llama_cpp 0.16.2 → 0.17.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +18 -0
- data/README.md +7 -12
- data/ext/llama_cpp/extconf.rb +2 -43
- data/ext/llama_cpp/llama_cpp.cpp +8 -0
- data/lib/llama_cpp/version.rb +3 -3
- data/sig/llama_cpp.rbs +3 -0
- metadata +2 -171
- data/vendor/include/.gitkeep +0 -0
- data/vendor/lib/.gitkeep +0 -0
- data/vendor/tmp/llama.cpp/LICENSE +0 -21
- data/vendor/tmp/llama.cpp/Makefile +0 -1124
- data/vendor/tmp/llama.cpp/ggml-alloc.c +0 -1041
- data/vendor/tmp/llama.cpp/ggml-alloc.h +0 -76
- data/vendor/tmp/llama.cpp/ggml-backend-impl.h +0 -153
- data/vendor/tmp/llama.cpp/ggml-backend.c +0 -2225
- data/vendor/tmp/llama.cpp/ggml-backend.h +0 -236
- data/vendor/tmp/llama.cpp/ggml-blas.cpp +0 -363
- data/vendor/tmp/llama.cpp/ggml-blas.h +0 -23
- data/vendor/tmp/llama.cpp/ggml-common.h +0 -1805
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +0 -280
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +0 -196
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +0 -686
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +0 -490
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +0 -674
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +0 -319
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +0 -312
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +0 -345
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +0 -178
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +0 -88
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +0 -419
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +0 -221
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +0 -49
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +0 -94
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +0 -112
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +0 -271
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +0 -31
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +0 -206
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +0 -9
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +0 -8
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q2_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q3_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q6_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +0 -314
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +0 -51
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +0 -3069
- data/vendor/tmp/llama.cpp/ggml-cuda.h +0 -44
- data/vendor/tmp/llama.cpp/ggml-impl.h +0 -651
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +0 -2038
- data/vendor/tmp/llama.cpp/ggml-kompute.h +0 -46
- data/vendor/tmp/llama.cpp/ggml-metal.h +0 -66
- data/vendor/tmp/llama.cpp/ggml-metal.m +0 -3273
- data/vendor/tmp/llama.cpp/ggml-metal.metal +0 -6540
- data/vendor/tmp/llama.cpp/ggml-quants.c +0 -14994
- data/vendor/tmp/llama.cpp/ggml-quants.h +0 -133
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +0 -1178
- data/vendor/tmp/llama.cpp/ggml-rpc.h +0 -24
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +0 -6351
- data/vendor/tmp/llama.cpp/ggml-sycl.h +0 -40
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +0 -144508
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +0 -7183
- data/vendor/tmp/llama.cpp/ggml-vulkan.h +0 -29
- data/vendor/tmp/llama.cpp/ggml.c +0 -22506
- data/vendor/tmp/llama.cpp/ggml.h +0 -2458
- data/vendor/tmp/llama.cpp/llama.cpp +0 -18985
- data/vendor/tmp/llama.cpp/llama.h +0 -1147
- data/vendor/tmp/llama.cpp/scripts/get-flags.mk +0 -38
- data/vendor/tmp/llama.cpp/sgemm.cpp +0 -1032
- data/vendor/tmp/llama.cpp/sgemm.h +0 -14
- data/vendor/tmp/llama.cpp/unicode-data.cpp +0 -7033
- data/vendor/tmp/llama.cpp/unicode-data.h +0 -20
- data/vendor/tmp/llama.cpp/unicode.cpp +0 -810
- data/vendor/tmp/llama.cpp/unicode.h +0 -63
data/vendor/tmp/llama.cpp/ggml.h
DELETED
@@ -1,2458 +0,0 @@
|
|
1
|
-
#pragma once
|
2
|
-
|
3
|
-
//
|
4
|
-
// GGML Tensor Library
|
5
|
-
//
|
6
|
-
// This documentation is still a work in progress.
|
7
|
-
// If you wish some specific topics to be covered, feel free to drop a comment:
|
8
|
-
//
|
9
|
-
// https://github.com/ggerganov/whisper.cpp/issues/40
|
10
|
-
//
|
11
|
-
// ## Overview
|
12
|
-
//
|
13
|
-
// This library implements:
|
14
|
-
//
|
15
|
-
// - a set of tensor operations
|
16
|
-
// - automatic differentiation
|
17
|
-
// - basic optimization algorithms
|
18
|
-
//
|
19
|
-
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
|
20
|
-
// but is not limited to, the following:
|
21
|
-
//
|
22
|
-
// - linear regression
|
23
|
-
// - support vector machines
|
24
|
-
// - neural networks
|
25
|
-
//
|
26
|
-
// The library allows the user to define a certain function using the available tensor operations. This function
|
27
|
-
// definition is represented internally via a computation graph. Each tensor operation in the function definition
|
28
|
-
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
|
29
|
-
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
|
30
|
-
// using one of the available optimization algorithms.
|
31
|
-
//
|
32
|
-
// For example, here we define the function: f(x) = a*x^2 + b
|
33
|
-
//
|
34
|
-
// {
|
35
|
-
// struct ggml_init_params params = {
|
36
|
-
// .mem_size = 16*1024*1024,
|
37
|
-
// .mem_buffer = NULL,
|
38
|
-
// };
|
39
|
-
//
|
40
|
-
// // memory allocation happens here
|
41
|
-
// struct ggml_context * ctx = ggml_init(params);
|
42
|
-
//
|
43
|
-
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
44
|
-
//
|
45
|
-
// ggml_set_param(ctx, x); // x is an input variable
|
46
|
-
//
|
47
|
-
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
48
|
-
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
|
49
|
-
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
|
50
|
-
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
|
51
|
-
//
|
52
|
-
// ...
|
53
|
-
// }
|
54
|
-
//
|
55
|
-
// Notice that the function definition above does not involve any actual computation. The computation is performed only
|
56
|
-
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
|
57
|
-
//
|
58
|
-
// {
|
59
|
-
// ...
|
60
|
-
//
|
61
|
-
// struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
62
|
-
// ggml_build_forward_expand(gf, f);
|
63
|
-
//
|
64
|
-
// // set the input variable and parameter values
|
65
|
-
// ggml_set_f32(x, 2.0f);
|
66
|
-
// ggml_set_f32(a, 3.0f);
|
67
|
-
// ggml_set_f32(b, 4.0f);
|
68
|
-
//
|
69
|
-
// ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
|
70
|
-
//
|
71
|
-
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
|
72
|
-
//
|
73
|
-
// ...
|
74
|
-
// }
|
75
|
-
//
|
76
|
-
// The actual computation is performed in the ggml_graph_compute() function.
|
77
|
-
//
|
78
|
-
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
|
79
|
-
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
|
80
|
-
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
|
81
|
-
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
|
82
|
-
// actually needed.
|
83
|
-
//
|
84
|
-
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
|
85
|
-
// differentiation and optimization algorithms.
|
86
|
-
//
|
87
|
-
// The described approach allows to define the function graph once and then compute its forward or backward graphs
|
88
|
-
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
|
89
|
-
// the user can avoid the memory allocation overhead at runtime.
|
90
|
-
//
|
91
|
-
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
|
92
|
-
// citizens, but in theory the library can be extended to support FP8 and integer data types.
|
93
|
-
//
|
94
|
-
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
|
95
|
-
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
|
96
|
-
// clear that the library needs to support more complex operations. The way to support these operations is not clear
|
97
|
-
// yet, but a few examples are demonstrated in the following operations:
|
98
|
-
//
|
99
|
-
// - ggml_permute()
|
100
|
-
// - ggml_conv_1d_1s()
|
101
|
-
// - ggml_conv_1d_2s()
|
102
|
-
//
|
103
|
-
// For each tensor operator, the library implements a forward and backward computation function. The forward function
|
104
|
-
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
|
105
|
-
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
|
106
|
-
// calculus class, or watch the following video:
|
107
|
-
//
|
108
|
-
// What is Automatic Differentiation?
|
109
|
-
// https://www.youtube.com/watch?v=wG_nF1awSSY
|
110
|
-
//
|
111
|
-
//
|
112
|
-
// ## Tensor data (struct ggml_tensor)
|
113
|
-
//
|
114
|
-
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
|
115
|
-
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
|
116
|
-
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
|
117
|
-
//
|
118
|
-
// {
|
119
|
-
// struct ggml_tensor * c = ggml_add(ctx, a, b);
|
120
|
-
//
|
121
|
-
// assert(c->src[0] == a);
|
122
|
-
// assert(c->src[1] == b);
|
123
|
-
// }
|
124
|
-
//
|
125
|
-
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
|
126
|
-
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
|
127
|
-
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
|
128
|
-
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
|
129
|
-
// contiguous in memory.
|
130
|
-
//
|
131
|
-
// The data of the tensor is accessed via the "data" pointer. For example:
|
132
|
-
//
|
133
|
-
// {
|
134
|
-
// const int nx = 2;
|
135
|
-
// const int ny = 3;
|
136
|
-
//
|
137
|
-
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
|
138
|
-
//
|
139
|
-
// for (int y = 0; y < ny; y++) {
|
140
|
-
// for (int x = 0; x < nx; x++) {
|
141
|
-
// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
|
142
|
-
// }
|
143
|
-
// }
|
144
|
-
//
|
145
|
-
// ...
|
146
|
-
// }
|
147
|
-
//
|
148
|
-
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
|
149
|
-
//
|
150
|
-
// ## The matrix multiplication operator (ggml_mul_mat)
|
151
|
-
//
|
152
|
-
// TODO
|
153
|
-
//
|
154
|
-
//
|
155
|
-
// ## Multi-threading
|
156
|
-
//
|
157
|
-
// TODO
|
158
|
-
//
|
159
|
-
//
|
160
|
-
// ## Overview of ggml.c
|
161
|
-
//
|
162
|
-
// TODO
|
163
|
-
//
|
164
|
-
//
|
165
|
-
// ## SIMD optimizations
|
166
|
-
//
|
167
|
-
// TODO
|
168
|
-
//
|
169
|
-
//
|
170
|
-
// ## Debugging ggml
|
171
|
-
//
|
172
|
-
// TODO
|
173
|
-
//
|
174
|
-
//
|
175
|
-
|
176
|
-
#ifdef GGML_SHARED
|
177
|
-
# if defined(_WIN32) && !defined(__MINGW32__)
|
178
|
-
# ifdef GGML_BUILD
|
179
|
-
# define GGML_API __declspec(dllexport)
|
180
|
-
# else
|
181
|
-
# define GGML_API __declspec(dllimport)
|
182
|
-
# endif
|
183
|
-
# else
|
184
|
-
# define GGML_API __attribute__ ((visibility ("default")))
|
185
|
-
# endif
|
186
|
-
#else
|
187
|
-
# define GGML_API
|
188
|
-
#endif
|
189
|
-
|
190
|
-
#ifdef GGML_MULTIPLATFORM
|
191
|
-
# if defined(_WIN32)
|
192
|
-
# define GGML_CALL
|
193
|
-
# else
|
194
|
-
# define GGML_CALL __attribute__((__ms_abi__))
|
195
|
-
# endif
|
196
|
-
#else
|
197
|
-
# define GGML_CALL
|
198
|
-
#endif
|
199
|
-
|
200
|
-
// TODO: support for clang
|
201
|
-
#ifdef __GNUC__
|
202
|
-
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
203
|
-
#elif defined(_MSC_VER)
|
204
|
-
# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
205
|
-
#else
|
206
|
-
# define GGML_DEPRECATED(func, hint) func
|
207
|
-
#endif
|
208
|
-
|
209
|
-
#ifndef __GNUC__
|
210
|
-
# define GGML_ATTRIBUTE_FORMAT(...)
|
211
|
-
#elif defined(__MINGW32__)
|
212
|
-
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
|
213
|
-
#else
|
214
|
-
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
|
215
|
-
#endif
|
216
|
-
|
217
|
-
#include <stdbool.h>
|
218
|
-
#include <stddef.h>
|
219
|
-
#include <stdint.h>
|
220
|
-
#include <stdio.h>
|
221
|
-
|
222
|
-
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
|
223
|
-
#define GGML_FILE_VERSION 1
|
224
|
-
|
225
|
-
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
|
226
|
-
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
227
|
-
|
228
|
-
#define GGML_MAX_DIMS 4
|
229
|
-
#define GGML_MAX_PARAMS 2048
|
230
|
-
#define GGML_MAX_CONTEXTS 64
|
231
|
-
#define GGML_MAX_SRC 10
|
232
|
-
#ifndef GGML_MAX_NAME
|
233
|
-
#define GGML_MAX_NAME 64
|
234
|
-
#endif
|
235
|
-
#define GGML_MAX_OP_PARAMS 64
|
236
|
-
#define GGML_DEFAULT_N_THREADS 4
|
237
|
-
#define GGML_DEFAULT_GRAPH_SIZE 2048
|
238
|
-
#if UINTPTR_MAX == 0xFFFFFFFF
|
239
|
-
#define GGML_MEM_ALIGN 4
|
240
|
-
#else
|
241
|
-
#define GGML_MEM_ALIGN 16
|
242
|
-
#endif
|
243
|
-
|
244
|
-
#define GGML_EXIT_SUCCESS 0
|
245
|
-
#define GGML_EXIT_ABORTED 1
|
246
|
-
|
247
|
-
#define GGUF_MAGIC "GGUF"
|
248
|
-
|
249
|
-
#define GGUF_VERSION 3
|
250
|
-
|
251
|
-
#define GGUF_DEFAULT_ALIGNMENT 32
|
252
|
-
|
253
|
-
#define GGML_UNUSED(x) (void)(x)
|
254
|
-
|
255
|
-
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
256
|
-
|
257
|
-
#define GGML_ASSERT(x) \
|
258
|
-
do { \
|
259
|
-
if (!(x)) { \
|
260
|
-
fflush(stdout); \
|
261
|
-
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
262
|
-
ggml_print_backtrace(); \
|
263
|
-
abort(); \
|
264
|
-
} \
|
265
|
-
} while (0)
|
266
|
-
|
267
|
-
#ifndef NDEBUG
|
268
|
-
#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
|
269
|
-
#elif defined(__GNUC__)
|
270
|
-
#define GGML_UNREACHABLE() __builtin_unreachable()
|
271
|
-
#elif defined(_MSC_VER)
|
272
|
-
#define GGML_UNREACHABLE() __assume(0)
|
273
|
-
#else
|
274
|
-
#define GGML_UNREACHABLE() ((void) 0)
|
275
|
-
#endif
|
276
|
-
|
277
|
-
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
278
|
-
// main purpose is to reduce code duplication and improve readability.
