llama_cpp 0.16.2 → 0.17.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +18 -0
- data/README.md +7 -12
- data/ext/llama_cpp/extconf.rb +2 -43
- data/ext/llama_cpp/llama_cpp.cpp +8 -0
- data/lib/llama_cpp/version.rb +3 -3
- data/sig/llama_cpp.rbs +3 -0
- metadata +2 -171
- data/vendor/include/.gitkeep +0 -0
- data/vendor/lib/.gitkeep +0 -0
- data/vendor/tmp/llama.cpp/LICENSE +0 -21
- data/vendor/tmp/llama.cpp/Makefile +0 -1124
- data/vendor/tmp/llama.cpp/ggml-alloc.c +0 -1041
- data/vendor/tmp/llama.cpp/ggml-alloc.h +0 -76
- data/vendor/tmp/llama.cpp/ggml-backend-impl.h +0 -153
- data/vendor/tmp/llama.cpp/ggml-backend.c +0 -2225
- data/vendor/tmp/llama.cpp/ggml-backend.h +0 -236
- data/vendor/tmp/llama.cpp/ggml-blas.cpp +0 -363
- data/vendor/tmp/llama.cpp/ggml-blas.h +0 -23
- data/vendor/tmp/llama.cpp/ggml-common.h +0 -1805
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +0 -280
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +0 -196
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +0 -686
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +0 -490
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +0 -674
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +0 -319
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +0 -312
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +0 -345
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +0 -178
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +0 -88
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +0 -419
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +0 -221
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +0 -49
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +0 -94
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +0 -112
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +0 -271
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +0 -31
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +0 -206
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +0 -9
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +0 -8
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q2_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q3_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q6_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +0 -314
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +0 -51
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +0 -3069
- data/vendor/tmp/llama.cpp/ggml-cuda.h +0 -44
- data/vendor/tmp/llama.cpp/ggml-impl.h +0 -651
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +0 -2038
- data/vendor/tmp/llama.cpp/ggml-kompute.h +0 -46
- data/vendor/tmp/llama.cpp/ggml-metal.h +0 -66
- data/vendor/tmp/llama.cpp/ggml-metal.m +0 -3273
- data/vendor/tmp/llama.cpp/ggml-metal.metal +0 -6540
- data/vendor/tmp/llama.cpp/ggml-quants.c +0 -14994
- data/vendor/tmp/llama.cpp/ggml-quants.h +0 -133
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +0 -1178
- data/vendor/tmp/llama.cpp/ggml-rpc.h +0 -24
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +0 -6351
- data/vendor/tmp/llama.cpp/ggml-sycl.h +0 -40
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +0 -144508
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +0 -7183
- data/vendor/tmp/llama.cpp/ggml-vulkan.h +0 -29
- data/vendor/tmp/llama.cpp/ggml.c +0 -22506
- data/vendor/tmp/llama.cpp/ggml.h +0 -2458
- data/vendor/tmp/llama.cpp/llama.cpp +0 -18985
