llama_cpp 0.16.2 → 0.17.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (177) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +18 -0
  3. data/README.md +7 -12
  4. data/ext/llama_cpp/extconf.rb +2 -43
  5. data/ext/llama_cpp/llama_cpp.cpp +8 -0
  6. data/lib/llama_cpp/version.rb +3 -3
  7. data/sig/llama_cpp.rbs +3 -0
  8. metadata +2 -171
  9. data/vendor/include/.gitkeep +0 -0
  10. data/vendor/lib/.gitkeep +0 -0
  11. data/vendor/tmp/llama.cpp/LICENSE +0 -21
  12. data/vendor/tmp/llama.cpp/Makefile +0 -1124
  13. data/vendor/tmp/llama.cpp/ggml-alloc.c +0 -1041
  14. data/vendor/tmp/llama.cpp/ggml-alloc.h +0 -76
  15. data/vendor/tmp/llama.cpp/ggml-backend-impl.h +0 -153
  16. data/vendor/tmp/llama.cpp/ggml-backend.c +0 -2225
  17. data/vendor/tmp/llama.cpp/ggml-backend.h +0 -236
  18. data/vendor/tmp/llama.cpp/ggml-blas.cpp +0 -363
  19. data/vendor/tmp/llama.cpp/ggml-blas.h +0 -23
  20. data/vendor/tmp/llama.cpp/ggml-common.h +0 -1805
  21. data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +0 -47
  22. data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +0 -34
  23. data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +0 -104
  24. data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +0 -280
  25. data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +0 -34
  26. data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +0 -196
  27. data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +0 -686
  28. data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +0 -490
  29. data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +0 -40
  30. data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +0 -674
  31. data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +0 -319
  32. data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +0 -312
  33. data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +0 -345
  34. data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +0 -178
  35. data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +0 -104
  36. data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +0 -88
  37. data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +0 -419
  38. data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +0 -221
  39. data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +0 -49
  40. data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +0 -94
  41. data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +0 -112
  42. data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +0 -271
  43. data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +0 -31
  44. data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +0 -206
  45. data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +0 -40
  46. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +0 -5
  47. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +0 -5
  48. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +0 -5
  49. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +0 -5
  50. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +0 -5
  51. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +0 -5
  52. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +0 -5
  53. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +0 -5
  54. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +0 -5
  55. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +0 -5
  56. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +0 -5
  57. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +0 -5
  58. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +0 -5
  59. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +0 -5
  60. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +0 -5
  61. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +0 -5
  62. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +0 -5
  63. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +0 -5
  64. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +0 -5
  65. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +0 -5
  66. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +0 -5
  67. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +0 -5
  68. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +0 -5
  69. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +0 -5
  70. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +0 -5
  71. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +0 -5
  72. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +0 -5
  73. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +0 -5
  74. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +0 -5
  75. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +0 -5
  76. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +0 -5
  77. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +0 -5
  78. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +0 -5
  79. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +0 -5
  80. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +0 -5
  81. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +0 -5
  82. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +0 -5
  83. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +0 -5
  84. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +0 -5
  85. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +0 -5
  86. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +0 -5
  87. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +0 -5
  88. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +0 -5
  89. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +0 -5
  90. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +0 -5
  91. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +0 -5
  92. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +0 -5
  93. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +0 -5
  94. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +0 -5
  95. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +0 -5
  96. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +0 -5
  97. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +0 -5
  98. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +0 -5
  99. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +0 -5
  100. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +0 -5
  101. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +0 -5
  102. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +0 -5
  103. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +0 -5
  104. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +0 -5
  105. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +0 -5
  106. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +0 -5
  107. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +0 -5
  108. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +0 -5
  109. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +0 -5
  110. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +0 -5
  111. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +0 -5
  112. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +0 -5
  113. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +0 -5
  114. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +0 -5
  115. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +0 -5
  116. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +0 -5
  117. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +0 -5
  118. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +0 -5
  119. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +0 -5
  120. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +0 -5
  121. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +0 -5
  122. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +0 -5
  123. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +0 -5
  124. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +0 -5
  125. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +0 -5
  126. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +0 -5
  127. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +0 -5
  128. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +0 -5
  129. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +0 -5
  130. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +0 -5
  131. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +0 -5
  132. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +0 -10
  133. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +0 -9
  134. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +0 -10
  135. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +0 -10
  136. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +0 -8
  137. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q2_k.cu +0 -5
  138. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q3_k.cu +0 -5
  139. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_0.cu +0 -5
  140. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_1.cu +0 -5
  141. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_k.cu +0 -5
  142. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_0.cu +0 -5
  143. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_1.cu +0 -5
  144. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_k.cu +0 -5
  145. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q6_k.cu +0 -5
  146. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q8_0.cu +0 -5
  147. data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +0 -47
  148. data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +0 -314
  149. data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +0 -51
  150. data/vendor/tmp/llama.cpp/ggml-cuda.cu +0 -3069
  151. data/vendor/tmp/llama.cpp/ggml-cuda.h +0 -44
  152. data/vendor/tmp/llama.cpp/ggml-impl.h +0 -651
  153. data/vendor/tmp/llama.cpp/ggml-kompute.cpp +0 -2038
  154. data/vendor/tmp/llama.cpp/ggml-kompute.h +0 -46
  155. data/vendor/tmp/llama.cpp/ggml-metal.h +0 -66
  156. data/vendor/tmp/llama.cpp/ggml-metal.m +0 -3273
  157. data/vendor/tmp/llama.cpp/ggml-metal.metal +0 -6540
  158. data/vendor/tmp/llama.cpp/ggml-quants.c +0 -14994
  159. data/vendor/tmp/llama.cpp/ggml-quants.h +0 -133
  160. data/vendor/tmp/llama.cpp/ggml-rpc.cpp +0 -1178
  161. data/vendor/tmp/llama.cpp/ggml-rpc.h +0 -24
  162. data/vendor/tmp/llama.cpp/ggml-sycl.cpp +0 -6351
  163. data/vendor/tmp/llama.cpp/ggml-sycl.h +0 -40
  164. data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +0 -144508
  165. data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +0 -7183
  166. data/vendor/tmp/llama.cpp/ggml-vulkan.h +0 -29
  167. data/vendor/tmp/llama.cpp/ggml.c +0 -22506
  168. data/vendor/tmp/llama.cpp/ggml.h +0 -2458
  169. data/vendor/tmp/llama.cpp/llama.cpp +0 -18985
  170. data/vendor/tmp/llama.cpp/llama.h +0 -1147
  171. data/vendor/tmp/llama.cpp/scripts/get-flags.mk +0 -38
  172. data/vendor/tmp/llama.cpp/sgemm.cpp +0 -1032
  173. data/vendor/tmp/llama.cpp/sgemm.h +0 -14
  174. data/vendor/tmp/llama.cpp/unicode-data.cpp +0 -7033
  175. data/vendor/tmp/llama.cpp/unicode-data.h +0 -20
  176. data/vendor/tmp/llama.cpp/unicode.cpp +0 -810
  177. data/vendor/tmp/llama.cpp/unicode.h +0 -63
@@ -1,2458 +0,0 @@
1
- #pragma once
2
-
3
- //
4
- // GGML Tensor Library
5
- //
6
- // This documentation is still a work in progress.
7
- // If you wish some specific topics to be covered, feel free to drop a comment:
8
- //
9
- // https://github.com/ggerganov/whisper.cpp/issues/40
10
- //
11
- // ## Overview
12
- //
13
- // This library implements:
14
- //
15
- // - a set of tensor operations
16
- // - automatic differentiation
17
- // - basic optimization algorithms
18
- //
19
- // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
20
- // but is not limited to, the following:
21
- //
22
- // - linear regression
23
- // - support vector machines
24
- // - neural networks
25
- //
26
- // The library allows the user to define a certain function using the available tensor operations. This function
27
- // definition is represented internally via a computation graph. Each tensor operation in the function definition
28
- // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
29
- // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
30
- // using one of the available optimization algorithms.
31
- //
32
- // For example, here we define the function: f(x) = a*x^2 + b
33
- //
34
- // {
35
- // struct ggml_init_params params = {
36
- // .mem_size = 16*1024*1024,
37
- // .mem_buffer = NULL,
38
- // };
39
- //
40
- // // memory allocation happens here
41
- // struct ggml_context * ctx = ggml_init(params);
42
- //
43
- // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
44
- //
45
- // ggml_set_param(ctx, x); // x is an input variable
46
- //
47
- // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
48
- // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
49
- // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
50
- // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
51
- //
52
- // ...
53
- // }
54
- //
55
- // Notice that the function definition above does not involve any actual computation. The computation is performed only
56
- // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
57
- //
58
- // {
59
- // ...
60
- //
61
- // struct ggml_cgraph * gf = ggml_new_graph(ctx);
62
- // ggml_build_forward_expand(gf, f);
63
- //
64
- // // set the input variable and parameter values
65
- // ggml_set_f32(x, 2.0f);
66
- // ggml_set_f32(a, 3.0f);
67
- // ggml_set_f32(b, 4.0f);
68
- //
69
- // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
70
- //
71
- // printf("f = %f\n", ggml_get_f32_1d(f, 0));
72
- //
73
- // ...
74
- // }
75
- //
76
- // The actual computation is performed in the ggml_graph_compute() function.
77
- //
78
- // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
79
- // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
80
- // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
81
- // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
82
- // actually needed.
83
- //
84
- // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
85
- // differentiation and optimization algorithms.
86
- //
87
- // The described approach allows to define the function graph once and then compute its forward or backward graphs
88
- // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
89
- // the user can avoid the memory allocation overhead at runtime.
90
- //
91
- // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
92
- // citizens, but in theory the library can be extended to support FP8 and integer data types.
93
- //
94
- // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
95
- // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
96
- // clear that the library needs to support more complex operations. The way to support these operations is not clear
97
- // yet, but a few examples are demonstrated in the following operations:
98
- //
99
- // - ggml_permute()
100
- // - ggml_conv_1d_1s()
101
- // - ggml_conv_1d_2s()
102
- //
103
- // For each tensor operator, the library implements a forward and backward computation function. The forward function
104
- // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
105
- // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
106
- // calculus class, or watch the following video:
107
- //
108
- // What is Automatic Differentiation?
109
- // https://www.youtube.com/watch?v=wG_nF1awSSY
110
- //
111
- //
112
- // ## Tensor data (struct ggml_tensor)
113
- //
114
- // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
115
- // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
116
- // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
117
- //
118
- // {
119
- // struct ggml_tensor * c = ggml_add(ctx, a, b);
120
- //
121
- // assert(c->src[0] == a);
122
- // assert(c->src[1] == b);
123
- // }
124
- //
125
- // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
126
- // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
127
- // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
128
- // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
129
- // contiguous in memory.
130
- //
131
- // The data of the tensor is accessed via the "data" pointer. For example:
132
- //
133
- // {
134
- // const int nx = 2;
135
- // const int ny = 3;
136
- //
137
- // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
138
- //
139
- // for (int y = 0; y < ny; y++) {
140
- // for (int x = 0; x < nx; x++) {
141
- // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
142
- // }
143
- // }
144
- //
145
- // ...
