|
9
|
-
|
10
|
-
#undef MIN
|
11
|
-
#undef MAX
|
12
|
-
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
13
|
-
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
14
|
-
|
15
|
-
#ifdef GGML_METAL_NDEBUG
|
16
|
-
#define GGML_METAL_LOG_INFO(...)
|
17
|
-
#define GGML_METAL_LOG_WARN(...)
|
18
|
-
#define GGML_METAL_LOG_ERROR(...)
|
19
|
-
#else
|
20
|
-
#define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
|
21
|
-
#define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
|
22
|
-
#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
|
23
|
-
#endif
|
24
|
-
|
25
|
-
#define UNUSED(x) (void)(x)
|
26
|
-
|
27
|
-
struct ggml_metal_kernel {
|
28
|
-
id<MTLComputePipelineState> pipeline;
|
29
|
-
};
|
30
|
-
|
31
|
-
enum ggml_metal_kernel_type {
|
32
|
-
GGML_METAL_KERNEL_TYPE_ADD,
|
33
|
-
GGML_METAL_KERNEL_TYPE_ADD_ROW,
|
34
|
-
GGML_METAL_KERNEL_TYPE_MUL,
|
35
|
-
GGML_METAL_KERNEL_TYPE_MUL_ROW,
|
36
|
-
GGML_METAL_KERNEL_TYPE_DIV,
|
37
|
-
GGML_METAL_KERNEL_TYPE_DIV_ROW,
|
38
|
-
GGML_METAL_KERNEL_TYPE_REPEAT_F32,
|
39
|
-
GGML_METAL_KERNEL_TYPE_REPEAT_F16,
|
40
|
-
GGML_METAL_KERNEL_TYPE_REPEAT_I32,
|
41
|
-
GGML_METAL_KERNEL_TYPE_REPEAT_I16,
|
42
|
-
GGML_METAL_KERNEL_TYPE_SCALE,
|
43
|
-
GGML_METAL_KERNEL_TYPE_SCALE_4,
|
44
|
-
GGML_METAL_KERNEL_TYPE_CLAMP,
|
45
|
-
GGML_METAL_KERNEL_TYPE_TANH,
|
46
|
-
GGML_METAL_KERNEL_TYPE_RELU,
|
47
|
-
GGML_METAL_KERNEL_TYPE_SIGMOID,
|
48
|
-
GGML_METAL_KERNEL_TYPE_GELU,
|
49
|
-
GGML_METAL_KERNEL_TYPE_GELU_4,
|
50
|
-
GGML_METAL_KERNEL_TYPE_GELU_QUICK,
|
51
|
-
GGML_METAL_KERNEL_TYPE_GELU_QUICK_4,
|
52
|
-
GGML_METAL_KERNEL_TYPE_SILU,
|
53
|
-
GGML_METAL_KERNEL_TYPE_SILU_4,
|
54
|
-
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16,
|
55
|
-
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4,
|
56
|
-
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32,
|
57
|
-
GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4,
|
58
|
-
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF,
|
59
|
-
GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8,
|
60
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_F32,
|
61
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_F16,
|
62
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0,
|
63
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1,
|
64
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0,
|
65
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1,
|
66
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0,
|
67
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K,
|
68
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K,
|
69
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K,
|
70
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K,
|
71
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,
|
72
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,
|
73
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
|
74
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,
|
75
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S,
|
76
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S,
|
77
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S,
|
78
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M,
|
79
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL,
|
80
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS,
|
81
|
-
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
82
|
-
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
83
|
-
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
|
84
|
-
GGML_METAL_KERNEL_TYPE_NORM,
|
85
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32,
|
86
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16,
|
87
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32,
|
88
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW,
|
89
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4,
|
90
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32,
|
91
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32,
|
92
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32,
|
93
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32,
|
94
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32,
|
95
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32,
|
96
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32,
|
97
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32,
|
98
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32,
|
99
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,
|
100
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,
|
101
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
|
102
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,
|
103
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32,
|
104
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32,
|
105
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32,
|
106
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32,
|
107
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32,
|
108
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32,
|
109
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
110
|
-
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
|
111
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
|
112
|
-
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW,
|
113
|
-
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4,
|
114
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32,
|
115
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32,
|
116
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32,
|
117
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32,
|
118
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32,
|
119
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32,
|
120
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32,
|
121
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32,
|
122
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32,
|
123
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,
|
124
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,
|
125
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
|
126
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,
|
127
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32,
|
128
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32,
|
129
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32,
|
130
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32,
|
131
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32,
|
132
|
-
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32,
|
133
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
134
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
|
135
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
|
136
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32,
|
137
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32,
|
138
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32,
|
139
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32,
|
140
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32,
|
141
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32,
|
142
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32,
|
143
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32,
|
144
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,
|
145
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,
|
146
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
|
147
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,
|
148
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32,
|
149
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32,
|
150
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32,
|
151
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32,
|
152
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32,
|
153
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32,
|
154
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
155
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
|
156
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
|
157
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32,
|
158
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32,
|
159
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32,
|
160
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32,
|
161
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32,
|
162
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32,
|
163
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32,
|
164
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32,
|
165
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32,
|
166
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,
|
167
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
|
168
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32,
|
169
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32,
|
170
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32,
|
171
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32,
|
172
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32,
|
173
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32,
|
174
|
-
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32,
|
175
|
-
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32,
|
176
|
-
GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16,
|
177
|
-
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32,
|
178
|
-
GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16,
|
179
|
-
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
|
180
|
-
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
|
181
|
-
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
182
|
-
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
183
|
-
GGML_METAL_KERNEL_TYPE_ARANGE_F32,
|
184
|
-
GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32,
|
185
|
-
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
186
|
-
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC,
|
187
|
-
GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32,
|
188
|
-
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64,
|
189
|
-
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80,
|
190
|
-
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96,
|
191
|
-
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112,
|
192
|
-
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128,
|
193
|
-
//GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261
|
194
|
-
GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128,
|
195
|
-
//GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, // https://github.com/ggerganov/llama.cpp/issues/7261
|
196
|
-
GGML_METAL_KERNEL_TYPE_CPY_F32_F16,
|
197
|
-
GGML_METAL_KERNEL_TYPE_CPY_F32_F32,
|
198
|
-
GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0,
|
199
|
-
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0,
|
200
|
-
GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1,
|
201
|
-
GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0,
|
202
|
-
GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1,
|
203
|
-
GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL,
|
204
|
-
GGML_METAL_KERNEL_TYPE_CPY_F16_F16,
|
205
|
-
GGML_METAL_KERNEL_TYPE_CPY_F16_F32,
|
206
|
-
GGML_METAL_KERNEL_TYPE_CONCAT,
|
207
|
-
GGML_METAL_KERNEL_TYPE_SQR,
|
208
|
-
GGML_METAL_KERNEL_TYPE_SUM_ROWS,
|
209
|
-
|
210
|
-
GGML_METAL_KERNEL_TYPE_COUNT
|
211
|
-
};
|
212
|
-
|
213
|
-
struct ggml_metal_context {
|
214
|
-
int n_cb;
|
215
|
-
|
216
|
-
id<MTLDevice> device;
|
217
|
-
id<MTLCommandQueue> queue;
|
218
|
-
|
219
|
-
dispatch_queue_t d_queue;
|
220
|
-
|
221
|
-
struct ggml_metal_kernel kernels[GGML_METAL_KERNEL_TYPE_COUNT];
|
222
|
-
|
223
|
-
bool support_simdgroup_reduction;
|
224
|
-
bool support_simdgroup_mm;
|
225
|
-
|
226
|
-
bool should_capture_next_compute;
|
227
|
-
};
|
228
|
-
|
229
|
-
// MSL code
|
230
|
-
// TODO: move the contents here when ready
|
231
|
-
// for now it is easier to work in a separate file
|
232
|
-
// static NSString * const msl_library_source = @"see metal.metal";
|
233
|
-
|
234
|
-
// Here to assist with NSBundle Path Hack
|
235
|
-
@interface GGMLMetalClass : NSObject
|
236
|
-
@end
|
237
|
-
@implementation GGMLMetalClass
|
238
|
-
@end
|
239
|
-
|
240
|
-
static void ggml_metal_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
|
241
|
-
fprintf(stderr, "%s", msg);
|
242
|
-
|
243
|
-
UNUSED(level);
|
244
|
-
UNUSED(user_data);
|
245
|
-
}
|
246
|
-
|
247
|
-
ggml_log_callback ggml_metal_log_callback = ggml_metal_default_log_callback;
|
248
|
-
void * ggml_metal_log_user_data = NULL;
|
249
|
-
|
250
|
-
GGML_ATTRIBUTE_FORMAT(2, 3)
|
251
|
-
static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){
|
252
|
-
if (ggml_metal_log_callback != NULL) {
|
253
|
-
va_list args;
|
254
|
-
va_start(args, format);
|
255
|
-
char buffer[128];
|
256
|
-
int len = vsnprintf(buffer, 128, format, args);
|
257
|
-
if (len < 128) {
|
258
|
-
ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data);
|
259
|
-
} else {
|
260
|
-
char* buffer2 = malloc(len+1);
|
261
|
-
va_end(args);
|
262
|
-
va_start(args, format);
|
263
|
-
vsnprintf(buffer2, len+1, format, args);
|
264
|
-
buffer2[len] = 0;
|
265
|
-
ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data);
|
266
|
-
free(buffer2);
|
267
|
-
}
|
268
|
-
va_end(args);
|
269
|
-
}
|
270
|
-
}
|
271
|
-
|
272
|
-
static void * ggml_metal_host_malloc(size_t n) {
|
273
|
-
void * data = NULL;
|
274
|
-
|
275
|
-
#if TARGET_OS_OSX
|
276
|
-
kern_return_t err = vm_allocate((vm_map_t) mach_task_self(), (void *) &data, n, VM_FLAGS_ANYWHERE);
|
277
|
-
if (err != KERN_SUCCESS) {
|
278
|
-
GGML_METAL_LOG_ERROR("%s: error: vm_allocate failed\n", __func__);
|
279
|
-
return NULL;
|
280
|
-
}
|
281
|
-
#else
|
282
|
-
const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
|
283
|
-
if (result != 0) {
|
284
|
-
GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__);
|
285
|
-
return NULL;
|
286
|
-
}
|
287
|
-
#endif
|
288
|
-
|
289
|
-
return data;
|
290
|
-
}
|
291
|
-
|
292
|
-
static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
293
|
-
GGML_METAL_LOG_INFO("%s: allocating\n", __func__);
|
294
|
-
|
295
|
-
#if TARGET_OS_OSX && !GGML_METAL_NDEBUG
|
296
|
-
// Show all the Metal device instances in the system
|
297
|
-
NSArray * devices = MTLCopyAllDevices();
|
298
|
-
for (id<MTLDevice> device in devices) {
|
299
|
-
GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [[device name] UTF8String]);
|
300
|
-
}
|
301
|
-
[devices release]; // since it was created by a *Copy* C method
|
302
|
-
#endif
|
303
|
-
|
304
|
-
// Pick and show default Metal device
|
305
|
-
id<MTLDevice> device = MTLCreateSystemDefaultDevice();
|
306
|
-
GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]);
|
307
|
-
|
308
|
-
// Configure context
|
309
|
-
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
310
|
-
ctx->device = device;
|
311
|
-
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
|
312
|
-
ctx->queue = [ctx->device newCommandQueue];
|
313
|
-
ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT);
|
314
|
-
|
315
|
-
id<MTLLibrary> metal_library;
|
316
|
-
|
317
|
-
// load library
|
318
|
-
//
|
319
|
-
// - first check if the library is embedded
|
320
|
-
// - then check if the library is in the bundle
|
321
|
-
// - if not found, load the source and compile it
|
322
|
-
// - if that fails, return NULL
|
323
|
-
{
|
324
|
-
NSBundle * bundle = nil;
|
325
|
-
#ifdef SWIFT_PACKAGE
|
326
|
-
bundle = SWIFTPM_MODULE_BUNDLE;
|
327
|
-
#else
|
328
|
-
bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
329
|
-
#endif
|
330
|
-
|
331
|
-
NSError * error = nil;
|
332
|
-
|
333
|
-
#if GGML_METAL_EMBED_LIBRARY
|
334
|
-
const bool try_metallib = false;
|
335
|
-
#else
|
336
|
-
const bool try_metallib = true;
|
337
|
-
#endif
|
338
|
-
|
339
|
-
NSString * path_lib = [bundle pathForResource:@"default" ofType:@"metallib"];
|
340
|
-
if (try_metallib && path_lib != nil) {
|
341
|
-
// pre-compiled library found
|
342
|
-
NSURL * libURL = [NSURL fileURLWithPath:path_lib];
|
343
|
-
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path_lib UTF8String]);
|
344
|
-
|
345
|
-
metal_library = [ctx->device newLibraryWithURL:libURL error:&error];
|
346
|
-
if (error) {
|
347
|
-
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
348
|
-
return NULL;
|
349
|
-
}
|
350
|
-
} else {
|
351
|
-
#if GGML_METAL_EMBED_LIBRARY
|
352
|
-
GGML_METAL_LOG_INFO("%s: using embedded metal library\n", __func__);
|
353
|
-
|
354
|
-
extern const char ggml_metallib_start[];
|
355
|
-
extern const char ggml_metallib_end[];
|
356
|
-
|
357
|
-
NSString * src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding];
|
358
|
-
#else
|
359
|
-
GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__);
|
360
|
-
|
361
|
-
NSString * path_source;
|
362
|
-
NSString * path_resource = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"];
|
363
|
-
|
364
|
-
GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, path_resource ? [path_resource UTF8String] : "nil");
|
365
|
-
|
366
|
-
if (path_resource) {
|
367
|
-
path_source = [path_resource stringByAppendingPathComponent:@"ggml-metal.metal"];
|
368
|
-
} else {
|
369
|
-
path_source = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
|
370
|
-
}
|
371
|
-
|
372
|
-
if (path_source == nil) {
|
373
|
-
GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__);
|
374
|
-
path_source = @"ggml-metal.metal";
|
375
|
-
}
|
376
|
-
|
377
|
-
GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path_source UTF8String]);
|
378
|
-
|
379
|
-
NSString * src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error];
|
380
|
-
if (error) {
|
381
|
-
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
382
|
-
return NULL;
|
383
|
-
}
|
384
|
-
#endif // GGML_METAL_EMBED_LIBRARY
|
385
|
-
|
386
|
-
@autoreleasepool {
|
387
|
-
// dictionary of preprocessor macros
|
388
|
-
NSMutableDictionary * prep = [NSMutableDictionary dictionary];
|
389
|
-
|
390
|
-
MTLCompileOptions* options = [MTLCompileOptions new];
|
391
|
-
options.preprocessorMacros = prep;
|
392
|
-
|
393
|
-
//[options setFastMathEnabled:false];
|
394
|
-
|
395
|
-
metal_library = [ctx->device newLibraryWithSource:src options:options error:&error];
