llama_cpp 0.16.2 → 0.17.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +18 -0
- data/README.md +7 -12
- data/ext/llama_cpp/extconf.rb +2 -43
- data/ext/llama_cpp/llama_cpp.cpp +8 -0
- data/lib/llama_cpp/version.rb +3 -3
- data/sig/llama_cpp.rbs +3 -0
- metadata +2 -171
- data/vendor/include/.gitkeep +0 -0
- data/vendor/lib/.gitkeep +0 -0
- data/vendor/tmp/llama.cpp/LICENSE +0 -21
- data/vendor/tmp/llama.cpp/Makefile +0 -1124
- data/vendor/tmp/llama.cpp/ggml-alloc.c +0 -1041
- data/vendor/tmp/llama.cpp/ggml-alloc.h +0 -76
- data/vendor/tmp/llama.cpp/ggml-backend-impl.h +0 -153
- data/vendor/tmp/llama.cpp/ggml-backend.c +0 -2225
- data/vendor/tmp/llama.cpp/ggml-backend.h +0 -236
- data/vendor/tmp/llama.cpp/ggml-blas.cpp +0 -363
- data/vendor/tmp/llama.cpp/ggml-blas.h +0 -23
- data/vendor/tmp/llama.cpp/ggml-common.h +0 -1805
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +0 -280
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +0 -196
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +0 -686
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +0 -490
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +0 -674
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +0 -319
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +0 -312
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +0 -345
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +0 -178
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +0 -88
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +0 -419
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +0 -221
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +0 -49
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +0 -94
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +0 -112
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +0 -271
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +0 -31
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +0 -206
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +0 -9
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +0 -8
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q2_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q3_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q6_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +0 -314
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +0 -51
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +0 -3069
- data/vendor/tmp/llama.cpp/ggml-cuda.h +0 -44
- data/vendor/tmp/llama.cpp/ggml-impl.h +0 -651
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +0 -2038
- data/vendor/tmp/llama.cpp/ggml-kompute.h +0 -46
- data/vendor/tmp/llama.cpp/ggml-metal.h +0 -66
- data/vendor/tmp/llama.cpp/ggml-metal.m +0 -3273
- data/vendor/tmp/llama.cpp/ggml-metal.metal +0 -6540
- data/vendor/tmp/llama.cpp/ggml-quants.c +0 -14994
- data/vendor/tmp/llama.cpp/ggml-quants.h +0 -133
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +0 -1178
- data/vendor/tmp/llama.cpp/ggml-rpc.h +0 -24
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +0 -6351
- data/vendor/tmp/llama.cpp/ggml-sycl.h +0 -40
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +0 -144508
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +0 -7183
- data/vendor/tmp/llama.cpp/ggml-vulkan.h +0 -29
- data/vendor/tmp/llama.cpp/ggml.c +0 -22506