146
- // }
147
- //
148
- // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
149
- //
150
- // ## The matrix multiplication operator (ggml_mul_mat)
151
- //
152
- // TODO
153
- //
154
- //
155
- // ## Multi-threading
156
- //
157
- // TODO
158
- //
159
- //
160
- // ## Overview of ggml.c
161
- //
162
- // TODO
163
- //
164
- //
165
- // ## SIMD optimizations
166
- //
167
- // TODO
168
- //
169
- //
170
- // ## Debugging ggml
171
- //
172
- // TODO
173
- //
174
- //
175
-
176
- #ifdef GGML_SHARED
177
- # if defined(_WIN32) && !defined(__MINGW32__)
178
- # ifdef GGML_BUILD
179
- # define GGML_API __declspec(dllexport)
180
- # else
181
- # define GGML_API __declspec(dllimport)
182
- # endif
183
- # else
184
- # define GGML_API __attribute__ ((visibility ("default")))
185
- # endif
186
- #else
187
- # define GGML_API
188
- #endif
189
-
190
- #ifdef GGML_MULTIPLATFORM
191
- # if defined(_WIN32)
192
- # define GGML_CALL
193
- # else
194
- # define GGML_CALL __attribute__((__ms_abi__))
195
- # endif
196
- #else
197
- # define GGML_CALL
198
- #endif
199
-
200
- // TODO: support for clang
201
- #ifdef __GNUC__
202
- # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
203
- #elif defined(_MSC_VER)
204
- # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
205
- #else
206
- # define GGML_DEPRECATED(func, hint) func
207
- #endif
208
-
209
- #ifndef __GNUC__
210
- # define GGML_ATTRIBUTE_FORMAT(...)
211
- #elif defined(__MINGW32__)
212
- # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
213
- #else
214
- # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
215
- #endif
216
-
217
- #include <stdbool.h>
218
- #include <stddef.h>
219
- #include <stdint.h>
220
- #include <stdio.h>
221
-
222
- #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
223
- #define GGML_FILE_VERSION 1
224
-
225
- #define GGML_QNT_VERSION 2 // bump this on quantization format changes
226
- #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
227
-
228
- #define GGML_MAX_DIMS 4
229
- #define GGML_MAX_PARAMS 2048
230
- #define GGML_MAX_CONTEXTS 64
231
- #define GGML_MAX_SRC 10
232
- #ifndef GGML_MAX_NAME
233
- #define GGML_MAX_NAME 64
234
- #endif
235
- #define GGML_MAX_OP_PARAMS 64
236
- #define GGML_DEFAULT_N_THREADS 4
237
- #define GGML_DEFAULT_GRAPH_SIZE 2048
238
- #if UINTPTR_MAX == 0xFFFFFFFF
239
- #define GGML_MEM_ALIGN 4
240
- #else
241
- #define GGML_MEM_ALIGN 16
242
- #endif
243
-
244
- #define GGML_EXIT_SUCCESS 0
245
- #define GGML_EXIT_ABORTED 1
246
-
247
- #define GGUF_MAGIC "GGUF"
248
-
249
- #define GGUF_VERSION 3
250
-
251
- #define GGUF_DEFAULT_ALIGNMENT 32
252
-
253
- #define GGML_UNUSED(x) (void)(x)
254
-
255
- #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
256
-
257
- #define GGML_ASSERT(x) \
258
- do { \
259
- if (!(x)) { \
260
- fflush(stdout); \
261
- fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
262
- ggml_print_backtrace(); \
263
- abort(); \
264
- } \
265
- } while (0)
266
-
267
- #ifndef NDEBUG
268
- #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
269
- #elif defined(__GNUC__)
270
- #define GGML_UNREACHABLE() __builtin_unreachable()
271
- #elif defined(_MSC_VER)
272
- #define GGML_UNREACHABLE() __assume(0)
273
- #else
274
- #define GGML_UNREACHABLE() ((void) 0)
275
- #endif
276
-
277
- // used to copy the number of elements and stride in bytes of tensors into local variables.
278
- // main purpose is to reduce code duplication and improve readability.
279
- //
280
- // example:
281
- //
282
- // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
283
- // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
284
- //
285
- #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
286
- const type prefix##0 = (pointer)->array[0]; \
287
- GGML_UNUSED(prefix##0);
288
- #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
289
- GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
290
- const type prefix##1 = (pointer)->array[1]; \
291
- GGML_UNUSED(prefix##1);
292
- #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
293
- GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
294
- const type prefix##2 = (pointer)->array[2]; \
295
- GGML_UNUSED(prefix##2);
296
- #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
297
- GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
298
- const type prefix##3 = (pointer)->array[3]; \
299
- GGML_UNUSED(prefix##3);
300
-
301
- #define GGML_TENSOR_UNARY_OP_LOCALS \
302
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
303
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
304
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
305
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
306
-
307
- #define GGML_TENSOR_BINARY_OP_LOCALS \
308
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
309
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
310
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
311
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
312
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
313
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
314
-
315
- #define GGML_TENSOR_BINARY_OP_LOCALS01 \
316
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
317
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
318
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
319
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
320
-
321
- #ifdef __cplusplus
322
- extern "C" {
323
- #endif
324
-
325
- enum ggml_status {
326
- GGML_STATUS_ALLOC_FAILED = -2,
327
- GGML_STATUS_FAILED = -1,
328
- GGML_STATUS_SUCCESS = 0,
329
- GGML_STATUS_ABORTED = 1,
330
- };
331
-
332
- // get ggml_status name string
333
- GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
334
-
335
- // ieee 754-2008 half-precision float16
336
- // todo: make this not an integral type
337
- typedef uint16_t ggml_fp16_t;
338
- GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
339
- GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
340
- GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
341
- GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
342
-
343
- // google brain half-precision bfloat16
344
- typedef struct { uint16_t bits; } ggml_bf16_t;
345
- GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
346
- GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
347
- GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
348
- GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
349
-
350
- struct ggml_object;
351
- struct ggml_context;
352
-
353
- // NOTE: always add types at the end of the enum to keep backward compatibility
354
- enum ggml_type {
355
- GGML_TYPE_F32 = 0,
356
- GGML_TYPE_F16 = 1,
357
- GGML_TYPE_Q4_0 = 2,
358
- GGML_TYPE_Q4_1 = 3,
359
- // GGML_TYPE_Q4_2 = 4, support has been removed
360
- // GGML_TYPE_Q4_3 = 5, support has been removed
361
- GGML_TYPE_Q5_0 = 6,
362
- GGML_TYPE_Q5_1 = 7,
363
- GGML_TYPE_Q8_0 = 8,
364
- GGML_TYPE_Q8_1 = 9,
365
- GGML_TYPE_Q2_K = 10,
366
- GGML_TYPE_Q3_K = 11,
367
- GGML_TYPE_Q4_K = 12,
368
- GGML_TYPE_Q5_K = 13,
369
- GGML_TYPE_Q6_K = 14,
370
- GGML_TYPE_Q8_K = 15,
371
- GGML_TYPE_IQ2_XXS = 16,
372
- GGML_TYPE_IQ2_XS = 17,
373
- GGML_TYPE_IQ3_XXS = 18,
374
- GGML_TYPE_IQ1_S = 19,
375
- GGML_TYPE_IQ4_NL = 20,
376
- GGML_TYPE_IQ3_S = 21,
377
- GGML_TYPE_IQ2_S = 22,
378
- GGML_TYPE_IQ4_XS = 23,
379
- GGML_TYPE_I8 = 24,
380
- GGML_TYPE_I16 = 25,
381
- GGML_TYPE_I32 = 26,
382
- GGML_TYPE_I64 = 27,
383
- GGML_TYPE_F64 = 28,
384
- GGML_TYPE_IQ1_M = 29,
385
- GGML_TYPE_BF16 = 30,
386
- GGML_TYPE_COUNT,
387
- };
388
-
389
- // precision
390
- enum ggml_prec {
391
- GGML_PREC_DEFAULT,
392
- GGML_PREC_F32,
393
- };
394
-
395
- enum ggml_backend_type {
396
- GGML_BACKEND_TYPE_CPU = 0,
397
- GGML_BACKEND_TYPE_GPU = 10,
398
- GGML_BACKEND_TYPE_GPU_SPLIT = 20,
399
- };
400
-
401
- // model file types
402
- enum ggml_ftype {
403
- GGML_FTYPE_UNKNOWN = -1,
404
- GGML_FTYPE_ALL_F32 = 0,
405
- GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
406
- GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
407
- GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
408
- GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
409
- GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
410
- GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
411
- GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
412
- GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
413
- GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
414
- GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
415
- GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
416
- GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
417
- GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
418
- GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
419
- GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
420
- GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
421
- GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
422
- GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
423
- GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
424
- GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
425
- GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
426
- GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
427
- };
428
-
429
- // available tensor operations:
430
- enum ggml_op {
431
- GGML_OP_NONE = 0,
432
-
433
- GGML_OP_DUP,
434
- GGML_OP_ADD,
435
- GGML_OP_ADD1,
436
- GGML_OP_ACC,
437
- GGML_OP_SUB,
438
- GGML_OP_MUL,
439
- GGML_OP_DIV,
440
- GGML_OP_SQR,
441
- GGML_OP_SQRT,
442
- GGML_OP_LOG,
443
- GGML_OP_SUM,
444
- GGML_OP_SUM_ROWS,
445
- GGML_OP_MEAN,
446
- GGML_OP_ARGMAX,
447
- GGML_OP_REPEAT,
448
- GGML_OP_REPEAT_BACK,
449
- GGML_OP_CONCAT,
450
- GGML_OP_SILU_BACK,
451
- GGML_OP_NORM, // normalize
452
- GGML_OP_RMS_NORM,
453
- GGML_OP_RMS_NORM_BACK,
454
- GGML_OP_GROUP_NORM,
455
-
456
- GGML_OP_MUL_MAT,
457
- GGML_OP_MUL_MAT_ID,
458
- GGML_OP_OUT_PROD,