- data/vendor/tmp/llama.cpp/llama.h +0 -1147
- data/vendor/tmp/llama.cpp/scripts/get-flags.mk +0 -38
- data/vendor/tmp/llama.cpp/sgemm.cpp +0 -1032
- data/vendor/tmp/llama.cpp/sgemm.h +0 -14
- data/vendor/tmp/llama.cpp/unicode-data.cpp +0 -7033
- data/vendor/tmp/llama.cpp/unicode-data.h +0 -20
- data/vendor/tmp/llama.cpp/unicode.cpp +0 -810
- data/vendor/tmp/llama.cpp/unicode.h +0 -63
@@ -1,2038 +0,0 @@
|
|
1
|
-
#include "ggml.h"
|
2
|
-
#include "ggml-backend.h"
|
3
|
-
#include "ggml-backend-impl.h"
|
4
|
-
#include "ggml-kompute.h"
|
5
|
-
|
6
|
-
// These are generated at build time by cmake custom command
|
7
|
-
#include "shaderop_scale.h"
|
8
|
-
#include "shaderop_scale_8.h"
|
9
|
-
#include "shaderop_add.h"
|
10
|
-
#include "shaderop_addrow.h"
|
11
|
-
#include "shaderop_mul.h"
|
12
|
-
#include "shaderop_silu.h"
|
13
|
-
#include "shaderop_relu.h"
|
14
|
-
#include "shaderop_gelu.h"
|
15
|
-
#include "shaderop_softmax.h"
|
16
|
-
#include "shaderop_norm.h"
|
17
|
-
#include "shaderop_rmsnorm.h"
|
18
|
-
#include "shaderop_diagmask.h"
|
19
|
-
#include "shaderop_mul_mat_f16.h"
|
20
|
-
#include "shaderop_mul_mat_q8_0.h"
|
21
|
-
#include "shaderop_mul_mat_q4_0.h"
|
22
|
-
#include "shaderop_mul_mat_q4_1.h"
|
23
|
-
#include "shaderop_mul_mat_q6_k.h"
|
24
|
-
#include "shaderop_mul_mat_mat_f32.h"
|
25
|
-
#include "shaderop_getrows_f32.h"
|
26
|
-
#include "shaderop_getrows_f16.h"
|
27
|
-
#include "shaderop_getrows_q4_0.h"
|
28
|
-
#include "shaderop_getrows_q4_1.h"
|
29
|
-
#include "shaderop_getrows_q6_k.h"
|
30
|
-
#include "shaderop_rope_f16.h"
|
31
|
-
#include "shaderop_rope_f32.h"
|
32
|
-
#include "shaderop_cpy_f16_f16.h"
|
33
|
-
#include "shaderop_cpy_f16_f32.h"
|
34
|
-
#include "shaderop_cpy_f32_f16.h"
|
35
|
-
#include "shaderop_cpy_f32_f32.h"
|
36
|
-
|
37
|
-
#include <algorithm>
|
38
|
-
#include <array>
|
39
|
-
#include <cassert>
|
40
|
-
#include <cstdint>
|
41
|
-
#include <cstdio>
|
42
|
-
#include <cstring>
|
43
|
-
#include <iostream>
|
44
|
-
#include <memory>
|
45
|
-
#include <stdexcept>
|
46
|
-
#include <string>
|
47
|
-
#include <unordered_map>
|
48
|
-
#include <utility>
|
49
|
-
#include <vector>
|
50
|
-
|
51
|
-
#include <kompute/Kompute.hpp>
|
52
|
-
#include <vulkan/vulkan.hpp>
|
53
|
-
|
54
|
-
#ifdef __linux__
|
55
|
-
#include <cstdlib> // for setenv
|
56
|
-
#endif
|
57
|
-
|
58
|
-
#define QK4_0 32
|
59
|
-
#define QR4_0 2
|
60
|
-
#define QK4_1 32
|
61
|
-
#define QK_NL 16
|
62
|
-
|
63
|
-
typedef ggml_fp16_t half;
|
64
|
-
|
65
|
-
static std::string ggml_kompute_format_name(int device) {
|
66
|
-
return "Kompute" + std::to_string(device);
|
67
|
-
}
|
68
|
-
|
69
|
-
struct ggml_kompute_context {
|
70
|
-
int device;
|
71
|
-
std::string name;
|
72
|
-
std::shared_ptr<vk::DescriptorPool> pool;
|
73
|
-
|
74
|
-
ggml_kompute_context(int device)
|
75
|
-
: device(device), name(ggml_kompute_format_name(device)) {}
|
76
|
-
};
|
77
|
-
|
78
|
-
// FIXME: It would be good to consolidate the kompute manager and the kompute context into one object
|
79
|
-
// and consolidate the init functions and simplify object lifetime management. As it currently stands,
|
80
|
-
// we *have* to have the kompute manager no matter what for device discovery, but the kompute context
|
81
|
-
// is only created when a device is set and vulkan is explicitly turned on.