|
396
|
-
if (error) {
|
397
|
-
GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
398
|
-
return NULL;
|
399
|
-
}
|
400
|
-
}
|
401
|
-
}
|
402
|
-
}
|
403
|
-
|
404
|
-
// print MTL GPU family:
|
405
|
-
GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]);
|
406
|
-
|
407
|
-
const NSInteger MTLGPUFamilyMetal3 = 5001;
|
408
|
-
|
409
|
-
// determine max supported GPU family
|
410
|
-
// https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
411
|
-
// https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
412
|
-
{
|
413
|
-
for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) {
|
414
|
-
if ([ctx->device supportsFamily:i]) {
|
415
|
-
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i);
|
416
|
-
break;
|
417
|
-
}
|
418
|
-
}
|
419
|
-
|
420
|
-
for (int i = MTLGPUFamilyCommon1 + 5; i >= MTLGPUFamilyCommon1; --i) {
|
421
|
-
if ([ctx->device supportsFamily:i]) {
|
422
|
-
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyCommon%d (%d)\n", __func__, i - (int) MTLGPUFamilyCommon1 + 1, i);
|
423
|
-
break;
|
424
|
-
}
|
425
|
-
}
|
426
|
-
|
427
|
-
for (int i = MTLGPUFamilyMetal3 + 5; i >= MTLGPUFamilyMetal3; --i) {
|
428
|
-
if ([ctx->device supportsFamily:i]) {
|
429
|
-
GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyMetal%d (%d)\n", __func__, i - (int) MTLGPUFamilyMetal3 + 3, i);
|
430
|
-
break;
|
431
|
-
}
|
432
|
-
}
|
433
|
-
}
|
434
|
-
|
435
|
-
ctx->support_simdgroup_reduction = [ctx->device supportsFamily:MTLGPUFamilyApple7];
|
436
|
-
ctx->support_simdgroup_reduction |= [ctx->device supportsFamily:MTLGPUFamilyMetal3];
|
437
|
-
|
438
|
-
ctx->support_simdgroup_mm = [ctx->device supportsFamily:MTLGPUFamilyApple7];
|
439
|
-
|
440
|
-
GGML_METAL_LOG_INFO("%s: simdgroup reduction support = %s\n", __func__, ctx->support_simdgroup_reduction ? "true" : "false");
|
441
|
-
GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false");
|
442
|
-
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
443
|
-
|
444
|
-
ctx->should_capture_next_compute = false;
|
445
|
-
|
446
|
-
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
|
447
|
-
if (@available(macOS 10.12, iOS 16.0, *)) {
|
448
|
-
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
|
449
|
-
}
|
450
|
-
#elif TARGET_OS_OSX
|
451
|
-
if (ctx->device.maxTransferRate != 0) {
|
452
|
-
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6);
|
453
|
-
} else {
|
454
|
-
GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__);
|
455
|
-
}
|
456
|
-
#endif
|
457
|
-
|
458
|
-
// load kernels
|
459
|
-
{
|
460
|
-
NSError * error = nil;
|
461
|
-
|
462
|
-
for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) {
|
463
|
-
ctx->kernels[i].pipeline = nil;
|
464
|
-
}
|
465
|
-
|
466
|
-
/*
|
467
|
-
GGML_METAL_LOG_INFO("%s: loaded %-40s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \
|
468
|
-
(int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \
|
469
|
-
(int) kernel->pipeline.threadExecutionWidth); \
|
470
|
-
*/
|
471
|
-
#define GGML_METAL_ADD_KERNEL(e, name, supported) \
|
472
|
-
if (supported) { \
|
473
|
-
struct ggml_metal_kernel * kernel = &ctx->kernels[e]; \
|
474
|
-
id<MTLFunction> metal_function = [metal_library newFunctionWithName:@"kernel_"#name]; \
|
475
|
-
kernel->pipeline = [ctx->device newComputePipelineStateWithFunction:metal_function error:&error]; \
|
476
|
-
[metal_function release]; \
|
477
|
-
if (error) { \
|
478
|
-
GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \
|
479
|
-
[metal_library release]; \
|
480
|
-
return NULL; \
|
481
|
-
} \
|
482
|
-
} else { \
|
483
|
-
GGML_METAL_LOG_WARN("%s: skipping %-40s (not supported)\n", __func__, "kernel_"#name); \
|
484
|
-
}
|
485
|
-
|
486
|
-
// simd_sum and simd_max requires MTLGPUFamilyApple7
|
487
|
-
|
488
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true);
|
489
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true);
|
490
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true);
|
491
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true);
|
492
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true);
|
493
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true);
|
494
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F32, repeat_f32, true);
|
495
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_F16, repeat_f16, true);
|
496
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I32, repeat_i32, true);
|
497
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_REPEAT_I16, repeat_i16, true);
|
498
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true);
|
499
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true);
|
500
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true);
|
501
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true);
|
502
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true);
|
503
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SIGMOID, sigmoid, true);
|
504
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true);
|
505
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true);
|
506
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true);
|
507
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true);
|
508
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true);
|
509
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true);
|
510
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16, soft_max_f16, ctx->support_simdgroup_reduction);
|
511
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4, soft_max_f16_4, ctx->support_simdgroup_reduction);
|
512
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32, soft_max_f32, ctx->support_simdgroup_reduction);
|
513
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4, soft_max_f32_4, ctx->support_simdgroup_reduction);
|
514
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true);
|
515
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true);
|
516
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true);
|
517
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true);
|
518
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true);
|
519
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true);
|
520
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true);
|
521
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true);
|
522
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true);
|
523
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true);
|
524
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true);
|
525
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true);
|
526
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true);
|
527
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true);
|
528
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true);
|
529
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
|
530
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
|
531
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true);
|
532
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true);
|
533
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true);
|
534
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true);
|
535
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true);
|
536
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true);
|
537
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
538
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
|
539
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
|
540
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true);
|
541
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction);
|
542
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction);
|
543
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction);
|
544
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, ctx->support_simdgroup_reduction);
|
545
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, ctx->support_simdgroup_reduction);
|
546
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, ctx->support_simdgroup_reduction);
|
547
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, ctx->support_simdgroup_reduction);
|
548
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, ctx->support_simdgroup_reduction);
|
549
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, ctx->support_simdgroup_reduction);
|
550
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, ctx->support_simdgroup_reduction);
|
551
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, ctx->support_simdgroup_reduction);
|
552
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, ctx->support_simdgroup_reduction);
|
553
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, ctx->support_simdgroup_reduction);
|
554
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, ctx->support_simdgroup_reduction);
|
555
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction);
|
556
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction);
|
557
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
558
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
559
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction);
|
560
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction);
|
561
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction);
|
562
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, ctx->support_simdgroup_reduction);
|
563
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
564
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction);
|
565
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
|
566
|
-
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
|
567
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
|
568
|
-
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, ctx->support_simdgroup_reduction);
|
569
|
-
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, ctx->support_simdgroup_reduction);
|
570
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, ctx->support_simdgroup_reduction);
|
571
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, ctx->support_simdgroup_reduction);
|
572
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, ctx->support_simdgroup_reduction);
|
573
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, ctx->support_simdgroup_reduction);
|
574
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, ctx->support_simdgroup_reduction);
|
575
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, ctx->support_simdgroup_reduction);
|
576
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, ctx->support_simdgroup_reduction);
|
577
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, ctx->support_simdgroup_reduction);
|
578
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, ctx->support_simdgroup_reduction);
|
579
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction);
|
580
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction);
|
581
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
582
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
583
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction);
|
584
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction);
|
585
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction);
|
586
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, ctx->support_simdgroup_reduction);
|
587
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction);
|
588
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction);
|
589
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
|
590
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
|
591
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm);
|
592
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, ctx->support_simdgroup_mm);
|
593
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, ctx->support_simdgroup_mm);
|
594
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, ctx->support_simdgroup_mm);
|
595
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, ctx->support_simdgroup_mm);
|
596
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, ctx->support_simdgroup_mm);
|
597
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, ctx->support_simdgroup_mm);
|
598
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, ctx->support_simdgroup_mm);
|
599
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, ctx->support_simdgroup_mm);
|
600
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm);
|
601
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm);
|
602
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm);
|
603
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
604
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm);
|
605
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm);
|
606
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm);
|
607
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, ctx->support_simdgroup_mm);
|
608
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm);
|
609
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm);
|
610
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
|
611
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
|
612
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm);
|
613
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, ctx->support_simdgroup_mm);
|
614
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, ctx->support_simdgroup_mm);
|
615
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, ctx->support_simdgroup_mm);
|
616
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, ctx->support_simdgroup_mm);
|
617
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, ctx->support_simdgroup_mm);
|
618
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, ctx->support_simdgroup_mm);
|
619
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, ctx->support_simdgroup_mm);
|
620
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, ctx->support_simdgroup_mm);
|
621
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm);
|
622
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm);
|
623
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm);
|
624
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
625
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm);
|
626
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm);
|
627
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm);
|
628
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, ctx->support_simdgroup_mm);
|
629
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm);
|
630
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm);
|
631
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32, rope_norm_f32, true);
|
632
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16, rope_norm_f16, true);
|
633
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32, rope_neox_f32, true);
|
634
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16, rope_neox_f16, true);
|
635
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
|
636
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
|
637
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
638
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
639
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true);
|
640
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true);
|
641
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
642
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true);
|
643
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true);
|
644
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64, flash_attn_ext_f16_h64, ctx->support_simdgroup_mm);
|
645
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80, flash_attn_ext_f16_h80, ctx->support_simdgroup_mm);
|
646
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96, flash_attn_ext_f16_h96, ctx->support_simdgroup_mm);
|
647
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112, flash_attn_ext_f16_h112, ctx->support_simdgroup_mm);
|
648
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128, flash_attn_ext_f16_h128, ctx->support_simdgroup_mm);
|
649
|
-
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256, flash_attn_ext_f16_h256, ctx->support_simdgroup_mm);
|
650
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128, flash_attn_ext_vec_f16_h128, ctx->support_simdgroup_reduction);
|
651
|
-
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256, flash_attn_ext_vec_f16_h256, ctx->support_simdgroup_reduction);
|
652
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true);
|
653
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true);
|
654
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true);
|
655
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true);
|
656
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true);
|
657
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true);
|
658
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true);
|
659
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true);
|
660
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true);
|
661
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true);
|
662
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true);
|
663
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true);
|
664
|
-
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true);
|
665
|
-
}
|
666
|
-
|
667
|
-
[metal_library release];
|
668
|
-
return ctx;
|
669
|
-
}
|
670
|
-
|
671
|
-
static void ggml_metal_free(struct ggml_metal_context * ctx) {
|
672
|
-
GGML_METAL_LOG_INFO("%s: deallocating\n", __func__);
|
673
|
-
|
674
|
-
for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) {
|
675
|
-
[ctx->kernels[i].pipeline release];
|
676
|
-
}
|
677
|
-
|
678
|
-
[ctx->queue release];
|
679
|
-
[ctx->device release];
|
680
|
-
|
681
|
-
dispatch_release(ctx->d_queue);
|
682
|
-
|
683
|
-
free(ctx);
|
684
|
-
}
|
685
|
-
|
686
|
-
// temporarily defined here for compatibility between ggml-backend and the old API
|
687
|
-
|
688
|
-
struct ggml_backend_metal_buffer {
|
689
|
-
void * data;
|
690
|
-
size_t size;
|
691
|
-
|
692
|
-
id<MTLBuffer> metal;
|
693
|
-
};
|
694
|
-
|
695
|
-
struct ggml_backend_metal_buffer_context {
|
696
|
-
void * all_data;
|
697
|
-
size_t all_size;
|
698
|
-
bool owned;
|
699
|
-
|
700
|
-