459
-
460
- GGML_OP_SCALE,
461
- GGML_OP_SET,
462
- GGML_OP_CPY,
463
- GGML_OP_CONT,
464
- GGML_OP_RESHAPE,
465
- GGML_OP_VIEW,
466
- GGML_OP_PERMUTE,
467
- GGML_OP_TRANSPOSE,
468
- GGML_OP_GET_ROWS,
469
- GGML_OP_GET_ROWS_BACK,
470
- GGML_OP_DIAG,
471
- GGML_OP_DIAG_MASK_INF,
472
- GGML_OP_DIAG_MASK_ZERO,
473
- GGML_OP_SOFT_MAX,
474
- GGML_OP_SOFT_MAX_BACK,
475
- GGML_OP_ROPE,
476
- GGML_OP_ROPE_BACK,
477
- GGML_OP_CLAMP,
478
- GGML_OP_CONV_TRANSPOSE_1D,
479
- GGML_OP_IM2COL,
480
- GGML_OP_CONV_TRANSPOSE_2D,
481
- GGML_OP_POOL_1D,
482
- GGML_OP_POOL_2D,
483
- GGML_OP_UPSCALE, // nearest interpolate
484
- GGML_OP_PAD,
485
- GGML_OP_ARANGE,
486
- GGML_OP_TIMESTEP_EMBEDDING,
487
- GGML_OP_ARGSORT,
488
- GGML_OP_LEAKY_RELU,
489
-
490
- GGML_OP_FLASH_ATTN_EXT,
491
- GGML_OP_FLASH_ATTN_BACK,
492
- GGML_OP_SSM_CONV,
493
- GGML_OP_SSM_SCAN,
494
- GGML_OP_WIN_PART,
495
- GGML_OP_WIN_UNPART,
496
- GGML_OP_GET_REL_POS,
497
- GGML_OP_ADD_REL_POS,
498
-
499
- GGML_OP_UNARY,
500
-
501
- GGML_OP_MAP_UNARY,
502
- GGML_OP_MAP_BINARY,
503
-
504
- GGML_OP_MAP_CUSTOM1_F32,
505
- GGML_OP_MAP_CUSTOM2_F32,
506
- GGML_OP_MAP_CUSTOM3_F32,
507
-
508
- GGML_OP_MAP_CUSTOM1,
509
- GGML_OP_MAP_CUSTOM2,
510
- GGML_OP_MAP_CUSTOM3,
511
-
512
- GGML_OP_CROSS_ENTROPY_LOSS,
513
- GGML_OP_CROSS_ENTROPY_LOSS_BACK,
514
-
515
- GGML_OP_COUNT,
516
- };
517
-
518
- enum ggml_unary_op {
519
- GGML_UNARY_OP_ABS,
520
- GGML_UNARY_OP_SGN,
521
- GGML_UNARY_OP_NEG,
522
- GGML_UNARY_OP_STEP,
523
- GGML_UNARY_OP_TANH,
524
- GGML_UNARY_OP_ELU,
525
- GGML_UNARY_OP_RELU,
526
- GGML_UNARY_OP_SIGMOID,
527
- GGML_UNARY_OP_GELU,
528
- GGML_UNARY_OP_GELU_QUICK,
529
- GGML_UNARY_OP_SILU,
530
- GGML_UNARY_OP_HARDSWISH,
531
- GGML_UNARY_OP_HARDSIGMOID,
532
-
533
- GGML_UNARY_OP_COUNT,
534
- };
535
-
536
- enum ggml_object_type {
537
- GGML_OBJECT_TYPE_TENSOR,
538
- GGML_OBJECT_TYPE_GRAPH,
539
- GGML_OBJECT_TYPE_WORK_BUFFER
540
- };
541
-
542
- enum ggml_log_level {
543
- GGML_LOG_LEVEL_ERROR = 2,
544
- GGML_LOG_LEVEL_WARN = 3,
545
- GGML_LOG_LEVEL_INFO = 4,
546
- GGML_LOG_LEVEL_DEBUG = 5
547
- };
548
-
549
- enum ggml_tensor_flag {
550
- GGML_TENSOR_FLAG_INPUT = 1,
551
- GGML_TENSOR_FLAG_OUTPUT = 2,
552
- GGML_TENSOR_FLAG_PARAM = 4,
553
- };
554
-
555
- // ggml object
556
- struct ggml_object {
557
- size_t offs;
558
- size_t size;
559
-
560
- struct ggml_object * next;
561
-
562
- enum ggml_object_type type;
563
-
564
- char padding[4];
565
- };
566
-
567
- static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
568
-
569
- // n-dimensional tensor
570
- struct ggml_tensor {
571
- enum ggml_type type;
572
-
573
- GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
574
-
575
- struct ggml_backend_buffer * buffer;
576
-
577
- int64_t ne[GGML_MAX_DIMS]; // number of elements
578
- size_t nb[GGML_MAX_DIMS]; // stride in bytes:
579
- // nb[0] = ggml_type_size(type)
580
- // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
581
- // nb[i] = nb[i-1] * ne[i-1]
582
-
583
- // compute data
584
- enum ggml_op op;
585
-
586
- // op params - allocated as int32_t for alignment
587
- int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
588
-
589
- int32_t flags;
590
-
591
- struct ggml_tensor * grad;
592
- struct ggml_tensor * src[GGML_MAX_SRC];
593
-
594
- // performance
595
- int perf_runs;
596
- int64_t perf_cycles;
597
- int64_t perf_time_us;
598
-
599
- struct ggml_tensor * view_src;
600
- size_t view_offs;
601
-
602
- void * data;
603
-
604
- char name[GGML_MAX_NAME];
605
-
606
- void * extra; // extra things e.g. for ggml-cuda.cu
607
-
608
- char padding[8];
609
- };
610
-
611
- static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
612
-
613
- // Abort callback
614
- // If not NULL, called before ggml computation
615
- // If it returns true, the computation is aborted
616
- typedef bool (*ggml_abort_callback)(void * data);
617
-
618
- // the compute plan that needs to be prepared for ggml_graph_compute()
619
- // since https://github.com/ggerganov/ggml/issues/287
620
- struct ggml_cplan {
621
- size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
622
- uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
623
-
624
- int n_threads;
625
-
626
- // abort ggml_graph_compute when true
627
- ggml_abort_callback abort_callback;
628
- void * abort_callback_data;
629
- };
630
-
631
- enum ggml_cgraph_eval_order {
632
- GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
633
- GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
634
- GGML_CGRAPH_EVAL_ORDER_COUNT
635
- };
636
-
637
- struct ggml_hash_set {
638
- size_t size;
639
- struct ggml_tensor ** keys;
640
- };
641
-
642
- // computation graph
643
- struct ggml_cgraph {
644
- int size;
645
- int n_nodes;
646
- int n_leafs;
647
-
648
- struct ggml_tensor ** nodes;
649
- struct ggml_tensor ** grads;
650
- struct ggml_tensor ** leafs;
651
-
652
- struct ggml_hash_set visited_hash_table;
653
-
654
- enum ggml_cgraph_eval_order order;
655
-
656
- // performance
657
- int perf_runs;
658
- int64_t perf_cycles;
659
- int64_t perf_time_us;
660
- };
661
-
662
- // scratch buffer
663
- struct ggml_scratch {
664
- size_t offs;
665
- size_t size;
666
- void * data;
667
- };
668
-
669
- struct ggml_init_params {
670
- // memory pool
671
- size_t mem_size; // bytes
672
- void * mem_buffer; // if NULL, memory will be allocated internally
673
- bool no_alloc; // don't allocate memory for the tensor data
674
- };
675
-
676
-
677
- // compute types
678
-
679
- // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
680
- // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
681
- enum ggml_task_type {
682
- GGML_TASK_TYPE_INIT = 0,
683
- GGML_TASK_TYPE_COMPUTE,
684
- GGML_TASK_TYPE_FINALIZE,
685
- };
686
-
687
- struct ggml_compute_params {
688
- enum ggml_task_type type;
689
-
690
- // ith = thread index, nth = number of threads
691
- int ith, nth;
692
-
693
- // work buffer for all threads
694
- size_t wsize;
695
- void * wdata;
696
- };
697
-
698
- // numa strategies
699
- enum ggml_numa_strategy {
700
- GGML_NUMA_STRATEGY_DISABLED = 0,
701
- GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
702
- GGML_NUMA_STRATEGY_ISOLATE = 2,
703
- GGML_NUMA_STRATEGY_NUMACTL = 3,
704
- GGML_NUMA_STRATEGY_MIRROR = 4,
705
- GGML_NUMA_STRATEGY_COUNT
706
- };
707
-
708
- //
709
- // GUID
710
- //
711
-
712
- // GUID types
713
- typedef uint8_t ggml_guid[16];
714
- typedef ggml_guid * ggml_guid_t;
715
-
716
- GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
717
-
718
- // misc
719
-
720
- GGML_API void ggml_time_init(void); // call this once at the beginning of the program
721
- GGML_API int64_t ggml_time_ms(void);
722
- GGML_API int64_t ggml_time_us(void);
723
- GGML_API int64_t ggml_cycles(void);
724
- GGML_API int64_t ggml_cycles_per_ms(void);
725
-
726
- GGML_API void ggml_print_backtrace(void);
727
-
728
- // accepts a UTF-8 path, even on Windows
729
- GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
730
-
731
- GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
732
- GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
733
-
734
- GGML_API void ggml_print_object (const struct ggml_object * obj);
735
- GGML_API void ggml_print_objects(const struct ggml_context * ctx);
736
-
737
- GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
738
- GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
739
- GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
740
- GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
741
-
742
- GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
743
- GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
744
- GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
745
-
746
- GGML_DEPRECATED(
747
- GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
748
- "use ggml_row_size() instead");
749
-
750
- GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
751
- GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
752
- GGML_API const char * ggml_op_symbol(enum ggml_op op);
753
-
754
- GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
755
- GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
756
-
757
- GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
758
-
759
- GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
760
-
761
- // TODO: temporary until model loading of ggml examples is refactored
762
- GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
763
-
764
- GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
765
- GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
766
- GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
767
- GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
768
- GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
769
- GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
770
- GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
771
- GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
772
-
773
- GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
774
- GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
775
- GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
776
- GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
777
-
778
- GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
779
- GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
780
-
781
- // use this to compute the memory overhead of a tensor
782
- GGML_API size_t ggml_tensor_overhead(void);
783
-
784
- GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
785
-
786
- // main
787
-
788
- GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
789
- GGML_API void ggml_free(struct ggml_context * ctx);
790
-
791
- GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
792
-
793
- GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
794
- GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
795
- GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
796
-
797
- GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