|
279
|
-
//
|
280
|
-
// example:
|
281
|
-
//
|
282
|
-
// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
|
283
|
-
// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
|
284
|
-
//
|
285
|
-
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
|
286
|
-
const type prefix##0 = (pointer)->array[0]; \
|
287
|
-
GGML_UNUSED(prefix##0);
|
288
|
-
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
|
289
|
-
GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
|
290
|
-
const type prefix##1 = (pointer)->array[1]; \
|
291
|
-
GGML_UNUSED(prefix##1);
|
292
|
-
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
|
293
|
-
GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
|
294
|
-
const type prefix##2 = (pointer)->array[2]; \
|
295
|
-
GGML_UNUSED(prefix##2);
|
296
|
-
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
|
297
|
-
GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
|
298
|
-
const type prefix##3 = (pointer)->array[3]; \
|
299
|
-
GGML_UNUSED(prefix##3);
|
300
|
-
|
301
|
-
#define GGML_TENSOR_UNARY_OP_LOCALS \
|
302
|
-
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
303
|
-
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
304
|
-
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
305
|
-
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
306
|
-
|
307
|
-
#define GGML_TENSOR_BINARY_OP_LOCALS \
|
308
|
-
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
309
|
-
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
310
|
-
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
311
|
-
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
|
312
|
-
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
|
313
|
-
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
314
|
-
|
315
|
-
#define GGML_TENSOR_BINARY_OP_LOCALS01 \
|
316
|
-
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
|
317
|
-
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
|
318
|
-
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
|
319
|
-
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
|
320
|
-
|
321
|
-
#ifdef __cplusplus
|
322
|
-
extern "C" {
|
323
|
-
#endif
|
324
|
-
|
325
|
-
enum ggml_status {
|
326
|
-
GGML_STATUS_ALLOC_FAILED = -2,
|
327
|
-
GGML_STATUS_FAILED = -1,
|
328
|
-
GGML_STATUS_SUCCESS = 0,
|
329
|
-
GGML_STATUS_ABORTED = 1,
|
330
|
-
};
|
331
|
-
|
332
|
-
// get ggml_status name string
|
333
|
-
GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
|
334
|
-
|
335
|
-
// ieee 754-2008 half-precision float16
|
336
|
-
// todo: make this not an integral type
|
337
|
-
typedef uint16_t ggml_fp16_t;
|
338
|
-
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
|
339
|
-
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
|
340
|
-
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
|
341
|
-
GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
|
342
|
-
|
343
|
-
// google brain half-precision bfloat16
|
344
|
-
typedef struct { uint16_t bits; } ggml_bf16_t;
|
345
|
-
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
|
346
|
-
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
|
347
|
-
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
|
348
|
-
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
|
349
|
-
|
350
|
-
struct ggml_object;
|
351
|
-
struct ggml_context;
|
352
|
-
|
353
|
-
// NOTE: always add types at the end of the enum to keep backward compatibility
|
354
|
-
enum ggml_type {
|
355
|
-
GGML_TYPE_F32 = 0,
|
356
|
-
GGML_TYPE_F16 = 1,
|
357
|
-
GGML_TYPE_Q4_0 = 2,
|
358
|
-
GGML_TYPE_Q4_1 = 3,
|
359
|
-
// GGML_TYPE_Q4_2 = 4, support has been removed
|
360
|
-
// GGML_TYPE_Q4_3 = 5, support has been removed
|
361
|
-
GGML_TYPE_Q5_0 = 6,
|
362
|
-
GGML_TYPE_Q5_1 = 7,
|
363
|
-
GGML_TYPE_Q8_0 = 8,
|
364
|
-
GGML_TYPE_Q8_1 = 9,
|
365
|
-
GGML_TYPE_Q2_K = 10,
|
366
|
-
GGML_TYPE_Q3_K = 11,
|
367
|
-
GGML_TYPE_Q4_K = 12,
|
368
|
-
GGML_TYPE_Q5_K = 13,
|
369
|
-
GGML_TYPE_Q6_K = 14,
|
370
|
-
GGML_TYPE_Q8_K = 15,
|
371
|
-
GGML_TYPE_IQ2_XXS = 16,
|
372
|
-
GGML_TYPE_IQ2_XS = 17,
|
373
|
-
GGML_TYPE_IQ3_XXS = 18,
|
374
|
-
GGML_TYPE_IQ1_S = 19,
|
375
|
-
GGML_TYPE_IQ4_NL = 20,
|
376
|
-
GGML_TYPE_IQ3_S = 21,
|
377
|
-
GGML_TYPE_IQ2_S = 22,
|
378
|
-
GGML_TYPE_IQ4_XS = 23,
|
379
|
-
GGML_TYPE_I8 = 24,
|
380
|
-
GGML_TYPE_I16 = 25,
|
381
|
-
GGML_TYPE_I32 = 26,
|
382
|
-
GGML_TYPE_I64 = 27,
|
383
|
-
GGML_TYPE_F64 = 28,
|
384
|
-
GGML_TYPE_IQ1_M = 29,
|
385
|
-
GGML_TYPE_BF16 = 30,
|
386
|
-
GGML_TYPE_COUNT,
|
387
|
-
};
|
388
|
-
|
389
|
-
// precision
|
390
|
-
enum ggml_prec {
|
391
|
-
GGML_PREC_DEFAULT,
|
392
|
-
GGML_PREC_F32,
|
393
|
-
};
|
394
|
-
|
395
|
-
enum ggml_backend_type {
|
396
|
-
GGML_BACKEND_TYPE_CPU = 0,
|
397
|
-
GGML_BACKEND_TYPE_GPU = 10,
|
398
|
-
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
|
399
|
-
};
|
400
|
-
|
401
|
-
// model file types
|
402
|
-
enum ggml_ftype {
|
403
|
-
GGML_FTYPE_UNKNOWN = -1,
|
404
|
-
GGML_FTYPE_ALL_F32 = 0,
|
405
|
-
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
|
406
|
-
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
|
407
|
-
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
|
408
|
-
GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
|
409
|
-
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
|
410
|
-
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
|
411
|
-
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
|
412
|
-
GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
|
413
|
-
GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
|
414
|
-
GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
|
415
|
-
GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
|
416
|
-
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
417
|
-
GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
|
418
|
-
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
419
|
-
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
420
|
-
GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
|
421
|
-
GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
|
422
|
-
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
|
423
|
-
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
|
424
|
-
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
|
425
|
-
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
|
426
|
-
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
|
427
|
-
};
|
428
|
-
|
429
|
-
// available tensor operations:
|
430
|
-
enum ggml_op {
|
431
|
-
GGML_OP_NONE = 0,
|
432
|
-
|
433
|
-
GGML_OP_DUP,
|
434
|
-
GGML_OP_ADD,
|
435
|
-
GGML_OP_ADD1,
|
436
|
-
GGML_OP_ACC,
|
437
|
-
GGML_OP_SUB,
|
438
|
-
GGML_OP_MUL,
|
439
|
-
GGML_OP_DIV,
|
440
|
-
GGML_OP_SQR,
|
441
|
-
GGML_OP_SQRT,
|
442
|
-
GGML_OP_LOG,
|
443
|
-
GGML_OP_SUM,
|
444
|
-
GGML_OP_SUM_ROWS,
|
445
|
-
GGML_OP_MEAN,
|
446
|
-
GGML_OP_ARGMAX,
|
447
|
-
GGML_OP_REPEAT,
|
448
|
-
GGML_OP_REPEAT_BACK,
|
449
|
-
GGML_OP_CONCAT,
|
450
|
-
GGML_OP_SILU_BACK,
|
451
|
-
GGML_OP_NORM, // normalize
|
452
|
-
GGML_OP_RMS_NORM,
|
453
|
-
GGML_OP_RMS_NORM_BACK,
|
454
|
-
GGML_OP_GROUP_NORM,
|
455
|
-
|
456
|
-
GGML_OP_MUL_MAT,
|
457
|
-
GGML_OP_MUL_MAT_ID,
|
458
|
-
GGML_OP_OUT_PROD,
|
459
|
-
|
460
|
-
GGML_OP_SCALE,
|
461
|
-
GGML_OP_SET,
|
462
|
-
GGML_OP_CPY,
|
463
|
-
GGML_OP_CONT,
|
464
|
-
GGML_OP_RESHAPE,
|
465
|
-
GGML_OP_VIEW,
|
466
|
-
GGML_OP_PERMUTE,
|
467
|
-
GGML_OP_TRANSPOSE,
|
468
|
-
GGML_OP_GET_ROWS,
|
469
|
-
GGML_OP_GET_ROWS_BACK,
|
470
|
-
GGML_OP_DIAG,
|
471
|
-
GGML_OP_DIAG_MASK_INF,
|
472
|
-
GGML_OP_DIAG_MASK_ZERO,
|
473
|
-
GGML_OP_SOFT_MAX,
|
474
|
-
GGML_OP_SOFT_MAX_BACK,
|
475
|
-
GGML_OP_ROPE,
|
476
|
-
GGML_OP_ROPE_BACK,
|
477
|
-
GGML_OP_CLAMP,
|
478
|
-
GGML_OP_CONV_TRANSPOSE_1D,
|
479
|
-
GGML_OP_IM2COL,
|
480
|
-
GGML_OP_CONV_TRANSPOSE_2D,
|
481
|
-
GGML_OP_POOL_1D,
|
482
|
-
GGML_OP_POOL_2D,
|
483
|
-
GGML_OP_UPSCALE, // nearest interpolate
|
484
|
-
GGML_OP_PAD,
|
485
|
-
GGML_OP_ARANGE,
|
486
|
-
GGML_OP_TIMESTEP_EMBEDDING,
|
487
|
-
GGML_OP_ARGSORT,
|
488
|
-
GGML_OP_LEAKY_RELU,
|
489
|
-
|
490
|
-
GGML_OP_FLASH_ATTN_EXT,
|
491
|
-
GGML_OP_FLASH_ATTN_BACK,
|
492
|
-
GGML_OP_SSM_CONV,
|
493
|
-
GGML_OP_SSM_SCAN,
|
494
|
-
GGML_OP_WIN_PART,
|
495
|
-
GGML_OP_WIN_UNPART,
|
496
|
-
GGML_OP_GET_REL_POS,
|
497
|
-
GGML_OP_ADD_REL_POS,
|
498
|
-
|
499
|
-
GGML_OP_UNARY,
|
500
|
-
|
501
|
-
GGML_OP_MAP_UNARY,
|
502
|
-
GGML_OP_MAP_BINARY,
|
503
|
-
|
504
|
-
GGML_OP_MAP_CUSTOM1_F32,
|
505
|
-
GGML_OP_MAP_CUSTOM2_F32,
|
506
|
-
GGML_OP_MAP_CUSTOM3_F32,
|
507
|
-
|
508
|
-
GGML_OP_MAP_CUSTOM1,
|
509
|
-
GGML_OP_MAP_CUSTOM2,
|
510
|
-
GGML_OP_MAP_CUSTOM3,
|
511
|
-
|
512
|
-
GGML_OP_CROSS_ENTROPY_LOSS,
|
513
|
-
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
514
|
-
|
515
|
-
GGML_OP_COUNT,
|
516
|
-
};
|
517
|
-
|
518
|
-
enum ggml_unary_op {
|
519
|
-
GGML_UNARY_OP_ABS,
|
520
|
-
GGML_UNARY_OP_SGN,
|
521
|
-
GGML_UNARY_OP_NEG,
|
522
|
-
GGML_UNARY_OP_STEP,
|
523
|
-
GGML_UNARY_OP_TANH,
|
524
|
-
GGML_UNARY_OP_ELU,
|
525
|
-
GGML_UNARY_OP_RELU,
|
526
|
-
GGML_UNARY_OP_SIGMOID,
|
527
|
-
GGML_UNARY_OP_GELU,
|
528
|
-
GGML_UNARY_OP_GELU_QUICK,
|
529
|
-
GGML_UNARY_OP_SILU,
|
530
|
-
GGML_UNARY_OP_HARDSWISH,
|
531
|
-
GGML_UNARY_OP_HARDSIGMOID,
|
532
|
-
|
533
|
-
GGML_UNARY_OP_COUNT,
|
534
|
-
};
|
535
|
-
|
536
|
-
enum ggml_object_type {
|
537
|
-
GGML_OBJECT_TYPE_TENSOR,
|
538
|
-
GGML_OBJECT_TYPE_GRAPH,
|
539
|
-
GGML_OBJECT_TYPE_WORK_BUFFER
|
540
|
-
};
|
541
|
-
|
542
|
-
enum ggml_log_level {
|
543
|
-
GGML_LOG_LEVEL_ERROR = 2,
|
544
|
-
GGML_LOG_LEVEL_WARN = 3,
|
545
|
-
GGML_LOG_LEVEL_INFO = 4,
|
546
|
-
GGML_LOG_LEVEL_DEBUG = 5
|
547
|
-
};
|
548
|
-
|
549
|
-
enum ggml_tensor_flag {
|
550
|
-
GGML_TENSOR_FLAG_INPUT = 1,
|
551
|
-
GGML_TENSOR_FLAG_OUTPUT = 2,
|
552
|
-
GGML_TENSOR_FLAG_PARAM = 4,
|
553
|
-
};
|
554
|
-
|
555
|
-
// ggml object
|
556
|
-
struct ggml_object {
|
557
|
-
size_t offs;
|
558
|
-
size_t size;
|
559
|
-
|
560
|
-
struct ggml_object * next;
|
561
|
-
|
562
|
-
enum ggml_object_type type;
|
563
|
-
|
564
|
-
char padding[4];
|
565
|
-
};
|
566
|
-
|
567
|
-
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
|
568
|
-
|
569
|
-
// n-dimensional tensor
|
570
|
-
struct ggml_tensor {
|
571
|
-
enum ggml_type type;
|
572
|
-
|
573
|
-
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
|
574
|
-
|
575
|
-
struct ggml_backend_buffer * buffer;
|
576
|
-
|
577
|
-
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
578
|
-
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
579
|
-
// nb[0] = ggml_type_size(type)
|
580
|
-
// nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
|
581
|
-
// nb[i] = nb[i-1] * ne[i-1]
|
582
|
-
|
583
|
-
// compute data
|
584
|
-
enum ggml_op op;
|
585
|
-
|
586
|
-
// op params - allocated as int32_t for alignment
|
587
|
-
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
|
588
|
-
|
589
|
-
int32_t flags;
|
590
|
-
|
591
|
-
struct ggml_tensor * grad;
|
592
|
-
struct ggml_tensor * src[GGML_MAX_SRC];
|
593
|
-
|
594
|
-
// performance
|
595
|
-
int perf_runs;
|
596
|
-
int64_t perf_cycles;
|
597
|
-
int64_t perf_time_us;
|
598
|
-
|
599
|
-
struct ggml_tensor * view_src;
|
600
|
-
size_t view_offs;
|
601
|
-
|
602
|
-
void * data;
|