- data/vendor/tmp/llama.cpp/ggml.h +0 -2458
- data/vendor/tmp/llama.cpp/llama.cpp +0 -18985
- data/vendor/tmp/llama.cpp/llama.h +0 -1147
- data/vendor/tmp/llama.cpp/scripts/get-flags.mk +0 -38
- data/vendor/tmp/llama.cpp/sgemm.cpp +0 -1032
- data/vendor/tmp/llama.cpp/sgemm.h +0 -14
- data/vendor/tmp/llama.cpp/unicode-data.cpp +0 -7033
- data/vendor/tmp/llama.cpp/unicode-data.h +0 -20
- data/vendor/tmp/llama.cpp/unicode.cpp +0 -810
- data/vendor/tmp/llama.cpp/unicode.h +0 -63
@@ -1,88 +0,0 @@
|
|
1
|
-
#include "mmq.cuh"
|
2
|
-
|
3
|
-
void ggml_cuda_op_mul_mat_q(
|
4
|
-
ggml_backend_cuda_context & ctx,
|
5
|
-
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
6
|
-
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
7
|
-
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
8
|
-
|
9
|
-
const int64_t ne00 = src0->ne[0];
|
10
|
-
|
11
|
-
const int64_t nb01 = src0->nb[1];
|
12
|
-
|
13
|
-
const int64_t ne10 = src1->ne[0];
|
14
|
-
const int64_t ne11 = src1->ne[1];
|
15
|
-
GGML_ASSERT(ne10 % QK8_1 == 0);
|
16
|
-
|
17
|
-
const int64_t ne0 = dst->ne[0];
|
18
|
-
|
19
|
-
const int64_t row_diff = row_high - row_low;
|
20
|
-
const int64_t stride00 = nb01 / ggml_type_size(src0->type);
|
21
|
-
|
22
|
-
int id = ggml_cuda_get_device();
|
23
|
-
const int compute_capability = ggml_cuda_info().devices[id].cc;
|
24
|
-
|
25
|
-
// the main device has a larger memory buffer to hold the results from all GPUs
|
26
|
-
// nrows_dst == nrows of the matrix that the kernel writes into
|
27
|
-
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
28
|
-
|
29
|
-
const mmq_args args = {src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stride00, src1_padded_row_size, src1_ncols, ne11, nrows_dst};
|
30
|
-
|
31
|
-
switch (src0->type) {
|
32
|
-
case GGML_TYPE_Q4_0:
|
33
|
-
mul_mat_q_case<GGML_TYPE_Q4_0>(ctx, args, stream);
|
34
|
-
break;
|
35
|
-
case GGML_TYPE_Q4_1:
|
36
|
-
mul_mat_q_case<GGML_TYPE_Q4_1>(ctx, args, stream);
|
37
|
-
break;
|
38
|
-
case GGML_TYPE_Q5_0:
|
39
|
-
mul_mat_q_case<GGML_TYPE_Q5_0>(ctx, args, stream);
|
40
|
-
break;
|
41
|
-
case GGML_TYPE_Q5_1:
|
42
|
-
mul_mat_q_case<GGML_TYPE_Q5_1>(ctx, args, stream);
|
43
|
-
break;
|
44
|
-
case GGML_TYPE_Q8_0:
|
45
|
-
mul_mat_q_case<GGML_TYPE_Q8_0>(ctx, args, stream);
|
46
|
-
break;
|
47
|
-
case GGML_TYPE_Q2_K:
|
48
|
-
mul_mat_q_case<GGML_TYPE_Q2_K>(ctx, args, stream);
|
49
|
-
break;
|
50
|
-
case GGML_TYPE_Q3_K:
|
51
|
-
mul_mat_q_case<GGML_TYPE_Q3_K>(ctx, args, stream);
|
52
|
-
break;
|
53
|
-
case GGML_TYPE_Q4_K:
|
54
|
-
mul_mat_q_case<GGML_TYPE_Q4_K>(ctx, args, stream);
|
55
|
-
break;
|
56
|
-
case GGML_TYPE_Q5_K:
|
57
|
-
mul_mat_q_case<GGML_TYPE_Q5_K>(ctx, args, stream);
|
58
|
-
break;
|
59
|
-
case GGML_TYPE_Q6_K:
|
60
|
-
mul_mat_q_case<GGML_TYPE_Q6_K>(ctx, args, stream);
|
61
|
-
break;
|
62
|
-
default:
|
63
|
-
GGML_ASSERT(false);
|
64
|
-
break;
|
65
|
-
}
|
66
|
-
|
67
|
-
GGML_UNUSED(src1);
|
68
|
-
GGML_UNUSED(dst);
|
69
|
-
GGML_UNUSED(src1_ddf_i);
|
70
|
-
}
|
71
|
-
|
72
|
-
bool ggml_cuda_supports_mmq(enum ggml_type type) {
|
73
|
-
switch (type) {
|
74
|
-
case GGML_TYPE_Q4_0:
|
75
|
-
case GGML_TYPE_Q4_1:
|
76
|
-
case GGML_TYPE_Q5_0:
|
77
|
-
case GGML_TYPE_Q5_1:
|
78
|
-
case GGML_TYPE_Q8_0:
|
79
|
-
case GGML_TYPE_Q2_K:
|
80
|
-
case GGML_TYPE_Q3_K:
|
81
|
-
case GGML_TYPE_Q4_K:
|
82
|
-
case GGML_TYPE_Q5_K:
|
83
|
-
case GGML_TYPE_Q6_K:
|
84
|
-
return true;
|
85
|
-
default:
|
86
|
-
return false;
|
87
|
-
}
|
88
|
-
}
|
@@ -1,419 +0,0 @@
|
|
1
|
-
#include "mmvq.cuh"
|
2
|
-
#include "vecdotq.cuh"
|
3
|
-
|
4
|
-
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs);
|
5
|
-
|
6
|
-
static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type) {
|
7
|
-
return type == GGML_TYPE_Q4_0 ? vec_dot_q4_0_q8_1 :
|
8
|
-
type == GGML_TYPE_Q4_1 ? vec_dot_q4_1_q8_1 :
|
9
|
-
type == GGML_TYPE_Q5_0 ? vec_dot_q5_0_q8_1 :
|
10
|
-
type == GGML_TYPE_Q5_1 ? vec_dot_q5_1_q8_1 :
|
11
|
-
type == GGML_TYPE_Q8_0 ? vec_dot_q8_0_q8_1 :
|
12
|
-
type == GGML_TYPE_Q2_K ? vec_dot_q2_K_q8_1 :
|
13
|
-
type == GGML_TYPE_Q3_K ? vec_dot_q3_K_q8_1 :
|
14
|
-
type == GGML_TYPE_Q4_K ? vec_dot_q4_K_q8_1 :
|
15
|
-
type == GGML_TYPE_Q5_K ? vec_dot_q5_K_q8_1 :
|
16
|
-
type == GGML_TYPE_Q6_K ? vec_dot_q6_K_q8_1 :
|
17
|
-
type == GGML_TYPE_IQ2_XXS ? vec_dot_iq2_xxs_q8_1 :
|
18
|
-
type == GGML_TYPE_IQ2_XS ? vec_dot_iq2_xs_q8_1 :
|
19
|
-
type == GGML_TYPE_IQ2_S ? vec_dot_iq2_s_q8_1 :
|
20
|
-
type == GGML_TYPE_IQ3_XXS ? vec_dot_iq3_xxs_q8_1 :
|
21
|
-
type == GGML_TYPE_IQ1_S ? vec_dot_iq1_s_q8_1 :
|
22
|
-
type == GGML_TYPE_IQ1_M ? vec_dot_iq1_m_q8_1 :
|
23
|
-
type == GGML_TYPE_IQ4_NL ? vec_dot_iq4_nl_q8_1 :
|
24
|
-
type == GGML_TYPE_IQ4_XS ? vec_dot_iq4_xs_q8_1 :
|
25
|
-
type == GGML_TYPE_IQ3_S ? vec_dot_iq3_s_q8_1 :
|
26
|
-
nullptr;
|
27
|
-
}
|
28
|
-
|
29
|
-
static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
|
30
|
-
return type == GGML_TYPE_Q4_0 ? VDR_Q4_0_Q8_1_MMVQ :
|
31
|
-
type == GGML_TYPE_Q4_1 ? VDR_Q4_1_Q8_1_MMVQ :
|
32
|
-
type == GGML_TYPE_Q5_0 ? VDR_Q5_0_Q8_1_MMVQ :
|
33
|
-
type == GGML_TYPE_Q5_1 ? VDR_Q5_1_Q8_1_MMVQ :
|
34
|
-
type == GGML_TYPE_Q8_0 ? VDR_Q8_0_Q8_1_MMVQ :
|
35
|
-
type == GGML_TYPE_Q2_K ? VDR_Q2_K_Q8_1_MMVQ :
|
36
|
-
type == GGML_TYPE_Q3_K ? VDR_Q3_K_Q8_1_MMVQ :
|
37
|
-
type == GGML_TYPE_Q4_K ? VDR_Q4_K_Q8_1_MMVQ :
|
38
|
-
type == GGML_TYPE_Q5_K ? VDR_Q5_K_Q8_1_MMVQ :
|
39
|
-
type == GGML_TYPE_Q6_K ? VDR_Q6_K_Q8_1_MMVQ :
|
40
|
-
type == GGML_TYPE_IQ4_NL ? VDR_Q4_K_Q8_1_MMVQ :
|
41
|
-
1;
|
42
|
-
}
|
43
|
-
|
44
|
-
template <ggml_type type, int ncols_y>
|
45
|
-
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
46
|
-
// tell the compiler to use as many registers as it wants, see nwarps definition below
|
47
|
-
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
|
48
|
-
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
49
|
-
static __global__ void mul_mat_vec_q(
|
50
|
-
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
|
51
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
|
52
|
-
|
53
|
-
constexpr int qk = ggml_cuda_type_traits<type>::qk;
|
54
|
-
constexpr int qi = ggml_cuda_type_traits<type>::qi;
|
55
|
-
constexpr int vdr = get_vdr_mmvq(type);
|
56
|
-
|
57
|
-
constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type);
|
58
|
-
|
59
|
-
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
|
60
|
-
constexpr int nwarps = 1;
|
61
|
-
constexpr int rows_per_cuda_block = 1;
|
62
|
-
#else
|
63
|
-
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
|
64
|
-
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
|
65
|
-