798
- GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
799
- GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
800
-
801
- GGML_API struct ggml_tensor * ggml_new_tensor(
802
- struct ggml_context * ctx,
803
- enum ggml_type type,
804
- int n_dims,
805
- const int64_t *ne);
806
-
807
- GGML_API struct ggml_tensor * ggml_new_tensor_1d(
808
- struct ggml_context * ctx,
809
- enum ggml_type type,
810
- int64_t ne0);
811
-
812
- GGML_API struct ggml_tensor * ggml_new_tensor_2d(
813
- struct ggml_context * ctx,
814
- enum ggml_type type,
815
- int64_t ne0,
816
- int64_t ne1);
817
-
818
- GGML_API struct ggml_tensor * ggml_new_tensor_3d(
819
- struct ggml_context * ctx,
820
- enum ggml_type type,
821
- int64_t ne0,
822
- int64_t ne1,
823
- int64_t ne2);
824
-
825
- GGML_API struct ggml_tensor * ggml_new_tensor_4d(
826
- struct ggml_context * ctx,
827
- enum ggml_type type,
828
- int64_t ne0,
829
- int64_t ne1,
830
- int64_t ne2,
831
- int64_t ne3);
832
-
833
- GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
834
- GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
835
-
836
- GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
837
- GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
838
-
839
- // Context tensor enumeration and lookup
840
- GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
841
- GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
842
- GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
843
-
844
- GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
845
- GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
846
- GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
847
-
848
- // Converts a flat index into coordinates
849
- GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
850
-
851
- GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
852
- GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
853
-
854
- GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
855
- GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
856
-
857
- GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
858
- GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
859
-
860
- GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
861
- GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
862
-
863
- GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
864
- GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
865
-
866
- GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
867
-
868
- GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
869
- GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
870
- GGML_ATTRIBUTE_FORMAT(2, 3)
871
- GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
872
-
873
- //
874
- // operations on tensors with backpropagation
875
- //
876
-
877
- GGML_API struct ggml_tensor * ggml_dup(
878
- struct ggml_context * ctx,
879
- struct ggml_tensor * a);
880
-
881
- // in-place, returns view(a)
882
- GGML_API struct ggml_tensor * ggml_dup_inplace(
883
- struct ggml_context * ctx,
884
- struct ggml_tensor * a);
885
-
886
- GGML_API struct ggml_tensor * ggml_add(
887
- struct ggml_context * ctx,
888
- struct ggml_tensor * a,
889
- struct ggml_tensor * b);
890
-
891
- GGML_API struct ggml_tensor * ggml_add_inplace(
892
- struct ggml_context * ctx,
893
- struct ggml_tensor * a,
894
- struct ggml_tensor * b);
895
-
896
- GGML_API struct ggml_tensor * ggml_add_cast(
897
- struct ggml_context * ctx,
898
- struct ggml_tensor * a,
899
- struct ggml_tensor * b,
900
- enum ggml_type type);
901
-
902
- GGML_API struct ggml_tensor * ggml_add1(
903
- struct ggml_context * ctx,
904
- struct ggml_tensor * a,
905
- struct ggml_tensor * b);
906
-
907
- GGML_API struct ggml_tensor * ggml_add1_inplace(
908
- struct ggml_context * ctx,
909
- struct ggml_tensor * a,
910
- struct ggml_tensor * b);
911
-
912
- // dst = a
913
- // view(dst, nb1, nb2, nb3, offset) += b
914
- // return dst
915
- GGML_API struct ggml_tensor * ggml_acc(
916
- struct ggml_context * ctx,
917
- struct ggml_tensor * a,
918
- struct ggml_tensor * b,
919
- size_t nb1,
920
- size_t nb2,
921
- size_t nb3,
922
- size_t offset);
923
-
924
- GGML_API struct ggml_tensor * ggml_acc_inplace(
925
- struct ggml_context * ctx,
926
- struct ggml_tensor * a,
927
- struct ggml_tensor * b,
928
- size_t nb1,
929
- size_t nb2,
930
- size_t nb3,
931
- size_t offset);
932
-
933
- GGML_API struct ggml_tensor * ggml_sub(
934
- struct ggml_context * ctx,
935
- struct ggml_tensor * a,
936
- struct ggml_tensor * b);
937
-
938
- GGML_API struct ggml_tensor * ggml_sub_inplace(
939
- struct ggml_context * ctx,
940
- struct ggml_tensor * a,
941
- struct ggml_tensor * b);
942
-
943
- GGML_API struct ggml_tensor * ggml_mul(
944
- struct ggml_context * ctx,
945
- struct ggml_tensor * a,
946
- struct ggml_tensor * b);
947
-
948
- GGML_API struct ggml_tensor * ggml_mul_inplace(
949
- struct ggml_context * ctx,
950
- struct ggml_tensor * a,
951
- struct ggml_tensor * b);
952
-
953
- GGML_API struct ggml_tensor * ggml_div(
954
- struct ggml_context * ctx,
955
- struct ggml_tensor * a,
956
- struct ggml_tensor * b);
957
-
958
- GGML_API struct ggml_tensor * ggml_div_inplace(
959
- struct ggml_context * ctx,
960
- struct ggml_tensor * a,
961
- struct ggml_tensor * b);
962
-
963
- GGML_API struct ggml_tensor * ggml_sqr(
964
- struct ggml_context * ctx,
965
- struct ggml_tensor * a);
966
-
967
- GGML_API struct ggml_tensor * ggml_sqr_inplace(
968
- struct ggml_context * ctx,
969
- struct ggml_tensor * a);
970
-
971
- GGML_API struct ggml_tensor * ggml_sqrt(
972
- struct ggml_context * ctx,
973
- struct ggml_tensor * a);
974
-
975
- GGML_API struct ggml_tensor * ggml_sqrt_inplace(
976
- struct ggml_context * ctx,
977
- struct ggml_tensor * a);
978
-
979
- GGML_API struct ggml_tensor * ggml_log(
980
- struct ggml_context * ctx,
981
- struct ggml_tensor * a);
982
-
983
- GGML_API struct ggml_tensor * ggml_log_inplace(
984
- struct ggml_context * ctx,
985
- struct ggml_tensor * a);
986
-
987
- // return scalar
988
- GGML_API struct ggml_tensor * ggml_sum(
989
- struct ggml_context * ctx,
990
- struct ggml_tensor * a);
991
-
992
- // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
993
- GGML_API struct ggml_tensor * ggml_sum_rows(
994
- struct ggml_context * ctx,
995
- struct ggml_tensor * a);
996
-
997
- // mean along rows
998
- GGML_API struct ggml_tensor * ggml_mean(
999
- struct ggml_context * ctx,
1000
- struct ggml_tensor * a);
1001
-
1002
- // argmax along rows
1003
- GGML_API struct ggml_tensor * ggml_argmax(
1004
- struct ggml_context * ctx,
1005
- struct ggml_tensor * a);
1006
-
1007
- // if a is the same shape as b, and a is not parameter, return a
1008
- // otherwise, return a new tensor: repeat(a) to fit in b
1009
- GGML_API struct ggml_tensor * ggml_repeat(
1010
- struct ggml_context * ctx,
1011
- struct ggml_tensor * a,
1012
- struct ggml_tensor * b);
1013
-
1014
- // sums repetitions in a into shape of b
1015
- GGML_API struct ggml_tensor * ggml_repeat_back(
1016
- struct ggml_context * ctx,
1017
- struct ggml_tensor * a,
1018
- struct ggml_tensor * b);
1019
-
1020
- // concat a and b along dim
1021
- // used in stable-diffusion
1022
- GGML_API struct ggml_tensor * ggml_concat(
1023
- struct ggml_context * ctx,
1024
- struct ggml_tensor * a,
1025
- struct ggml_tensor * b,
1026
- int dim);
1027
-
1028
- GGML_API struct ggml_tensor * ggml_abs(
1029
- struct ggml_context * ctx,
1030
- struct ggml_tensor * a);
1031
-
1032
- GGML_API struct ggml_tensor * ggml_abs_inplace(
1033
- struct ggml_context * ctx,
1034
- struct ggml_tensor * a);
1035
-
1036
- GGML_API struct ggml_tensor * ggml_sgn(
1037
- struct ggml_context * ctx,
1038
- struct ggml_tensor * a);
1039
-
1040
- GGML_API struct ggml_tensor * ggml_sgn_inplace(
1041
- struct ggml_context * ctx,
1042
- struct ggml_tensor * a);
1043
-
1044
- GGML_API struct ggml_tensor * ggml_neg(
1045
- struct ggml_context * ctx,
1046
- struct ggml_tensor * a);
1047
-
1048
- GGML_API struct ggml_tensor * ggml_neg_inplace(
1049
- struct ggml_context * ctx,
1050
- struct ggml_tensor * a);
1051
-
1052
- GGML_API struct ggml_tensor * ggml_step(
1053
- struct ggml_context * ctx,
1054
- struct ggml_tensor * a);
1055
-
1056
- GGML_API struct ggml_tensor * ggml_step_inplace(
1057
- struct ggml_context * ctx,
1058
- struct ggml_tensor * a);
1059
-
1060
- GGML_API struct ggml_tensor * ggml_tanh(
1061
- struct ggml_context * ctx,
1062
- struct ggml_tensor * a);
1063
-
1064
- GGML_API struct ggml_tensor * ggml_tanh_inplace(
1065
- struct ggml_context * ctx,
1066
- struct ggml_tensor * a);
1067
-
1068
- GGML_API struct ggml_tensor * ggml_elu(
1069
- struct ggml_context * ctx,
1070
- struct ggml_tensor * a);
1071
-
1072
- GGML_API struct ggml_tensor * ggml_elu_inplace(
1073
- struct ggml_context * ctx,
1074
- struct ggml_tensor * a);
1075
-
1076
- GGML_API struct ggml_tensor * ggml_relu(
1077
- struct ggml_context * ctx,
1078
- struct ggml_tensor * a);
1079
-
1080
- GGML_API struct ggml_tensor * ggml_leaky_relu(
1081
- struct ggml_context * ctx,
1082
- struct ggml_tensor * a, float negative_slope, bool inplace);
1083
-
1084
- GGML_API struct ggml_tensor * ggml_relu_inplace(
1085
- struct ggml_context * ctx,
1086
- struct ggml_tensor * a);
1087
-
1088
- GGML_API struct ggml_tensor * ggml_sigmoid(
1089
- struct ggml_context * ctx,
1090
- struct ggml_tensor * a);
1091
-
1092
- GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
1093
- struct ggml_context * ctx,
1094
- struct ggml_tensor * a);
1095
-
1096
- GGML_API struct ggml_tensor * ggml_gelu(
1097
- struct ggml_context * ctx,
1098
- struct ggml_tensor * a);
1099
-
1100
- GGML_API struct ggml_tensor * ggml_gelu_inplace(
1101
- struct ggml_context * ctx,
1102
- struct ggml_tensor * a);
1103
-
1104
- GGML_API struct ggml_tensor * ggml_gelu_quick(
1105
- struct ggml_context * ctx,
1106