// multiple buffers are used only to avoid the maximum buffer size limitation when using mmap
|
701
|
-
int n_buffers;
|
702
|
-
struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
703
|
-
};
|
704
|
-
|
705
|
-
// finds the Metal buffer that contains the tensor data on the GPU device
|
706
|
-
// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
|
707
|
-
// Metal buffer based on the host memory pointer
|
708
|
-
//
|
709
|
-
static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs) {
|
710
|
-
//GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
|
711
|
-
|
712
|
-
const int64_t tsize = ggml_nbytes(t);
|
713
|
-
|
714
|
-
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
|
715
|
-
|
716
|
-
struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context;
|
717
|
-
|
718
|
-
// find the view that contains the tensor fully
|
719
|
-
for (int i = 0; i < buf_ctx->n_buffers; ++i) {
|
720
|
-
const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data;
|
721
|
-
|
722
|
-
//GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size);
|
723
|
-
if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) {
|
724
|
-
*offs = (size_t) ioffs;
|
725
|
-
|
726
|
-
//GGML_METAL_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs);
|
727
|
-
|
728
|
-
return buf_ctx->buffers[i].metal;
|
729
|
-
}
|
730
|
-
}
|
731
|
-
|
732
|
-
GGML_METAL_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name);
|
733
|
-
|
734
|
-
return nil;
|
735
|
-
}
|
736
|
-
|
737
|
-
static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) {
|
738
|
-
for (size_t i = 0, n = 3; i < n; ++i) {
|
739
|
-
if (op->src[i] != NULL && op->src[i]->type == GGML_TYPE_BF16) {
|
740
|
-
return false;
|
741
|
-
}
|
742
|
-
}
|
743
|
-
|
744
|
-
switch (op->op) {
|
745
|
-
case GGML_OP_UNARY:
|
746
|
-
switch (ggml_get_unary_op(op)) {
|
747
|
-
case GGML_UNARY_OP_TANH:
|
748
|
-
case GGML_UNARY_OP_RELU:
|
749
|
-
case GGML_UNARY_OP_SIGMOID:
|
750
|
-
case GGML_UNARY_OP_GELU:
|
751
|
-
case GGML_UNARY_OP_GELU_QUICK:
|
752
|
-
case GGML_UNARY_OP_SILU:
|
753
|
-
return ggml_is_contiguous(op->src[0]);
|
754
|
-
default:
|
755
|
-
return false;
|
756
|
-
}
|
757
|
-
case GGML_OP_NONE:
|
758
|
-
case GGML_OP_RESHAPE:
|
759
|
-
case GGML_OP_VIEW:
|
760
|
-
case GGML_OP_TRANSPOSE:
|
761
|
-
case GGML_OP_PERMUTE:
|
762
|
-
case GGML_OP_CONCAT:
|
763
|
-
case GGML_OP_ADD:
|
764
|
-
case GGML_OP_ACC:
|
765
|
-
case GGML_OP_MUL:
|
766
|
-
case GGML_OP_DIV:
|
767
|
-
case GGML_OP_REPEAT:
|
768
|
-
case GGML_OP_SCALE:
|
769
|
-
case GGML_OP_CLAMP:
|
770
|
-
case GGML_OP_SQR:
|
771
|
-
case GGML_OP_SUM_ROWS:
|
772
|
-
return true;
|
773
|
-
case GGML_OP_SOFT_MAX:
|
774
|
-
case GGML_OP_RMS_NORM:
|
775
|
-
case GGML_OP_GROUP_NORM:
|
776
|
-
return ctx->support_simdgroup_reduction;
|
777
|
-
case GGML_OP_NORM:
|
778
|
-
case GGML_OP_ROPE:
|
779
|
-
case GGML_OP_IM2COL:
|
780
|
-
return true;
|
781
|
-
case GGML_OP_POOL_1D:
|
782
|
-
case GGML_OP_POOL_2D:
|
783
|
-
return false;
|
784
|
-
case GGML_OP_UPSCALE:
|
785
|
-
case GGML_OP_PAD:
|
786
|
-
case GGML_OP_ARANGE:
|
787
|
-
case GGML_OP_TIMESTEP_EMBEDDING:
|
788
|
-
case GGML_OP_ARGSORT:
|
789
|
-
case GGML_OP_LEAKY_RELU:
|
790
|
-
return true;
|
791
|
-
case GGML_OP_FLASH_ATTN_EXT:
|
792
|
-
if (op->src[1]->type != GGML_TYPE_F16) {
|
793
|
-
return false;
|
794
|
-
}
|
795
|
-
if (op->src[2]->type != GGML_TYPE_F16) {
|
796
|
-
return false;
|
797
|
-
}
|
798
|
-
if (op->src[0]->ne[0] == 256) {
|
799
|
-
return false;
|
800
|
-
}
|
801
|
-
return ctx->support_simdgroup_mm; // TODO: over-restricted for vec-kernels
|
802
|
-
case GGML_OP_MUL_MAT:
|
803
|
-
case GGML_OP_MUL_MAT_ID:
|
804
|
-
return ctx->support_simdgroup_reduction &&
|
805
|
-
(op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F32);
|
806
|
-
case GGML_OP_CPY:
|
807
|
-
case GGML_OP_DUP:
|
808
|
-
case GGML_OP_CONT:
|
809
|
-
{
|
810
|
-
switch (op->src[0]->type) {
|
811
|
-
case GGML_TYPE_F32:
|
812
|
-
switch (op->type) {
|
813
|
-
case GGML_TYPE_F16:
|
814
|
-
case GGML_TYPE_F32:
|
815
|
-
case GGML_TYPE_Q8_0:
|
816
|
-
case GGML_TYPE_Q4_0:
|
817
|
-
case GGML_TYPE_Q4_1:
|
818
|
-
case GGML_TYPE_Q5_0:
|
819
|
-
case GGML_TYPE_Q5_1:
|
820
|
-
case GGML_TYPE_IQ4_NL:
|
821
|
-
return true;
|
822
|
-
default:
|
823
|
-
return false;
|
824
|
-
}
|
825
|
-
case GGML_TYPE_F16:
|
826
|
-
switch (op->type) {
|
827
|
-
case GGML_TYPE_F16:
|
828
|
-
case GGML_TYPE_F32:
|
829
|
-
return true;
|
830
|
-
default:
|
831
|
-
return false;
|
832
|
-
}
|
833
|
-
default:
|
834
|
-
return false;
|
835
|
-
};
|
836
|
-
}
|
837
|
-
case GGML_OP_DIAG_MASK_INF:
|
838
|
-
case GGML_OP_GET_ROWS:
|
839
|
-
{
|
840
|
-
return op->src[0]->type != GGML_TYPE_BF16 && op->ne[3] == 1;
|
841
|
-
}
|
842
|
-
default:
|
843
|
-
return false;
|
844
|
-
}
|
845
|
-
}
|
846
|
-
|
847
|
-
static enum ggml_status ggml_metal_graph_compute(
|
848
|
-
struct ggml_metal_context * ctx,
|
849
|
-
struct ggml_cgraph * gf) {
|
850
|
-
|
851
|
-
@autoreleasepool {
|
852
|
-
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
|
853
|
-
edesc.dispatchType = MTLDispatchTypeSerial;
|
854
|
-
|
855
|
-
// create multiple command buffers and enqueue them
|
856
|
-
// then, we encode the graph into the command buffers in parallel
|
857
|
-
|
858
|
-
const int n_nodes = gf->n_nodes;
|
859
|
-
const int n_cb = ctx->n_cb;
|
860
|
-
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
|
861
|
-
|
862
|
-
const bool should_capture = ctx->should_capture_next_compute;
|
863
|
-
if (should_capture) {
|
864
|
-
ctx->should_capture_next_compute = false;
|
865
|
-
|
866
|
-
MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
|
867
|
-
descriptor.captureObject = ctx->queue;
|
868
|
-
|
869
|
-
NSError * error = nil;
|
870
|
-
if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
|
871
|
-
GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
|
872
|
-
GGML_ASSERT(!"capture failed");
|
873
|
-
}
|
874
|
-
}
|
875
|
-
|
876
|
-
id<MTLCommandBuffer> command_buffer_builder[n_cb];
|
877
|
-
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
878
|
-
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBufferWithUnretainedReferences];
|
879
|
-
command_buffer_builder[cb_idx] = command_buffer;
|
880
|
-
|
881
|
-
// enqueue the command buffers in order to specify their execution order
|
882
|
-
[command_buffer enqueue];
|
883
|
-
}
|
884
|
-
|
885
|
-
const id<MTLCommandBuffer> *command_buffers = command_buffer_builder;
|
886
|
-
|
887
|
-
dispatch_apply(n_cb, ctx->d_queue, ^(size_t iter) {
|
888
|
-
const int cb_idx = iter;
|
889
|
-
|
890
|
-
size_t offs_src0 = 0;
|
891
|
-
size_t offs_src1 = 0;
|
892
|
-
size_t offs_src2 = 0;
|
893
|
-
size_t offs_dst = 0;
|
894
|
-
|
895
|
-
id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
|
896
|
-
id<MTLComputeCommandEncoder> encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
|
897
|
-
|
898
|
-
const int node_start = (cb_idx + 0) * n_nodes_per_cb;
|
899
|
-
const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes);
|
900
|
-
|
901
|
-
for (int i = node_start; i < node_end; ++i) {
|
902
|
-
if (i == -1) {
|
903
|
-
[encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
|
904
|
-
continue;
|
905
|
-
}
|
906
|
-
|
907
|
-
//GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
|
908
|
-
|
909
|
-
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
|
910
|
-
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
|
911
|
-
struct ggml_tensor * src2 = gf->nodes[i]->src[2];
|
912
|
-
struct ggml_tensor * dst = gf->nodes[i];
|
913
|
-
|
914
|
-
if (ggml_is_empty(dst)) {
|
915
|
-
continue;
|
916
|
-
}
|
917
|
-
|
918
|
-
switch (dst->op) {
|
919
|
-
case GGML_OP_NONE:
|
920
|
-
case GGML_OP_RESHAPE:
|
921
|
-
case GGML_OP_VIEW:
|
922
|
-
case GGML_OP_TRANSPOSE:
|
923
|
-
case GGML_OP_PERMUTE:
|
924
|
-
{
|
925
|
-
// noop -> next node
|
926
|
-
} continue;
|
927
|
-
default:
|
928
|
-
{
|
929
|
-
} break;
|
930
|
-
}
|
931
|
-
|
932
|
-
if (!ggml_metal_supports_op(ctx, dst)) {
|
933
|
-
GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
|
934
|
-
GGML_ASSERT(!"unsupported op");
|
935
|
-
}
|
936
|
-
|
937
|
-
if (should_capture) {
|
938
|
-
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
|
939
|
-
}
|
940
|
-
|
941
|
-
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
942
|
-
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
943
|
-
const int64_t ne02 = src0 ? src0->ne[2] : 0;
|
944
|
-
const int64_t ne03 = src0 ? src0->ne[3] : 0;
|
945
|
-
|
946
|
-
const uint64_t nb00 = src0 ? src0->nb[0] : 0;
|
947
|
-
const uint64_t nb01 = src0 ? src0->nb[1] : 0;
|
948
|
-
const uint64_t nb02 = src0 ? src0->nb[2] : 0;
|
949
|
-
const uint64_t nb03 = src0 ? src0->nb[3] : 0;
|
950
|
-
|
951
|
-
const int64_t ne10 = src1 ? src1->ne[0] : 0;
|
952
|
-
const int64_t ne11 = src1 ? src1->ne[1] : 0;
|
953
|
-
const int64_t ne12 = src1 ? src1->ne[2] : 0;
|
954
|
-
const int64_t ne13 = src1 ? src1->ne[3] : 0;
|
955
|
-
|
956
|
-
const uint64_t nb10 = src1 ? src1->nb[0] : 0;
|
957
|
-
const uint64_t nb11 = src1 ? src1->nb[1] : 0;
|
958
|
-
const uint64_t nb12 = src1 ? src1->nb[2] : 0;
|
959
|
-
const uint64_t nb13 = src1 ? src1->nb[3] : 0;
|
960
|
-
|
961
|
-
const int64_t ne20 = src2 ? src2->ne[0] : 0;
|
962
|
-
const int64_t ne21 = src2 ? src2->ne[1] : 0;
|
963
|
-
const int64_t ne22 = src2 ? src2->ne[2] : 0; GGML_UNUSED(ne22);
|
964
|
-
const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);
|
965
|
-
|
966
|
-
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
|
967
|
-
const uint64_t nb21 = src2 ? src2->nb[1] : 0;
|
968
|
-
const uint64_t nb22 = src2 ? src2->nb[2] : 0;
|
969
|
-
const uint64_t nb23 = src2 ? src2->nb[3] : 0;
|
970
|
-
|
971
|
-
const int64_t ne0 = dst ? dst->ne[0] : 0;
|
972
|
-
const int64_t ne1 = dst ? dst->ne[1] : 0;
|
973
|
-
const int64_t ne2 = dst ? dst->ne[2] : 0;
|
974
|
-
const int64_t ne3 = dst ? dst->ne[3] : 0;
|
975
|
-
|
976
|
-
const uint64_t nb0 = dst ? dst->nb[0] : 0;
|
977
|
-
const uint64_t nb1 = dst ? dst->nb[1] : 0;
|
978
|
-
const uint64_t nb2 = dst ? dst->nb[2] : 0;
|
979
|
-
const uint64_t nb3 = dst ? dst->nb[3] : 0;
|
980
|
-
|
981
|
-
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
|
982
|
-
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
983
|
-
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
|
984
|
-
|
985
|
-
id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(src0, &offs_src0) : nil;
|
986
|
-
id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(src1, &offs_src1) : nil;
|
987
|
-
id<MTLBuffer> id_src2 = src2 ? ggml_metal_get_buffer(src2, &offs_src2) : nil;
|
988
|
-
id<MTLBuffer> id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil;
|
989
|
-
|
990
|
-
//GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op));
|
991
|
-
//if (src0) {
|
992
|
-
// GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
|
993
|
-
// ggml_is_contiguous(src0), src0->name);
|
994
|
-
//}
|
995
|
-
//if (src1) {
|
996
|
-
// GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
|
997
|
-
// ggml_is_contiguous(src1), src1->name);
|
998
|
-
//}
|
999
|
-
//if (dst) {
|
1000
|
-
// GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2,
|
1001
|
-
// dst->name);
|
1002
|
-
//}
|
1003
|
-
|
1004
|
-
switch (dst->op) {
|
1005
|
-
case GGML_OP_CONCAT:
|
1006
|
-
{
|
1007
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline;
|
1008
|
-
|
1009
|
-
const int32_t dim = ((int32_t *) dst->op_params)[0];
|
1010
|
-
|
1011
|
-
[encoder setComputePipelineState:pipeline];
|
1012
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1013
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
1014
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
1015
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
1016
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
1017
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
1018
|
-
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
|
1019
|
-
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
|
1020
|
-
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
|
1021
|
-
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
|
1022
|
-
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
|
1023
|
-
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
|
1024
|
-
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
|
1025
|
-
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
|
1026
|
-
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
|
1027
|
-
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
|
1028
|
-
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
|
1029
|
-
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
|
1030
|
-
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
|
1031
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
|
1032
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
|
1033
|
-
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
|
1034
|
-
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
|
1035
|
-
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
|
1036
|
-
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
|
1037
|
-
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
|
1038
|
-
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
|
1039
|
-
[encoder setBytes:&dim length:sizeof(dim) atIndex:27];
|
1040
|
-
|
1041
|
-
const int nth = MIN(1024, ne0);
|
1042
|
-
|
1043
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
1044
|
-
} break;
|
1045
|
-
case GGML_OP_ADD:
|
1046
|
-
case GGML_OP_MUL:
|
1047
|
-
case GGML_OP_DIV:
|
1048
|
-
{
|
1049
|
-
GGML_ASSERT(src0t == GGML_TYPE_F32);
|
1050
|
-
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
1051
|
-
|
1052
|
-
const size_t offs = 0;
|
1053
|
-
|
1054
|
-
bool bcast_row = false;
|
1055
|
-
|
1056
|
-
int64_t nb = ne00; // used by the "row" kernels
|
1057
|
-
|
1058
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1059
|
-
|
1060
|
-
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
1061
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
1062
|
-
|
1063
|
-
// src1 is a row
|
1064
|
-
GGML_ASSERT(ne11 == 1);
|
1065
|
-
|
1066
|
-
nb = ne00 / 4;
|
1067
|
-
switch (dst->op) {
|
1068
|
-
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break;
|
1069
|
-
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break;
|
1070
|
-
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break;
|
1071
|
-
default: GGML_ASSERT(false);
|
1072
|
-
}
|
1073
|
-
|
1074
|
-
bcast_row = true;
|
1075
|
-
} else {
|
1076
|
-
switch (dst->op) {
|
1077
|
-
case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break;
|
1078
|
-
case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break;
|
1079
|
-
case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break;
|
1080
|
-
default: GGML_ASSERT(false);
|
1081
|
-
}
|
1082
|
-
}
|
1083
|
-
|
1084
|
-
[encoder setComputePipelineState:pipeline];
|
1085
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1086
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
1087
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
1088
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
1089
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
1090
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
1091
|
-
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
|
1092
|
-
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
|
1093
|
-
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8];
|
1094
|
-
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9];
|
1095
|
-
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10];
|
1096
|
-
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
|
1097
|
-
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
|
1098
|
-
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
|
1099
|
-
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
|
1100
|
-
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
|
1101
|
-
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
|
1102
|
-
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
|
1103
|
-
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
|
1104
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
|
1105
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
|
1106
|
-
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
|
1107
|
-
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
|
1108
|
-
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
|
1109
|
-
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24];
|
1110
|
-
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25];
|
1111
|
-
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26];
|
1112
|
-
[encoder setBytes:&offs length:sizeof(offs) atIndex:27];
|
1113
|
-
[encoder setBytes:&nb length:sizeof(nb) atIndex:28];
|
1114
|
-
|
1115
|
-
if (bcast_row) {
|
1116
|
-
const int64_t n = ggml_nelements(dst)/4;
|
1117
|
-
|
1118
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1119
|
-
} else {
|
1120
|
-
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
1121
|
-
|
1122
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
1123
|
-
}
|
1124
|
-
} break;
|
1125
|
-
case GGML_OP_REPEAT:
|
1126
|
-
{
|
1127
|
-
id<MTLComputePipelineState> pipeline;
|
1128
|
-
|
1129
|
-
switch (src0t) {
|
1130
|
-
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F32].pipeline; break;
|
1131
|
-
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_F16].pipeline; break;
|
1132
|
-
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I32].pipeline; break;
|
1133
|
-
case GGML_TYPE_I16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_REPEAT_I16].pipeline; break;
|
1134
|
-
default: GGML_ASSERT(false);
|
1135
|
-
}
|
1136
|
-
|
1137
|
-
[encoder setComputePipelineState:pipeline];
|
1138
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1139
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1140
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
1141
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
1142
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
1143
|
-
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
1144
|
-
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
1145
|
-
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
1146
|
-
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
1147
|