|
82
|
-
static ggml_kompute_context *s_kompute_context = nullptr;
|
83
|
-
|
84
|
-
class kompute_manager {
|
85
|
-
kp::Manager *s_mgr = nullptr;
|
86
|
-
|
87
|
-
public:
|
88
|
-
kp::Manager *operator()() {
|
89
|
-
if (s_mgr && !s_mgr->hasInstance()) {
|
90
|
-
destroy();
|
91
|
-
}
|
92
|
-
if (!s_mgr) {
|
93
|
-
s_mgr = new kp::Manager;
|
94
|
-
}
|
95
|
-
return s_mgr;
|
96
|
-
}
|
97
|
-
|
98
|
-
void destroy() {
|
99
|
-
delete s_mgr;
|
100
|
-
s_mgr = nullptr;
|
101
|
-
}
|
102
|
-
};
|
103
|
-
|
104
|
-
static kompute_manager komputeManager;
|
105
|
-
|
106
|
-
struct ggml_vk_memory {
|
107
|
-
void *data = nullptr;
|
108
|
-
size_t size = 0;
|
109
|
-
vk::DeviceMemory *primaryMemory = nullptr;
|
110
|
-
vk::Buffer *primaryBuffer = nullptr;
|
111
|
-
vk::DeviceMemory *stagingMemory = nullptr;
|
112
|
-
vk::Buffer *stagingBuffer = nullptr;
|
113
|
-
};
|
114
|
-
|
115
|
-
#ifdef __linux__
|
116
|
-
__attribute__((constructor))
|
117
|
-
static void enable_sam() {
|
118
|
-
setenv("RADV_PERFTEST", "sam", false);
|
119
|
-
}
|
120
|
-
#endif
|
121
|
-
|
122
|
-
static bool ggml_vk_checkPhysicalDeviceFeatures(vk::PhysicalDevice physical_device) {
|
123
|
-
vk::PhysicalDeviceFeatures availableFeatures;
|
124
|
-
physical_device.getFeatures(&availableFeatures);
|
125
|
-
|
126
|
-
if (!availableFeatures.shaderInt16)
|
127
|
-
return false;
|
128
|
-
|
129
|
-
vk::PhysicalDeviceVulkan11Features availableFeatures11;
|
130
|
-
vk::PhysicalDeviceVulkan12Features availableFeatures12;
|
131
|
-
|
132
|
-
availableFeatures11.pNext = &availableFeatures12;
|
133
|
-
availableFeatures12.pNext = nullptr;
|
134
|
-
|
135
|
-
vk::PhysicalDeviceFeatures2 features2;
|
136
|
-
features2.pNext = &availableFeatures11;
|
137
|
-
|
138
|
-
physical_device.getFeatures2(&features2);
|
139
|
-
|
140
|
-
if (!availableFeatures11.uniformAndStorageBuffer16BitAccess ||
|
141
|
-
!availableFeatures11.storageBuffer16BitAccess) {
|
142
|
-
return false;
|
143
|
-
}
|
144
|
-
|
145
|
-
if (!availableFeatures12.storageBuffer8BitAccess ||
|
146
|
-
!availableFeatures12.uniformAndStorageBuffer8BitAccess ||
|
147
|
-
!availableFeatures12.shaderFloat16 ||
|
148
|
-
!availableFeatures12.shaderInt8) {
|
149
|
-
return false;
|
150
|
-
}
|
151
|
-
|
152
|
-
return true;
|
153
|
-
}
|
154
|
-
|
155
|
-
static const char * ggml_vk_getVendorName(uint32_t vendorID) {
|
156
|
-
switch (vendorID) {
|
157
|
-
case 0x10DE:
|
158
|
-
return "nvidia";
|
159
|
-
case 0x1002:
|
160
|
-
return "amd";
|
161
|
-
case 0x8086:
|
162
|
-
return "intel";
|
163
|
-
default:
|
164
|
-
return "unknown";
|
165
|
-
}
|
166
|
-
}
|
167
|
-
|
168
|
-
static std::vector<ggml_vk_device> ggml_vk_available_devices_internal(size_t memoryRequired) {
|
169
|
-
std::vector<ggml_vk_device> results;
|
170
|
-
if (!komputeManager()->hasVulkan() || !komputeManager()->hasInstance())
|
171
|
-
return results;
|
172
|
-
|
173
|
-