603
|
-
|
604
|
-
char name[GGML_MAX_NAME];
|
605
|
-
|
606
|
-
void * extra; // extra things e.g. for ggml-cuda.cu
|
607
|
-
|
608
|
-
char padding[8];
|
609
|
-
};
|
610
|
-
|
611
|
-
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
|
612
|
-
|
613
|
-
// Abort callback
|
614
|
-
// If not NULL, called before ggml computation
|
615
|
-
// If it returns true, the computation is aborted
|
616
|
-
typedef bool (*ggml_abort_callback)(void * data);
|
617
|
-
|
618
|
-
// the compute plan that needs to be prepared for ggml_graph_compute()
|
619
|
-
// since https://github.com/ggerganov/ggml/issues/287
|
620
|
-
struct ggml_cplan {
|
621
|
-
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
|
622
|
-
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
|
623
|
-
|
624
|
-
int n_threads;
|
625
|
-
|
626
|
-
// abort ggml_graph_compute when true
|
627
|
-
ggml_abort_callback abort_callback;
|
628
|
-
void * abort_callback_data;
|
629
|
-
};
|
630
|
-
|
631
|
-
enum ggml_cgraph_eval_order {
|
632
|
-
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
633
|
-
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
634
|
-
GGML_CGRAPH_EVAL_ORDER_COUNT
|
635
|
-
};
|
636
|
-
|
637
|
-
struct ggml_hash_set {
|
638
|
-
size_t size;
|
639
|
-
struct ggml_tensor ** keys;
|
640
|
-
};
|
641
|
-
|
642
|
-
// computation graph
|
643
|
-
struct ggml_cgraph {
|
644
|
-
int size;
|
645
|
-
int n_nodes;
|
646
|
-
int n_leafs;
|
647
|
-
|
648
|
-
struct ggml_tensor ** nodes;
|
649
|
-
struct ggml_tensor ** grads;
|
650
|
-
struct ggml_tensor ** leafs;
|
651
|
-
|
652
|
-
struct ggml_hash_set visited_hash_table;
|
653
|
-
|
654
|
-
enum ggml_cgraph_eval_order order;
|
655
|
-
|
656
|
-
// performance
|
657
|
-
int perf_runs;
|
658
|
-
int64_t perf_cycles;
|
659
|
-
int64_t perf_time_us;
|
660
|
-
};
|
661
|
-
|
662
|
-
// scratch buffer
|
663
|
-
struct ggml_scratch {
|
664
|
-
size_t offs;
|
665
|
-
size_t size;
|
666
|
-
void * data;
|
667
|
-
};
|
668
|
-
|
669
|
-
struct ggml_init_params {
|
670
|
-
// memory pool
|
671
|
-
size_t mem_size; // bytes
|
672
|
-
void * mem_buffer; // if NULL, memory will be allocated internally
|
673
|
-
bool no_alloc; // don't allocate memory for the tensor data
|
674
|
-
};
|
675
|
-
|
676
|
-
|
677
|
-
// compute types
|
678
|
-
|
679
|
-
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
|
680
|
-
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
|
681
|
-
enum ggml_task_type {
|
682
|
-
GGML_TASK_TYPE_INIT = 0,
|
683
|
-
GGML_TASK_TYPE_COMPUTE,
|
684
|
-
GGML_TASK_TYPE_FINALIZE,
|
685
|
-
};
|
686
|
-
|
687
|
-
struct ggml_compute_params {
|
688
|
-
enum ggml_task_type type;
|
689
|
-
|
690
|
-
// ith = thread index, nth = number of threads
|
691
|
-
int ith, nth;
|
692
|
-
|
693
|
-
// work buffer for all threads
|
694
|
-
size_t wsize;
|
695
|
-
void * wdata;
|
696
|
-
};
|
697
|
-
|
698
|
-
// numa strategies
|
699
|
-
enum ggml_numa_strategy {
|
700
|
-
GGML_NUMA_STRATEGY_DISABLED = 0,
|
701
|
-
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
|
702
|
-
GGML_NUMA_STRATEGY_ISOLATE = 2,
|
703
|
-
GGML_NUMA_STRATEGY_NUMACTL = 3,
|
704
|
-
GGML_NUMA_STRATEGY_MIRROR = 4,
|
705
|
-
GGML_NUMA_STRATEGY_COUNT
|
706
|
-
};
|
707
|
-
|
708
|
-
//
|
709
|
-
// GUID
|
710
|
-
//
|
711
|
-
|
712
|
-
// GUID types
|
713
|
-
typedef uint8_t ggml_guid[16];
|
714
|
-
typedef ggml_guid * ggml_guid_t;
|
715
|
-
|
716
|
-
GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
|
717
|
-
|
718
|
-
// misc
|
719
|
-
|
720
|
-
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
|
721
|
-
GGML_API int64_t ggml_time_ms(void);
|
722
|
-
GGML_API int64_t ggml_time_us(void);
|
723
|
-
GGML_API int64_t ggml_cycles(void);
|
724
|
-
GGML_API int64_t ggml_cycles_per_ms(void);
|
725
|
-
|
726
|
-
GGML_API void ggml_print_backtrace(void);
|
727
|
-
|
728
|
-
// accepts a UTF-8 path, even on Windows
|
729
|
-
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
|
730
|
-
|
731
|
-
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
|
732
|
-
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
733
|
-
|
734
|
-
GGML_API void ggml_print_object (const struct ggml_object * obj);
|
735
|
-
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
|
736
|
-
|
737
|
-
GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
|
738
|
-
GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
739
|
-
GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
740
|
-
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
741
|
-
|
742
|
-
GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
|
743
|
-
GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
744
|
-
GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
745
|
-
|
746
|
-
GGML_DEPRECATED(
|
747
|
-
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
|
748
|
-
"use ggml_row_size() instead");
|
749
|
-
|
750
|
-
GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
|
751
|
-
GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
|
752
|
-
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
753
|
-
|
754
|
-
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
755
|
-
GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
756
|
-
|
757
|
-
GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
|
758
|
-
|
759
|
-
GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
|
760
|
-
|
761
|
-
// TODO: temporary until model loading of ggml examples is refactored
|
762
|
-
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
|
763
|
-
|
764
|
-
GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
765
|
-
GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
766
|
-
GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
|
767
|
-
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
|
768
|
-
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
|
769
|
-
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
|
770
|
-
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
771
|
-
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
772
|
-
|
773
|
-
GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
|
774
|
-
GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
|
775
|
-
GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
776
|
-
GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
777
|
-
|
778
|
-
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
779
|
-
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
780
|
-
|
781
|
-
// use this to compute the memory overhead of a tensor
|
782
|
-
GGML_API size_t ggml_tensor_overhead(void);
|
783
|
-
|
784
|
-
GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
|
785
|
-
|
786
|
-
// main
|
787
|
-
|
788
|
-
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
|
789
|
-
GGML_API void ggml_free(struct ggml_context * ctx);
|
790
|
-
|
791
|
-
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
|
792
|
-
|
793
|
-
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
|
794
|
-
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
|
795
|
-
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
|
796
|
-
|
797
|
-
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
|
798
|
-
GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
|
799
|
-
GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
|
800
|
-
|
801
|
-
GGML_API struct ggml_tensor * ggml_new_tensor(
|
802
|
-
struct ggml_context * ctx,
|
803
|
-
enum ggml_type type,
|
804
|
-
int n_dims,
|
805
|
-
const int64_t *ne);
|
806
|
-
|
807
|
-
GGML_API struct ggml_tensor * ggml_new_tensor_1d(
|
808
|
-
struct ggml_context * ctx,
|
809
|
-
enum ggml_type type,
|
810
|
-
int64_t ne0);
|
811
|
-
|
812
|
-
GGML_API struct ggml_tensor * ggml_new_tensor_2d(
|
813
|
-
struct ggml_context * ctx,
|
814
|
-
enum ggml_type type,
|
815
|
-
int64_t ne0,
|
816
|
-
int64_t ne1);
|
817
|
-
|
818
|
-
GGML_API struct ggml_tensor * ggml_new_tensor_3d(
|
819
|
-
struct ggml_context * ctx,
|
820
|
-
enum ggml_type type,
|
821
|
-
int64_t ne0,
|
822
|
-
int64_t ne1,
|
823
|
-
int64_t ne2);
|
824
|
-
|
825
|
-
GGML_API struct ggml_tensor * ggml_new_tensor_4d(
|
826
|
-
struct ggml_context * ctx,
|
827
|
-
enum ggml_type type,
|
828
|
-
int64_t ne0,
|
829
|
-
int64_t ne1,
|
830
|
-
int64_t ne2,
|
831
|
-
int64_t ne3);
|
832
|
-
|
833
|
-
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
|
834
|
-
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
|
835
|
-
|
836
|
-
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
|
837
|
-
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
|
838
|
-
|
839
|
-
// Context tensor enumeration and lookup
|
840
|
-
GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
|
841
|
-
GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
|
842
|
-
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
843
|
-
|
844
|
-
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
845
|
-
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
846
|
-
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
847
|
-
|
848
|
-
// Converts a flat index into coordinates
|
849
|
-
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
850
|
-
|
851
|
-
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
852
|
-
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
853
|
-
|
854
|
-
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
855
|
-
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
856
|
-
|
857
|
-
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
858
|
-
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
859
|
-
|
860
|
-
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
861
|
-
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
862
|
-
|
863
|
-
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
864
|
-
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
865
|
-
|
866
|
-
GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
867
|
-
|
868
|
-
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
|
869
|
-
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
|
870
|
-
GGML_ATTRIBUTE_FORMAT(2, 3)
|
871
|
-
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
|
872
|
-
|
873
|
-
//
|
874
|
-
// operations on tensors with backpropagation
|
875
|
-
//
|
876
|
-
|
877
|
-
GGML_API struct ggml_tensor * ggml_dup(
|
878
|
-
struct ggml_context * ctx,
|
879
|
-
struct ggml_tensor * a);
|
880
|
-
|
881
|
-
// in-place, returns view(a)
|
882
|
-
GGML_API struct ggml_tensor * ggml_dup_inplace(
|
883
|
-
struct ggml_context * ctx,
|
884
|
-
struct ggml_tensor * a);
|
885
|
-
|
886
|
-
GGML_API struct ggml_tensor * ggml_add(
|
887
|
-
struct ggml_context * ctx,
|
888
|
-
struct ggml_tensor * a,
|
889
|
-
struct ggml_tensor * b);
|
890
|
-
|
891
|
-
GGML_API struct ggml_tensor * ggml_add_inplace(
|
892
|
-
struct ggml_context * ctx,
|
893
|
-
struct ggml_tensor * a,
|
894
|
-
struct ggml_tensor * b);
|
895
|
-
|
896
|
-
GGML_API struct ggml_tensor * ggml_add_cast(
|
897
|
-
struct ggml_context * ctx,
|
898
|
-
struct ggml_tensor * a,
|
899
|
-
struct ggml_tensor * b,
|
900
|
-
enum ggml_type type);
|
901
|
-
|
902
|
-
GGML_API struct ggml_tensor * ggml_add1(
|
903
|
-
struct ggml_context * ctx,
|
904
|
-
struct ggml_tensor * a,
|
905
|
-
struct ggml_tensor * b);
|
906
|
-
|
907
|
-