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
|
66
|
-
|
67
|
-
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
|
68
|
-
const int row0 = rows_per_cuda_block*blockIdx.x;
|
69
|
-
const int blocks_per_row_x = ncols_x / qk;
|
70
|
-
const int blocks_per_col_y = nrows_y / QK8_1;
|
71
|
-
constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
|
72
|
-
|
73
|
-
// partial sum for each thread
|
74
|
-
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
|
75
|
-
|
76
|
-
const block_q8_1 * y = (const block_q8_1 *) vy;
|
77
|
-
|
78
|
-
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
|
79
|
-
const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
|
80
|
-
|
81
|
-
// x block quant index when casting the quants to int
|
82
|
-
const int kqs = vdr * (tid % (qi/vdr));
|
83
|
-
|
84
|
-
#pragma unroll
|
85
|
-
for (int j = 0; j < ncols_y; ++j) {
|
86
|
-
#pragma unroll
|
87
|
-
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
88
|
-
tmp[j][i] += vec_dot_q_cuda(vx, &y[j*blocks_per_col_y + kby], (row0 + i)*blocks_per_row_x + kbx, kqs);
|
89
|
-
}
|
90
|
-
}
|
91
|
-
}
|
92
|
-
|
93
|
-
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
|
94
|
-
if (threadIdx.y > 0) {
|
95
|
-
#pragma unroll
|
96
|
-
for (int j = 0; j < ncols_y; ++j) {
|
97
|
-
#pragma unroll
|
98
|
-
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
99
|
-
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
|
100
|
-
}
|
101
|
-
}
|
102
|
-
}
|
103
|
-
__syncthreads();
|
104
|
-
if (threadIdx.y > 0) {
|
105
|
-
return;
|
106
|
-
}
|
107
|
-
|
108
|
-
// sum up partial sums and write back result
|
109
|
-
#pragma unroll
|
110
|
-
for (int j = 0; j < ncols_y; ++j) {
|
111
|
-
#pragma unroll
|
112
|
-
for (int i = 0; i < rows_per_cuda_block; ++i) {
|
113
|
-
#pragma unroll
|
114
|
-
for (int l = 0; l < nwarps-1; ++l) {
|
115
|
-
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
|
116
|
-
}
|
117
|
-
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
|
118
|
-
}
|
119
|
-
|
120
|
-
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + threadIdx.x < nrows_dst)) {
|
121
|
-
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
|
122
|
-
}
|
123
|
-
}
|
124
|
-
}
|
125
|
-
|
126
|
-
template <ggml_type type>
|
127
|
-
static void mul_mat_vec_q_cuda(
|
128
|
-
const void * vx, const void * vy, float * dst,
|
129
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
130
|
-
|
131
|
-
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
|
132
|
-
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
|
133
|
-
|
134
|
-
int id = ggml_cuda_get_device();
|
135
|
-
|
136
|
-
int64_t nwarps = 1;
|
137
|
-
int64_t rows_per_cuda_block = 1;
|
138
|
-
|
139
|
-
if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
|
140
|
-
switch(ncols_y) {
|
141
|
-
case 1:
|
142
|
-
nwarps = 4;
|
143
|
-
rows_per_cuda_block = 1;
|
144
|
-
break;
|
145
|
-
case 2:
|
146
|
-
case 3:
|
147
|
-
case 4:
|
148
|
-
nwarps = 4;
|
149
|
-
rows_per_cuda_block = 2;
|
150
|
-
break;
|
151
|
-
case 5:
|
152
|
-
case 6:
|
153
|
-
case 7:
|
154
|
-
case 8:
|
155
|
-
nwarps = 2;
|
156
|
-
rows_per_cuda_block = 2;
|
157
|
-
break;
|
158
|
-
default:
|
159
|
-
GGML_ASSERT(false);
|
160
|
-
break;
|
161
|
-
}
|
162
|
-
}
|
163
|
-
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
|
164
|
-