- struct ggml_tensor * a);
1107
-
1108
- GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
1109
- struct ggml_context * ctx,
1110
- struct ggml_tensor * a);
1111
-
1112
- GGML_API struct ggml_tensor * ggml_silu(
1113
- struct ggml_context * ctx,
1114
- struct ggml_tensor * a);
1115
-
1116
- GGML_API struct ggml_tensor * ggml_silu_inplace(
1117
- struct ggml_context * ctx,
1118
- struct ggml_tensor * a);
1119
-
1120
- // a - x
1121
- // b - dy
1122
- GGML_API struct ggml_tensor * ggml_silu_back(
1123
- struct ggml_context * ctx,
1124
- struct ggml_tensor * a,
1125
- struct ggml_tensor * b);
1126
-
1127
- // hardswish(x) = x * relu6(x + 3) / 6
1128
- GGML_API struct ggml_tensor * ggml_hardswish(
1129
- struct ggml_context * ctx,
1130
- struct ggml_tensor * a);
1131
-
1132
- // hardsigmoid(x) = relu6(x + 3) / 6
1133
- GGML_API struct ggml_tensor * ggml_hardsigmoid(
1134
- struct ggml_context * ctx,
1135
- struct ggml_tensor * a);
1136
-
1137
- // normalize along rows
1138
- GGML_API struct ggml_tensor * ggml_norm(
1139
- struct ggml_context * ctx,
1140
- struct ggml_tensor * a,
1141
- float eps);
1142
-
1143
- GGML_API struct ggml_tensor * ggml_norm_inplace(
1144
- struct ggml_context * ctx,
1145
- struct ggml_tensor * a,
1146
- float eps);
1147
-
1148
- GGML_API struct ggml_tensor * ggml_rms_norm(
1149
- struct ggml_context * ctx,
1150
- struct ggml_tensor * a,
1151
- float eps);
1152
-
1153
- GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
1154
- struct ggml_context * ctx,
1155
- struct ggml_tensor * a,
1156
- float eps);
1157
-
1158
- // group normalize along ne0*ne1*n_groups
1159
- // used in stable-diffusion
1160
- // TODO: eps is hardcoded to 1e-6 for now
1161
- GGML_API struct ggml_tensor * ggml_group_norm(
1162
- struct ggml_context * ctx,
1163
- struct ggml_tensor * a,
1164
- int n_groups);
1165
-
1166
- GGML_API struct ggml_tensor * ggml_group_norm_inplace(
1167
- struct ggml_context * ctx,
1168
- struct ggml_tensor * a,
1169
- int n_groups);
1170
-
1171
- // a - x
1172
- // b - dy
1173
- GGML_API struct ggml_tensor * ggml_rms_norm_back(
1174
- struct ggml_context * ctx,
1175
- struct ggml_tensor * a,
1176
- struct ggml_tensor * b,
1177
- float eps);
1178
-
1179
- // A: k columns, n rows => [ne03, ne02, n, k]
1180
- // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
1181
- // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
1182
- GGML_API struct ggml_tensor * ggml_mul_mat(
1183
- struct ggml_context * ctx,
1184
- struct ggml_tensor * a,
1185
- struct ggml_tensor * b);
1186
-
1187
- // change the precision of a matrix multiplication
1188
- // set to GGML_PREC_F32 for higher precision (useful for phi-2)
1189
- GGML_API void ggml_mul_mat_set_prec(
1190
- struct ggml_tensor * a,
1191
- enum ggml_prec prec);
1192
-
1193
- // indirect matrix multiplication
1194
- GGML_API struct ggml_tensor * ggml_mul_mat_id(
1195
- struct ggml_context * ctx,
1196
- struct ggml_tensor * as,
1197
- struct ggml_tensor * b,
1198
- struct ggml_tensor * ids);
1199
-
1200
- // A: m columns, n rows,
1201
- // B: p columns, n rows,
1202
- // result is m columns, p rows
1203
- GGML_API struct ggml_tensor * ggml_out_prod(
1204
- struct ggml_context * ctx,
1205
- struct ggml_tensor * a,
1206
- struct ggml_tensor * b);
1207
-
1208
- //
1209
- // operations on tensors without backpropagation
1210
- //
1211
-
1212
- GGML_API struct ggml_tensor * ggml_scale(
1213
- struct ggml_context * ctx,
1214
- struct ggml_tensor * a,
1215
- float s);
1216
-
1217
- // in-place, returns view(a)
1218
- GGML_API struct ggml_tensor * ggml_scale_inplace(
1219
- struct ggml_context * ctx,
1220
- struct ggml_tensor * a,
1221
- float s);
1222
-
1223
- // b -> view(a,offset,nb1,nb2,3), return modified a
1224
- GGML_API struct ggml_tensor * ggml_set(
1225
- struct ggml_context * ctx,
1226
- struct ggml_tensor * a,
1227
- struct ggml_tensor * b,
1228
- size_t nb1,
1229
- size_t nb2,
1230
- size_t nb3,
1231
- size_t offset);
1232
-
1233
- // b -> view(a,offset,nb1,nb2,3), return view(a)
1234
- GGML_API struct ggml_tensor * ggml_set_inplace(
1235
- struct ggml_context * ctx,
1236
- struct ggml_tensor * a,
1237
- struct ggml_tensor * b,
1238
- size_t nb1,
1239
- size_t nb2,
1240
- size_t nb3,
1241
- size_t offset);
1242
-
1243
- GGML_API struct ggml_tensor * ggml_set_1d(
1244
- struct ggml_context * ctx,
1245
- struct ggml_tensor * a,
1246
- struct ggml_tensor * b,
1247
- size_t offset);
1248
-
1249
- GGML_API struct ggml_tensor * ggml_set_1d_inplace(
1250
- struct ggml_context * ctx,
1251
- struct ggml_tensor * a,
1252
- struct ggml_tensor * b,
1253
- size_t offset);
1254
-
1255
- // b -> view(a,offset,nb1,nb2,3), return modified a
1256
- GGML_API struct ggml_tensor * ggml_set_2d(
1257
- struct ggml_context * ctx,
1258
- struct ggml_tensor * a,
1259
- struct ggml_tensor * b,
1260
- size_t nb1,
1261
- size_t offset);
1262
-
1263
- // b -> view(a,offset,nb1,nb2,3), return view(a)
1264
- GGML_API struct ggml_tensor * ggml_set_2d_inplace(
1265
- struct ggml_context * ctx,
1266
- struct ggml_tensor * a,
1267
- struct ggml_tensor * b,
1268
- size_t nb1,
1269
- size_t offset);
1270
-
1271
- // a -> b, return view(b)
1272
- GGML_API struct ggml_tensor * ggml_cpy(
1273
- struct ggml_context * ctx,
1274
- struct ggml_tensor * a,
1275
- struct ggml_tensor * b);
1276
-
1277
- GGML_API struct ggml_tensor * ggml_cast(
1278
- struct ggml_context * ctx,
1279
- struct ggml_tensor * a,
1280
- enum ggml_type type);
1281
-
1282
- // make contiguous
1283
- GGML_API struct ggml_tensor * ggml_cont(
1284
- struct ggml_context * ctx,
1285
- struct ggml_tensor * a);
1286
-
1287
- // make contiguous, with new shape
1288
- GGML_API struct ggml_tensor * ggml_cont_1d(
1289
- struct ggml_context * ctx,
1290
- struct ggml_tensor * a,
1291
- int64_t ne0);
1292
-
1293
- GGML_API struct ggml_tensor * ggml_cont_2d(
1294
- struct ggml_context * ctx,
1295
- struct ggml_tensor * a,
1296
- int64_t ne0,
1297
- int64_t ne1);
1298
-
1299
- GGML_API struct ggml_tensor * ggml_cont_3d(
1300
- struct ggml_context * ctx,
1301
- struct ggml_tensor * a,
1302
- int64_t ne0,
1303
- int64_t ne1,
1304
- int64_t ne2);
1305
-
1306
- GGML_API struct ggml_tensor * ggml_cont_4d(
1307
- struct ggml_context * ctx,
1308
- struct ggml_tensor * a,
1309
- int64_t ne0,
1310
- int64_t ne1,
1311
- int64_t ne2,
1312
- int64_t ne3);
1313
-
1314
- // return view(a), b specifies the new shape
1315
- // TODO: when we start computing gradient, make a copy instead of view
1316
- GGML_API struct ggml_tensor * ggml_reshape(
1317
- struct ggml_context * ctx,
1318
- struct ggml_tensor * a,
1319
- struct ggml_tensor * b);
1320
-
1321
- // return view(a)
1322
- // TODO: when we start computing gradient, make a copy instead of view
1323
- GGML_API struct ggml_tensor * ggml_reshape_1d(
1324
- struct ggml_context * ctx,
1325
- struct ggml_tensor * a,
1326
- int64_t ne0);
1327
-
1328
- GGML_API struct ggml_tensor * ggml_reshape_2d(
1329
- struct ggml_context * ctx,
1330
- struct ggml_tensor * a,
1331
- int64_t ne0,
1332
- int64_t ne1);
1333
-
1334
- // return view(a)
1335
- // TODO: when we start computing gradient, make a copy instead of view
1336
- GGML_API struct ggml_tensor * ggml_reshape_3d(
1337
- struct ggml_context * ctx,
1338
- struct ggml_tensor * a,
1339
- int64_t ne0,
1340
- int64_t ne1,
1341
- int64_t ne2);
1342
-
1343
- GGML_API struct ggml_tensor * ggml_reshape_4d(
1344
- struct ggml_context * ctx,
1345
- struct ggml_tensor * a,
1346
- int64_t ne0,
1347
- int64_t ne1,
1348
- int64_t ne2,
1349
- int64_t ne3);
1350
-
1351
- // offset in bytes
1352
- GGML_API struct ggml_tensor * ggml_view_1d(
1353
- struct ggml_context * ctx,
1354
- struct ggml_tensor * a,
1355
- int64_t ne0,
1356
- size_t offset);
1357
-
1358
- GGML_API struct ggml_tensor * ggml_view_2d(
1359
- struct ggml_context * ctx,
1360
- struct ggml_tensor * a,
1361
- int64_t ne0,
1362
- int64_t ne1,
1363
- size_t nb1, // row stride in bytes
1364
- size_t offset);
1365
-
1366
- GGML_API struct ggml_tensor * ggml_view_3d(
1367
- struct ggml_context * ctx,
1368
- struct ggml_tensor * a,
1369
- int64_t ne0,
1370
- int64_t ne1,
1371
- int64_t ne2,
1372
- size_t nb1, // row stride in bytes
1373
- size_t nb2, // slice stride in bytes
1374
- size_t offset);
1375
-
1376
- GGML_API struct ggml_tensor * ggml_view_4d(
1377
- struct ggml_context * ctx,
1378
- struct ggml_tensor * a,
1379
- int64_t ne0,
1380
- int64_t ne1,
1381
- int64_t ne2,
1382
- int64_t ne3,
1383
- size_t nb1, // row stride in bytes
1384
- size_t nb2, // slice stride in bytes
1385
- size_t nb3,
1386
- size_t offset);
1387
-
1388
- GGML_API struct ggml_tensor * ggml_permute(
1389
- struct ggml_context * ctx,
1390
- struct ggml_tensor * a,
1391
- int axis0,
1392
- int axis1,
1393
- int axis2,
1394
- int axis3);
1395
-
1396
- // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
1397
- GGML_API struct ggml_tensor * ggml_transpose(
1398
- struct ggml_context * ctx,
1399
- struct ggml_tensor * a);
1400
-
1401
- // supports 3D: a->ne[2] == b->ne[1]
1402
- GGML_API struct ggml_tensor * ggml_get_rows(
1403
- struct ggml_context * ctx,
1404
- struct ggml_tensor * a,
1405
- struct ggml_tensor * b);
1406
-
1407
- GGML_API struct ggml_tensor * ggml_get_rows_back(
1408
- struct ggml_context * ctx,
1409
- struct ggml_tensor * a,
1410
- struct ggml_tensor * b,
1411
- struct ggml_tensor * c);
1412
-
1413
- GGML_API struct ggml_tensor * ggml_diag(
1414
- struct ggml_context * ctx,
1415
- struct ggml_tensor * a);
1416
-
1417
- // set elements above the diagonal to -INF
1418
- GGML_API struct ggml_tensor * ggml_diag_mask_inf(
1419
- struct ggml_context * ctx,
1420
- struct ggml_tensor * a,
1421
- int n_past);
1422
-
1423
- // in-place, returns view(a)
1424
- GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
1425
- struct ggml_context * ctx,
1426
- struct ggml_tensor * a,
1427
- int n_past);