GGML_API struct ggml_tensor * ggml_add1_inplace(
|
908
|
-
struct ggml_context * ctx,
|
909
|
-
struct ggml_tensor * a,
|
910
|
-
struct ggml_tensor * b);
|
911
|
-
|
912
|
-
// dst = a
|
913
|
-
// view(dst, nb1, nb2, nb3, offset) += b
|
914
|
-
// return dst
|
915
|
-
GGML_API struct ggml_tensor * ggml_acc(
|
916
|
-
struct ggml_context * ctx,
|
917
|
-
struct ggml_tensor * a,
|
918
|
-
struct ggml_tensor * b,
|
919
|
-
size_t nb1,
|
920
|
-
size_t nb2,
|
921
|
-
size_t nb3,
|
922
|
-
size_t offset);
|
923
|
-
|
924
|
-
GGML_API struct ggml_tensor * ggml_acc_inplace(
|
925
|
-
struct ggml_context * ctx,
|
926
|
-
struct ggml_tensor * a,
|
927
|
-
struct ggml_tensor * b,
|
928
|
-
size_t nb1,
|
929
|
-
size_t nb2,
|
930
|
-
size_t nb3,
|
931
|
-
size_t offset);
|
932
|
-
|
933
|
-
GGML_API struct ggml_tensor * ggml_sub(
|
934
|
-
struct ggml_context * ctx,
|
935
|
-
struct ggml_tensor * a,
|
936
|
-
struct ggml_tensor * b);
|
937
|
-
|
938
|
-
GGML_API struct ggml_tensor * ggml_sub_inplace(
|
939
|
-
struct ggml_context * ctx,
|
940
|
-
struct ggml_tensor * a,
|
941
|
-
struct ggml_tensor * b);
|
942
|
-
|
943
|
-
GGML_API struct ggml_tensor * ggml_mul(
|
944
|
-
struct ggml_context * ctx,
|
945
|
-
struct ggml_tensor * a,
|
946
|
-
struct ggml_tensor * b);
|
947
|
-
|
948
|
-
GGML_API struct ggml_tensor * ggml_mul_inplace(
|
949
|
-
struct ggml_context * ctx,
|
950
|
-
struct ggml_tensor * a,
|
951
|
-
struct ggml_tensor * b);
|
952
|
-
|
953
|
-
GGML_API struct ggml_tensor * ggml_div(
|
954
|
-
struct ggml_context * ctx,
|
955
|
-
struct ggml_tensor * a,
|
956
|
-
struct ggml_tensor * b);
|
957
|
-
|
958
|
-
GGML_API struct ggml_tensor * ggml_div_inplace(
|
959
|
-
struct ggml_context * ctx,
|
960
|
-
struct ggml_tensor * a,
|
961
|
-
struct ggml_tensor * b);
|
962
|
-
|
963
|
-
GGML_API struct ggml_tensor * ggml_sqr(
|
964
|
-
struct ggml_context * ctx,
|
965
|
-
struct ggml_tensor * a);
|
966
|
-
|
967
|
-
GGML_API struct ggml_tensor * ggml_sqr_inplace(
|
968
|
-
struct ggml_context * ctx,
|
969
|
-
struct ggml_tensor * a);
|
970
|
-
|
971
|
-
GGML_API struct ggml_tensor * ggml_sqrt(
|
972
|
-
struct ggml_context * ctx,
|
973
|
-
struct ggml_tensor * a);
|
974
|
-
|
975
|
-
GGML_API struct ggml_tensor * ggml_sqrt_inplace(
|
976
|
-
struct ggml_context * ctx,
|
977
|
-
struct ggml_tensor * a);
|
978
|
-
|
979
|
-
GGML_API struct ggml_tensor * ggml_log(
|
980
|
-
struct ggml_context * ctx,
|
981
|
-
struct ggml_tensor * a);
|
982
|
-
|
983
|
-
GGML_API struct ggml_tensor * ggml_log_inplace(
|
984
|
-
struct ggml_context * ctx,
|
985
|
-
struct ggml_tensor * a);
|
986
|
-
|
987
|
-
// return scalar
|
988
|
-
GGML_API struct ggml_tensor * ggml_sum(
|
989
|
-
struct ggml_context * ctx,
|
990
|
-
struct ggml_tensor * a);
|
991
|
-
|
992
|
-
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
|
993
|
-
GGML_API struct ggml_tensor * ggml_sum_rows(
|
994
|
-
struct ggml_context * ctx,
|
995
|
-
struct ggml_tensor * a);
|
996
|
-
|
997
|
-
// mean along rows
|
998
|
-
GGML_API struct ggml_tensor * ggml_mean(
|
999
|
-
struct ggml_context * ctx,
|
1000
|
-
struct ggml_tensor * a);
|
1001
|
-
|
1002
|
-
// argmax along rows
|
1003
|
-
GGML_API struct ggml_tensor * ggml_argmax(
|
1004
|
-
struct ggml_context * ctx,
|
1005
|
-
struct ggml_tensor * a);
|
1006
|
-
|
1007
|
-
// if a is the same shape as b, and a is not parameter, return a
|
1008
|
-
// otherwise, return a new tensor: repeat(a) to fit in b
|
1009
|
-
GGML_API struct ggml_tensor * ggml_repeat(
|
1010
|
-
struct ggml_context * ctx,
|
1011
|
-
struct ggml_tensor * a,
|
1012
|
-
struct ggml_tensor * b);
|
1013
|
-
|
1014
|
-
// sums repetitions in a into shape of b
|
1015
|
-
GGML_API struct ggml_tensor * ggml_repeat_back(
|
1016
|
-
struct ggml_context * ctx,
|
1017
|
-
struct ggml_tensor * a,
|
1018
|
-
struct ggml_tensor * b);
|
1019
|
-
|
1020
|
-
// concat a and b along dim
|
1021
|
-
// used in stable-diffusion
|
1022
|
-
GGML_API struct ggml_tensor * ggml_concat(
|
1023
|
-
struct ggml_context * ctx,
|
1024
|
-
struct ggml_tensor * a,
|
1025
|
-
struct ggml_tensor * b,
|
1026
|
-
int dim);
|
1027
|
-
|
1028
|
-
GGML_API struct ggml_tensor * ggml_abs(
|
1029
|
-
struct ggml_context * ctx,
|
1030
|
-
struct ggml_tensor * a);
|
1031
|
-
|
1032
|
-
GGML_API struct ggml_tensor * ggml_abs_inplace(
|
1033
|
-
struct ggml_context * ctx,
|
1034
|
-
struct ggml_tensor * a);
|
1035
|
-
|
1036
|
-
GGML_API struct ggml_tensor * ggml_sgn(
|
1037
|
-
struct ggml_context * ctx,
|
1038
|
-
struct ggml_tensor * a);
|
1039
|
-
|
1040
|
-
GGML_API struct ggml_tensor * ggml_sgn_inplace(
|
1041
|
-
struct ggml_context * ctx,
|
1042
|
-
struct ggml_tensor * a);
|
1043
|
-
|
1044
|
-
GGML_API struct ggml_tensor * ggml_neg(
|
1045
|
-
struct ggml_context * ctx,
|
1046
|
-
struct ggml_tensor * a);
|
1047
|
-
|
1048
|
-
GGML_API struct ggml_tensor * ggml_neg_inplace(
|
1049
|
-
struct ggml_context * ctx,
|
1050
|
-
struct ggml_tensor * a);
|
1051
|
-
|
1052
|
-
GGML_API struct ggml_tensor * ggml_step(
|
1053
|
-
struct ggml_context * ctx,
|
1054
|
-
struct ggml_tensor * a);
|
1055
|
-
|
1056
|
-
GGML_API struct ggml_tensor * ggml_step_inplace(
|
1057
|
-
struct ggml_context * ctx,
|
1058
|
-
struct ggml_tensor * a);
|
1059
|
-
|
1060
|
-
GGML_API struct ggml_tensor * ggml_tanh(
|
1061
|
-
struct ggml_context * ctx,
|
1062
|
-
struct ggml_tensor * a);
|
1063
|
-
|
1064
|
-
GGML_API struct ggml_tensor * ggml_tanh_inplace(
|
1065
|
-
struct ggml_context * ctx,
|
1066
|
-
struct ggml_tensor * a);
|
1067
|
-
|
1068
|
-
GGML_API struct ggml_tensor * ggml_elu(
|
1069
|
-
struct ggml_context * ctx,
|
1070
|
-
struct ggml_tensor * a);
|
1071
|
-
|
1072
|
-
GGML_API struct ggml_tensor * ggml_elu_inplace(
|
1073
|
-
struct ggml_context * ctx,
|
1074
|
-
struct ggml_tensor * a);
|
1075
|
-
|
1076
|
-
GGML_API struct ggml_tensor * ggml_relu(
|
1077
|
-
struct ggml_context * ctx,
|
1078
|
-
struct ggml_tensor * a);
|
1079
|
-
|
1080
|
-
GGML_API struct ggml_tensor * ggml_leaky_relu(
|
1081
|
-
struct ggml_context * ctx,
|
1082
|
-
struct ggml_tensor * a, float negative_slope, bool inplace);
|
1083
|
-
|
1084
|
-
GGML_API struct ggml_tensor * ggml_relu_inplace(
|
1085
|
-
struct ggml_context * ctx,
|
1086
|
-
struct ggml_tensor * a);
|
1087
|
-
|
1088
|
-
GGML_API struct ggml_tensor * ggml_sigmoid(
|
1089
|
-
struct ggml_context * ctx,
|
1090
|
-
struct ggml_tensor * a);
|
1091
|
-
|
1092
|
-
GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
|
1093
|
-
struct ggml_context * ctx,
|
1094
|
-
struct ggml_tensor * a);
|
1095
|
-
|
1096
|
-
GGML_API struct ggml_tensor * ggml_gelu(
|
1097
|
-
struct ggml_context * ctx,
|
1098
|
-
struct ggml_tensor * a);
|
1099
|
-
|
1100
|
-
GGML_API struct ggml_tensor * ggml_gelu_inplace(
|
1101
|
-
struct ggml_context * ctx,
|
1102
|
-
struct ggml_tensor * a);
|
1103
|
-
|
1104
|
-
GGML_API struct ggml_tensor * ggml_gelu_quick(
|
1105
|
-
struct ggml_context * ctx,
|
1106
|
-
struct ggml_tensor * a);
|
1107
|
-
|
1108
|
-
GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
|
1109
|
-
struct ggml_context * ctx,
|
1110
|
-
struct ggml_tensor * a);
|
1111
|
-
|
1112
|
-
GGML_API struct ggml_tensor * ggml_silu(
|
1113
|
-
struct ggml_context * ctx,
|
1114
|
-
struct ggml_tensor * a);
|
1115
|
-
|
1116
|
-
GGML_API struct ggml_tensor * ggml_silu_inplace(
|
1117
|
-
struct ggml_context * ctx,
|
1118
|
-
struct ggml_tensor * a);
|
1119
|
-
|
1120
|
-
// a - x
|
1121
|
-
// b - dy
|
1122
|
-
GGML_API struct ggml_tensor * ggml_silu_back(
|
1123
|
-
struct ggml_context * ctx,
|
1124
|
-
struct ggml_tensor * a,
|
1125
|
-
struct ggml_tensor * b);
|
1126
|
-
|
1127
|
-
// hardswish(x) = x * relu6(x + 3) / 6
|
1128
|
-
GGML_API struct ggml_tensor * ggml_hardswish(
|
1129
|
-
struct ggml_context * ctx,
|
1130
|
-
struct ggml_tensor * a);
|
1131
|
-
|
1132
|
-
// hardsigmoid(x) = relu6(x + 3) / 6
|
1133
|
-
GGML_API struct ggml_tensor * ggml_hardsigmoid(
|
1134
|
-
struct ggml_context * ctx,
|
1135
|
-
struct ggml_tensor * a);
|
1136
|
-
|
1137
|
-
// normalize along rows
|
1138
|
-
GGML_API struct ggml_tensor * ggml_norm(
|
1139
|
-
struct ggml_context * ctx,
|
1140
|
-
struct ggml_tensor * a,
|
1141
|
-
float eps);
|
1142
|
-
|
1143
|
-
GGML_API struct ggml_tensor * ggml_norm_inplace(
|
1144
|
-
struct ggml_context * ctx,
|
1145
|
-
struct ggml_tensor * a,
|
1146
|
-
float eps);
|
1147
|
-
|
1148
|
-
GGML_API struct ggml_tensor * ggml_rms_norm(
|
1149
|
-
struct ggml_context * ctx,
|
1150
|
-
struct ggml_tensor * a,
|
1151
|
-
float eps);
|
1152
|
-
|
1153
|
-
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
|
1154
|
-
struct ggml_context * ctx,
|
1155
|
-
struct ggml_tensor * a,
|
1156
|
-
float eps);
|
1157
|
-
|
1158
|
-
// group normalize along ne0*ne1*n_groups
|
1159
|
-
// used in stable-diffusion
|
1160
|
-
// TODO: eps is hardcoded to 1e-6 for now
|
1161
|
-
GGML_API struct ggml_tensor * ggml_group_norm(
|
1162
|
-
struct ggml_context * ctx,
|
1163
|
-
struct ggml_tensor * a,
|
1164
|
-
int n_groups);
|
1165
|
-
|
1166
|
-
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
|
1167
|
-
struct ggml_context * ctx,
|
1168
|
-
struct ggml_tensor * a,
|
1169
|
-
int n_groups);
|
1170
|
-
|
1171
|
-
// a - x
|
1172
|
-
// b - dy
|
1173
|
-
GGML_API struct ggml_tensor * ggml_rms_norm_back(
|
1174
|
-
struct ggml_context * ctx,
|
1175
|
-
struct ggml_tensor * a,
|
1176
|
-
struct ggml_tensor * b,
|
1177
|
-
float eps);
|
1178
|
-
|
1179
|
-
// A: k columns, n rows => [ne03, ne02, n, k]
|
1180
|
-
// B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
|
1181
|
-
// result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
|
1182
|
-
GGML_API struct ggml_tensor * ggml_mul_mat(
|
1183
|
-
struct ggml_context * ctx,
|
1184
|
-
struct ggml_tensor * a,
|
1185
|
-
struct ggml_tensor * b);
|
1186
|
-
|
1187
|
-
// change the precision of a matrix multiplication
|
1188
|
-
// set to GGML_PREC_F32 for higher precision (useful for phi-2)
|
1189
|
-
GGML_API void ggml_mul_mat_set_prec(
|
1190
|
-
struct ggml_tensor * a,
|
1191
|
-
enum ggml_prec prec);
|
1192
|
-
|
1193
|
-
// indirect matrix multiplication
|
1194
|
-
GGML_API struct ggml_tensor * ggml_mul_mat_id(
|
1195
|
-
struct ggml_context * ctx,
|
1196
|
-
struct ggml_tensor * as,
|
1197
|
-
struct ggml_tensor * b,
|
1198
|
-
struct ggml_tensor * ids);
|
1199
|
-
|
1200
|
-
// A: m columns, n rows,
|
1201
|
-
// B: p columns, n rows,
|
1202
|
-
// result is m columns, p rows
|
1203
|
-
GGML_API struct ggml_tensor * ggml_out_prod(
|
1204
|
-
struct ggml_context * ctx,
|
1205
|
-
struct ggml_tensor * a,
|
1206
|
-
struct ggml_tensor * b);
|
1207
|
-
|
1208
|
-
//
|
1209
|
-
// operations on tensors without backpropagation
|
1210
|
-
//
|
1211
|
-
|
1212
|
-
GGML_API struct ggml_tensor * ggml_scale(
|
1213
|
-
struct ggml_context * ctx,
|
1214
|
-
struct ggml_tensor * a,
|
1215
|
-
float s);
|
1216
|
-
|
1217
|
-
// in-place, returns view(a)
|
1218
|
-
GGML_API struct ggml_tensor * ggml_scale_inplace(
|
1219
|
-
struct ggml_context * ctx,
|
1220
|
-
struct ggml_tensor * a,
|
1221
|
-
float s);
|
1222
|
-
|
1223
|
-
// b -> view(a,offset,nb1,nb2,3), return modified a
|
1224
|
-
GGML_API struct ggml_tensor * ggml_set(