const dim3 block_nums(nblocks, 1, 1);
|
165
|
-
const dim3 block_dims(WARP_SIZE, nwarps, 1);
|
166
|
-
|
167
|
-
switch (ncols_y) {
|
168
|
-
case 1:
|
169
|
-
mul_mat_vec_q<type, 1><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
170
|
-
break;
|
171
|
-
case 2:
|
172
|
-
mul_mat_vec_q<type, 2><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
173
|
-
break;
|
174
|
-
case 3:
|
175
|
-
mul_mat_vec_q<type, 3><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
176
|
-
break;
|
177
|
-
case 4:
|
178
|
-
mul_mat_vec_q<type, 4><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
179
|
-
break;
|
180
|
-
case 5:
|
181
|
-
mul_mat_vec_q<type, 5><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
182
|
-
break;
|
183
|
-
case 6:
|
184
|
-
mul_mat_vec_q<type, 6><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
185
|
-
break;
|
186
|
-
case 7:
|
187
|
-
mul_mat_vec_q<type, 7><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
188
|
-
break;
|
189
|
-
case 8:
|
190
|
-
mul_mat_vec_q<type, 8><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
|
191
|
-
break;
|
192
|
-
default:
|
193
|
-
GGML_ASSERT(false);
|
194
|
-
break;
|
195
|
-
}
|
196
|
-
}
|
197
|
-
|
198
|
-
static void mul_mat_vec_q4_0_q8_1_cuda(
|
199
|
-
const void * vx, const void * vy, float * dst,
|
200
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
201
|
-
|
202
|
-
mul_mat_vec_q_cuda<GGML_TYPE_Q4_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
203
|
-
}
|
204
|
-
|
205
|
-
static void mul_mat_vec_q4_1_q8_1_cuda(
|
206
|
-
const void * vx, const void * vy, float * dst,
|
207
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
208
|
-
|
209
|
-
mul_mat_vec_q_cuda<GGML_TYPE_Q4_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
210
|
-
}
|
211
|
-
|
212
|
-
static void mul_mat_vec_q5_0_q8_1_cuda(
|
213
|
-
const void * vx, const void * vy, float * dst,
|
214
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
215
|
-
|
216
|
-
mul_mat_vec_q_cuda<GGML_TYPE_Q5_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
217
|
-
}
|
218
|
-
|
219
|
-
static void mul_mat_vec_q5_1_q8_1_cuda(
|
220
|
-
const void * vx, const void * vy, float * dst,
|
221
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
222
|
-
|
223
|
-
mul_mat_vec_q_cuda<GGML_TYPE_Q5_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
224
|
-
}
|
225
|
-
|
226
|
-
static void mul_mat_vec_q8_0_q8_1_cuda(
|
227
|
-
const void * vx, const void * vy, float * dst,
|
228
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
229
|
-
|
230
|
-
mul_mat_vec_q_cuda<GGML_TYPE_Q8_0>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
231
|
-
}
|
232
|
-
|
233
|
-
static void mul_mat_vec_q2_K_q8_1_cuda(
|
234
|
-
const void * vx, const void * vy, float * dst,
|
235
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
236
|
-
|
237
|
-
mul_mat_vec_q_cuda<GGML_TYPE_Q2_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
238
|
-
}
|
239
|
-
|
240
|
-
static void mul_mat_vec_q3_K_q8_1_cuda(
|
241
|
-
const void * vx, const void * vy, float * dst,
|
242
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
243
|
-
|
244
|
-
mul_mat_vec_q_cuda<GGML_TYPE_Q3_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
245
|
-
}
|
246
|
-
|
247
|
-
static void mul_mat_vec_q4_K_q8_1_cuda(
|
248
|
-
const void * vx, const void * vy, float * dst,