1428
-
1429
- // set elements above the diagonal to 0
1430
- GGML_API struct ggml_tensor * ggml_diag_mask_zero(
1431
- struct ggml_context * ctx,
1432
- struct ggml_tensor * a,
1433
- int n_past);
1434
-
1435
- // in-place, returns view(a)
1436
- GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
1437
- struct ggml_context * ctx,
1438
- struct ggml_tensor * a,
1439
- int n_past);
1440
-
1441
- GGML_API struct ggml_tensor * ggml_soft_max(
1442
- struct ggml_context * ctx,
1443
- struct ggml_tensor * a);
1444
-
1445
- // in-place, returns view(a)
1446
- GGML_API struct ggml_tensor * ggml_soft_max_inplace(
1447
- struct ggml_context * ctx,
1448
- struct ggml_tensor * a);
1449
-
1450
- // fused soft_max(a*scale + mask*(ALiBi slope))
1451
- // mask is optional
1452
- // max_bias = 0.0f for no ALiBi
1453
- GGML_API struct ggml_tensor * ggml_soft_max_ext(
1454
- struct ggml_context * ctx,
1455
- struct ggml_tensor * a,
1456
- struct ggml_tensor * mask,
1457
- float scale,
1458
- float max_bias);
1459
-
1460
- GGML_API struct ggml_tensor * ggml_soft_max_back(
1461
- struct ggml_context * ctx,
1462
- struct ggml_tensor * a,
1463
- struct ggml_tensor * b);
1464
-
1465
- // in-place, returns view(a)
1466
- GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
1467
- struct ggml_context * ctx,
1468
- struct ggml_tensor * a,
1469
- struct ggml_tensor * b);
1470
-
1471
- // rotary position embedding
1472
- // if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
1473
- // if mode & 2 == 1, GPT-NeoX style
1474
- //
1475
- // b is an int32 vector with size a->ne[2], it contains the positions
1476
- // c is freq factors (e.g. phi3-128k), (optional)
1477
- GGML_API struct ggml_tensor * ggml_rope(
1478
- struct ggml_context * ctx,
1479
- struct ggml_tensor * a,
1480
- struct ggml_tensor * b,
1481
- int n_dims,
1482
- int mode);
1483
-
1484
- // in-place, returns view(a)
1485
- GGML_API struct ggml_tensor * ggml_rope_inplace(
1486
- struct ggml_context * ctx,
1487
- struct ggml_tensor * a,
1488
- struct ggml_tensor * b,
1489
- int n_dims,
1490
- int mode);
1491
-
1492
- // custom RoPE
1493
- GGML_API struct ggml_tensor * ggml_rope_ext(
1494
- struct ggml_context * ctx,
1495
- struct ggml_tensor * a,
1496
- struct ggml_tensor * b,
1497
- struct ggml_tensor * c,
1498
- int n_dims,
1499
- int mode,
1500
- int n_ctx_orig,
1501
- float freq_base,
1502
- float freq_scale,
1503
- float ext_factor,
1504
- float attn_factor,
1505
- float beta_fast,
1506
- float beta_slow);
1507
-
1508
- // in-place, returns view(a)
1509
- GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
1510
- struct ggml_context * ctx,
1511
- struct ggml_tensor * a,
1512
- struct ggml_tensor * b,
1513
- struct ggml_tensor * c,
1514
- int n_dims,
1515
- int mode,
1516
- int n_ctx_orig,
1517
- float freq_base,
1518
- float freq_scale,
1519
- float ext_factor,
1520
- float attn_factor,
1521
- float beta_fast,
1522
- float beta_slow);
1523
-
1524
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
1525
- struct ggml_context * ctx,
1526
- struct ggml_tensor * a,
1527
- struct ggml_tensor * b,
1528
- int n_dims,
1529
- int mode,
1530
- int n_ctx_orig,
1531
- float freq_base,
1532
- float freq_scale,
1533
- float ext_factor,
1534
- float attn_factor,
1535
- float beta_fast,
1536
- float beta_slow),
1537
- "use ggml_rope_ext instead");
1538
-
1539
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
1540
- struct ggml_context * ctx,
1541
- struct ggml_tensor * a,
1542
- struct ggml_tensor * b,
1543
- int n_dims,
1544
- int mode,
1545
- int n_ctx_orig,
1546
- float freq_base,
1547
- float freq_scale,
1548
- float ext_factor,
1549
- float attn_factor,
1550
- float beta_fast,
1551
- float beta_slow),
1552
- "use ggml_rope_ext_inplace instead");
1553
-
1554
- // compute correction dims for YaRN RoPE scaling
1555
- GGML_CALL void ggml_rope_yarn_corr_dims(
1556
- int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
1557
-
1558
- // rotary position embedding backward, i.e compute dx from dy
1559
- // a - dy
1560
- GGML_API struct ggml_tensor * ggml_rope_back(
1561
- struct ggml_context * ctx,
1562
- struct ggml_tensor * a,
1563
- struct ggml_tensor * b,
1564
- struct ggml_tensor * c,
1565
- int n_dims,
1566
- int mode,
1567
- int n_ctx_orig,
1568
- float freq_base,
1569
- float freq_scale,
1570
- float ext_factor,
1571
- float attn_factor,
1572
- float beta_fast,
1573
- float beta_slow);
1574
-
1575
- // clamp
1576
- // in-place, returns view(a)
1577
- GGML_API struct ggml_tensor * ggml_clamp(
1578
- struct ggml_context * ctx,
1579
- struct ggml_tensor * a,
1580
- float min,
1581
- float max);
1582
-
1583
- GGML_API struct ggml_tensor * ggml_im2col(
1584
- struct ggml_context * ctx,
1585
- struct ggml_tensor * a,
1586
- struct ggml_tensor * b,
1587
- int s0,
1588
- int s1,
1589
- int p0,
1590
- int p1,
1591
- int d0,
1592
- int d1,
1593
- bool is_2D,
1594
- enum ggml_type dst_type);
1595
-
1596
- GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
1597
- struct ggml_context * ctx,
1598
- struct ggml_tensor * a,
1599
- struct ggml_tensor * b,
1600
- int s0,
1601
- int s1,
1602
- int p0,
1603
- int p1,
1604
- int d0,
1605
- int d1);
1606
-
1607
- GGML_API struct ggml_tensor * ggml_conv_1d(
1608
- struct ggml_context * ctx,
1609
- struct ggml_tensor * a,
1610
- struct ggml_tensor * b,
1611
- int s0, // stride
1612
- int p0, // padding
1613
- int d0); // dilation
1614
-
1615
- // conv_1d with padding = half
1616
- // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
1617
- GGML_API struct ggml_tensor* ggml_conv_1d_ph(
1618
- struct ggml_context * ctx,
1619
- struct ggml_tensor * a,
1620
- struct ggml_tensor * b,
1621
- int s,
1622
- int d);
1623
-
1624
- GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
1625
- struct ggml_context * ctx,
1626
- struct ggml_tensor * a,
1627
- struct ggml_tensor * b,
1628
- int s0,
1629
- int p0,
1630
- int d0);
1631
-
1632
- GGML_API struct ggml_tensor * ggml_conv_2d(
1633
- struct ggml_context * ctx,
1634
- struct ggml_tensor * a,
1635
- struct ggml_tensor * b,
1636
- int s0,
1637
- int s1,
1638
- int p0,
1639
- int p1,
1640
- int d0,
1641
- int d1);
1642
-
1643
-
1644
- // kernel size is a->ne[0] x a->ne[1]
1645
- // stride is equal to kernel size
1646
- // padding is zero
1647
- // example:
1648
- // a: 16 16 3 768
1649
- // b: 1024 1024 3 1
1650
- // res: 64 64 768 1
1651
- // used in sam
1652
- GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
1653
- struct ggml_context * ctx,
1654
- struct ggml_tensor * a,
1655
- struct ggml_tensor * b);
1656
-
1657
- // kernel size is a->ne[0] x a->ne[1]
1658
- // stride is 1
1659
- // padding is half
1660
- // example:
1661
- // a: 3 3 256 256
1662
- // b: 64 64 256 1
1663
- // res: 64 64 256 1
1664
- // used in sam
1665
- GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
1666
- struct ggml_context * ctx,
1667
- struct ggml_tensor * a,
1668
- struct ggml_tensor * b);
1669
-
1670
- GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
1671
- struct ggml_context * ctx,
1672
- struct ggml_tensor * a,
1673
- struct ggml_tensor * b,
1674
- int stride);
1675
-
1676
- enum ggml_op_pool {
1677
- GGML_OP_POOL_MAX,
1678
- GGML_OP_POOL_AVG,
1679
- GGML_OP_POOL_COUNT,
1680
- };
1681
-
1682
- GGML_API struct ggml_tensor * ggml_pool_1d(
1683
- struct ggml_context * ctx,
1684
- struct ggml_tensor * a,
1685
- enum ggml_op_pool op,
1686
- int k0, // kernel size
1687
- int s0, // stride
1688
- int p0); // padding
1689
-
1690
- // the result will have 2*p0 padding for the first dimension
1691
- // and 2*p1 padding for the second dimension
1692
- GGML_API struct ggml_tensor * ggml_pool_2d(
1693
- struct ggml_context * ctx,
1694
- struct ggml_tensor * a,
1695
- enum ggml_op_pool op,
1696
- int k0,
1697
- int k1,
1698
- int s0,
1699
- int s1,
1700
- float p0,
1701
- float p1);
1702
-
1703
- // nearest interpolate
1704
- // multiplies ne0 and ne1 by scale factor
1705
- // used in stable-diffusion
1706
- GGML_API struct ggml_tensor * ggml_upscale(
1707
- struct ggml_context * ctx,
1708
- struct ggml_tensor * a,
1709
- int scale_factor);
1710
-
1711
- // nearest interpolate
1712
- // nearest interpolate to specified dimensions
1713
- // used in tortoise.cpp
1714
- GGML_API struct ggml_tensor * ggml_upscale_ext(
1715
- struct ggml_context * ctx,
1716
- struct ggml_tensor * a,
1717
- int ne0,
1718
- int ne1,
1719
- int ne2,
1720
- int ne3);
1721
-
1722
- // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
1723
- GGML_API struct ggml_tensor * ggml_pad(
1724
- struct ggml_context * ctx,
1725
- struct ggml_tensor * a,
1726
- int p0,
1727
- int p1,
1728
- int p2,
1729
- int p3);
1730
-
1731
- // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
1732
- // timesteps: [N,]
1733
- // return: [N, dim]
1734
- GGML_API struct ggml_tensor * ggml_timestep_embedding(
1735
- struct ggml_context * ctx,
1736
- struct ggml_tensor * timesteps,
1737
- int dim,
1738
- int max_period);
1739
-
1740
- // sort rows
1741
- enum ggml_sort_order {
1742
- GGML_SORT_ORDER_ASC,
1743
- GGML_SORT_ORDER_DESC,
1744
- };
1745
-
1746
- GGML_API struct ggml_tensor * ggml_argsort(
1747
- struct ggml_context * ctx,
1748
- struct ggml_tensor * a,
1749
- enum ggml_sort_order order);
1750
-
1751
- GGML_API struct ggml_tensor * ggml_arange(
1752
- struct ggml_context * ctx,
1753
- float start,
1754
- float stop,
1755
- float step);
1756
-
1757
- // top k elements per row
1758
- GGML_API struct ggml_tensor * ggml_top_k(
1759
- struct ggml_context * ctx,
1760
- struct ggml_tensor * a,
1761
- int k);
1762
-
1763
- #define GGML_KQ_MASK_PAD 32
1764
-
1765
- // q: [n_embd, n_batch, n_head, 1]
1766
- // k: [n_embd, n_kv, n_head_kv, 1]
1767
- // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
1768
- // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
1769
- // res: [n_embd, n_head, n_batch, 1] !! permuted !!