|
1225
|
-
struct ggml_context * ctx,
|
1226
|
-
struct ggml_tensor * a,
|
1227
|
-
struct ggml_tensor * b,
|
1228
|
-
size_t nb1,
|
1229
|
-
size_t nb2,
|
1230
|
-
size_t nb3,
|
1231
|
-
size_t offset);
|
1232
|
-
|
1233
|
-
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
1234
|
-
GGML_API struct ggml_tensor * ggml_set_inplace(
|
1235
|
-
struct ggml_context * ctx,
|
1236
|
-
struct ggml_tensor * a,
|
1237
|
-
struct ggml_tensor * b,
|
1238
|
-
size_t nb1,
|
1239
|
-
size_t nb2,
|
1240
|
-
size_t nb3,
|
1241
|
-
size_t offset);
|
1242
|
-
|
1243
|
-
GGML_API struct ggml_tensor * ggml_set_1d(
|
1244
|
-
struct ggml_context * ctx,
|
1245
|
-
struct ggml_tensor * a,
|
1246
|
-
struct ggml_tensor * b,
|
1247
|
-
size_t offset);
|
1248
|
-
|
1249
|
-
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
|
1250
|
-
struct ggml_context * ctx,
|
1251
|
-
struct ggml_tensor * a,
|
1252
|
-
struct ggml_tensor * b,
|
1253
|
-
size_t offset);
|
1254
|
-
|
1255
|
-
// b -> view(a,offset,nb1,nb2,3), return modified a
|
1256
|
-
GGML_API struct ggml_tensor * ggml_set_2d(
|
1257
|
-
struct ggml_context * ctx,
|
1258
|
-
struct ggml_tensor * a,
|
1259
|
-
struct ggml_tensor * b,
|
1260
|
-
size_t nb1,
|
1261
|
-
size_t offset);
|
1262
|
-
|
1263
|
-
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
1264
|
-
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
|
1265
|
-
struct ggml_context * ctx,
|
1266
|
-
struct ggml_tensor * a,
|
1267
|
-
struct ggml_tensor * b,
|
1268
|
-
size_t nb1,
|
1269
|
-
size_t offset);
|
1270
|
-
|
1271
|
-
// a -> b, return view(b)
|
1272
|
-
GGML_API struct ggml_tensor * ggml_cpy(
|
1273
|
-
struct ggml_context * ctx,
|
1274
|
-
struct ggml_tensor * a,
|
1275
|
-
struct ggml_tensor * b);
|
1276
|
-
|
1277
|
-
GGML_API struct ggml_tensor * ggml_cast(
|
1278
|
-
struct ggml_context * ctx,
|
1279
|
-
struct ggml_tensor * a,
|
1280
|
-
enum ggml_type type);
|
1281
|
-
|
1282
|
-
// make contiguous
|
1283
|
-
GGML_API struct ggml_tensor * ggml_cont(
|
1284
|
-
struct ggml_context * ctx,
|
1285
|
-
struct ggml_tensor * a);
|
1286
|
-
|
1287
|
-
// make contiguous, with new shape
|
1288
|
-
GGML_API struct ggml_tensor * ggml_cont_1d(
|
1289
|
-
struct ggml_context * ctx,
|
1290
|
-
struct ggml_tensor * a,
|
1291
|
-
int64_t ne0);
|
1292
|
-
|
1293
|
-
GGML_API struct ggml_tensor * ggml_cont_2d(
|
1294
|
-
struct ggml_context * ctx,
|
1295
|
-
struct ggml_tensor * a,
|
1296
|
-
int64_t ne0,
|
1297
|
-
int64_t ne1);
|
1298
|
-
|
1299
|
-
GGML_API struct ggml_tensor * ggml_cont_3d(
|
1300
|
-
struct ggml_context * ctx,
|
1301
|
-
struct ggml_tensor * a,
|
1302
|
-
int64_t ne0,
|
1303
|
-
int64_t ne1,
|
1304
|
-
int64_t ne2);
|
1305
|
-
|
1306
|
-
GGML_API struct ggml_tensor * ggml_cont_4d(
|
1307
|
-
struct ggml_context * ctx,
|
1308
|
-
struct ggml_tensor * a,
|
1309
|
-
int64_t ne0,
|
1310
|
-
int64_t ne1,
|
1311
|
-
int64_t ne2,
|
1312
|
-
int64_t ne3);
|
1313
|
-
|
1314
|
-
// return view(a), b specifies the new shape
|
1315
|
-
// TODO: when we start computing gradient, make a copy instead of view
|
1316
|
-
GGML_API struct ggml_tensor * ggml_reshape(
|
1317
|
-
struct ggml_context * ctx,
|
1318
|
-
struct ggml_tensor * a,
|
1319
|
-
struct ggml_tensor * b);
|
1320
|
-
|
1321
|
-
// return view(a)
|
1322
|
-
// TODO: when we start computing gradient, make a copy instead of view
|
1323
|
-
GGML_API struct ggml_tensor * ggml_reshape_1d(
|
1324
|
-
struct ggml_context * ctx,
|
1325
|
-
struct ggml_tensor * a,
|
1326
|
-
int64_t ne0);
|
1327
|
-
|
1328
|
-
GGML_API struct ggml_tensor * ggml_reshape_2d(
|
1329
|
-
struct ggml_context * ctx,
|
1330
|
-
struct ggml_tensor * a,
|
1331
|
-
int64_t ne0,
|
1332
|
-
int64_t ne1);
|
1333
|
-
|
1334
|
-
// return view(a)
|
1335
|
-
// TODO: when we start computing gradient, make a copy instead of view
|
1336
|
-
GGML_API struct ggml_tensor * ggml_reshape_3d(
|
1337
|
-
struct ggml_context * ctx,
|
1338
|
-
struct ggml_tensor * a,
|
1339
|
-
int64_t ne0,
|
1340
|
-
int64_t ne1,
|
1341
|
-
int64_t ne2);
|
1342
|
-
|
1343
|
-
GGML_API struct ggml_tensor * ggml_reshape_4d(
|
1344
|
-
struct ggml_context * ctx,
|
1345
|
-
struct ggml_tensor * a,
|
1346
|
-
int64_t ne0,
|
1347
|
-
int64_t ne1,
|
1348
|
-
int64_t ne2,
|
1349
|
-
int64_t ne3);
|
1350
|
-
|
1351
|
-
// offset in bytes
|
1352
|
-
GGML_API struct ggml_tensor * ggml_view_1d(
|
1353
|
-
struct ggml_context * ctx,
|
1354
|
-
struct ggml_tensor * a,
|
1355
|
-
int64_t ne0,
|
1356
|
-
size_t offset);
|
1357
|
-
|
1358
|
-
GGML_API struct ggml_tensor * ggml_view_2d(
|
1359
|
-
struct ggml_context * ctx,
|
1360
|
-
struct ggml_tensor * a,
|
1361
|
-
int64_t ne0,
|
1362
|
-
int64_t ne1,
|
1363
|
-
size_t nb1, // row stride in bytes
|
1364
|
-
size_t offset);
|
1365
|
-
|
1366
|
-
GGML_API struct ggml_tensor * ggml_view_3d(
|
1367
|
-
struct ggml_context * ctx,
|
1368
|
-
struct ggml_tensor * a,
|
1369
|
-
int64_t ne0,
|
1370
|
-
int64_t ne1,
|
1371
|
-
int64_t ne2,
|
1372
|
-
size_t nb1, // row stride in bytes
|
1373
|
-
size_t nb2, // slice stride in bytes
|
1374
|
-
size_t offset);
|
1375
|
-
|
1376
|
-
GGML_API struct ggml_tensor * ggml_view_4d(
|
1377
|
-
struct ggml_context * ctx,
|
1378
|
-
struct ggml_tensor * a,
|
1379
|
-
int64_t ne0,
|
1380
|
-
int64_t ne1,
|
1381
|
-
int64_t ne2,
|
1382
|
-
int64_t ne3,
|
1383
|
-
size_t nb1, // row stride in bytes
|
1384
|
-
size_t nb2, // slice stride in bytes
|
1385
|
-
size_t nb3,
|
1386
|
-
size_t offset);
|
1387
|
-
|
1388
|
-
GGML_API struct ggml_tensor * ggml_permute(
|
1389
|
-
struct ggml_context * ctx,
|
1390
|
-
struct ggml_tensor * a,
|
1391
|
-
int axis0,
|
1392
|
-
int axis1,
|
1393
|
-
int axis2,
|
1394
|
-
int axis3);
|
1395
|
-
|
1396
|
-
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
|
1397
|
-
GGML_API struct ggml_tensor * ggml_transpose(
|
1398
|
-
struct ggml_context * ctx,
|
1399
|
-
struct ggml_tensor * a);
|
1400
|
-
|
1401
|
-
// supports 3D: a->ne[2] == b->ne[1]
|
1402
|
-
GGML_API struct ggml_tensor * ggml_get_rows(
|
1403
|
-
struct ggml_context * ctx,
|
1404
|
-
struct ggml_tensor * a,
|
1405
|
-
struct ggml_tensor * b);
|
1406
|
-
|
1407
|
-
GGML_API struct ggml_tensor * ggml_get_rows_back(
|
1408
|
-
struct ggml_context * ctx,
|
1409
|
-
struct ggml_tensor * a,
|
1410
|
-
struct ggml_tensor * b,
|
1411
|
-
struct ggml_tensor * c);
|
1412
|
-
|
1413
|
-
GGML_API struct ggml_tensor * ggml_diag(
|
1414
|
-
struct ggml_context * ctx,
|
1415
|
-
struct ggml_tensor * a);
|
1416
|
-
|
1417
|
-
// set elements above the diagonal to -INF
|
1418
|
-
GGML_API struct ggml_tensor * ggml_diag_mask_inf(
|
1419
|
-
struct ggml_context * ctx,
|
1420
|
-
struct ggml_tensor * a,
|
1421
|
-
int n_past);
|
1422
|
-
|
1423
|
-
// in-place, returns view(a)
|
1424
|
-
GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
|
1425
|
-
struct ggml_context * ctx,
|
1426
|
-
struct ggml_tensor * a,
|
1427
|
-
int n_past);
|
1428
|
-
|
1429
|
-
// set elements above the diagonal to 0
|
1430
|
-
GGML_API struct ggml_tensor * ggml_diag_mask_zero(
|
1431
|
-
struct ggml_context * ctx,
|
1432
|
-
struct ggml_tensor * a,
|
1433
|
-
int n_past);
|
1434
|
-
|
1435
|
-
// in-place, returns view(a)
|
1436
|
-
GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
|
1437
|
-
struct ggml_context * ctx,
|
1438
|
-
struct ggml_tensor * a,
|
1439
|
-
int n_past);
|
1440
|
-
|
1441
|
-
GGML_API struct ggml_tensor * ggml_soft_max(
|
1442
|
-
struct ggml_context * ctx,
|
1443
|
-
struct ggml_tensor * a);
|
1444
|
-
|
1445
|
-
// in-place, returns view(a)
|
1446
|
-
GGML_API struct ggml_tensor * ggml_soft_max_inplace(
|
1447
|
-
struct ggml_context * ctx,
|
1448
|
-
struct ggml_tensor * a);
|
1449
|
-
|
1450
|
-
// fused soft_max(a*scale + mask*(ALiBi slope))
|
1451
|
-
// mask is optional
|
1452
|
-
// max_bias = 0.0f for no ALiBi
|
1453
|
-
GGML_API struct ggml_tensor * ggml_soft_max_ext(
|
1454
|
-
struct ggml_context * ctx,
|
1455
|
-
struct ggml_tensor * a,
|
1456
|
-
struct ggml_tensor * mask,
|
1457
|
-
float scale,
|
1458
|
-
float max_bias);
|
1459
|
-
|
1460
|
-
GGML_API struct ggml_tensor * ggml_soft_max_back(
|
1461
|
-
struct ggml_context * ctx,
|
1462
|
-
struct ggml_tensor * a,
|
1463
|
-
struct ggml_tensor * b);
|
1464
|
-
|
1465
|
-
// in-place, returns view(a)
|
1466
|
-
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
|
1467
|
-
struct ggml_context * ctx,
|
1468
|
-
struct ggml_tensor * a,
|
1469
|
-
struct ggml_tensor * b);
|
1470
|
-
|
1471
|
-
// rotary position embedding
|
1472
|
-
// if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
|
1473
|
-
// if mode & 2 == 1, GPT-NeoX style
|
1474
|
-
//
|
1475
|
-
// b is an int32 vector with size a->ne[2], it contains the positions
|
1476
|
-
// c is freq factors (e.g. phi3-128k), (optional)
|
1477
|
-
GGML_API struct ggml_tensor * ggml_rope(
|
1478
|
-
struct ggml_context * ctx,
|
1479
|
-
struct ggml_tensor * a,
|
1480
|
-
struct ggml_tensor * b,
|
1481
|
-
int n_dims,
|
1482
|
-
int mode);
|
1483
|
-
|
1484
|
-
// in-place, returns view(a)
|
1485
|
-
GGML_API struct ggml_tensor * ggml_rope_inplace(
|
1486
|
-
struct ggml_context * ctx,
|
1487
|
-
struct ggml_tensor * a,
|
1488
|
-
struct ggml_tensor * b,
|
1489
|
-
int n_dims,
|
1490
|
-
int mode);
|
1491
|
-
|
1492
|
-
// custom RoPE
|
1493
|
-
GGML_API struct ggml_tensor * ggml_rope_ext(
|
1494
|
-
struct ggml_context * ctx,
|
1495
|
-
struct ggml_tensor * a,
|
1496
|
-
struct ggml_tensor * b,
|
1497
|
-
struct ggml_tensor * c,
|
1498
|
-
int n_dims,
|
1499
|
-
int mode,
|
1500
|
-
int n_ctx_orig,
|
1501
|
-
float freq_base,
|
1502
|
-
float freq_scale,
|
1503
|
-
float ext_factor,
|
1504
|
-
float attn_factor,
|
1505
|
-
float beta_fast,
|
1506
|
-
float beta_slow);
|
1507
|
-
|
1508
|
-
// in-place, returns view(a)
|
1509
|
-
GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
|
1510
|
-
struct ggml_context * ctx,
|
1511
|
-
struct ggml_tensor * a,
|
1512
|
-
struct ggml_tensor * b,
|
1513
|
-
struct ggml_tensor * c,
|
1514
|
-
int n_dims,
|
1515
|
-
int mode,
|
1516
|
-
int n_ctx_orig,
|
1517
|
-
float freq_base,
|
1518
|
-
float freq_scale,
|
1519
|
-
float ext_factor,
|
1520
|
-
float attn_factor,
|
1521
|
-
float beta_fast,
|
1522
|
-
float beta_slow);
|
1523
|
-
|
1524
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
|
1525
|
-
struct ggml_context * ctx,
|
1526
|
-
struct ggml_tensor * a,
|
1527
|
-
struct ggml_tensor * b,
|
1528
|
-
int n_dims,
|
1529
|
-
int mode,
|
1530
|
-
int n_ctx_orig,
|
1531
|
-
float freq_base,
|
1532
|
-
float freq_scale,
|
1533
|
-
float ext_factor,
|
1534
|
-
float attn_factor,
|
1535
|
-
float beta_fast,
|
1536
|
-
float beta_slow),
|
1537
|
-
"use ggml_rope_ext instead");
|
1538
|
-
|
1539
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
1540
|
-
struct ggml_context * ctx,
|
1541
|
-
struct ggml_tensor * a,
|
1542
|
-
struct ggml_tensor * b,
|
1543
|
-
int n_dims,
|
1544
|
-
int mode,
|
1545
|
-
int n_ctx_orig,
|
1546
|
-
float freq_base,
|
1547
|
-
float freq_scale,
|
1548
|
-
float ext_factor,
|
1549
|
-
float attn_factor,
|
1550
|
-
float beta_fast,
|
1551
|
-
float beta_slow),
|
1552
|
-
"use ggml_rope_ext_inplace instead");
|
1553
|
-