|
249
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
250
|
-
|
251
|
-
mul_mat_vec_q_cuda<GGML_TYPE_Q4_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
252
|
-
}
|
253
|
-
|
254
|
-
static void mul_mat_vec_q5_K_q8_1_cuda(
|
255
|
-
const void * vx, const void * vy, float * dst,
|
256
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
257
|
-
|
258
|
-
mul_mat_vec_q_cuda<GGML_TYPE_Q5_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
259
|
-
}
|
260
|
-
|
261
|
-
static void mul_mat_vec_q6_K_q8_1_cuda(
|
262
|
-
const void * vx, const void * vy, float * dst,
|
263
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
264
|
-
|
265
|
-
mul_mat_vec_q_cuda<GGML_TYPE_Q6_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
266
|
-
}
|
267
|
-
|
268
|
-
static void mul_mat_vec_iq2_xxs_q8_1_cuda(
|
269
|
-
const void * vx, const void * vy, float * dst,
|
270
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
271
|
-
|
272
|
-
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
273
|
-
}
|
274
|
-
|
275
|
-
static void mul_mat_vec_iq2_xs_q8_1_cuda(
|
276
|
-
const void * vx, const void * vy, float * dst,
|
277
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
278
|
-
|
279
|
-
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
280
|
-
}
|
281
|
-
|
282
|
-
static void mul_mat_vec_iq2_s_q8_1_cuda(
|
283
|
-
const void * vx, const void * vy, float * dst,
|
284
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
285
|
-
|
286
|
-
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
287
|
-
}
|
288
|
-
|
289
|
-
static void mul_mat_vec_iq3_xxs_q8_1_cuda(
|
290
|
-
const void * vx, const void * vy, float * dst,
|
291
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
292
|
-
|
293
|
-
mul_mat_vec_q_cuda<GGML_TYPE_IQ3_XXS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
294
|
-
}
|
295
|
-
|
296
|
-
static void mul_mat_vec_iq1_s_q8_1_cuda(
|
297
|
-
const void * vx, const void * vy, float * dst,
|
298
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
299
|
-
|
300
|
-
mul_mat_vec_q_cuda<GGML_TYPE_IQ1_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
301
|
-
}
|
302
|
-
|
303
|
-
static void mul_mat_vec_iq1_m_q8_1_cuda(
|
304
|
-
const void * vx, const void * vy, float * dst,
|
305
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
306
|
-
|
307
|
-
mul_mat_vec_q_cuda<GGML_TYPE_IQ1_M>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
308
|
-
}
|
309
|
-
|
310
|
-
static void mul_mat_vec_iq4_nl_q8_1_cuda(
|
311
|
-
const void * vx, const void * vy, float * dst,
|
312
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
313
|
-
|
314
|
-
mul_mat_vec_q_cuda<GGML_TYPE_IQ4_NL>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
315
|
-
}
|
316
|
-
|
317
|
-
static void mul_mat_vec_iq4_xs_q8_1_cuda(
|
318
|
-
const void * vx, const void * vy, float * dst,
|
319
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
320
|
-
|
321
|
-
mul_mat_vec_q_cuda<GGML_TYPE_IQ4_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
322
|
-
}
|
323
|
-
|
324
|
-
static void mul_mat_vec_iq3_s_q8_1_cuda(
|
325
|
-
const void * vx, const void * vy, float * dst,
|
326
|
-
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
|
327
|
-
|
328
|
-
mul_mat_vec_q_cuda<GGML_TYPE_IQ3_S>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