-
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
1148
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
|
1149
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
|
1150
|
-
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
|
1151
|
-
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
|
1152
|
-
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
|
1153
|
-
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
1154
|
-
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
1155
|
-
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
1156
|
-
|
1157
|
-
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
1158
|
-
|
1159
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
1160
|
-
} break;
|
1161
|
-
case GGML_OP_ACC:
|
1162
|
-
{
|
1163
|
-
GGML_ASSERT(src0t == GGML_TYPE_F32);
|
1164
|
-
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
1165
|
-
GGML_ASSERT(dstt == GGML_TYPE_F32);
|
1166
|
-
|
1167
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
1168
|
-
GGML_ASSERT(ggml_is_contiguous(src1));
|
1169
|
-
|
1170
|
-
const size_t pnb1 = ((int32_t *) dst->op_params)[0];
|
1171
|
-
const size_t pnb2 = ((int32_t *) dst->op_params)[1];
|
1172
|
-
const size_t pnb3 = ((int32_t *) dst->op_params)[2];
|
1173
|
-
const size_t offs = ((int32_t *) dst->op_params)[3];
|
1174
|
-
|
1175
|
-
const bool inplace = (bool) ((int32_t *) dst->op_params)[4];
|
1176
|
-
|
1177
|
-
if (!inplace) {
|
1178
|
-
// run a separete kernel to cpy src->dst
|
1179
|
-
// not sure how to avoid this
|
1180
|
-
// TODO: make a simpler cpy_bytes kernel
|
1181
|
-
|
1182
|
-
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline;
|
1183
|
-
|
1184
|
-
[encoder setComputePipelineState:pipeline];
|
1185
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1186
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1187
|
-
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
1188
|
-
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
1189
|
-
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
1190
|
-
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
1191
|
-
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
1192
|
-
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
1193
|
-
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
1194
|
-
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
1195
|
-
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
1196
|
-
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
1197
|
-
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
1198
|
-
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
1199
|
-
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
1200
|
-
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
1201
|
-
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
1202
|
-
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
1203
|
-
|
1204
|
-
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
|
1205
|
-
|
1206
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
1207
|
-
}
|
1208
|
-
|
1209
|
-
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline;
|
1210
|
-
|
1211
|
-
[encoder setComputePipelineState:pipeline];
|
1212
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1213
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
1214
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
1215
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
1216
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
1217
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
1218
|
-
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6];
|
1219
|
-
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7];
|
1220
|
-
[encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:8];
|
1221
|
-
[encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:9];
|
1222
|
-
[encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:10];
|
1223
|
-
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11];
|
1224
|
-
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12];
|
1225
|
-
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13];
|
1226
|
-
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14];
|
1227
|
-
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15];
|
1228
|
-
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16];
|
1229
|
-
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17];
|
1230
|
-
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18];
|
1231
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19];
|
1232
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20];
|
1233
|
-
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21];
|
1234
|
-
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22];
|
1235
|
-
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23];
|
1236
|
-
[encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:24];
|
1237
|
-
[encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:25];
|
1238
|
-
[encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26];
|
1239
|
-
[encoder setBytes:&offs length:sizeof(offs) atIndex:27];
|
1240
|
-
|
1241
|
-
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00);
|
1242
|
-
|
1243
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
1244
|
-
} break;
|
1245
|
-
case GGML_OP_SCALE:
|
1246
|
-
{
|
1247
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
1248
|
-
|
1249
|
-
float scale;
|
1250
|
-
memcpy(&scale, dst->op_params, sizeof(scale));
|
1251
|
-
|
1252
|
-
int64_t n = ggml_nelements(dst);
|
1253
|
-
|
1254
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1255
|
-
|
1256
|
-
if (n % 4 == 0) {
|
1257
|
-
n /= 4;
|
1258
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE_4].pipeline;
|
1259
|
-
} else {
|
1260
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE].pipeline;
|
1261
|
-
}
|
1262
|
-
|
1263
|
-
[encoder setComputePipelineState:pipeline];
|
1264
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1265
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1266
|
-
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
1267
|
-
|
1268
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1269
|
-
} break;
|
1270
|
-
case GGML_OP_CLAMP:
|
1271
|
-
{
|
1272
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline;
|
1273
|
-
|
1274
|
-
float min;
|
1275
|
-
float max;
|
1276
|
-
memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
|
1277
|
-
memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
|
1278
|
-
|
1279
|
-
[encoder setComputePipelineState:pipeline];
|
1280
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1281
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1282
|
-
[encoder setBytes:&min length:sizeof(min) atIndex:2];
|
1283
|
-
[encoder setBytes:&max length:sizeof(max) atIndex:3];
|
1284
|
-
|
1285
|
-
const int64_t n = ggml_nelements(dst);
|
1286
|
-
|
1287
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1288
|
-
} break;
|
1289
|
-
case GGML_OP_UNARY:
|
1290
|
-
switch (ggml_get_unary_op(gf->nodes[i])) {
|
1291
|
-
// we are not taking into account the strides, so for now require contiguous tensors
|
1292
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
1293
|
-
|
1294
|
-
case GGML_UNARY_OP_TANH:
|
1295
|
-
{
|
1296
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline;
|
1297
|
-
|
1298
|
-
[encoder setComputePipelineState:pipeline];
|
1299
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1300
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1301
|
-
|
1302
|
-
const int64_t n = ggml_nelements(dst);
|
1303
|
-
|
1304
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1305
|
-
} break;
|
1306
|
-
case GGML_UNARY_OP_RELU:
|
1307
|
-
{
|
1308
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RELU].pipeline;
|
1309
|
-
|
1310
|
-
[encoder setComputePipelineState:pipeline];
|
1311
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1312
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1313
|
-
|
1314
|
-
const int64_t n = ggml_nelements(dst);
|
1315
|
-
|
1316
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1317
|
-
} break;
|
1318
|
-
case GGML_UNARY_OP_SIGMOID:
|
1319
|
-
{
|
1320
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SIGMOID].pipeline;
|
1321
|
-
|
1322
|
-
[encoder setComputePipelineState:pipeline];
|
1323
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1324
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1325
|
-
|
1326
|
-
const int64_t n = ggml_nelements(dst);
|
1327
|
-
|
1328
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1329
|
-
} break;
|
1330
|
-
case GGML_UNARY_OP_GELU:
|
1331
|
-
{
|
1332
|
-
int64_t n = ggml_nelements(dst);
|
1333
|
-
|
1334
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1335
|
-
|
1336
|
-
if (n % 4 == 0) {
|
1337
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline;
|
1338
|
-
n /= 4;
|
1339
|
-
} else {
|
1340
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline;
|
1341
|
-
}
|
1342
|
-
|
1343
|
-
[encoder setComputePipelineState:pipeline];
|
1344
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1345
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1346
|
-
|
1347
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1348
|
-
} break;
|
1349
|
-
case GGML_UNARY_OP_GELU_QUICK:
|
1350
|
-
{
|
1351
|
-
int64_t n = ggml_nelements(dst);
|
1352
|
-
|
1353
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1354
|
-
|
1355
|
-
if (n % 4 == 0) {
|
1356
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline;
|
1357
|
-
n /= 4;
|
1358
|
-
} else {
|
1359
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline;
|
1360
|
-
}
|
1361
|
-
|
1362
|
-
[encoder setComputePipelineState:pipeline];
|
1363
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1364
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1365
|
-
|
1366
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1367
|
-
} break;
|
1368
|
-
case GGML_UNARY_OP_SILU:
|
1369
|
-
{
|
1370
|
-
int64_t n = ggml_nelements(dst);
|
1371
|
-
|
1372
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1373
|
-
|
1374
|
-
if (n % 4 == 0) {
|
1375
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline;
|
1376
|
-
n /= 4;
|
1377
|
-
} else {
|
1378
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline;
|
1379
|
-
}
|
1380
|
-
|
1381
|
-
[encoder setComputePipelineState:pipeline];
|
1382
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1383
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1384
|
-
|
1385
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1386
|
-
} break;
|
1387
|
-
default:
|
1388
|
-
{
|
1389
|
-
GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
1390
|
-
GGML_ASSERT(false);
|
1391
|
-
}
|
1392
|
-
} break;
|
1393
|
-
case GGML_OP_SQR:
|
1394
|
-
{
|
1395
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
1396
|
-
|
1397
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQR].pipeline;
|
1398
|
-
|
1399
|
-
[encoder setComputePipelineState:pipeline];
|
1400
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1401
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1402
|
-
|
1403
|
-
const int64_t n = ggml_nelements(dst);
|
1404
|
-
|
1405
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1406
|
-
} break;
|
1407
|
-
case GGML_OP_SUM_ROWS:
|
1408
|
-
{
|
1409
|
-
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
|
1410
|
-
|
1411
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline;
|
1412
|
-
|
1413
|
-
[encoder setComputePipelineState:pipeline];
|
1414
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1415
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1416
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
1417
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
1418
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
1419
|
-
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
1420
|
-
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
1421
|
-
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
1422
|
-
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
1423
|
-
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
1424
|
-
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10];
|
1425
|
-
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
|
1426
|
-
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
|
1427
|
-
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
|
1428
|
-
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
|
1429
|
-
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
|
1430
|
-
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
|
1431
|
-
[encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17];
|
1432
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18];
|
1433
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:19];
|
1434
|
-
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:20];
|
1435
|
-
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:21];
|
1436
|
-
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:22];
|
1437
|
-
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:23];
|
1438
|
-
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:24];
|
1439
|
-
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:25];
|
1440
|
-
|
1441
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1442
|
-
} break;
|
1443
|
-
case GGML_OP_SOFT_MAX:
|
1444
|
-
{
|
1445
|
-
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32);
|
1446
|
-
|
1447
|
-
int nth = 32; // SIMD width
|
1448
|
-
|
1449
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1450
|
-
|
1451
|
-
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
1452
|
-
|
1453
|
-
if (ne00%4 == 0) {
|
1454
|
-
while (nth < ne00/4 && nth*ne01*ne02*ne03 < 256) {
|
1455
|
-
nth *= 2;
|
1456
|
-
}
|
1457
|
-
if (use_f16) {
|
1458
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16_4].pipeline;
|
1459
|
-
} else {
|
1460
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline;
|
1461
|
-
}
|
1462
|
-
} else {
|
1463
|
-
while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
|
1464
|
-
nth *= 2;
|
1465
|
-
}
|
1466
|
-
if (use_f16) {
|
1467
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F16].pipeline;
|
1468
|
-
} else {
|
1469
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32].pipeline;
|
1470
|
-
}
|
1471
|
-
}
|
1472
|
-
|
1473
|
-
float scale;
|
1474
|
-
float max_bias;
|
1475
|
-
|
1476
|
-
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
|
1477
|
-
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
|
1478
|
-
|
1479
|
-
const int64_t nrows_x = ggml_nrows(src0);
|
1480
|
-
const int64_t nrows_y = src0->ne[1];
|
1481
|
-
|
1482
|
-
const uint32_t n_head = nrows_x/nrows_y;
|
1483
|
-
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
1484
|
-
|
1485
|
-
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
1486
|
-
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
1487
|
-
|
1488
|
-
[encoder setComputePipelineState:pipeline];
|
1489
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1490
|
-
if (id_src1) {
|
1491
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
1492
|
-
} else {
|
1493
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:1];
|
1494
|
-
}
|
1495
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
1496
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
1497
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
1498
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
1499
|
-
[encoder setBytes:&scale length:sizeof(scale) atIndex:6];
|
1500
|
-
[encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:7];
|
1501
|
-
[encoder setBytes:&m0 length:sizeof(m0) atIndex:8];
|
1502
|
-
[encoder setBytes:&m1 length:sizeof(m1) atIndex:9];
|
1503
|
-
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:10];
|
1504
|
-
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
1505
|
-
|
1506
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
1507
|
-
} break;
|
1508
|
-
case GGML_OP_DIAG_MASK_INF:
|
1509
|
-
{
|
1510
|
-
const int n_past = ((int32_t *)(dst->op_params))[0];
|
1511
|
-
|
1512
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1513
|
-
|
1514
|
-
if (ne00%8 == 0) {
|
1515
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8].pipeline;
|
1516
|
-
} else {
|
1517
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline;
|
1518
|
-
}
|
1519
|
-
|
1520
|
-
[encoder setComputePipelineState:pipeline];
|
1521
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1522
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
1523
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
1524
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
1525
|
-
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
|
1526
|
-
|
1527
|
-
if (ne00%8 == 0) {
|
1528
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1529
|
-
}
|
1530
|
-
else {
|
1531
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
1532
|
-
}
|
1533
|
-
} break;
|
1534
|
-
case GGML_OP_MUL_MAT:
|
1535
|
-
{
|
1536
|
-
GGML_ASSERT(ne00 == ne10);
|
1537
|
-
|
1538
|
-
GGML_ASSERT(ne12 % ne02 == 0);
|
1539
|
-
GGML_ASSERT(ne13 % ne03 == 0);
|
1540
|
-
|
1541
|
-
const uint r2 = ne12/ne02;
|
1542
|
-
const uint r3 = ne13/ne03;
|
1543
|
-
|
1544
|
-
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
1545
|
-
// to the matrix-vector kernel
|
1546
|
-
int ne11_mm_min = 1;
|
1547
|
-
|
1548
|
-
#if 0
|
1549
|
-
// the numbers below are measured on M2 Ultra for 7B and 13B models
|
1550
|
-
// these numbers do not translate to other devices or model sizes
|
1551
|
-
// TODO: need to find a better approach
|
1552
|
-
if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) {
|
1553
|
-
switch (src0t) {
|
1554
|
-
case GGML_TYPE_F16: ne11_mm_min = 2; break;
|
1555
|
-
case GGML_TYPE_Q8_0: ne11_mm_min = 7; break;
|
1556
|
-
case GGML_TYPE_Q2_K: ne11_mm_min = 15; break;
|
1557
|
-
case GGML_TYPE_Q3_K: ne11_mm_min = 7; break;
|
1558
|
-
case GGML_TYPE_Q4_0:
|
1559
|
-
case GGML_TYPE_Q4_1: ne11_mm_min = 15; break;
|
1560
|
-
case GGML_TYPE_Q4_K: ne11_mm_min = 11; break;
|
1561
|
-
case GGML_TYPE_Q5_0: // not tested yet
|
1562
|
-
case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet
|
1563
|
-
case GGML_TYPE_Q5_K: ne11_mm_min = 7; break;
|
1564
|
-
case GGML_TYPE_Q6_K: ne11_mm_min = 7; break;
|
1565
|
-
default: ne11_mm_min = 1; break;
|
1566
|
-
}
|
1567
|
-
}
|
1568
|
-
#endif
|
1569
|
-
|
1570