1770
- GGML_API struct ggml_tensor * ggml_flash_attn_ext(
1771
- struct ggml_context * ctx,
1772
- struct ggml_tensor * q,
1773
- struct ggml_tensor * k,
1774
- struct ggml_tensor * v,
1775
- struct ggml_tensor * mask,
1776
- float scale,
1777
- float max_bias);
1778
-
1779
- GGML_API void ggml_flash_attn_ext_set_prec(
1780
- struct ggml_tensor * a,
1781
- enum ggml_prec prec);
1782
-
1783
- // TODO: needs to be adapted to ggml_flash_attn_ext
1784
- GGML_API struct ggml_tensor * ggml_flash_attn_back(
1785
- struct ggml_context * ctx,
1786
- struct ggml_tensor * q,
1787
- struct ggml_tensor * k,
1788
- struct ggml_tensor * v,
1789
- struct ggml_tensor * d,
1790
- bool masked);
1791
-
1792
- GGML_API struct ggml_tensor * ggml_ssm_conv(
1793
- struct ggml_context * ctx,
1794
- struct ggml_tensor * s,
1795
- struct ggml_tensor * x,
1796
- struct ggml_tensor * c,
1797
- struct ggml_tensor * sq);
1798
-
1799
- GGML_API struct ggml_tensor * ggml_ssm_scan(
1800
- struct ggml_context * ctx,
1801
- struct ggml_tensor * s,
1802
- struct ggml_tensor * x,
1803
- struct ggml_tensor * dt,
1804
- struct ggml_tensor * A,
1805
- struct ggml_tensor * B,
1806
- struct ggml_tensor * C,
1807
- struct ggml_tensor * sq);
1808
-
1809
- // partition into non-overlapping windows with padding if needed
1810
- // example:
1811
- // a: 768 64 64 1
1812
- // w: 14
1813
- // res: 768 14 14 25
1814
- // used in sam
1815
- GGML_API struct ggml_tensor * ggml_win_part(
1816
- struct ggml_context * ctx,
1817
- struct ggml_tensor * a,
1818
- int w);
1819
-
1820
- // reverse of ggml_win_part
1821
- // used in sam
1822
- GGML_API struct ggml_tensor * ggml_win_unpart(
1823
- struct ggml_context * ctx,
1824
- struct ggml_tensor * a,
1825
- int w0,
1826
- int h0,
1827
- int w);
1828
-
1829
- GGML_API struct ggml_tensor * ggml_unary(
1830
- struct ggml_context * ctx,
1831
- struct ggml_tensor * a,
1832
- enum ggml_unary_op op);
1833
-
1834
- GGML_API struct ggml_tensor * ggml_unary_inplace(
1835
- struct ggml_context * ctx,
1836
- struct ggml_tensor * a,
1837
- enum ggml_unary_op op);
1838
-
1839
- // used in sam
1840
- GGML_API struct ggml_tensor * ggml_get_rel_pos(
1841
- struct ggml_context * ctx,
1842
- struct ggml_tensor * a,
1843
- int qh,
1844
- int kh);
1845
-
1846
- // used in sam
1847
- GGML_API struct ggml_tensor * ggml_add_rel_pos(
1848
- struct ggml_context * ctx,
1849
- struct ggml_tensor * a,
1850
- struct ggml_tensor * pw,
1851
- struct ggml_tensor * ph);
1852
-
1853
- GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
1854
- struct ggml_context * ctx,
1855
- struct ggml_tensor * a,
1856
- struct ggml_tensor * pw,
1857
- struct ggml_tensor * ph);
1858
-
1859
- // custom operators
1860
-
1861
- typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
1862
- typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
1863
-
1864
- typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
1865
- typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
1866
- typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
1867
-
1868
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
1869
- struct ggml_context * ctx,
1870
- struct ggml_tensor * a,
1871
- ggml_unary_op_f32_t fun),
1872
- "use ggml_map_custom1 instead");
1873
-
1874
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
1875
- struct ggml_context * ctx,
1876
- struct ggml_tensor * a,
1877
- ggml_unary_op_f32_t fun),
1878
- "use ggml_map_custom1_inplace instead");
1879
-
1880
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
1881
- struct ggml_context * ctx,
1882
- struct ggml_tensor * a,
1883
- struct ggml_tensor * b,
1884
- ggml_binary_op_f32_t fun),
1885
- "use ggml_map_custom2 instead");
1886
-
1887
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
1888
- struct ggml_context * ctx,
1889
- struct ggml_tensor * a,
1890
- struct ggml_tensor * b,
1891
- ggml_binary_op_f32_t fun),
1892
- "use ggml_map_custom2_inplace instead");
1893
-
1894
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
1895
- struct ggml_context * ctx,
1896
- struct ggml_tensor * a,
1897
- ggml_custom1_op_f32_t fun),
1898
- "use ggml_map_custom1 instead");
1899
-
1900
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
1901
- struct ggml_context * ctx,
1902
- struct ggml_tensor * a,
1903
- ggml_custom1_op_f32_t fun),
1904
- "use ggml_map_custom1_inplace instead");
1905
-
1906
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
1907
- struct ggml_context * ctx,
1908
- struct ggml_tensor * a,
1909
- struct ggml_tensor * b,
1910
- ggml_custom2_op_f32_t fun),
1911
- "use ggml_map_custom2 instead");
1912
-
1913
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
1914
- struct ggml_context * ctx,
1915
- struct ggml_tensor * a,
1916
- struct ggml_tensor * b,
1917
- ggml_custom2_op_f32_t fun),
1918
- "use ggml_map_custom2_inplace instead");
1919
-
1920
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
1921
- struct ggml_context * ctx,
1922
- struct ggml_tensor * a,
1923
- struct ggml_tensor * b,
1924
- struct ggml_tensor * c,
1925
- ggml_custom3_op_f32_t fun),
1926
- "use ggml_map_custom3 instead");
1927
-
1928
- GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
1929
- struct ggml_context * ctx,
1930
- struct ggml_tensor * a,
1931
- struct ggml_tensor * b,
1932
- struct ggml_tensor * c,
1933
- ggml_custom3_op_f32_t fun),
1934
- "use ggml_map_custom3_inplace instead");
1935
-
1936
- // custom operators v2
1937
-
1938
- typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
1939
- typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
1940
- typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
1941
-
1942
- #define GGML_N_TASKS_MAX -1
1943
-
1944
- GGML_API struct ggml_tensor * ggml_map_custom1(
1945
- struct ggml_context * ctx,
1946
- struct ggml_tensor * a,
1947
- ggml_custom1_op_t fun,
1948
- int n_tasks,
1949
- void * userdata);
1950
-
1951
- GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
1952
- struct ggml_context * ctx,
1953
- struct ggml_tensor * a,
1954
- ggml_custom1_op_t fun,
1955
- int n_tasks,
1956
- void * userdata);
1957
-
1958
- GGML_API struct ggml_tensor * ggml_map_custom2(
1959
- struct ggml_context * ctx,
1960
- struct ggml_tensor * a,
1961
- struct ggml_tensor * b,
1962
- ggml_custom2_op_t fun,
1963
- int n_tasks,
1964
- void * userdata);
1965
-
1966
- GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
1967
- struct ggml_context * ctx,
1968
- struct ggml_tensor * a,
1969
- struct ggml_tensor * b,
1970
- ggml_custom2_op_t fun,
1971
- int n_tasks,
1972
- void * userdata);
1973
-
1974
- GGML_API struct ggml_tensor * ggml_map_custom3(
1975
- struct ggml_context * ctx,
1976
- struct ggml_tensor * a,
1977
- struct ggml_tensor * b,
1978
- struct ggml_tensor * c,
1979
- ggml_custom3_op_t fun,
1980
- int n_tasks,
1981
- void * userdata);
1982
-
1983
- GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
1984
- struct ggml_context * ctx,
1985
- struct ggml_tensor * a,
1986
- struct ggml_tensor * b,
1987
- struct ggml_tensor * c,
1988
- ggml_custom3_op_t fun,
1989
- int n_tasks,
1990
- void * userdata);
1991
-
1992
- // loss function
1993
-
1994
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
1995
- struct ggml_context * ctx,
1996
- struct ggml_tensor * a,
1997
- struct ggml_tensor * b);
1998
-
1999
- GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
2000
- struct ggml_context * ctx,
2001
- struct ggml_tensor * a,
2002
- struct ggml_tensor * b,
2003
- struct ggml_tensor * c);
2004
-
2005
- //
2006
- // automatic differentiation
2007
- //
2008
-
2009
- GGML_API void ggml_set_param(
2010
- struct ggml_context * ctx,
2011
- struct ggml_tensor * tensor);
2012
-
2013
-
2014
- GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
2015
- GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
2016
-
2017
- // graph allocation in a context
2018
- GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
2019
- GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
2020
- GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
2021
- GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
2022
- GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
2023
- GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
2024
- GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
2025
-
2026
- GGML_API size_t ggml_graph_overhead(void);
2027
- GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
2028
-
2029
- // ggml_graph_plan() has to be called before ggml_graph_compute()
2030
- // when plan.work_size > 0, caller must allocate memory for plan.work_data
2031
- GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
2032
- GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
2033
- // same as ggml_graph_compute() but the work data is allocated as a part of the context
2034
- // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
2035
- GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
2036
-
2037
- GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
2038
-
2039
- GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
2040
- GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
2041
-
2042
- // print info and performance information for the graph
2043
- GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
2044
-
2045
- // dump the graph into a file using the dot format
2046
- GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
2047
-
2048
- // build gradient checkpointing backward graph gb for gf using provided checkpoints
2049
- // gb_tmp will contain original backward graph with rewritten backward process nodes,
2050
- // but without the second forward pass nodes.