|
1554
|
-
// compute correction dims for YaRN RoPE scaling
|
1555
|
-
GGML_CALL void ggml_rope_yarn_corr_dims(
|
1556
|
-
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
1557
|
-
|
1558
|
-
// rotary position embedding backward, i.e compute dx from dy
|
1559
|
-
// a - dy
|
1560
|
-
GGML_API struct ggml_tensor * ggml_rope_back(
|
1561
|
-
struct ggml_context * ctx,
|
1562
|
-
struct ggml_tensor * a,
|
1563
|
-
struct ggml_tensor * b,
|
1564
|
-
struct ggml_tensor * c,
|
1565
|
-
int n_dims,
|
1566
|
-
int mode,
|
1567
|
-
int n_ctx_orig,
|
1568
|
-
float freq_base,
|
1569
|
-
float freq_scale,
|
1570
|
-
float ext_factor,
|
1571
|
-
float attn_factor,
|
1572
|
-
float beta_fast,
|
1573
|
-
float beta_slow);
|
1574
|
-
|
1575
|
-
// clamp
|
1576
|
-
// in-place, returns view(a)
|
1577
|
-
GGML_API struct ggml_tensor * ggml_clamp(
|
1578
|
-
struct ggml_context * ctx,
|
1579
|
-
struct ggml_tensor * a,
|
1580
|
-
float min,
|
1581
|
-
float max);
|
1582
|
-
|
1583
|
-
GGML_API struct ggml_tensor * ggml_im2col(
|
1584
|
-
struct ggml_context * ctx,
|
1585
|
-
struct ggml_tensor * a,
|
1586
|
-
struct ggml_tensor * b,
|
1587
|
-
int s0,
|
1588
|
-
int s1,
|
1589
|
-
int p0,
|
1590
|
-
int p1,
|
1591
|
-
int d0,
|
1592
|
-
int d1,
|
1593
|
-
bool is_2D,
|
1594
|
-
enum ggml_type dst_type);
|
1595
|
-
|
1596
|
-
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
|
1597
|
-
struct ggml_context * ctx,
|
1598
|
-
struct ggml_tensor * a,
|
1599
|
-
struct ggml_tensor * b,
|
1600
|
-
int s0,
|
1601
|
-
int s1,
|
1602
|
-
int p0,
|
1603
|
-
int p1,
|
1604
|
-
int d0,
|
1605
|
-
int d1);
|
1606
|
-
|
1607
|
-
GGML_API struct ggml_tensor * ggml_conv_1d(
|
1608
|
-
struct ggml_context * ctx,
|
1609
|
-
struct ggml_tensor * a,
|
1610
|
-
struct ggml_tensor * b,
|
1611
|
-
int s0, // stride
|
1612
|
-
int p0, // padding
|
1613
|
-
int d0); // dilation
|
1614
|
-
|
1615
|
-
// conv_1d with padding = half
|
1616
|
-
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
1617
|
-
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
|
1618
|
-
struct ggml_context * ctx,
|
1619
|
-
struct ggml_tensor * a,
|
1620
|
-
struct ggml_tensor * b,
|
1621
|
-
int s,
|
1622
|
-
int d);
|
1623
|
-
|
1624
|
-
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
|
1625
|
-
struct ggml_context * ctx,
|
1626
|
-
struct ggml_tensor * a,
|
1627
|
-
struct ggml_tensor * b,
|
1628
|
-
int s0,
|
1629
|
-
int p0,
|
1630
|
-
int d0);
|
1631
|
-
|
1632
|
-
GGML_API struct ggml_tensor * ggml_conv_2d(
|
1633
|
-
struct ggml_context * ctx,
|
1634
|
-
struct ggml_tensor * a,
|
1635
|
-
struct ggml_tensor * b,
|
1636
|
-
int s0,
|
1637
|
-
int s1,
|
1638
|
-
int p0,
|
1639
|
-
int p1,
|
1640
|
-
int d0,
|
1641
|
-
int d1);
|
1642
|
-
|
1643
|
-
|
1644
|
-
// kernel size is a->ne[0] x a->ne[1]
|
1645
|
-
// stride is equal to kernel size
|
1646
|
-
// padding is zero
|
1647
|
-
// example:
|
1648
|
-
// a: 16 16 3 768
|
1649
|
-
// b: 1024 1024 3 1
|
1650
|
-
// res: 64 64 768 1
|
1651
|
-
// used in sam
|
1652
|
-
GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
|
1653
|
-
struct ggml_context * ctx,
|
1654
|
-
struct ggml_tensor * a,
|
1655
|
-
struct ggml_tensor * b);
|
1656
|
-
|
1657
|
-
// kernel size is a->ne[0] x a->ne[1]
|
1658
|
-
// stride is 1
|
1659
|
-
// padding is half
|
1660
|
-
// example:
|
1661
|
-
// a: 3 3 256 256
|
1662
|
-
// b: 64 64 256 1
|
1663
|
-
// res: 64 64 256 1
|
1664
|
-
// used in sam
|
1665
|
-
GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
|
1666
|
-
struct ggml_context * ctx,
|
1667
|
-
struct ggml_tensor * a,
|
1668
|
-
struct ggml_tensor * b);
|
1669
|
-
|
1670
|
-
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
|
1671
|
-
struct ggml_context * ctx,
|
1672
|
-
struct ggml_tensor * a,
|
1673
|
-
struct ggml_tensor * b,
|
1674
|
-
int stride);
|
1675
|
-
|
1676
|
-
enum ggml_op_pool {
|
1677
|
-
GGML_OP_POOL_MAX,
|
1678
|
-
GGML_OP_POOL_AVG,
|
1679
|
-
GGML_OP_POOL_COUNT,
|
1680
|
-
};
|
1681
|
-
|
1682
|
-
GGML_API struct ggml_tensor * ggml_pool_1d(
|
1683
|
-
struct ggml_context * ctx,
|
1684
|
-
struct ggml_tensor * a,
|
1685
|
-
enum ggml_op_pool op,
|
1686
|
-
int k0, // kernel size
|
1687
|
-
int s0, // stride
|
1688
|
-
int p0); // padding
|
1689
|
-
|
1690
|
-
// the result will have 2*p0 padding for the first dimension
|
1691
|
-
// and 2*p1 padding for the second dimension
|
1692
|
-
GGML_API struct ggml_tensor * ggml_pool_2d(
|
1693
|
-
struct ggml_context * ctx,
|
1694
|
-
struct ggml_tensor * a,
|
1695
|
-
enum ggml_op_pool op,
|
1696
|
-
int k0,
|
1697
|
-
int k1,
|
1698
|
-
int s0,
|
1699
|
-
int s1,
|
1700
|
-
float p0,
|
1701
|
-
float p1);
|
1702
|
-
|
1703
|
-
// nearest interpolate
|
1704
|
-
// multiplies ne0 and ne1 by scale factor
|
1705
|
-
// used in stable-diffusion
|
1706
|
-
GGML_API struct ggml_tensor * ggml_upscale(
|
1707
|
-
struct ggml_context * ctx,
|
1708
|
-
struct ggml_tensor * a,
|
1709
|
-
int scale_factor);
|
1710
|
-
|
1711
|
-
// nearest interpolate
|
1712
|
-
// nearest interpolate to specified dimensions
|
1713
|
-
// used in tortoise.cpp
|
1714
|
-
GGML_API struct ggml_tensor * ggml_upscale_ext(
|
1715
|
-
struct ggml_context * ctx,
|
1716
|
-
struct ggml_tensor * a,
|
1717
|
-
int ne0,
|
1718
|
-
int ne1,
|
1719
|
-
int ne2,
|
1720
|
-
int ne3);
|
1721
|
-
|
1722
|
-
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
1723
|
-
GGML_API struct ggml_tensor * ggml_pad(
|
1724
|
-
struct ggml_context * ctx,
|
1725
|
-
struct ggml_tensor * a,
|
1726
|
-
int p0,
|
1727
|
-
int p1,
|
1728
|
-
int p2,
|
1729
|
-
int p3);
|
1730
|
-
|
1731
|
-
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
|
1732
|
-
// timesteps: [N,]
|
1733
|
-
// return: [N, dim]
|
1734
|
-
GGML_API struct ggml_tensor * ggml_timestep_embedding(
|
1735
|
-
struct ggml_context * ctx,
|
1736
|
-
struct ggml_tensor * timesteps,
|
1737
|
-
int dim,
|
1738
|
-
int max_period);
|
1739
|
-
|
1740
|
-
// sort rows
|
1741
|
-
enum ggml_sort_order {
|
1742
|
-
GGML_SORT_ORDER_ASC,
|
1743
|
-
GGML_SORT_ORDER_DESC,
|
1744
|
-
};
|
1745
|
-
|
1746
|
-
GGML_API struct ggml_tensor * ggml_argsort(
|
1747
|
-
struct ggml_context * ctx,
|
1748
|
-
struct ggml_tensor * a,
|
1749
|
-
enum ggml_sort_order order);
|
1750
|
-
|
1751
|
-
GGML_API struct ggml_tensor * ggml_arange(
|
1752
|
-
struct ggml_context * ctx,
|
1753
|
-
float start,
|
1754
|
-
float stop,
|
1755
|
-
float step);
|
1756
|
-
|
1757
|
-
// top k elements per row
|
1758
|
-
GGML_API struct ggml_tensor * ggml_top_k(
|
1759
|
-
struct ggml_context * ctx,
|
1760
|
-
struct ggml_tensor * a,
|
1761
|
-
int k);
|
1762
|
-
|
1763
|
-
#define GGML_KQ_MASK_PAD 32
|
1764
|
-
|
1765
|
-
// q: [n_embd, n_batch, n_head, 1]
|
1766
|
-
// k: [n_embd, n_kv, n_head_kv, 1]
|
1767
|
-
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
|
1768
|
-
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
|
1769
|
-
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
|
1770
|
-
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
|
1771
|
-
struct ggml_context * ctx,
|
1772
|
-
struct ggml_tensor * q,
|
1773
|
-
struct ggml_tensor * k,
|
1774
|
-
struct ggml_tensor * v,
|
1775
|
-
struct ggml_tensor * mask,
|
1776
|
-
float scale,
|
1777
|
-
float max_bias);
|
1778
|
-
|
1779
|
-
GGML_API void ggml_flash_attn_ext_set_prec(
|
1780
|
-
struct ggml_tensor * a,
|
1781
|
-
enum ggml_prec prec);
|
1782
|
-
|
1783
|
-
// TODO: needs to be adapted to ggml_flash_attn_ext
|
1784
|
-
GGML_API struct ggml_tensor * ggml_flash_attn_back(
|
1785
|
-
struct ggml_context * ctx,
|
1786
|
-
struct ggml_tensor * q,
|
1787
|
-
struct ggml_tensor * k,
|
1788
|
-
struct ggml_tensor * v,
|
1789
|
-
struct ggml_tensor * d,
|
1790
|
-
bool masked);
|
1791
|
-
|
1792
|
-
GGML_API struct ggml_tensor * ggml_ssm_conv(
|
1793
|
-
struct ggml_context * ctx,
|
1794
|
-
struct ggml_tensor * s,
|
1795
|
-
struct ggml_tensor * x,
|
1796
|
-
struct ggml_tensor * c,
|
1797
|
-
struct ggml_tensor * sq);
|
1798
|
-
|
1799
|
-
GGML_API struct ggml_tensor * ggml_ssm_scan(
|
1800
|
-
struct ggml_context * ctx,
|
1801
|
-
struct ggml_tensor * s,
|
1802
|
-
struct ggml_tensor * x,
|
1803
|
-
struct ggml_tensor * dt,
|
1804
|
-
struct ggml_tensor * A,
|
1805
|
-
struct ggml_tensor * B,
|
1806
|
-
struct ggml_tensor * C,
|
1807
|
-
struct ggml_tensor * sq);
|
1808
|
-
|
1809
|
-
// partition into non-overlapping windows with padding if needed
|
1810
|
-
// example:
|
1811
|
-
// a: 768 64 64 1
|
1812
|
-
// w: 14
|
1813
|
-
// res: 768 14 14 25
|
1814
|
-
// used in sam
|
1815
|
-
GGML_API struct ggml_tensor * ggml_win_part(
|
1816
|
-
struct ggml_context * ctx,
|
1817
|
-
struct ggml_tensor * a,
|
1818
|
-
int w);
|
1819
|
-
|
1820
|
-
// reverse of ggml_win_part
|
1821
|
-
// used in sam
|
1822
|
-
GGML_API struct ggml_tensor * ggml_win_unpart(
|
1823
|
-
struct ggml_context * ctx,
|
1824
|
-
struct ggml_tensor * a,
|
1825
|
-
int w0,
|
1826
|
-
int h0,
|
1827
|
-
int w);
|
1828
|
-
|
1829
|
-
GGML_API struct ggml_tensor * ggml_unary(
|
1830
|
-
struct ggml_context * ctx,
|
1831
|
-
struct ggml_tensor * a,
|
1832
|
-
enum ggml_unary_op op);
|
1833
|
-
|
1834
|
-
GGML_API struct ggml_tensor * ggml_unary_inplace(
|
1835
|
-
struct ggml_context * ctx,
|
1836
|
-
struct ggml_tensor * a,
|
1837
|
-
enum ggml_unary_op op);
|
1838
|
-
|
1839
|
-
// used in sam
|
1840
|
-
GGML_API struct ggml_tensor * ggml_get_rel_pos(
|
1841
|
-
struct ggml_context * ctx,
|
1842
|
-
struct ggml_tensor * a,
|
1843
|
-
int qh,
|
1844
|
-
int kh);
|
1845
|
-
|
1846
|
-
// used in sam
|
1847
|
-
GGML_API struct ggml_tensor * ggml_add_rel_pos(
|
1848
|
-
struct ggml_context * ctx,
|
1849
|
-
struct ggml_tensor * a,
|
1850
|
-
struct ggml_tensor * pw,
|
1851
|
-
struct ggml_tensor * ph);
|
1852
|
-
|
1853
|
-
GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
|
1854
|
-
struct ggml_context * ctx,
|
1855
|
-
struct ggml_tensor * a,
|
1856
|
-
struct ggml_tensor * pw,
|
1857
|
-
struct ggml_tensor * ph);
|
1858
|
-
|
1859
|
-
// custom operators
|
1860
|
-
|
1861
|
-
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
1862
|
-
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
1863
|
-
|
1864
|
-
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
|
1865
|
-
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
1866
|
-
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
1867
|
-
|
1868
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
1869
|
-
struct ggml_context * ctx,
|
1870
|
-
struct ggml_tensor * a,
|
1871
|
-
ggml_unary_op_f32_t fun),
|
1872
|
-
"use ggml_map_custom1 instead");
|
1873
|
-
|
1874
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
1875
|
-
struct ggml_context * ctx,
|
1876
|
-
struct ggml_tensor * a,
|
1877
|
-
ggml_unary_op_f32_t fun),
|
1878
|
-
"use ggml_map_custom1_inplace instead");
|
1879
|
-
|
1880
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
1881
|
-
struct ggml_context * ctx,
|
1882
|
-
struct ggml_tensor * a,
|
1883
|
-
struct ggml_tensor * b,
|
1884
|
-
ggml_binary_op_f32_t fun),
|
1885
|
-
"use ggml_map_custom2 instead");
|
1886
|
-
|
1887
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
1888
|
-
struct ggml_context * ctx,
|
1889