|
-
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
1571
|
-
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
1572
|
-
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
1573
|
-
!ggml_is_transposed(src0) &&
|
1574
|
-
!ggml_is_transposed(src1) &&
|
1575
|
-
src1t == GGML_TYPE_F32 &&
|
1576
|
-
ne00 % 32 == 0 && ne00 >= 64 &&
|
1577
|
-
(ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) {
|
1578
|
-
//printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
1579
|
-
|
1580
|
-
// some Metal matrix data types require aligned pointers
|
1581
|
-
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
|
1582
|
-
switch (src0->type) {
|
1583
|
-
case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
|
1584
|
-
case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
|
1585
|
-
default: break;
|
1586
|
-
}
|
1587
|
-
|
1588
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1589
|
-
|
1590
|
-
switch (src0->type) {
|
1591
|
-
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break;
|
1592
|
-
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break;
|
1593
|
-
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break;
|
1594
|
-
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break;
|
1595
|
-
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break;
|
1596
|
-
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break;
|
1597
|
-
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break;
|
1598
|
-
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break;
|
1599
|
-
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break;
|
1600
|
-
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break;
|
1601
|
-
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32 ].pipeline; break;
|
1602
|
-
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break;
|
1603
|
-
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break;
|
1604
|
-
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
|
1605
|
-
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break;
|
1606
|
-
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break;
|
1607
|
-
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break;
|
1608
|
-
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break;
|
1609
|
-
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break;
|
1610
|
-
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break;
|
1611
|
-
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break;
|
1612
|
-
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
1613
|
-
}
|
1614
|
-
|
1615
|
-
[encoder setComputePipelineState:pipeline];
|
1616
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1617
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
1618
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
1619
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
1620
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
1621
|
-
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5];
|
1622
|
-
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6];
|
1623
|
-
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7];
|
1624
|
-
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8];
|
1625
|
-
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9];
|
1626
|
-
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10];
|
1627
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11];
|
1628
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12];
|
1629
|
-
[encoder setBytes:&r2 length:sizeof(r2) atIndex:13];
|
1630
|
-
[encoder setBytes:&r3 length:sizeof(r3) atIndex:14];
|
1631
|
-
[encoder setThreadgroupMemoryLength:8192 atIndex:0];
|
1632
|
-
[encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
1633
|
-
} else {
|
1634
|
-
int nth0 = 32;
|
1635
|
-
int nth1 = 1;
|
1636
|
-
int nrows = 1;
|
1637
|
-
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
1638
|
-
|
1639
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1640
|
-
|
1641
|
-
// use custom matrix x vector kernel
|
1642
|
-
switch (src0t) {
|
1643
|
-
case GGML_TYPE_F32:
|
1644
|
-
{
|
1645
|
-
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
1646
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline;
|
1647
|
-
nrows = 4;
|
1648
|
-
} break;
|
1649
|
-
case GGML_TYPE_F16:
|
1650
|
-
{
|
1651
|
-
nth0 = 32;
|
1652
|
-
nth1 = 1;
|
1653
|
-
if (src1t == GGML_TYPE_F32) {
|
1654
|
-
if (ne11 * ne12 < 4) {
|
1655
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline;
|
1656
|
-
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
1657
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline;
|
1658
|
-
nrows = ne11;
|
1659
|
-
} else {
|
1660
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline;
|
1661
|
-
nrows = 4;
|
1662
|
-
}
|
1663
|
-
} else {
|
1664
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline;
|
1665
|
-
nrows = 4;
|
1666
|
-
}
|
1667
|
-
} break;
|
1668
|
-
case GGML_TYPE_Q4_0:
|
1669
|
-
{
|
1670
|
-
nth0 = 8;
|
1671
|
-
nth1 = 8;
|
1672
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline;
|
1673
|
-
} break;
|
1674
|
-
case GGML_TYPE_Q4_1:
|
1675
|
-
{
|
1676
|
-
nth0 = 8;
|
1677
|
-
nth1 = 8;
|
1678
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline;
|
1679
|
-
} break;
|
1680
|
-
case GGML_TYPE_Q5_0:
|
1681
|
-
{
|
1682
|
-
nth0 = 8;
|
1683
|
-
nth1 = 8;
|
1684
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline;
|
1685
|
-
} break;
|
1686
|
-
case GGML_TYPE_Q5_1:
|
1687
|
-
{
|
1688
|
-
nth0 = 8;
|
1689
|
-
nth1 = 8;
|
1690
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline;
|
1691
|
-
} break;
|
1692
|
-
case GGML_TYPE_Q8_0:
|
1693
|
-
{
|
1694
|
-
nth0 = 8;
|
1695
|
-
nth1 = 8;
|
1696
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline;
|
1697
|
-
} break;
|
1698
|
-
case GGML_TYPE_Q2_K:
|
1699
|
-
{
|
1700
|
-
nth0 = 2;
|
1701
|
-
nth1 = 32;
|
1702
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline;
|
1703
|
-
} break;
|
1704
|
-
case GGML_TYPE_Q3_K:
|
1705
|
-
{
|
1706
|
-
nth0 = 2;
|
1707
|
-
nth1 = 32;
|
1708
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline;
|
1709
|
-
} break;
|
1710
|
-
case GGML_TYPE_Q4_K:
|
1711
|
-
{
|
1712
|
-
nth0 = 4; //1;
|
1713
|
-
nth1 = 8; //32;
|
1714
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline;
|
1715
|
-
} break;
|
1716
|
-
case GGML_TYPE_Q5_K:
|
1717
|
-
{
|
1718
|
-
nth0 = 2;
|
1719
|
-
nth1 = 32;
|
1720
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline;
|
1721
|
-
} break;
|
1722
|
-
case GGML_TYPE_Q6_K:
|
1723
|
-
{
|
1724
|
-
nth0 = 2;
|
1725
|
-
nth1 = 32;
|
1726
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline;
|
1727
|
-
} break;
|
1728
|
-
case GGML_TYPE_IQ2_XXS:
|
1729
|
-
{
|
1730
|
-
nth0 = 4;
|
1731
|
-
nth1 = 16;
|
1732
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline;
|
1733
|
-
} break;
|
1734
|
-
case GGML_TYPE_IQ2_XS:
|
1735
|
-
{
|
1736
|
-
nth0 = 4;
|
1737
|
-
nth1 = 16;
|
1738
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline;
|
1739
|
-
} break;
|
1740
|
-
case GGML_TYPE_IQ3_XXS:
|
1741
|
-
{
|
1742
|
-
nth0 = 4;
|
1743
|
-
nth1 = 16;
|
1744
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline;
|
1745
|
-
} break;
|
1746
|
-
case GGML_TYPE_IQ3_S:
|
1747
|
-
{
|
1748
|
-
nth0 = 4;
|
1749
|
-
nth1 = 16;
|
1750
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32].pipeline;
|
1751
|
-
} break;
|
1752
|
-
case GGML_TYPE_IQ2_S:
|
1753
|
-
{
|
1754
|
-
nth0 = 4;
|
1755
|
-
nth1 = 16;
|
1756
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32].pipeline;
|
1757
|
-
} break;
|
1758
|
-
case GGML_TYPE_IQ1_S:
|
1759
|
-
{
|
1760
|
-
nth0 = 4;
|
1761
|
-
nth1 = 16;
|
1762
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline;
|
1763
|
-
} break;
|
1764
|
-
case GGML_TYPE_IQ1_M:
|
1765
|
-
{
|
1766
|
-
nth0 = 4;
|
1767
|
-
nth1 = 16;
|
1768
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32].pipeline;
|
1769
|
-
} break;
|
1770
|
-
case GGML_TYPE_IQ4_NL:
|
1771
|
-
{
|
1772
|
-
nth0 = 4;
|
1773
|
-
nth1 = 16;
|
1774
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline;
|
1775
|
-
} break;
|
1776
|
-
case GGML_TYPE_IQ4_XS:
|
1777
|
-
{
|
1778
|
-
nth0 = 4;
|
1779
|
-
nth1 = 16;
|
1780
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline;
|
1781
|
-
} break;
|
1782
|
-
default:
|
1783
|
-
{
|
1784
|
-
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
1785
|
-
GGML_ASSERT(false && "not implemented");
|
1786
|
-
}
|
1787
|
-
};
|
1788
|
-
|
1789
|
-
if (ggml_is_quantized(src0t)) {
|
1790
|
-
GGML_ASSERT(ne00 >= nth0*nth1);
|
1791
|
-
}
|
1792
|
-
|
1793
|
-
[encoder setComputePipelineState:pipeline];
|
1794
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1795
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
1796
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
1797
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
|
1798
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
|
1799
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
|
1800
|
-
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
1801
|
-
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
1802
|
-
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
1803
|
-
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
|
1804
|
-
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
|
1805
|
-
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
|
1806
|
-
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
|
1807
|
-
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
|
1808
|
-
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
|
1809
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15];
|
1810
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16];
|
1811
|
-
[encoder setBytes:&r2 length:sizeof(r2) atIndex:17];
|
1812
|
-
[encoder setBytes:&r3 length:sizeof(r3) atIndex:18];
|
1813
|
-
|
1814
|
-
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 ||
|
1815
|
-
src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K ||
|
1816
|
-
src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
|
1817
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
1818
|
-
}
|
1819
|
-
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
|
1820
|
-
const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
|
1821
|
-
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
1822
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
1823
|
-
}
|
1824
|
-
else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) {
|
1825
|
-
const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
|
1826
|
-
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
1827
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
1828
|
-
}
|
1829
|
-
else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
|
1830
|
-
const int mem_size = 32*sizeof(float);
|
1831
|
-
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
1832
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
1833
|
-
}
|
1834
|
-
else if (src0t == GGML_TYPE_Q4_K) {
|
1835
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
1836
|
-
}
|
1837
|
-
else if (src0t == GGML_TYPE_Q3_K) {
|
1838
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
1839
|
-
}
|
1840
|
-
else if (src0t == GGML_TYPE_Q5_K) {
|
1841
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
1842
|
-
}
|
1843
|
-
else if (src0t == GGML_TYPE_Q6_K) {
|
1844
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
1845
|
-
} else {
|
1846
|
-
const int64_t ny = (ne11 + nrows - 1)/nrows;
|
1847
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
1848
|
-
}
|
1849
|
-
}
|
1850
|
-
} break;
|
1851
|
-
case GGML_OP_MUL_MAT_ID:
|
1852
|
-
{
|
1853
|
-
const int n_as = src0->ne[2];
|
1854
|
-
|
1855
|
-
// src2 = ids
|
1856
|
-
const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t);
|
1857
|
-
|
1858
|
-
GGML_ASSERT(src2t == GGML_TYPE_I32);
|
1859
|
-
|
1860
|
-
GGML_ASSERT(!ggml_is_transposed(src0));
|
1861
|
-
GGML_ASSERT(!ggml_is_transposed(src1));
|
1862
|
-
|
1863
|
-
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
1864
|
-
|
1865
|
-
// find the break-even point where the matrix-matrix kernel becomes more efficient compared
|
1866
|
-
// to the matrix-vector kernel
|
1867
|
-
// ne20 = n_used_experts
|
1868
|
-
// ne21 = n_rows
|
1869
|
-
const int dst_rows = ne20*ne21;
|
1870
|
-
const int dst_rows_min = n_as;
|
1871
|
-
const int dst_rows_max = (ctx->device.maxThreadgroupMemoryLength - 32 - 8192)/4;
|
1872
|
-
|
1873
|
-
// max size of the rowids array in the kernel shared buffer
|
1874
|
-
GGML_ASSERT(dst_rows <= dst_rows_max);
|
1875
|
-
|
1876
|
-
// for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs
|
1877
|
-
// AMD GPU and older A-chips will reuse matrix-vector multiplication kernel
|
1878
|
-
// !!!
|
1879
|
-
// TODO: for now, always use mat-vec kernels until we figure out how to improve the
|
1880
|
-
// indirect matrix multiplication
|
1881
|
-
// !!!
|
1882
|
-
if ([ctx->device supportsFamily:MTLGPUFamilyApple7] &&
|
1883
|
-
ne00 % 32 == 0 && ne00 >= 64 &&
|
1884
|
-
dst_rows > dst_rows_min) {
|
1885
|
-
|
1886
|
-
// some Metal matrix data types require aligned pointers
|
1887
|
-
// ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5)
|
1888
|
-
switch (src0->type) {
|
1889
|
-
case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break;
|
1890
|
-
case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break;
|
1891
|
-
default: break;
|
1892
|
-
}
|
1893
|
-
|
1894
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1895
|
-
|
1896
|
-
switch (src0->type) {
|
1897
|
-
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break;
|
1898
|
-
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break;
|
1899
|
-
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break;
|
1900
|
-
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32 ].pipeline; break;
|
1901
|
-
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32 ].pipeline; break;
|
1902
|
-
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32 ].pipeline; break;
|
1903
|
-
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32 ].pipeline; break;
|
1904
|
-
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32 ].pipeline; break;
|
1905
|
-
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32 ].pipeline; break;
|
1906
|
-
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32 ].pipeline; break;
|
1907
|
-
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32 ].pipeline; break;
|
1908
|
-
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break;
|
1909
|
-
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break;
|
1910
|
-
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
|
1911
|
-
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break;
|
1912
|
-
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32 ].pipeline; break;
|
1913
|
-
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32 ].pipeline; break;
|
1914
|
-
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break;
|
1915
|
-
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break;
|
1916
|
-
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break;
|
1917
|
-
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break;
|
1918
|
-
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
|
1919
|
-
}
|
1920
|
-
|
1921
|
-
[encoder setComputePipelineState:pipeline];
|
1922
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
1923
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
1924
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
1925
|
-
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
|
1926
|
-
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
|
1927
|
-
[encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
|
1928
|
-
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
|
1929
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7];
|
1930
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:8];
|
1931
|
-
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:9];
|
1932
|
-
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:10];
|
1933
|
-
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11];
|
1934
|
-
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12];
|
1935
|
-
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13];
|
1936
|
-
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14];
|
1937
|
-
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15];
|
1938
|
-
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16];
|
1939
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17];
|
1940
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:18];
|
1941
|
-
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19];
|
1942
|
-
|
1943
|
-
[encoder setThreadgroupMemoryLength:GGML_PAD(8192 + dst_rows*4/*sizeof(ushort2)*/, 16) atIndex:0];
|
1944
|
-
|
1945
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, n_as) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)];
|
1946
|
-
} else {
|
1947
|
-
int nth0 = 32;
|
1948
|
-
int nth1 = 1;
|
1949
|
-
int nrows = 1;
|
1950
|
-
//printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12);
|
1951
|
-
|
1952
|
-
id<MTLComputePipelineState> pipeline = nil;
|
1953
|
-
|
1954
|
-
// use custom matrix x vector kernel
|
1955
|
-
switch (src0t) {
|
1956
|
-
case GGML_TYPE_F32:
|
1957
|
-
{
|
1958
|
-
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
1959
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline;
|
1960
|
-
} break;
|
1961
|
-
case GGML_TYPE_F16:
|
1962
|
-
{
|
1963
|
-
GGML_ASSERT(src1t == GGML_TYPE_F32);
|
1964
|
-
nth0 = 32;
|
1965
|
-
nth1 = 1;
|
1966
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline;
|
1967
|
-
} break;
|
1968
|
-
case GGML_TYPE_Q4_0:
|
1969
|
-
{
|
1970
|
-
nth0 = 8;
|
1971
|
-
nth1 = 8;
|
1972
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline;
|
1973
|
-
} break;
|
1974
|
-
case GGML_TYPE_Q4_1:
|
1975
|
-
{
|
1976
|
-
nth0 = 8;
|
1977
|
-
nth1 = 8;
|
1978
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline;
|
1979
|
-
} break;
|
1980
|
-
case GGML_TYPE_Q5_0:
|
1981
|
-
{
|
1982
|
-
nth0 = 8;
|
1983
|
-
nth1 = 8;
|
1984
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline;
|
1985
|
-
} break;
|
1986
|
-
case GGML_TYPE_Q5_1:
|
1987
|
-
{
|
1988
|
-
nth0 = 8;
|
1989
|
-
nth1 = 8;
|
1990
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline;
|
1991