2051
- GGML_API void ggml_build_backward_gradient_checkpointing(
2052
- struct ggml_context * ctx,
2053
- struct ggml_cgraph * gf,
2054
- struct ggml_cgraph * gb,
2055
- struct ggml_cgraph * gb_tmp,
2056
- struct ggml_tensor * * checkpoints,
2057
- int n_checkpoints);
2058
- //
2059
- // optimization
2060
- //
2061
-
2062
- // optimization methods
2063
- enum ggml_opt_type {
2064
- GGML_OPT_TYPE_ADAM,
2065
- GGML_OPT_TYPE_LBFGS,
2066
- };
2067
-
2068
- // linesearch methods
2069
- enum ggml_linesearch {
2070
- GGML_LINESEARCH_DEFAULT = 1,
2071
-
2072
- GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
2073
- GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
2074
- GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
2075
- };
2076
-
2077
- // optimization return values
2078
- enum ggml_opt_result {
2079
- GGML_OPT_RESULT_OK = 0,
2080
- GGML_OPT_RESULT_DID_NOT_CONVERGE,
2081
- GGML_OPT_RESULT_NO_CONTEXT,
2082
- GGML_OPT_RESULT_INVALID_WOLFE,
2083
- GGML_OPT_RESULT_FAIL,
2084
- GGML_OPT_RESULT_CANCEL,
2085
-
2086
- GGML_LINESEARCH_FAIL = -128,
2087
- GGML_LINESEARCH_MINIMUM_STEP,
2088
- GGML_LINESEARCH_MAXIMUM_STEP,
2089
- GGML_LINESEARCH_MAXIMUM_ITERATIONS,
2090
- GGML_LINESEARCH_INVALID_PARAMETERS,
2091
- };
2092
-
2093
- typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
2094
- typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
2095
-
2096
- // optimization parameters
2097
- //
2098
- // see ggml.c (ggml_opt_default_params) for default values
2099
- //
2100
- struct ggml_opt_params {
2101
- enum ggml_opt_type type;
2102
-
2103
- size_t graph_size;
2104
-
2105
- int n_threads;
2106
-
2107
- // delta-based convergence test
2108
- //
2109
- // if past == 0 - disabled
2110
- // if past > 0:
2111
- // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
2112
- //
2113
- int past;
2114
- float delta;
2115
-
2116
- // maximum number of iterations without improvement
2117
- //
2118
- // if 0 - disabled
2119
- // if > 0:
2120
- // assume convergence if no cost improvement in this number of iterations
2121
- //
2122
- int max_no_improvement;
2123
-
2124
- bool print_forward_graph;
2125
- bool print_backward_graph;
2126
-
2127
- int n_gradient_accumulation;
2128
-
2129
- // ADAM parameters
2130
- struct {
2131
- int n_iter;
2132
-
2133
- float sched; // schedule multiplier (fixed, decay or warmup)
2134
- float decay; // weight decay for AdamW, use 0.0f to disable
2135
- int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
2136
- float alpha; // learning rate
2137
- float beta1;
2138
- float beta2;
2139
- float eps; // epsilon for numerical stability
2140
- float eps_f; // epsilon for convergence test
2141
- float eps_g; // epsilon for convergence test
2142
- float gclip; // gradient clipping
2143
- } adam;
2144
-
2145
- // LBFGS parameters
2146
- struct {
2147
- int m; // number of corrections to approximate the inv. Hessian
2148
- int n_iter;
2149
- int max_linesearch;
2150
-
2151
- float eps; // convergence tolerance
2152
- float ftol; // line search tolerance
2153
- float wolfe;
2154
- float min_step;
2155
- float max_step;
2156
-
2157
- enum ggml_linesearch linesearch;
2158
- } lbfgs;
2159
- };
2160
-
2161
- struct ggml_opt_context {
2162
- struct ggml_context * ctx;
2163
- struct ggml_opt_params params;
2164
-
2165
- int iter;
2166
- int64_t nx; // number of parameter elements
2167
-
2168
- bool just_initialized;
2169
-
2170
- float loss_before;
2171
- float loss_after;
2172
-
2173
- struct {
2174
- struct ggml_tensor * g; // current gradient
2175
- struct ggml_tensor * m; // first moment
2176
- struct ggml_tensor * v; // second moment
2177
- struct ggml_tensor * pf; // past function values
2178
- float fx_best;
2179
- float fx_prev;
2180
- int n_no_improvement;
2181
- } adam;
2182
-
2183
- struct {
2184
- struct ggml_tensor * x; // current parameters
2185
- struct ggml_tensor * xp; // previous parameters
2186
- struct ggml_tensor * g; // current gradient
2187
- struct ggml_tensor * gp; // previous gradient
2188
- struct ggml_tensor * d; // search direction
2189
- struct ggml_tensor * pf; // past function values
2190
- struct ggml_tensor * lmal; // the L-BFGS memory alpha
2191
- struct ggml_tensor * lmys; // the L-BFGS memory ys
2192
- struct ggml_tensor * lms; // the L-BFGS memory s
2193
- struct ggml_tensor * lmy; // the L-BFGS memory y
2194
- float fx_best;
2195
- float step;
2196
- int j;
2197
- int k;
2198
- int end;
2199
- int n_no_improvement;
2200
- } lbfgs;
2201
- };
2202
-
2203
- GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
2204
-
2205
- // optimize the function defined by the tensor f
2206
- GGML_API enum ggml_opt_result ggml_opt(
2207
- struct ggml_context * ctx,
2208
- struct ggml_opt_params params,
2209
- struct ggml_tensor * f);
2210
-
2211
- // initialize optimizer context
2212
- GGML_API void ggml_opt_init(
2213
- struct ggml_context * ctx,
2214
- struct ggml_opt_context * opt,
2215
- struct ggml_opt_params params,
2216
- int64_t nx);
2217
-
2218
- // continue optimizing the function defined by the tensor f
2219
- GGML_API enum ggml_opt_result ggml_opt_resume(
2220
- struct ggml_context * ctx,
2221
- struct ggml_opt_context * opt,
2222
- struct ggml_tensor * f);
2223
-
2224
- // continue optimizing the function defined by the tensor f
2225
- GGML_API enum ggml_opt_result ggml_opt_resume_g(
2226
- struct ggml_context * ctx,
2227
- struct ggml_opt_context * opt,
2228
- struct ggml_tensor * f,
2229
- struct ggml_cgraph * gf,
2230
- struct ggml_cgraph * gb,
2231
- ggml_opt_callback callback,
2232
- void * callback_data);
2233
-
2234
- //
2235
- // tensor flags
2236
- //
2237
- GGML_API void ggml_set_input(struct ggml_tensor * tensor);
2238
- GGML_API void ggml_set_output(struct ggml_tensor * tensor);
2239
-
2240
- //
2241
- // quantization
2242
- //
2243
-
2244
- // - ggml_quantize_init can be called multiple times with the same type
2245
- // it will only initialize the quantization tables for the first call or after ggml_quantize_free
2246
- // automatically called by ggml_quantize_chunk for convenience
2247
- //
2248
- // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
2249
- // call this at the end of the program to avoid memory leaks
2250
- //
2251
- // note: these are thread-safe
2252
- //
2253
- GGML_API void ggml_quantize_init(enum ggml_type type);
2254
- GGML_API void ggml_quantize_free(void);
2255
-
2256
- // some quantization type cannot be used without an importance matrix
2257
- GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
2258
-
2259
- // calls ggml_quantize_init internally (i.e. can allocate memory)
2260
- GGML_API size_t ggml_quantize_chunk(
2261
- enum ggml_type type,
2262
- const float * src,
2263
- void * dst,
2264
- int64_t start,
2265
- int64_t nrows,
2266
- int64_t n_per_row,
2267
- const float * imatrix);
2268
-
2269
- //
2270
- // gguf
2271
- //
2272
-
2273
- enum gguf_type {
2274
- GGUF_TYPE_UINT8 = 0,
2275
- GGUF_TYPE_INT8 = 1,
2276
- GGUF_TYPE_UINT16 = 2,
2277
- GGUF_TYPE_INT16 = 3,
2278
- GGUF_TYPE_UINT32 = 4,
2279
- GGUF_TYPE_INT32 = 5,
2280
- GGUF_TYPE_FLOAT32 = 6,
2281
- GGUF_TYPE_BOOL = 7,
2282
- GGUF_TYPE_STRING = 8,
2283
- GGUF_TYPE_ARRAY = 9,
2284
- GGUF_TYPE_UINT64 = 10,
2285
- GGUF_TYPE_INT64 = 11,
2286
- GGUF_TYPE_FLOAT64 = 12,
2287
- GGUF_TYPE_COUNT, // marks the end of the enum
2288
- };
2289
-
2290
- struct gguf_context;
2291
-
2292
- struct gguf_init_params {
2293
- bool no_alloc;
2294
-
2295
- // if not NULL, create a ggml_context and allocate the tensor data in it
2296
- struct ggml_context ** ctx;
2297
- };
2298
-
2299
- GGML_API struct gguf_context * gguf_init_empty(void);
2300
- GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
2301
- //GGML_API struct gguf_context * gguf_init_from_buffer(..);
2302
-
2303
- GGML_API void gguf_free(struct gguf_context * ctx);
2304
-
2305
- GGML_API const char * gguf_type_name(enum gguf_type type);
2306
-
2307
- GGML_API int gguf_get_version (const struct gguf_context * ctx);
2308
- GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
2309
- GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
2310
- GGML_API void * gguf_get_data (const struct gguf_context * ctx);
2311
-
2312
- GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
2313
- GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
2314
- GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
2315
-
2316
- GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
2317
- GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
2318
-
2319
- // will abort if the wrong type is used for the key
2320
- GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
2321
- GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
2322
- GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
2323
- GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
2324
- GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
2325
- GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
2326
- GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
2327
- GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
2328
- GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
2329
- GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
2330
- GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
2331
- GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
2332
- GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
2333
- GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
2334
- GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
2335
- GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
2336
-
2337
- GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
2338
- GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
2339
- GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
2340
- GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
2341
- GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
2342
-
2343
- // removes key if it exists
2344
- GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
2345
-
2346
- // overrides existing values or adds a new one
2347
- GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
2348
- GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
2349
- GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
2350
- GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
2351
- GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
2352
- GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
2353
- GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
2354
- GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
2355
- GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
2356
- GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
2357
- GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
2358
- GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
2359
- GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
2360
- GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
2361
-
2362
- // set or add KV pairs from another context
2363
- GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
2364
-
2365
- // manage tensor info
2366
- GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
2367
- GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
2368
- GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
2369
-
2370
- // writing gguf files can be done in 2 ways:
2371
- //
2372
- // - write the entire gguf_context to a binary file in a single pass:
2373
- //
2374
- // gguf_write_to_file(ctx, fname);
2375
- //
2376
- // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
2377
- //
2378
- // FILE * f = fopen(fname, "wb");
2379
- // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
2380
- // fwrite(f, ...);
2381
- // void * data = gguf_meta_get_meta_data(ctx);
2382
- // fseek(f, 0, SEEK_SET);
2383
- // fwrite(f, data, gguf_get_meta_size(ctx));
2384
- // free(data);
2385
- // fclose(f);
2386
- //
2387
-
2388
- // write the entire context to a binary file
2389
- GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
2390
-
2391
- // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
2392
- GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
2393
- GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
2394
-
2395
- //
2396
- // system info
2397
- //
2398
-
2399
- GGML_API int ggml_cpu_has_avx (void);
2400
- GGML_API int ggml_cpu_has_avx_vnni (void);
2401
- GGML_API int ggml_cpu_has_avx2 (void);
2402
- GGML_API int ggml_cpu_has_avx512 (void);
2403
- GGML_API int ggml_cpu_has_avx512_vbmi(void);
2404
- GGML_API int ggml_cpu_has_avx512_vnni(void);
2405
- GGML_API int ggml_cpu_has_avx512_bf16(void);
2406
- GGML_API int ggml_cpu_has_fma (void);
2407
- GGML_API int ggml_cpu_has_neon (void);
2408
- GGML_API int ggml_cpu_has_sve (void);
2409
- GGML_API int ggml_cpu_has_arm_fma (void);
2410
- GGML_API int ggml_cpu_has_metal (void);
2411
- GGML_API int ggml_cpu_has_f16c (void);
2412
- GGML_API int ggml_cpu_has_fp16_va (void);
2413
- GGML_API int ggml_cpu_has_wasm_simd (void);
2414
- GGML_API int ggml_cpu_has_blas (void);
2415
- GGML_API int ggml_cpu_has_cuda (void);
2416
- GGML_API int ggml_cpu_has_vulkan (void);
2417
- GGML_API int ggml_cpu_has_kompute (void);
2418
- GGML_API int ggml_cpu_has_gpublas (void);
2419
- GGML_API int ggml_cpu_has_sse3 (void);
2420
- GGML_API int ggml_cpu_has_ssse3 (void);
2421
- GGML_API int ggml_cpu_has_sycl (void);
2422
- GGML_API int ggml_cpu_has_rpc (void);
2423
- GGML_API int ggml_cpu_has_vsx (void);
2424
- GGML_API int ggml_cpu_has_matmul_int8(void);
2425
-
2426
- //
2427
- // Internal types and functions exposed for tests and benchmarks
2428
- //
2429
-
2430
- #ifdef __cplusplus
2431
- // restrict not standard in C++
2432
- #define GGML_RESTRICT
2433
- #else
2434
- #define GGML_RESTRICT restrict
2435
- #endif
2436
- typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
2437
- typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
2438
- typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
2439
- const void * GGML_RESTRICT y, size_t by, int nrc);
2440
-
2441
- typedef struct {
2442
- const char * type_name;
2443
- int blck_size;
2444
- size_t type_size;
2445
- bool is_quantized;
2446
- ggml_to_float_t to_float;
2447
- ggml_from_float_t from_float;
2448
- ggml_from_float_t from_float_reference;
2449
- ggml_vec_dot_t vec_dot;
2450
- enum ggml_type vec_dot_type;
2451
- int64_t nrows; // number of rows to process simultaneously;
2452
- } ggml_type_traits_t;
2453
-
2454
- GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
2455
-
2456
- #ifdef __cplusplus
2457
- }
2458
- #endif