|
-
struct ggml_tensor * a,
|
1890
|
-
struct ggml_tensor * b,
|
1891
|
-
ggml_binary_op_f32_t fun),
|
1892
|
-
"use ggml_map_custom2_inplace instead");
|
1893
|
-
|
1894
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
1895
|
-
struct ggml_context * ctx,
|
1896
|
-
struct ggml_tensor * a,
|
1897
|
-
ggml_custom1_op_f32_t fun),
|
1898
|
-
"use ggml_map_custom1 instead");
|
1899
|
-
|
1900
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
1901
|
-
struct ggml_context * ctx,
|
1902
|
-
struct ggml_tensor * a,
|
1903
|
-
ggml_custom1_op_f32_t fun),
|
1904
|
-
"use ggml_map_custom1_inplace instead");
|
1905
|
-
|
1906
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
1907
|
-
struct ggml_context * ctx,
|
1908
|
-
struct ggml_tensor * a,
|
1909
|
-
struct ggml_tensor * b,
|
1910
|
-
ggml_custom2_op_f32_t fun),
|
1911
|
-
"use ggml_map_custom2 instead");
|
1912
|
-
|
1913
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
1914
|
-
struct ggml_context * ctx,
|
1915
|
-
struct ggml_tensor * a,
|
1916
|
-
struct ggml_tensor * b,
|
1917
|
-
ggml_custom2_op_f32_t fun),
|
1918
|
-
"use ggml_map_custom2_inplace instead");
|
1919
|
-
|
1920
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
1921
|
-
struct ggml_context * ctx,
|
1922
|
-
struct ggml_tensor * a,
|
1923
|
-
struct ggml_tensor * b,
|
1924
|
-
struct ggml_tensor * c,
|
1925
|
-
ggml_custom3_op_f32_t fun),
|
1926
|
-
"use ggml_map_custom3 instead");
|
1927
|
-
|
1928
|
-
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
1929
|
-
struct ggml_context * ctx,
|
1930
|
-
struct ggml_tensor * a,
|
1931
|
-
struct ggml_tensor * b,
|
1932
|
-
struct ggml_tensor * c,
|
1933
|
-
ggml_custom3_op_f32_t fun),
|
1934
|
-
"use ggml_map_custom3_inplace instead");
|
1935
|
-
|
1936
|
-
// custom operators v2
|
1937
|
-
|
1938
|
-
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
|
1939
|
-
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
1940
|
-
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
1941
|
-
|
1942
|
-
#define GGML_N_TASKS_MAX -1
|
1943
|
-
|
1944
|
-
GGML_API struct ggml_tensor * ggml_map_custom1(
|
1945
|
-
struct ggml_context * ctx,
|
1946
|
-
struct ggml_tensor * a,
|
1947
|
-
ggml_custom1_op_t fun,
|
1948
|
-
int n_tasks,
|
1949
|
-
void * userdata);
|
1950
|
-
|
1951
|
-
GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
|
1952
|
-
struct ggml_context * ctx,
|
1953
|
-
struct ggml_tensor * a,
|
1954
|
-
ggml_custom1_op_t fun,
|
1955
|
-
int n_tasks,
|
1956
|
-
void * userdata);
|
1957
|
-
|
1958
|
-
GGML_API struct ggml_tensor * ggml_map_custom2(
|
1959
|
-
struct ggml_context * ctx,
|
1960
|
-
struct ggml_tensor * a,
|
1961
|
-
struct ggml_tensor * b,
|
1962
|
-
ggml_custom2_op_t fun,
|
1963
|
-
int n_tasks,
|
1964
|
-
void * userdata);
|
1965
|
-
|
1966
|
-
GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
|
1967
|
-
struct ggml_context * ctx,
|
1968
|
-
struct ggml_tensor * a,
|
1969
|
-
struct ggml_tensor * b,
|
1970
|
-
ggml_custom2_op_t fun,
|
1971
|
-
int n_tasks,
|
1972
|
-
void * userdata);
|
1973
|
-
|
1974
|
-
GGML_API struct ggml_tensor * ggml_map_custom3(
|
1975
|
-
struct ggml_context * ctx,
|
1976
|
-
struct ggml_tensor * a,
|
1977
|
-
struct ggml_tensor * b,
|
1978
|
-
struct ggml_tensor * c,
|
1979
|
-
ggml_custom3_op_t fun,
|
1980
|
-
int n_tasks,
|
1981
|
-
void * userdata);
|
1982
|
-
|
1983
|
-
GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
|
1984
|
-
struct ggml_context * ctx,
|
1985
|
-
struct ggml_tensor * a,
|
1986
|
-
struct ggml_tensor * b,
|
1987
|
-
struct ggml_tensor * c,
|
1988
|
-
ggml_custom3_op_t fun,
|
1989
|
-
int n_tasks,
|
1990
|
-
void * userdata);
|
1991
|
-
|
1992
|
-
// loss function
|
1993
|
-
|
1994
|
-
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
|
1995
|
-
struct ggml_context * ctx,
|
1996
|
-
struct ggml_tensor * a,
|
1997
|
-
struct ggml_tensor * b);
|
1998
|
-
|
1999
|
-
GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
|
2000
|
-
struct ggml_context * ctx,
|
2001
|
-
struct ggml_tensor * a,
|
2002
|
-
struct ggml_tensor * b,
|
2003
|
-
struct ggml_tensor * c);
|
2004
|
-
|
2005
|
-
//
|
2006
|
-
// automatic differentiation
|
2007
|
-
//
|
2008
|
-
|
2009
|
-
GGML_API void ggml_set_param(
|
2010
|
-
struct ggml_context * ctx,
|
2011
|
-
struct ggml_tensor * tensor);
|
2012
|
-
|
2013
|
-
|
2014
|
-
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
2015
|
-
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
|
2016
|
-
|
2017
|
-
// graph allocation in a context
|
2018
|
-
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
2019
|
-
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
|
2020
|
-
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
2021
|
-
GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
|
2022
|
-
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
2023
|
-
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
2024
|
-
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
2025
|
-
|
2026
|
-
GGML_API size_t ggml_graph_overhead(void);
|
2027
|
-
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
|
2028
|
-
|
2029
|
-
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
2030
|
-
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
2031
|
-
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
2032
|
-
GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
2033
|
-
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
2034
|
-
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
2035
|
-
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
|
2036
|
-
|
2037
|
-
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
|
2038
|
-
|
2039
|
-
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
2040
|
-
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
2041
|
-
|
2042
|
-
// print info and performance information for the graph
|
2043
|
-
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
2044
|
-
|
2045
|
-
// dump the graph into a file using the dot format
|
2046
|
-
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
2047
|
-
|
2048
|
-
// build gradient checkpointing backward graph gb for gf using provided checkpoints
|
2049
|
-
// gb_tmp will contain original backward graph with rewritten backward process nodes,
|
2050
|
-
// but without the second forward pass nodes.
|
2051
|
-
GGML_API void ggml_build_backward_gradient_checkpointing(
|
2052
|
-
struct ggml_context * ctx,
|
2053
|
-
struct ggml_cgraph * gf,
|
2054
|
-
struct ggml_cgraph * gb,
|
2055
|
-
struct ggml_cgraph * gb_tmp,
|
2056
|
-
struct ggml_tensor * * checkpoints,
|
2057
|
-
int n_checkpoints);
|
2058
|
-
//
|
2059
|
-
// optimization
|
2060
|
-
//
|
2061
|
-
|
2062
|
-
// optimization methods
|
2063
|
-
enum ggml_opt_type {
|
2064
|
-
GGML_OPT_TYPE_ADAM,
|
2065
|
-
GGML_OPT_TYPE_LBFGS,
|
2066
|
-
};
|
2067
|
-
|
2068
|
-
// linesearch methods
|
2069
|
-
enum ggml_linesearch {
|
2070
|
-
GGML_LINESEARCH_DEFAULT = 1,
|
2071
|
-
|
2072
|
-
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
|
2073
|
-
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
|
2074
|
-
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
|
2075
|
-
};
|
2076
|
-
|
2077
|
-
// optimization return values
|
2078
|
-
enum ggml_opt_result {
|
2079
|
-
GGML_OPT_RESULT_OK = 0,
|
2080
|
-
GGML_OPT_RESULT_DID_NOT_CONVERGE,
|
2081
|
-
GGML_OPT_RESULT_NO_CONTEXT,
|
2082
|
-
GGML_OPT_RESULT_INVALID_WOLFE,
|
2083
|
-
GGML_OPT_RESULT_FAIL,
|
2084
|
-
GGML_OPT_RESULT_CANCEL,
|
2085
|
-
|
2086
|
-
GGML_LINESEARCH_FAIL = -128,
|
2087
|
-
GGML_LINESEARCH_MINIMUM_STEP,
|
2088
|
-
GGML_LINESEARCH_MAXIMUM_STEP,
|
2089
|
-
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
|
2090
|
-
GGML_LINESEARCH_INVALID_PARAMETERS,
|
2091
|
-
};
|
2092
|
-
|
2093
|
-
typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
|
2094
|
-
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
|
2095
|
-
|
2096
|
-
// optimization parameters
|
2097
|
-
//
|
2098
|
-
// see ggml.c (ggml_opt_default_params) for default values
|
2099
|
-
//
|
2100
|
-
struct ggml_opt_params {
|
2101
|
-
enum ggml_opt_type type;
|
2102
|
-
|
2103
|
-
size_t graph_size;
|
2104
|
-
|
2105
|
-
int n_threads;
|
2106
|
-
|
2107
|
-
// delta-based convergence test
|
2108
|
-
//
|
2109
|
-
// if past == 0 - disabled
|
2110
|
-
// if past > 0:
|
2111
|
-
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
|
2112
|
-
//
|
2113
|
-
int past;
|
2114
|
-
float delta;
|
2115
|
-
|
2116
|
-
// maximum number of iterations without improvement
|
2117
|
-
//
|
2118
|
-
// if 0 - disabled
|
2119
|
-
// if > 0:
|
2120
|
-
// assume convergence if no cost improvement in this number of iterations
|
2121
|
-
//
|
2122
|
-
int max_no_improvement;
|
2123
|
-
|
2124
|
-
bool print_forward_graph;
|
2125
|
-
bool print_backward_graph;
|
2126
|
-
|
2127
|
-
int n_gradient_accumulation;
|
2128
|
-
|
2129
|
-
// ADAM parameters
|
2130
|
-
struct {
|
2131
|
-
int n_iter;
|
2132
|
-
|
2133
|
-
float sched; // schedule multiplier (fixed, decay or warmup)
|
2134
|
-
float decay; // weight decay for AdamW, use 0.0f to disable
|
2135
|
-
int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
|
2136
|
-
float alpha; // learning rate
|
2137
|
-
float beta1;
|
2138
|
-
float beta2;
|
2139
|
-
float eps; // epsilon for numerical stability
|
2140
|
-
float eps_f; // epsilon for convergence test
|
2141
|
-
float eps_g; // epsilon for convergence test
|
2142
|
-
float gclip; // gradient clipping
|
2143
|
-
} adam;
|
2144
|
-
|
2145
|
-
// LBFGS parameters
|
2146
|
-
struct {
|
2147
|
-
int m; // number of corrections to approximate the inv. Hessian
|
2148
|
-
int n_iter;
|
2149
|
-
int max_linesearch;
|
2150
|
-
|
2151
|
-
float eps; // convergence tolerance
|
2152
|
-
float ftol; // line search tolerance
|
2153
|
-
float wolfe;
|
2154
|
-
float min_step;
|
2155
|
-
float max_step;
|
2156
|
-
|
2157
|
-
enum ggml_linesearch linesearch;
|
2158
|
-
} lbfgs;
|
2159
|
-
};
|
2160
|
-
|
2161
|
-
struct ggml_opt_context {
|
2162
|
-
struct ggml_context * ctx;
|
2163
|
-
struct ggml_opt_params params;
|
2164
|
-
|
2165
|
-
int iter;
|
2166
|
-
int64_t nx; // number of parameter elements
|
2167
|
-
|
2168
|
-
bool just_initialized;
|
2169
|
-
|
2170
|
-
float loss_before;
|
2171
|
-
float loss_after;
|
2172
|
-
|
2173
|
-
struct {
|
2174
|
-
struct ggml_tensor * g; // current gradient
|
2175
|
-
struct ggml_tensor * m; // first moment
|
2176
|
-
struct ggml_tensor * v; // second moment
|
2177
|
-
struct ggml_tensor * pf; // past function values
|
2178
|
-
float fx_best;
|
2179
|
-
float fx_prev;
|
2180
|
-
int n_no_improvement;
|
2181
|
-
} adam;
|
2182
|
-
|
2183
|
-
struct {
|
2184
|
-
struct ggml_tensor * x; // current parameters
|
2185
|
-
struct ggml_tensor * xp; // previous parameters
|
2186
|
-
struct ggml_tensor * g; // current gradient
|
2187
|
-
struct ggml_tensor * gp; // previous gradient
|
2188
|
-
struct ggml_tensor * d; // search direction
|
2189
|
-
struct ggml_tensor * pf; // past function values
|
2190
|
-
struct ggml_tensor * lmal; // the L-BFGS memory alpha
|
2191
|
-
struct ggml_tensor * lmys; // the L-BFGS memory ys
|
2192
|
-
struct ggml_tensor * lms; // the L-BFGS memory s
|
2193
|
-