|
-
} break;
|
1992
|
-
case GGML_TYPE_Q8_0:
|
1993
|
-
{
|
1994
|
-
nth0 = 8;
|
1995
|
-
nth1 = 8;
|
1996
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline;
|
1997
|
-
} break;
|
1998
|
-
case GGML_TYPE_Q2_K:
|
1999
|
-
{
|
2000
|
-
nth0 = 2;
|
2001
|
-
nth1 = 32;
|
2002
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline;
|
2003
|
-
} break;
|
2004
|
-
case GGML_TYPE_Q3_K:
|
2005
|
-
{
|
2006
|
-
nth0 = 2;
|
2007
|
-
nth1 = 32;
|
2008
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline;
|
2009
|
-
} break;
|
2010
|
-
case GGML_TYPE_Q4_K:
|
2011
|
-
{
|
2012
|
-
nth0 = 4; //1;
|
2013
|
-
nth1 = 8; //32;
|
2014
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline;
|
2015
|
-
} break;
|
2016
|
-
case GGML_TYPE_Q5_K:
|
2017
|
-
{
|
2018
|
-
nth0 = 2;
|
2019
|
-
nth1 = 32;
|
2020
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline;
|
2021
|
-
} break;
|
2022
|
-
case GGML_TYPE_Q6_K:
|
2023
|
-
{
|
2024
|
-
nth0 = 2;
|
2025
|
-
nth1 = 32;
|
2026
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline;
|
2027
|
-
} break;
|
2028
|
-
case GGML_TYPE_IQ2_XXS:
|
2029
|
-
{
|
2030
|
-
nth0 = 4;
|
2031
|
-
nth1 = 16;
|
2032
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline;
|
2033
|
-
} break;
|
2034
|
-
case GGML_TYPE_IQ2_XS:
|
2035
|
-
{
|
2036
|
-
nth0 = 4;
|
2037
|
-
nth1 = 16;
|
2038
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline;
|
2039
|
-
} break;
|
2040
|
-
case GGML_TYPE_IQ3_XXS:
|
2041
|
-
{
|
2042
|
-
nth0 = 4;
|
2043
|
-
nth1 = 16;
|
2044
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline;
|
2045
|
-
} break;
|
2046
|
-
case GGML_TYPE_IQ3_S:
|
2047
|
-
{
|
2048
|
-
nth0 = 4;
|
2049
|
-
nth1 = 16;
|
2050
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32].pipeline;
|
2051
|
-
} break;
|
2052
|
-
case GGML_TYPE_IQ2_S:
|
2053
|
-
{
|
2054
|
-
nth0 = 4;
|
2055
|
-
nth1 = 16;
|
2056
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32].pipeline;
|
2057
|
-
} break;
|
2058
|
-
case GGML_TYPE_IQ1_S:
|
2059
|
-
{
|
2060
|
-
nth0 = 4;
|
2061
|
-
nth1 = 16;
|
2062
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline;
|
2063
|
-
} break;
|
2064
|
-
case GGML_TYPE_IQ1_M:
|
2065
|
-
{
|
2066
|
-
nth0 = 4;
|
2067
|
-
nth1 = 16;
|
2068
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32].pipeline;
|
2069
|
-
} break;
|
2070
|
-
case GGML_TYPE_IQ4_NL:
|
2071
|
-
{
|
2072
|
-
nth0 = 4;
|
2073
|
-
nth1 = 16;
|
2074
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
|
2075
|
-
} break;
|
2076
|
-
case GGML_TYPE_IQ4_XS:
|
2077
|
-
{
|
2078
|
-
nth0 = 4;
|
2079
|
-
nth1 = 16;
|
2080
|
-
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
|
2081
|
-
} break;
|
2082
|
-
default:
|
2083
|
-
{
|
2084
|
-
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
|
2085
|
-
GGML_ASSERT(false && "not implemented");
|
2086
|
-
}
|
2087
|
-
};
|
2088
|
-
|
2089
|
-
if (ggml_is_quantized(src0t)) {
|
2090
|
-
GGML_ASSERT(ne00 >= nth0*nth1);
|
2091
|
-
}
|
2092
|
-
|
2093
|
-
[encoder setComputePipelineState:pipeline];
|
2094
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2095
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
2096
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
2097
|
-
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:3];
|
2098
|
-
[encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4];
|
2099
|
-
[encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5];
|
2100
|
-
[encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6];
|
2101
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7];
|
2102
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:8];
|
2103
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:9];
|
2104
|
-
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:10];
|
2105
|
-
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:11];
|
2106
|
-
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:12];
|
2107
|
-
[encoder setBytes:&ne10 length:sizeof(ne10) atIndex:13];
|
2108
|
-
[encoder setBytes:&ne11 length:sizeof(ne11) atIndex:14];
|
2109
|
-
[encoder setBytes:&ne12 length:sizeof(ne12) atIndex:15];
|
2110
|
-
[encoder setBytes:&ne13 length:sizeof(ne13) atIndex:16];
|
2111
|
-
[encoder setBytes:&nb10 length:sizeof(nb10) atIndex:17];
|
2112
|
-
[encoder setBytes:&nb11 length:sizeof(nb11) atIndex:18];
|
2113
|
-
[encoder setBytes:&nb12 length:sizeof(nb12) atIndex:19];
|
2114
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:20];
|
2115
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:21];
|
2116
|
-
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:22];
|
2117
|
-
|
2118
|
-
const int64_t _ne1 = 1;
|
2119
|
-
const int tgz = dst_rows;
|
2120
|
-
|
2121
|
-
if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 ||
|
2122
|
-
src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K ||
|
2123
|
-
src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) {
|
2124
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
2125
|
-
}
|
2126
|
-
else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) {
|
2127
|
-
const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128;
|
2128
|
-
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
2129
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
2130
|
-
}
|
2131
|
-
else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) {
|
2132
|
-
const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4;
|
2133
|
-
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
2134
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
2135
|
-
}
|
2136
|
-
else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) {
|
2137
|
-
const int mem_size = 32*sizeof(float);
|
2138
|
-
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
2139
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
2140
|
-
}
|
2141
|
-
else if (src0t == GGML_TYPE_Q4_K) {
|
2142
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
2143
|
-
}
|
2144
|
-
else if (src0t == GGML_TYPE_Q3_K) {
|
2145
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
2146
|
-
}
|
2147
|
-
else if (src0t == GGML_TYPE_Q5_K) {
|
2148
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
2149
|
-
}
|
2150
|
-
else if (src0t == GGML_TYPE_Q6_K) {
|
2151
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
2152
|
-
} else {
|
2153
|
-
const int64_t ny = (_ne1 + nrows - 1)/nrows; // = _ne1
|
2154
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
2155
|
-
}
|
2156
|
-
}
|
2157
|
-
} break;
|
2158
|
-
case GGML_OP_GET_ROWS:
|
2159
|
-
{
|
2160
|
-
id<MTLComputePipelineState> pipeline = nil;
|
2161
|
-
|
2162
|
-
switch (src0->type) {
|
2163
|
-
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32 ].pipeline; break;
|
2164
|
-
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16 ].pipeline; break;
|
2165
|
-
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0 ].pipeline; break;
|
2166
|
-
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1 ].pipeline; break;
|
2167
|
-
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break;
|
2168
|
-
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1 ].pipeline; break;
|
2169
|
-
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0 ].pipeline; break;
|
2170
|
-
case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K ].pipeline; break;
|
2171
|
-
case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K ].pipeline; break;
|
2172
|
-
case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K ].pipeline; break;
|
2173
|
-
case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K ].pipeline; break;
|
2174
|
-
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break;
|
2175
|
-
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break;
|
2176
|
-
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
|
2177
|
-
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break;
|
2178
|
-
case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S ].pipeline; break;
|
2179
|
-
case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S ].pipeline; break;
|
2180
|
-
case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break;
|
2181
|
-
case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M ].pipeline; break;
|
2182
|
-
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break;
|
2183
|
-
case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break;
|
2184
|
-
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
2185
|
-
default: GGML_ASSERT(false && "not implemented");
|
2186
|
-
}
|
2187
|
-
|
2188
|
-
[encoder setComputePipelineState:pipeline];
|
2189
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2190
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
2191
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
2192
|
-
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
|
2193
|
-
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4];
|
2194
|
-
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5];
|
2195
|
-
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6];
|
2196
|
-
[encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7];
|
2197
|
-
[encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8];
|
2198
|
-
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9];
|
2199
|
-
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10];
|
2200
|
-
|
2201
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
|
2202
|
-
} break;
|
2203
|
-
case GGML_OP_RMS_NORM:
|
2204
|
-
{
|
2205
|
-
GGML_ASSERT(ne00 % 4 == 0);
|
2206
|
-
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
2207
|
-
|
2208
|
-
float eps;
|
2209
|
-
memcpy(&eps, dst->op_params, sizeof(float));
|
2210
|
-
|
2211
|
-
int nth = 32; // SIMD width
|
2212
|
-
|
2213
|
-
while (nth < ne00/4 && nth < 1024) {
|
2214
|
-
nth *= 2;
|
2215
|
-
}
|
2216
|
-
|
2217
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM].pipeline;
|
2218
|
-
|
2219
|
-
[encoder setComputePipelineState:pipeline];
|
2220
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2221
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
2222
|
-
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
2223
|
-
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
2224
|
-
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
2225
|
-
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
2226
|
-
|
2227
|
-
const int64_t nrows = ggml_nrows(src0);
|
2228
|
-
|
2229
|
-
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
2230
|
-
} break;
|
2231
|
-
case GGML_OP_GROUP_NORM:
|
2232
|
-
{
|
2233
|
-
GGML_ASSERT(ne00 % 4 == 0);
|
2234
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
2235
|
-
|
2236
|
-
//float eps;
|
2237
|
-
//memcpy(&eps, dst->op_params, sizeof(float));
|
2238
|
-
|
2239
|
-
const float eps = 1e-6f; // TODO: temporarily hardcoded
|
2240
|
-
|
2241
|
-
const int32_t n_groups = ((int32_t *) dst->op_params)[0];
|
2242
|
-
|
2243
|
-
int nth = 32; // SIMD width
|
2244
|
-
|
2245
|
-
//while (nth < ne00/4 && nth < 1024) {
|
2246
|
-
// nth *= 2;
|
2247
|
-
//}
|
2248
|
-
|
2249
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline;
|
2250
|
-
|
2251
|
-
[encoder setComputePipelineState:pipeline];
|
2252
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2253
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
2254
|
-
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
2255
|
-
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
2256
|
-
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
2257
|
-
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:5];
|
2258
|
-
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:6];
|
2259
|
-
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:7];
|
2260
|
-
[encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8];
|
2261
|
-
[encoder setBytes:&eps length:sizeof( float) atIndex:9];
|
2262
|
-
[encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0];
|
2263
|
-
|
2264
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
2265
|
-
} break;
|
2266
|
-
case GGML_OP_NORM:
|
2267
|
-
{
|
2268
|
-
GGML_ASSERT(ggml_is_contiguous_1(src0));
|
2269
|
-
|
2270
|
-
float eps;
|
2271
|
-
memcpy(&eps, dst->op_params, sizeof(float));
|
2272
|
-
|
2273
|
-
const int nth = MIN(256, ne00);
|
2274
|
-
|
2275
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NORM].pipeline;
|
2276
|
-
|
2277
|
-
[encoder setComputePipelineState:pipeline];
|
2278
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2279
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
2280
|
-
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
2281
|
-
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
2282
|
-
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
2283
|
-
[encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0];
|
2284
|
-
|
2285
|
-
const int64_t nrows = ggml_nrows(src0);
|
2286
|
-
|
2287
|
-
[encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
2288
|
-
} break;
|
2289
|
-
case GGML_OP_ROPE:
|
2290
|
-
{
|
2291
|
-
GGML_ASSERT(ne10 == ne02);
|
2292
|
-
|
2293
|
-
const int nth = MIN(1024, ne00);
|
2294
|
-
|
2295
|
-
const int n_past = ((int32_t *) dst->op_params)[0];
|
2296
|
-
const int n_dims = ((int32_t *) dst->op_params)[1];
|
2297
|
-
const int mode = ((int32_t *) dst->op_params)[2];
|
2298
|
-
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
|
2299
|
-
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
2300
|
-
|
2301
|
-
float freq_base;
|
2302
|
-
float freq_scale;
|
2303
|
-
float ext_factor;
|
2304
|
-
float attn_factor;
|
2305
|
-
float beta_fast;
|
2306
|
-
float beta_slow;
|
2307
|
-
|
2308
|
-
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
2309
|
-
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
2310
|
-
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
2311
|
-
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
2312
|
-
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
2313
|
-
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
2314
|
-
|
2315
|
-
const bool is_neox = mode & 2;
|
2316
|
-
|
2317
|
-
id<MTLComputePipelineState> pipeline = nil;
|
2318
|
-
|
2319
|
-
if (!is_neox) {
|
2320
|
-
switch (src0->type) {
|
2321
|
-
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F32].pipeline; break;
|
2322
|
-
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NORM_F16].pipeline; break;
|
2323
|
-
default: GGML_ASSERT(false);
|
2324
|
-
};
|
2325
|
-
} else {
|
2326
|
-
switch (src0->type) {
|
2327
|
-
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F32].pipeline; break;
|
2328
|
-
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_NEOX_F16].pipeline; break;
|
2329
|
-
default: GGML_ASSERT(false);
|
2330
|
-
};
|
2331
|
-
}
|
2332
|
-
|
2333
|
-
[encoder setComputePipelineState:pipeline];
|
2334
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2335
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
2336
|
-
if (id_src2 != nil) {
|
2337
|
-
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
2338
|
-
} else {
|
2339
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:2];
|
2340
|
-
}
|
2341
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
2342
|
-
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:4];
|
2343
|
-
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
|
2344
|
-
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
|
2345
|
-
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
|
2346
|
-
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:8];
|
2347
|
-
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:9];
|
2348
|
-
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:10];
|
2349
|
-
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:11];
|
2350
|
-
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:12];
|
2351
|
-
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:13];
|
2352
|
-
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:14];
|
2353
|
-
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:15];
|
2354
|
-
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:16];
|
2355
|
-
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:17];
|
2356
|
-
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:18];
|
2357
|
-
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:19];
|
2358
|
-
[encoder setBytes:&n_past length:sizeof( int) atIndex:20];
|
2359
|
-
[encoder setBytes:&n_dims length:sizeof( int) atIndex:21];
|
2360
|
-
[encoder setBytes:&n_ctx_orig length:sizeof( int) atIndex:22];
|
2361
|
-
[encoder setBytes:&freq_base length:sizeof( float) atIndex:23];
|
2362
|
-
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:24];
|
2363
|
-
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:25];
|
2364
|
-
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:26];
|
2365
|
-
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:27];
|
2366
|
-
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:28];
|
2367
|
-
|
2368
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
2369
|
-
} break;
|
2370
|
-
case GGML_OP_IM2COL:
|
2371
|
-
{
|
2372
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
2373
|
-
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
2374
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
2375
|
-
|
2376
|
-
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
2377
|
-
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
2378
|
-
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
2379
|
-
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
2380
|
-
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
2381
|
-
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
2382
|
-
|
2383
|
-
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
2384
|
-
|
2385
|
-
const int32_t N = src1->ne[is_2D ? 3 : 2];
|
2386
|
-
const int32_t IC = src1->ne[is_2D ? 2 : 1];
|
2387
|
-
const int32_t IH = is_2D ? src1->ne[1] : 1;
|
2388
|
-
const int32_t IW = src1->ne[0];
|
2389
|
-
|
2390
|
-
const int32_t KH = is_2D ? src0->ne[1] : 1;
|
2391
|
-
const int32_t KW = src0->ne[0];
|
2392
|
-
|
2393
|
-
const int32_t OH = is_2D ? dst->ne[2] : 1;
|
2394
|
-
const int32_t OW = dst->ne[1];
|
2395
|
-
|
2396
|
-
const int32_t CHW = IC * KH * KW;
|
2397
|
-
|
2398
|
-
const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4;
|
2399
|
-
const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4;
|
2400
|
-
|
2401
|
-
id<MTLComputePipelineState> pipeline = nil;
|
2402
|
-
|
2403
|
-