|
329
|
-
}
|
330
|
-
|
331
|
-
void ggml_cuda_op_mul_mat_vec_q(
|
332
|
-
ggml_backend_cuda_context & ctx,
|
333
|
-
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
334
|
-
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
335
|
-
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
336
|
-
|
337
|
-
const int64_t ne00 = src0->ne[0];
|
338
|
-
const int64_t row_diff = row_high - row_low;
|
339
|
-
|
340
|
-
const int64_t ne10 = src1->ne[0];
|
341
|
-
GGML_ASSERT(ne10 % QK8_1 == 0);
|
342
|
-
|
343
|
-
const int64_t ne0 = dst->ne[0];
|
344
|
-
|
345
|
-
int id = ggml_cuda_get_device();
|
346
|
-
|
347
|
-
// the main device has a larger memory buffer to hold the results from all GPUs
|
348
|
-
// nrows_dst == nrows of the matrix that the kernel writes into
|
349
|
-
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
|
350
|
-
|
351
|
-
switch (src0->type) {
|
352
|
-
case GGML_TYPE_Q4_0:
|
353
|
-
mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
354
|
-
break;
|
355
|
-
case GGML_TYPE_Q4_1:
|
356
|
-
mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
357
|
-
break;
|
358
|
-
case GGML_TYPE_Q5_0:
|
359
|
-
mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
360
|
-
break;
|
361
|
-
case GGML_TYPE_Q5_1:
|
362
|
-
mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
363
|
-
break;
|
364
|
-
case GGML_TYPE_Q8_0:
|
365
|
-
mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
366
|
-
break;
|
367
|
-
case GGML_TYPE_Q2_K:
|
368
|
-
mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
369
|
-
break;
|
370
|
-
case GGML_TYPE_Q3_K:
|
371
|
-
mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
372
|
-
break;
|
373
|
-
case GGML_TYPE_Q4_K:
|
374
|
-
mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
375
|
-
break;
|
376
|
-
case GGML_TYPE_Q5_K:
|
377
|
-
mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
378
|
-
break;
|
379
|
-
case GGML_TYPE_Q6_K:
|
380
|
-
mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
381
|
-
break;
|
382
|
-
case GGML_TYPE_IQ2_XXS:
|
383
|
-
mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
384
|
-
break;
|
385
|
-
case GGML_TYPE_IQ2_XS:
|
386
|
-
mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
387
|
-
break;
|
388
|
-
case GGML_TYPE_IQ2_S:
|
389
|
-
mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
390
|
-
break;
|
391
|
-
case GGML_TYPE_IQ3_XXS:
|
392
|
-
mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
393
|
-
break;
|
394
|
-
case GGML_TYPE_IQ1_S:
|
395
|
-
mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
396
|
-
break;
|
397
|
-
case GGML_TYPE_IQ1_M:
|
398
|
-
mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
399
|
-
break;
|
400
|
-
case GGML_TYPE_IQ4_NL:
|
401
|
-
mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
402
|
-
break;
|
403
|
-
case GGML_TYPE_IQ4_XS:
|
404
|
-
mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
405
|
-
break;
|
406
|
-
case GGML_TYPE_IQ3_S:
|
407
|
-
mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
|
408
|
-
break;
|
409
|
-
default:
|
410
|
-
GGML_ASSERT(false);
|
411
|
-
break;
|
412
|
-
}
|
413
|
-
|
414
|
-
GGML_UNUSED(src1);
|
415
|
-
GGML_UNUSED(dst);
|
416
|
-
GGML_UNUSED(src1_ddf_i);
|
417
|
-
GGML_UNUSED(src1_ncols);
|
418
|
-
GGML_UNUSED(src1_padded_row_size);
|
419
|
-
}
|