struct ggml_tensor * lmy; // the L-BFGS memory y
|
2194
|
-
float fx_best;
|
2195
|
-
float step;
|
2196
|
-
int j;
|
2197
|
-
int k;
|
2198
|
-
int end;
|
2199
|
-
int n_no_improvement;
|
2200
|
-
} lbfgs;
|
2201
|
-
};
|
2202
|
-
|
2203
|
-
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
|
2204
|
-
|
2205
|
-
// optimize the function defined by the tensor f
|
2206
|
-
GGML_API enum ggml_opt_result ggml_opt(
|
2207
|
-
struct ggml_context * ctx,
|
2208
|
-
struct ggml_opt_params params,
|
2209
|
-
struct ggml_tensor * f);
|
2210
|
-
|
2211
|
-
// initialize optimizer context
|
2212
|
-
GGML_API void ggml_opt_init(
|
2213
|
-
struct ggml_context * ctx,
|
2214
|
-
struct ggml_opt_context * opt,
|
2215
|
-
struct ggml_opt_params params,
|
2216
|
-
int64_t nx);
|
2217
|
-
|
2218
|
-
// continue optimizing the function defined by the tensor f
|
2219
|
-
GGML_API enum ggml_opt_result ggml_opt_resume(
|
2220
|
-
struct ggml_context * ctx,
|
2221
|
-
struct ggml_opt_context * opt,
|
2222
|
-
struct ggml_tensor * f);
|
2223
|
-
|
2224
|
-
// continue optimizing the function defined by the tensor f
|
2225
|
-
GGML_API enum ggml_opt_result ggml_opt_resume_g(
|
2226
|
-
struct ggml_context * ctx,
|
2227
|
-
struct ggml_opt_context * opt,
|
2228
|
-
struct ggml_tensor * f,
|
2229
|
-
struct ggml_cgraph * gf,
|
2230
|
-
struct ggml_cgraph * gb,
|
2231
|
-
ggml_opt_callback callback,
|
2232
|
-
void * callback_data);
|
2233
|
-
|
2234
|
-
//
|
2235
|
-
// tensor flags
|
2236
|
-
//
|
2237
|
-
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
|
2238
|
-
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
|
2239
|
-
|
2240
|
-
//
|
2241
|
-
// quantization
|
2242
|
-
//
|
2243
|
-
|
2244
|
-
// - ggml_quantize_init can be called multiple times with the same type
|
2245
|
-
// it will only initialize the quantization tables for the first call or after ggml_quantize_free
|
2246
|
-
// automatically called by ggml_quantize_chunk for convenience
|
2247
|
-
//
|
2248
|
-
// - ggml_quantize_free will free any memory allocated by ggml_quantize_init
|
2249
|
-
// call this at the end of the program to avoid memory leaks
|
2250
|
-
//
|
2251
|
-
// note: these are thread-safe
|
2252
|
-
//
|
2253
|
-
GGML_API void ggml_quantize_init(enum ggml_type type);
|
2254
|
-
GGML_API void ggml_quantize_free(void);
|
2255
|
-
|
2256
|
-
// some quantization type cannot be used without an importance matrix
|
2257
|
-
GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
|
2258
|
-
|
2259
|
-
// calls ggml_quantize_init internally (i.e. can allocate memory)
|
2260
|
-
GGML_API size_t ggml_quantize_chunk(
|
2261
|
-
enum ggml_type type,
|
2262
|
-
const float * src,
|
2263
|
-
void * dst,
|
2264
|
-
int64_t start,
|
2265
|
-
int64_t nrows,
|
2266
|
-
int64_t n_per_row,
|
2267
|
-
const float * imatrix);
|
2268
|
-
|
2269
|
-
//
|
2270
|
-
// gguf
|
2271
|
-
//
|
2272
|
-
|
2273
|
-
enum gguf_type {
|
2274
|
-
GGUF_TYPE_UINT8 = 0,
|
2275
|
-
GGUF_TYPE_INT8 = 1,
|
2276
|
-
GGUF_TYPE_UINT16 = 2,
|
2277
|
-
GGUF_TYPE_INT16 = 3,
|
2278
|
-
GGUF_TYPE_UINT32 = 4,
|
2279
|
-
GGUF_TYPE_INT32 = 5,
|
2280
|
-
GGUF_TYPE_FLOAT32 = 6,
|
2281
|
-
GGUF_TYPE_BOOL = 7,
|
2282
|
-
GGUF_TYPE_STRING = 8,
|
2283
|
-
GGUF_TYPE_ARRAY = 9,
|
2284
|
-
GGUF_TYPE_UINT64 = 10,
|
2285
|
-
GGUF_TYPE_INT64 = 11,
|
2286
|
-
GGUF_TYPE_FLOAT64 = 12,
|
2287
|
-
GGUF_TYPE_COUNT, // marks the end of the enum
|
2288
|
-
};
|
2289
|
-
|
2290
|
-
struct gguf_context;
|
2291
|
-
|
2292
|
-
struct gguf_init_params {
|
2293
|
-
bool no_alloc;
|
2294
|
-
|
2295
|
-
// if not NULL, create a ggml_context and allocate the tensor data in it
|
2296
|
-
struct ggml_context ** ctx;
|
2297
|
-
};
|
2298
|
-
|
2299
|
-
GGML_API struct gguf_context * gguf_init_empty(void);
|
2300
|
-
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
|
2301
|
-
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
|
2302
|
-
|
2303
|
-
GGML_API void gguf_free(struct gguf_context * ctx);
|
2304
|
-
|
2305
|
-
GGML_API const char * gguf_type_name(enum gguf_type type);
|
2306
|
-
|
2307
|
-
GGML_API int gguf_get_version (const struct gguf_context * ctx);
|
2308
|
-
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
|
2309
|
-
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
|
2310
|
-
GGML_API void * gguf_get_data (const struct gguf_context * ctx);
|
2311
|
-
|
2312
|
-
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
|
2313
|
-
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
|
2314
|
-
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
|
2315
|
-
|
2316
|
-
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
|
2317
|
-
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
|
2318
|
-
|
2319
|
-
// will abort if the wrong type is used for the key
|
2320
|
-
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
|
2321
|
-
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
|
2322
|
-
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
|
2323
|
-
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
|
2324
|
-
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
|
2325
|
-
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
|
2326
|
-
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
|
2327
|
-
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
|
2328
|
-
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
|
2329
|
-
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
|
2330
|
-
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
|
2331
|
-
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
|
2332
|
-
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
|
2333
|
-
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
|
2334
|
-
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
|
2335
|
-
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
|
2336
|
-
|
2337
|
-
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
|
2338
|
-
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
|
2339
|
-
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
|
2340
|
-
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
|
2341
|
-
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
|
2342
|
-
|
2343
|
-
// removes key if it exists
|
2344
|
-
GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
|
2345
|
-
|
2346
|
-
// overrides existing values or adds a new one
|
2347
|
-
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
|
2348
|
-
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
|
2349
|
-
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
|
2350
|
-
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
|
2351
|
-
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
|
2352
|
-
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
|
2353
|
-
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
|
2354
|
-
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
|
2355
|
-
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
|
2356
|
-
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
|
2357
|
-
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
|
2358
|
-
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
|
2359
|
-
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
|
2360
|
-
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
|
2361
|
-
|
2362
|
-
// set or add KV pairs from another context
|
2363
|
-
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
|
2364
|
-
|
2365
|
-
// manage tensor info
|
2366
|
-
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
|
2367
|
-
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
|
2368
|
-
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
|
2369
|
-
|
2370
|
-
// writing gguf files can be done in 2 ways:
|
2371
|
-
//
|
2372
|
-
// - write the entire gguf_context to a binary file in a single pass:
|
2373
|
-
//
|
2374
|
-
// gguf_write_to_file(ctx, fname);
|
2375
|
-
//
|
2376
|
-
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
|
2377
|
-
//
|
2378
|
-
// FILE * f = fopen(fname, "wb");
|
2379
|
-
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
|
2380
|
-
// fwrite(f, ...);
|
2381
|
-
// void * data = gguf_meta_get_meta_data(ctx);
|
2382
|
-
// fseek(f, 0, SEEK_SET);
|
2383
|
-
// fwrite(f, data, gguf_get_meta_size(ctx));
|
2384
|
-
// free(data);
|
2385
|
-
// fclose(f);
|
2386
|
-
//
|
2387
|
-
|
2388
|
-
// write the entire context to a binary file
|
2389
|
-
GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
|
2390
|
-
|
2391
|
-
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
|
2392
|
-
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
2393
|
-
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
2394
|
-
|
2395
|
-
//
|
2396
|
-
// system info
|
2397
|
-
//
|
2398
|
-
|
2399
|
-
GGML_API int ggml_cpu_has_avx (void);
|
2400
|
-
GGML_API int ggml_cpu_has_avx_vnni (void);
|
2401
|
-
GGML_API int ggml_cpu_has_avx2 (void);
|
2402
|
-
GGML_API int ggml_cpu_has_avx512 (void);
|
2403
|
-
GGML_API int ggml_cpu_has_avx512_vbmi(void);
|
2404
|
-
GGML_API int ggml_cpu_has_avx512_vnni(void);
|
2405
|
-
GGML_API int ggml_cpu_has_avx512_bf16(void);
|
2406
|
-
GGML_API int ggml_cpu_has_fma (void);
|
2407
|
-
GGML_API int ggml_cpu_has_neon (void);
|
2408
|
-
GGML_API int ggml_cpu_has_sve (void);
|
2409
|
-
GGML_API int ggml_cpu_has_arm_fma (void);
|
2410
|
-
GGML_API int ggml_cpu_has_metal (void);
|
2411
|
-
GGML_API int ggml_cpu_has_f16c (void);
|
2412
|
-
GGML_API int ggml_cpu_has_fp16_va (void);
|
2413
|
-
GGML_API int ggml_cpu_has_wasm_simd (void);
|
2414
|
-
GGML_API int ggml_cpu_has_blas (void);
|
2415
|
-
GGML_API int ggml_cpu_has_cuda (void);
|
2416
|
-
GGML_API int ggml_cpu_has_vulkan (void);
|
2417
|
-
GGML_API int ggml_cpu_has_kompute (void);
|
2418
|
-
GGML_API int ggml_cpu_has_gpublas (void);
|
2419
|
-
GGML_API int ggml_cpu_has_sse3 (void);
|
2420
|
-
GGML_API int ggml_cpu_has_ssse3 (void);
|
2421
|
-
GGML_API int ggml_cpu_has_sycl (void);
|
2422
|
-
GGML_API int ggml_cpu_has_rpc (void);
|
2423
|
-
GGML_API int ggml_cpu_has_vsx (void);
|
2424
|
-
GGML_API int ggml_cpu_has_matmul_int8(void);
|
2425
|
-
|
2426
|
-
//
|
2427
|
-
// Internal types and functions exposed for tests and benchmarks
|
2428
|
-
//
|
2429
|
-
|
2430
|
-
#ifdef __cplusplus
|
2431
|
-
// restrict not standard in C++
|
2432
|
-
#define GGML_RESTRICT
|
2433
|
-
#else
|
2434
|
-
#define GGML_RESTRICT restrict
|
2435
|
-
#endif
|
2436
|
-
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
|
2437
|
-
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
|
2438
|
-
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
|
2439
|
-
const void * GGML_RESTRICT y, size_t by, int nrc);
|
2440
|
-
|
2441
|
-
typedef struct {
|
2442
|
-
const char * type_name;
|
2443
|
-
int blck_size;
|
2444
|
-
size_t type_size;
|
2445
|
-
bool is_quantized;
|
2446
|
-
ggml_to_float_t to_float;
|
2447
|
-
ggml_from_float_t from_float;
|
2448
|
-
ggml_from_float_t from_float_reference;
|
2449
|
-
ggml_vec_dot_t vec_dot;
|
2450
|
-
enum ggml_type vec_dot_type;
|
2451
|
-
int64_t nrows; // number of rows to process simultaneously;
|
2452
|
-
} ggml_type_traits_t;
|
2453
|
-
|
2454
|
-
GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
|
2455
|
-
|
2456
|
-
#ifdef __cplusplus
|
2457
|
-
}
|
2458
|
-
#endif
|