switch (dst->type) {
|
2404
|
-
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; break;
|
2405
|
-
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break;
|
2406
|
-
default: GGML_ASSERT(false);
|
2407
|
-
};
|
2408
|
-
|
2409
|
-
[encoder setComputePipelineState:pipeline];
|
2410
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:0];
|
2411
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
2412
|
-
[encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2];
|
2413
|
-
[encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3];
|
2414
|
-
[encoder setBytes:&IW length:sizeof( int32_t) atIndex:4];
|
2415
|
-
[encoder setBytes:&IH length:sizeof( int32_t) atIndex:5];
|
2416
|
-
[encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6];
|
2417
|
-
[encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7];
|
2418
|
-
[encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8];
|
2419
|
-
[encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9];
|
2420
|
-
[encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10];
|
2421
|
-
[encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11];
|
2422
|
-
[encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12];
|
2423
|
-
|
2424
|
-
[encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)];
|
2425
|
-
} break;
|
2426
|
-
case GGML_OP_UPSCALE:
|
2427
|
-
{
|
2428
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
2429
|
-
|
2430
|
-
const float sf0 = (float)ne0/src0->ne[0];
|
2431
|
-
const float sf1 = (float)ne1/src0->ne[1];
|
2432
|
-
const float sf2 = (float)ne2/src0->ne[2];
|
2433
|
-
const float sf3 = (float)ne3/src0->ne[3];
|
2434
|
-
|
2435
|
-
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;
|
2436
|
-
|
2437
|
-
[encoder setComputePipelineState:pipeline];
|
2438
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2439
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
2440
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
2441
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
2442
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
2443
|
-
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
2444
|
-
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
2445
|
-
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
2446
|
-
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
2447
|
-
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
2448
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
|
2449
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
|
2450
|
-
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
|
2451
|
-
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
|
2452
|
-
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
|
2453
|
-
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
2454
|
-
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
2455
|
-
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
2456
|
-
[encoder setBytes:&sf0 length:sizeof(sf0) atIndex:18];
|
2457
|
-
[encoder setBytes:&sf1 length:sizeof(sf1) atIndex:19];
|
2458
|
-
[encoder setBytes:&sf2 length:sizeof(sf2) atIndex:20];
|
2459
|
-
[encoder setBytes:&sf3 length:sizeof(sf3) atIndex:21];
|
2460
|
-
|
2461
|
-
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
2462
|
-
|
2463
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
2464
|
-
} break;
|
2465
|
-
case GGML_OP_PAD:
|
2466
|
-
{
|
2467
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
2468
|
-
|
2469
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline;
|
2470
|
-
|
2471
|
-
[encoder setComputePipelineState:pipeline];
|
2472
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2473
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
2474
|
-
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
2475
|
-
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
2476
|
-
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
2477
|
-
[encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5];
|
2478
|
-
[encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
|
2479
|
-
[encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
|
2480
|
-
[encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
|
2481
|
-
[encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9];
|
2482
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10];
|
2483
|
-
[encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11];
|
2484
|
-
[encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12];
|
2485
|
-
[encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13];
|
2486
|
-
[encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14];
|
2487
|
-
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
2488
|
-
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
2489
|
-
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
2490
|
-
|
2491
|
-
const int nth = MIN(1024, ne0);
|
2492
|
-
|
2493
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
2494
|
-
} break;
|
2495
|
-
case GGML_OP_ARANGE:
|
2496
|
-
{
|
2497
|
-
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
2498
|
-
|
2499
|
-
float start;
|
2500
|
-
float step;
|
2501
|
-
|
2502
|
-
memcpy(&start, ((int32_t *) dst->op_params) + 0, sizeof(float));
|
2503
|
-
memcpy(&step, ((int32_t *) dst->op_params) + 2, sizeof(float));
|
2504
|
-
|
2505
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline;
|
2506
|
-
|
2507
|
-
[encoder setComputePipelineState:pipeline];
|
2508
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:0];
|
2509
|
-
[encoder setBytes:&ne0 length:sizeof(ne0) atIndex:1];
|
2510
|
-
[encoder setBytes:&start length:sizeof(start) atIndex:2];
|
2511
|
-
[encoder setBytes:&step length:sizeof(step) atIndex:3];
|
2512
|
-
|
2513
|
-
const int nth = MIN(1024, ne0);
|
2514
|
-
|
2515
|
-
[encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
2516
|
-
} break;
|
2517
|
-
case GGML_OP_TIMESTEP_EMBEDDING:
|
2518
|
-
{
|
2519
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
2520
|
-
|
2521
|
-
const int dim = dst->op_params[0];
|
2522
|
-
const int max_period = dst->op_params[1];
|
2523
|
-
|
2524
|
-
const int half = dim / 2;
|
2525
|
-
|
2526
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline;
|
2527
|
-
|
2528
|
-
[encoder setComputePipelineState:pipeline];
|
2529
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2530
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
2531
|
-
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:2];
|
2532
|
-
[encoder setBytes:&dim length:sizeof(dim) atIndex:3];
|
2533
|
-
[encoder setBytes:&max_period length:sizeof(max_period) atIndex:4];
|
2534
|
-
|
2535
|
-
const int nth = MIN(1024, half);
|
2536
|
-
|
2537
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne00, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
2538
|
-
} break;
|
2539
|
-
case GGML_OP_ARGSORT:
|
2540
|
-
{
|
2541
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
2542
|
-
GGML_ASSERT( dst->type == GGML_TYPE_I32);
|
2543
|
-
|
2544
|
-
const int nrows = ggml_nrows(src0);
|
2545
|
-
|
2546
|
-
enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0];
|
2547
|
-
|
2548
|
-
// bitonic sort requires the number of elements to be power of 2
|
2549
|
-
int64_t ne00_padded = 1;
|
2550
|
-
while (ne00_padded < ne00) {
|
2551
|
-
ne00_padded *= 2;
|
2552
|
-
}
|
2553
|
-
|
2554
|
-
// Metal kernels require the buffer size to be multiple of 16 bytes
|
2555
|
-
// https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength
|
2556
|
-
const int mem_size = GGML_PAD(ne00_padded*sizeof(int32_t), 16);
|
2557
|
-
|
2558
|
-
id<MTLComputePipelineState> pipeline = nil;
|
2559
|
-
|
2560
|
-
switch (order) {
|
2561
|
-
case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break;
|
2562
|
-
case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break;
|
2563
|
-
default: GGML_ASSERT(false);
|
2564
|
-
};
|
2565
|
-
|
2566
|
-
[encoder setComputePipelineState:pipeline];
|
2567
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2568
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
2569
|
-
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
2570
|
-
[encoder setBytes:&ne00_padded length:sizeof( int64_t) atIndex:3];
|
2571
|
-
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
2572
|
-
|
2573
|
-
[encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00_padded, 1, 1)];
|
2574
|
-
} break;
|
2575
|
-
case GGML_OP_LEAKY_RELU:
|
2576
|
-
{
|
2577
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
2578
|
-
|
2579
|
-
float slope;
|
2580
|
-
memcpy(&slope, dst->op_params, sizeof(float));
|
2581
|
-
|
2582
|
-
id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline;
|
2583
|
-
|
2584
|
-
[encoder setComputePipelineState:pipeline];
|
2585
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2586
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
2587
|
-
[encoder setBytes:&slope length:sizeof(slope) atIndex:2];
|
2588
|
-
|
2589
|
-
const int64_t n = ggml_nelements(dst);
|
2590
|
-
|
2591
|
-
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
2592
|
-
} break;
|
2593
|
-
case GGML_OP_FLASH_ATTN_EXT:
|
2594
|
-
{
|
2595
|
-
GGML_ASSERT(ne00 % 4 == 0);
|
2596
|
-
GGML_ASSERT(ne11 % 32 == 0);
|
2597
|
-
|
2598
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
2599
|
-
|
2600
|
-
GGML_ASSERT(ggml_are_same_shape (src1, src2));
|
2601
|
-
|
2602
|
-
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
|
2603
|
-
|
2604
|
-
size_t offs_src3 = 0;
|
2605
|
-
|
2606
|
-
id<MTLBuffer> id_src3 = src3 ? ggml_metal_get_buffer(src3, &offs_src3) : nil;
|
2607
|
-
|
2608
|
-
GGML_ASSERT(!src3 || src3->type == GGML_TYPE_F16);
|
2609
|
-
GGML_ASSERT(!src3 || src3->ne[1] >= GGML_PAD(src0->ne[1], 8) &&
|
2610
|
-
"the Flash-Attention Metal kernel requires the mask to be padded to 8 and at least n_queries big");
|
2611
|
-
|
2612
|
-
const int64_t ne30 = src3 ? src3->ne[0] : 0; GGML_UNUSED(ne30);
|
2613
|
-
//const int64_t ne31 = src3 ? src3->ne[1] : 0;
|
2614
|
-
const int64_t ne32 = src3 ? src3->ne[2] : 0; GGML_UNUSED(ne32);
|
2615
|
-
const int64_t ne33 = src3 ? src3->ne[3] : 0; GGML_UNUSED(ne33);
|
2616
|
-
|
2617
|
-
const uint64_t nb30 = src3 ? src3->nb[0] : 0; GGML_UNUSED(nb30);
|
2618
|
-
const uint64_t nb31 = src3 ? src3->nb[1] : 0;
|
2619
|
-
const uint64_t nb32 = src3 ? src3->nb[2] : 0; GGML_UNUSED(nb32);
|
2620
|
-
const uint64_t nb33 = src3 ? src3->nb[3] : 0; GGML_UNUSED(nb33);
|
2621
|
-
|
2622
|
-
const enum ggml_type src2t = src2 ? src2->type : GGML_TYPE_COUNT; GGML_UNUSED(src2t);
|
2623
|
-
|
2624
|
-
float scale;
|
2625
|
-
float max_bias;
|
2626
|
-
|
2627
|
-
memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale));
|
2628
|
-
memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias));
|
2629
|
-
|
2630
|
-
const uint32_t n_head = src0->ne[2];
|
2631
|
-
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
2632
|
-
|
2633
|
-
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
2634
|
-
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
2635
|
-
|
2636
|
-
id<MTLComputePipelineState> pipeline = nil;
|
2637
|
-
|
2638
|
-
bool use_vec_kernel = false;
|
2639
|
-
|
2640
|
-
if (ne01 >= 4 || (ne00%128 != 0)) {
|
2641
|
-
switch (ne00) {
|
2642
|
-
case 64: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H64 ].pipeline; break;
|
2643
|
-
case 80: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H80 ].pipeline; break;
|
2644
|
-
case 96: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H96 ].pipeline; break;
|
2645
|
-
case 112: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H112].pipeline; break;
|
2646
|
-
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H128].pipeline; break;
|
2647
|
-
//case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_F16_H256].pipeline; break;
|
2648
|
-
default:
|
2649
|
-
{
|
2650
|
-
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
|
2651
|
-
GGML_METAL_LOG_ERROR("add template specialization for this size\n");
|
2652
|
-
GGML_ASSERT(false && "add template specialization for this size");
|
2653
|
-
}
|
2654
|
-
}
|
2655
|
-
} else {
|
2656
|
-
use_vec_kernel = true;
|
2657
|
-
|
2658
|
-
switch (ne00) {
|
2659
|
-
case 128: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H128].pipeline; break;
|
2660
|
-
//case 256: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_FLASH_ATTN_EXT_VEC_F16_H256].pipeline; break;
|
2661
|
-
default:
|
2662
|
-
{
|
2663
|
-
GGML_METAL_LOG_ERROR("unsupported size: %lld\n", ne00);
|
2664
|
-
GGML_METAL_LOG_ERROR("add template specialization for this size\n");
|
2665
|
-
GGML_ASSERT(false && "add template specialization for this size");
|
2666
|
-
}
|
2667
|
-
}
|
2668
|
-
}
|
2669
|
-
|
2670
|
-
[encoder setComputePipelineState:pipeline];
|
2671
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2672
|
-
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
2673
|
-
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
2674
|
-
if (id_src3) {
|
2675
|
-
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
2676
|
-
} else {
|
2677
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:3];
|
2678
|
-
}
|
2679
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
2680
|
-
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
|
2681
|
-
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
|
2682
|
-
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
|
2683
|
-
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
|
2684
|
-
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
|
2685
|
-
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
|
2686
|
-
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11];
|
2687
|
-
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12];
|
2688
|
-
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13];
|
2689
|
-
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14];
|
2690
|
-
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15];
|
2691
|
-
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16];
|
2692
|
-
[encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17];
|
2693
|
-
[encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18];
|
2694
|
-
[encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19];
|
2695
|
-
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20];
|
2696
|
-
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21];
|
2697
|
-
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22];
|
2698
|
-
[encoder setBytes:&scale length:sizeof( float) atIndex:23];
|
2699
|
-
[encoder setBytes:&max_bias length:sizeof( float) atIndex:24];
|
2700
|
-
[encoder setBytes:&m0 length:sizeof(m0) atIndex:25];
|
2701
|
-
[encoder setBytes:&m1 length:sizeof(m1) atIndex:26];
|
2702
|
-
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
|
2703
|
-
|
2704
|
-
if (!use_vec_kernel) {
|
2705
|
-
// half8x8 kernel
|
2706
|
-
const int64_t nqptg = 8; // queries per threadgroup !! sync with kernel template arguments !!
|
2707
|
-
const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
|
2708
|
-
|
2709
|
-
GGML_ASSERT(nqptg <= 32);
|
2710
|
-
GGML_ASSERT(nqptg % 8 == 0);
|
2711
|
-
GGML_ASSERT(ncpsg % 32 == 0);
|
2712
|
-
|
2713
|
-
int64_t nsgmax = 2;
|
2714
|
-
|
2715
|
-
while (true) {
|
2716
|
-
const size_t smem = nqptg*(ne00 + 2*nsgmax*(ncpsg + nqptg))*(sizeof(float)/2);
|
2717
|
-
if (smem > ctx->device.maxThreadgroupMemoryLength) {
|
2718
|
-
break;
|
2719
|
-
}
|
2720
|
-
nsgmax *= 2;
|
2721
|
-
}
|
2722
|
-
nsgmax /= 2;
|
2723
|
-
|
2724
|
-
// simdgroups per threadgroup (a.k.a. warps)
|
2725
|
-
const int64_t nsg = ne01 <= nqptg ? MAX(4, MIN(nsgmax, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32))) : 4;
|
2726
|
-
|
2727
|
-
const size_t smem = nqptg*(ne00 + 2*nsg*(ncpsg + nqptg))*(sizeof(float)/2);
|
2728
|
-
|
2729
|
-
//printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength);
|
2730
|
-
GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength);
|
2731
|
-
|
2732
|
-
[encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0];
|
2733
|
-
|
2734
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
|
2735
|
-
} else {
|
2736
|
-
// half1x4 kernel
|
2737
|
-
const int64_t nqptg = 1; // queries per threadgroup !! sync with kernel template arguments !!
|
2738
|
-
const int64_t ncpsg = 32; // cache values per simdgroup !! sync with kernel template arguments !!
|
2739
|
-
|
2740
|
-
GGML_ASSERT(nqptg <= 32);
|
2741
|
-
GGML_ASSERT(nqptg % 1 == 0);
|
2742
|
-
GGML_ASSERT(ncpsg % 32 == 0);
|
2743
|
-
|
2744
|
-
// simdgroups per threadgroup (a.k.a. warps)
|
2745
|
-
const int64_t nsgt = MAX(2, MIN(ne11/ncpsg, (int64_t) pipeline.maxTotalThreadsPerThreadgroup/32));
|
2746
|
-
|
2747
|
-
int64_t nsg = 1;
|
2748
|
-
while (nsg <= nsgt) {
|
2749
|
-
nsg *= 2;
|
2750
|
-
}
|
2751
|
-
nsg /= 2;
|
2752
|
-
|
2753
|
-
const size_t smem = (nqptg*(ne00 + 2*nsg*(ncpsg + nqptg)) + nsg*ne00)*(sizeof(float)/2);
|
2754
|
-
|
2755
|
-
//printf("smem: %zu, max: %zu\n", smem, ctx->device.maxThreadgroupMemoryLength);
|
2756
|
-
GGML_ASSERT(smem <= ctx->device.maxThreadgroupMemoryLength);
|
2757
|
-
[encoder setThreadgroupMemoryLength:GGML_PAD(smem, 16) atIndex:0];
|
2758
|
-
|
2759
|
-
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + nqptg - 1)/nqptg, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, nsg, 1)];
|
2760
|
-
}
|
2761
|
-
} break;
|
2762
|
-
case GGML_OP_DUP:
|
2763
|
-
case GGML_OP_CPY:
|
2764
|
-
case GGML_OP_CONT:
|
2765
|
-
{
|
2766
|
-
GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0);
|
2767
|
-
|
2768
|
-
int nth = MIN(1024, ne00/ggml_blck_size(src0->type));
|
2769
|
-
|
2770
|
-
id<MTLComputePipelineState> pipeline = nil;
|
2771
|
-
|
2772
|
-
switch (src0t) {
|
2773
|
-
case GGML_TYPE_F32:
|
2774
|
-
{
|
2775
|
-
GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0);
|
2776
|
-
|
2777
|
-
switch (dstt) {
|
2778
|
-
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break;
|
2779
|
-
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break;
|
2780
|
-
case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break;
|
2781
|
-
case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break;
|
2782
|
-
case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break;
|
2783
|
-
case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break;
|
2784
|
-
case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break;
|
2785
|
-
case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break;
|
2786
|
-
default: GGML_ASSERT(false && "not implemented");
|
2787
|
-
};
|
2788
|
-
} break;
|
2789
|
-
case GGML_TYPE_F16:
|
2790
|
-
{
|
2791
|
-
switch (dstt) {
|
2792
|
-
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break;
|
2793
|
-
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break;
|
2794
|
-
default: GGML_ASSERT(false && "not implemented");
|
2795
|
-
};
|
2796
|
-
} break;
|
2797
|
-
default: GGML_ASSERT(false && "not implemented");
|
2798
|
-
}
|
2799
|
-
|
2800
|
-
[encoder setComputePipelineState:pipeline];
|
2801
|
-
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
2802
|
-
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
2803
|
-
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
2804
|
-
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
|
2805
|
-
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
|
2806
|
-
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
|
2807
|
-
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
|
2808
|
-
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
|
2809
|
-
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
|
2810
|
-
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
|
2811
|
-
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10];
|
2812
|
-
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11];
|
2813
|
-
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12];
|
2814
|
-
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13];
|
2815
|
-
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14];
|
2816
|
-
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15];
|
2817
|
-
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16];
|
2818
|
-
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17];
|
2819
|
-
|
2820
|
-
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
2821
|
-
} break;
|
2822
|
-
default:
|
2823
|
-
{
|
2824
|
-
GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
2825
|
-
GGML_ASSERT(false);
|
2826
|
-
}
|
2827
|
-
}
|
2828
|
-
|
2829
|
-
if (should_capture) {
|
2830
|
-
[encoder popDebugGroup];
|
2831
|
-
}
|
2832
|
-
}
|
2833
|
-
|
2834
|
-
[encoder endEncoding];
|
2835
|
-
|
2836
|
-
[command_buffer commit];
|
2837
|
-
});
|
2838
|
-
|
2839
|
-
// Wait for completion and check status of each command buffer
|
2840
|
-
// needed to detect if the device ran out-of-memory for example (#1881)
|
2841
|
-
|
2842
|
-
for (int i = 0; i < n_cb; ++i) {
|
2843
|
-
id<MTLCommandBuffer> command_buffer = command_buffers[i];
|
2844
|
-
[command_buffer waitUntilCompleted];
|
2845
|
-
|
2846
|
-
MTLCommandBufferStatus status = [command_buffer status];
|
2847
|
-
if (status != MTLCommandBufferStatusCompleted) {
|
2848
|
-
GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status);
|
2849
|
-
if (status == MTLCommandBufferStatusError) {
|
2850
|
-
NSString * error_code = [command_buffer error].localizedDescription;
|
2851
|
-
GGML_METAL_LOG_INFO("error: %s\n", [error_code UTF8String]);
|
2852
|
-
}
|
2853
|
-
|
2854
|
-
return GGML_STATUS_FAILED;
|
2855
|
-
}
|
2856
|
-
}
|
2857
|
-
|
2858
|
-
if (should_capture) {
|
2859
|
-
[[MTLCaptureManager sharedCaptureManager] stopCapture];
|
2860
|
-
}
|
2861
|
-
|
2862
|
-
}
|
2863
|
-
return GGML_STATUS_SUCCESS;
|
2864
|
-
}
|
2865
|
-
|
2866
|
-
////////////////////////////////////////////////////////////////////////////////
|
2867
|
-
|
2868
|
-
// backend interface
|
2869
|
-
|
2870
|
-
// default buffer
|
2871
|
-
static id<MTLDevice> g_backend_device = nil;
|
2872
|
-
static int g_backend_device_ref_count = 0;
|
2873
|
-
|
2874
|
-
static id<MTLDevice> ggml_backend_metal_get_device(void) {
|
2875
|
-
if (g_backend_device == nil) {
|
2876
|
-
g_backend_device = MTLCreateSystemDefaultDevice();
|
2877
|
-
}
|
2878
|
-
|
2879
|
-
g_backend_device_ref_count++;
|
2880
|
-
|
2881
|
-
return g_backend_device;
|
2882
|
-
}
|
2883
|
-
|
2884
|
-
static void ggml_backend_metal_free_device(void) {
|
2885
|
-
assert(g_backend_device_ref_count > 0);
|
2886
|
-
|
2887
|
-
g_backend_device_ref_count--;
|
2888
|
-
|
2889
|
-
if (g_backend_device_ref_count == 0) {
|
2890
|
-
[g_backend_device release];
|
2891
|
-
g_backend_device = nil;
|
2892
|
-
}
|
2893
|
-
}
|
2894
|
-
|
2895
|
-
GGML_CALL static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
|
2896
|
-
return "Metal";
|
2897
|
-
|
2898
|
-
UNUSED(buffer);
|
2899
|
-
}
|
2900
|
-
|
2901
|
-
GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
2902
|
-
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
2903
|
-
|
2904
|
-
for (int i = 0; i < ctx->n_buffers; i++) {
|
2905
|
-
[ctx->buffers[i].metal release];
|
2906
|
-
}
|
2907
|
-
ggml_backend_metal_free_device();
|
2908
|
-
|
2909
|
-
if (ctx->owned) {
|
2910
|
-
#if TARGET_OS_OSX
|
2911
|
-
vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)ctx->all_data, ctx->all_size);
|
2912
|
-
#else
|
2913
|
-
free(ctx->all_data);
|
2914
|
-
#endif
|
2915
|
-
}
|
2916
|
-
|
2917
|
-
free(ctx);
|
2918
|
-
}
|
2919
|
-
|
2920
|
-
GGML_CALL static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
2921
|
-
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
2922
|
-
|
2923
|
-
return ctx->all_data;
|
2924
|
-
}
|
2925
|
-
|
2926
|
-
GGML_CALL static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
2927
|
-
memcpy((char *)tensor->data + offset, data, size);
|
2928
|
-
|
2929
|
-
UNUSED(buffer);
|
2930
|
-
}
|
2931
|
-
|
2932
|
-
GGML_CALL static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
2933
|
-
memcpy(data, (const char *)tensor->data + offset, size);
|
2934
|
-
|
2935
|
-
UNUSED(buffer);
|
2936
|
-
}
|
2937
|
-
|
2938
|
-
GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
2939
|
-
if (ggml_backend_buffer_is_host(src->buffer)) {
|
2940
|
-
memcpy(dst->data, src->data, ggml_nbytes(src));
|
2941
|
-
return true;
|
2942
|
-
}
|
2943
|
-
return false;
|
2944
|
-
|
2945
|
-
UNUSED(buffer);
|
2946
|
-
}
|
2947
|
-
|
2948
|
-
GGML_CALL static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
2949
|
-
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
2950
|
-
|
2951
|
-
memset(ctx->all_data, value, ctx->all_size);
|
2952
|
-
}
|
2953
|
-
|
2954
|
-
static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
|
2955
|
-
/* .get_name = */ ggml_backend_metal_buffer_get_name,
|
2956
|
-
/* .free_buffer = */ ggml_backend_metal_buffer_free_buffer,
|
2957
|
-
/* .get_base = */ ggml_backend_metal_buffer_get_base,
|
2958
|
-
/* .init_tensor = */ NULL,
|
2959
|
-
/* .set_tensor = */ ggml_backend_metal_buffer_set_tensor,
|
2960
|
-
/* .get_tensor = */ ggml_backend_metal_buffer_get_tensor,
|
2961
|
-
/* .cpy_tensor = */ ggml_backend_metal_buffer_cpy_tensor,
|
2962
|
-
/* .clear = */ ggml_backend_metal_buffer_clear,
|
2963
|
-
/* .reset = */ NULL,
|
2964
|
-
};
|
2965
|
-
|
2966
|
-
// default buffer type
|
2967
|
-
|
2968
|
-
GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
2969
|
-
return "Metal";
|
2970
|
-
|
2971
|
-
UNUSED(buft);
|
2972
|
-
}
|
2973
|
-
|
2974
|
-
static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t size_aligned) {
|
2975
|
-
#ifndef GGML_METAL_NDEBUG
|
2976
|
-
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
|
2977
|
-
if (@available(macOS 10.12, iOS 16.0, *)) {
|
2978
|
-
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f / %8.2f)",
|
2979
|
-
__func__,
|
2980
|
-
size_aligned / 1024.0 / 1024.0,
|
2981
|
-
device.currentAllocatedSize / 1024.0 / 1024.0,
|
2982
|
-
device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
2983
|
-
|
2984
|
-
if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) {
|
2985
|
-
GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__);
|
2986
|
-
} else {
|
2987
|
-
GGML_METAL_LOG_INFO("\n");
|
2988
|
-
}
|
2989
|
-
} else {
|
2990
|
-
GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, (%8.2f)\n",
|
2991
|
-
__func__,
|
2992
|
-
size_aligned / 1024.0 / 1024.0,
|
2993
|
-
device.currentAllocatedSize / 1024.0 / 1024.0);
|
2994
|
-
}
|
2995
|
-
#endif
|
2996
|
-
#endif
|
2997
|
-
UNUSED(device);
|
2998
|
-
UNUSED(size_aligned);
|
2999
|
-
}
|
3000
|
-
|
3001
|
-
GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
3002
|
-
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
|
3003
|
-
|
3004
|
-
const size_t size_page = sysconf(_SC_PAGESIZE);
|
3005
|
-
|
3006
|
-
size_t size_aligned = size;
|
3007
|
-
if ((size_aligned % size_page) != 0) {
|
3008
|
-
size_aligned += (size_page - (size_aligned % size_page));
|
3009
|
-
}
|
3010
|
-
|
3011
|
-
id<MTLDevice> device = ggml_backend_metal_get_device();
|
3012
|
-
|
3013
|
-
ctx->all_data = ggml_metal_host_malloc(size_aligned);
|
3014
|
-
ctx->all_size = size_aligned;
|
3015
|
-
ctx->owned = true;
|
3016
|
-
ctx->n_buffers = 1;
|
3017
|
-
|
3018
|
-
if (ctx->all_data != NULL) {
|
3019
|
-
ctx->buffers[0].data = ctx->all_data;
|
3020
|
-
ctx->buffers[0].size = size;
|
3021
|
-
ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data
|
3022
|
-
length:size_aligned
|
3023
|
-
options:MTLResourceStorageModeShared
|
3024
|
-
deallocator:nil];
|
3025
|
-
}
|
3026
|
-
|
3027
|
-
if (ctx->all_data == NULL || ctx->buffers[0].metal == nil) {
|
3028
|
-
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
|
3029
|
-
free(ctx);
|
3030
|
-
ggml_backend_metal_free_device();
|
3031
|
-
return NULL;
|
3032
|
-
}
|
3033
|
-
|
3034
|
-
//ggml_backend_metal_log_allocated_size(device, size_aligned);
|
3035
|
-
|
3036
|
-
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
|
3037
|
-
}
|
3038
|
-
|
3039
|
-
GGML_CALL static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
3040
|
-
return 32;
|
3041
|
-
UNUSED(buft);
|
3042
|
-
}
|
3043
|
-
|
3044
|
-
GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
3045
|
-
id<MTLDevice> device = ggml_backend_metal_get_device();
|
3046
|
-
size_t max_size = device.maxBufferLength;
|
3047
|
-
ggml_backend_metal_free_device();
|
3048
|
-
|
3049
|
-
return max_size;
|
3050
|
-
|
3051
|
-
UNUSED(buft);
|
3052
|
-
}
|
3053
|
-
|
3054
|
-
GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
3055
|
-
return true;
|
3056
|
-
|
3057
|
-
UNUSED(buft);
|
3058
|
-
}
|
3059
|
-
|
3060
|
-
GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
3061
|
-
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
|
3062
|
-
/* .iface = */ {
|
3063
|
-
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
|
3064
|
-
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
|
3065
|
-
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
|
3066
|
-
/* .get_max_size = */ ggml_backend_metal_buffer_type_get_max_size,
|
3067
|
-
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
3068
|
-
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
|
3069
|
-
},
|
3070
|
-
/* .context = */ NULL,
|
3071
|
-
};
|
3072
|
-
|
3073
|
-
return &ggml_backend_buffer_type_metal;
|
3074
|
-
}
|
3075
|
-
|
3076
|
-
// buffer from ptr
|
3077
|
-
|
3078
|
-
GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
|
3079
|
-
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
|
3080
|
-
|
3081
|
-
ctx->all_data = data;
|
3082
|
-
ctx->all_size = size;
|
3083
|
-
ctx->owned = false;
|
3084
|
-
ctx->n_buffers = 0;
|
3085
|
-
|
3086
|
-
const size_t size_page = sysconf(_SC_PAGESIZE);
|
3087
|
-
|
3088
|
-
// page-align the data ptr
|
3089
|
-
{
|
3090
|
-
const uintptr_t offs = (uintptr_t) data % size_page;
|
3091
|
-
data = (void *) ((char *) data - offs);
|
3092
|
-
size += offs;
|
3093
|
-
}
|
3094
|
-
|
3095
|
-
size_t size_aligned = size;
|
3096
|
-
if ((size_aligned % size_page) != 0) {
|
3097
|
-
size_aligned += (size_page - (size_aligned % size_page));
|
3098
|
-
}
|
3099
|
-
|
3100
|
-
id<MTLDevice> device = ggml_backend_metal_get_device();
|
3101
|
-
|
3102
|
-
// the buffer fits into the max buffer size allowed by the device
|
3103
|
-
if (size_aligned <= device.maxBufferLength) {
|
3104
|
-
ctx->buffers[ctx->n_buffers].data = data;
|
3105
|
-
ctx->buffers[ctx->n_buffers].size = size;
|
3106
|
-
|
3107
|
-
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
3108
|
-
|
3109
|
-
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
3110
|
-
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0);
|
3111
|
-
return false;
|
3112
|
-
}
|
3113
|
-
|
3114
|
-
ggml_backend_metal_log_allocated_size(device, size_aligned);
|
3115
|
-
|
3116
|
-
++ctx->n_buffers;
|
3117
|
-
} else {
|
3118
|
-
// this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
|
3119
|
-
// one of the views
|
3120
|
-
const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
|
3121
|
-
const size_t size_step = device.maxBufferLength - size_ovlp;
|
3122
|
-
const size_t size_view = device.maxBufferLength;
|
3123
|
-
|
3124
|
-
for (size_t i = 0; i < size; i += size_step) {
|
3125
|
-
const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
|
3126
|
-
|
3127
|
-
ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
|
3128
|
-
ctx->buffers[ctx->n_buffers].size = size_step_aligned;
|
3129
|
-
|
3130
|
-
ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
|
3131
|
-
|
3132
|
-
if (ctx->buffers[ctx->n_buffers].metal == nil) {
|
3133
|
-
GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0);
|
3134
|
-
return false;
|
3135
|
-
}
|
3136
|
-
|
3137
|
-
ggml_backend_metal_log_allocated_size(device, size_step_aligned);
|
3138
|
-
|
3139
|
-
if (i + size_step < size) {
|
3140
|
-
GGML_METAL_LOG_INFO("\n");
|
3141
|
-
}
|
3142
|
-
|
3143
|
-
++ctx->n_buffers;
|
3144
|
-
}
|
3145
|
-
}
|
3146
|
-
|
3147
|
-
return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size);
|
3148
|
-
}
|
3149
|
-
|
3150
|
-
// backend
|
3151
|
-
|
3152
|
-
GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
3153
|
-
return "Metal";
|
3154
|
-
|
3155
|
-
UNUSED(backend);
|
3156
|
-
}
|
3157
|
-
|
3158
|
-
GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) {
|
3159
|
-
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
3160
|
-
ggml_metal_free(ctx);
|
3161
|
-
free(backend);
|
3162
|
-
}
|
3163
|
-
|
3164
|
-
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
|
3165
|
-
return ggml_backend_metal_buffer_type();
|
3166
|
-
|
3167
|
-
UNUSED(backend);
|
3168
|
-
}
|
3169
|
-
|
3170
|
-
GGML_CALL static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
3171
|
-
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
|
3172
|
-
|
3173
|
-
return ggml_metal_graph_compute(metal_ctx, cgraph);
|
3174
|
-
}
|
3175
|
-
|
3176
|
-
GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
3177
|
-
struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context;
|
3178
|
-
|
3179
|
-
return ggml_metal_supports_op(metal_ctx, op);
|
3180
|
-
}
|
3181
|
-
|
3182
|
-
GGML_CALL static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
3183
|
-
return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name;
|
3184
|
-
|
3185
|
-
UNUSED(backend);
|
3186
|
-
}
|
3187
|
-
|
3188
|
-
static struct ggml_backend_i ggml_backend_metal_i = {
|
3189
|
-
/* .get_name = */ ggml_backend_metal_name,
|
3190
|
-
/* .free = */ ggml_backend_metal_free,
|
3191
|
-
/* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type,
|
3192
|
-
/* .set_tensor_async = */ NULL,
|
3193
|
-
/* .get_tensor_async = */ NULL,
|
3194
|
-
/* .cpy_tensor_async = */ NULL,
|
3195
|
-
/* .synchronize = */ NULL,
|
3196
|
-
/* .graph_plan_create = */ NULL,
|
3197
|
-
/* .graph_plan_free = */ NULL,
|
3198
|
-
/* .graph_plan_update = */ NULL,
|
3199
|
-
/* .graph_plan_compute = */ NULL,
|
3200
|
-
/* .graph_compute = */ ggml_backend_metal_graph_compute,
|
3201
|
-
/* .supports_op = */ ggml_backend_metal_supports_op,
|
3202
|
-
/* .supports_buft = */ ggml_backend_metal_supports_buft,
|
3203
|
-
/* .offload_op = */ NULL,
|
3204
|
-
/* .event_new = */ NULL,
|
3205
|
-
/* .event_free = */ NULL,
|
3206
|
-
/* .event_record = */ NULL,
|
3207
|
-
/* .event_wait = */ NULL,
|
3208
|
-
/* .event_synchronize = */ NULL,
|
3209
|
-
};
|
3210
|
-
|
3211
|
-
void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) {
|
3212
|
-
ggml_metal_log_callback = log_callback;
|
3213
|
-
ggml_metal_log_user_data = user_data;
|
3214
|
-
}
|
3215
|
-
|
3216
|
-
static ggml_guid_t ggml_backend_metal_guid(void) {
|
3217
|
-
static ggml_guid guid = { 0x81, 0xa1, 0x8b, 0x1e, 0x71, 0xec, 0x79, 0xed, 0x2b, 0x85, 0xdc, 0x8a, 0x61, 0x98, 0x30, 0xe6 };
|
3218
|
-
return &guid;
|
3219
|
-
}
|
3220
|
-
|
3221
|
-
ggml_backend_t ggml_backend_metal_init(void) {
|
3222
|
-
struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS);
|
3223
|
-
|
3224
|
-
if (ctx == NULL) {
|
3225
|
-
return NULL;
|
3226
|
-
}
|
3227
|
-
|
3228
|
-
ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend));
|
3229
|
-
|
3230
|
-
*metal_backend = (struct ggml_backend) {
|
3231
|
-
/* .guid = */ ggml_backend_metal_guid(),
|
3232
|
-
/* .interface = */ ggml_backend_metal_i,
|
3233
|
-
/* .context = */ ctx,
|
3234
|
-
};
|
3235
|
-
|
3236
|
-
return metal_backend;
|
3237
|
-
}
|
3238
|
-
|
3239
|
-
bool ggml_backend_is_metal(ggml_backend_t backend) {
|
3240
|
-
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_metal_guid());
|
3241
|
-
}
|
3242
|
-
|
3243
|
-
void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) {
|
3244
|
-
GGML_ASSERT(ggml_backend_is_metal(backend));
|
3245
|
-
|
3246
|
-
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
3247
|
-
|
3248
|
-
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
|
3249
|
-
}
|
3250
|
-
|
3251
|
-
bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
|
3252
|
-
GGML_ASSERT(ggml_backend_is_metal(backend));
|
3253
|
-
|
3254
|
-
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
3255
|
-
|
3256
|
-
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
|
3257
|
-
}
|
3258
|
-
|
3259
|
-
void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
|
3260
|
-
GGML_ASSERT(ggml_backend_is_metal(backend));
|
3261
|
-
|
3262
|
-
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
3263
|
-
ctx->should_capture_next_compute = true;
|
3264
|
-
}
|
3265
|
-
|
3266
|
-
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
|
3267
|
-
|
3268
|
-
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
|
3269
|
-
return ggml_backend_metal_init();
|
3270
|
-
|
3271
|
-
GGML_UNUSED(params);
|
3272
|
-
GGML_UNUSED(user_data);
|
3273
|
-
}
|