std::vector<vk::PhysicalDevice> physical_devices;
|
174
|
-
try {
|
175
|
-
physical_devices = komputeManager()->listDevices();
|
176
|
-
} catch (vk::SystemError & err) {
|
177
|
-
std::cerr << __func__ << ": ignoring Vulkan exception: " << err.what() << "\n";
|
178
|
-
return results;
|
179
|
-
}
|
180
|
-
|
181
|
-
uint32_t deviceCount = physical_devices.size();
|
182
|
-
if (deviceCount == 0)
|
183
|
-
return results;
|
184
|
-
|
185
|
-
std::unordered_map<std::string, size_t> count_by_name;
|
186
|
-
|
187
|
-
for (uint32_t i = 0; i < deviceCount; i++) {
|
188
|
-
const auto & physical_device = physical_devices[i];
|
189
|
-
|
190
|
-
VkPhysicalDeviceProperties dev_props = physical_device.getProperties();
|
191
|
-
VkPhysicalDeviceMemoryProperties memoryProperties = physical_device.getMemoryProperties();
|
192
|
-
const uint32_t major = VK_VERSION_MAJOR(dev_props.apiVersion);
|
193
|
-
const uint32_t minor = VK_VERSION_MINOR(dev_props.apiVersion);
|
194
|
-
if (major < 1 || minor < 2)
|
195
|
-
continue;
|
196
|
-
|
197
|
-
if (!ggml_vk_checkPhysicalDeviceFeatures(physical_device))
|
198
|
-
continue;
|
199
|
-
|
200
|
-
size_t heapSize = 0;
|
201
|
-
for (uint32_t j = 0; j < memoryProperties.memoryHeapCount; ++j) {
|
202
|
-
VkMemoryHeap heap = memoryProperties.memoryHeaps[j];
|
203
|
-
if (heap.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT) {
|
204
|
-
heapSize = heap.size;
|
205
|
-
break;
|
206
|
-
}
|
207
|
-
}
|
208
|
-
|
209
|
-
if (heapSize < memoryRequired)
|
210
|
-
continue;
|
211
|
-
|
212
|
-
auto ext_props = physical_device.enumerateDeviceExtensionProperties();
|
213
|
-
bool has_maintenance4 = false;
|
214
|
-
|
215
|
-
// Check if maintenance4 is supported
|
216
|
-
for (const auto & properties : ext_props) {
|
217
|
-
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
|
218
|
-
has_maintenance4 = true;
|
219
|
-
}
|
220
|
-
}
|
221
|
-
|
222
|
-
vk::PhysicalDeviceSubgroupProperties subgroup_props;
|
223
|
-
vk::PhysicalDeviceProperties2 dev_props2;
|
224
|
-
vk::PhysicalDeviceMaintenance3Properties dev_props3;
|
225
|
-
vk::PhysicalDeviceMaintenance4Properties dev_props4;
|
226
|
-
dev_props2.pNext = &dev_props3;
|
227
|
-
dev_props3.pNext = &subgroup_props;
|
228
|
-
if (has_maintenance4) {
|
229
|
-
subgroup_props.pNext = &dev_props4;
|
230
|
-
}
|
231
|
-
physical_device.getProperties2(&dev_props2);
|
232
|
-
|
233
|
-
if (subgroup_props.subgroupSize < 32)
|
234
|
-
continue;
|
235
|
-
|
236
|
-
ggml_vk_device d;
|
237
|
-
d.index = i;
|
238
|
-
d.type = dev_props.deviceType;
|
239
|
-
d.heapSize = heapSize;
|
240
|
-
d.vendor = strdup(ggml_vk_getVendorName(dev_props.vendorID));
|
241
|
-
d.subgroupSize = subgroup_props.subgroupSize;
|
242
|
-
d.bufferAlignment = dev_props.limits.minStorageBufferOffsetAlignment;
|
243
|
-
|
244
|
-
if (has_maintenance4) {
|
245
|
-
d.maxAlloc = std::min(dev_props3.maxMemoryAllocationSize, dev_props4.maxBufferSize);
|
246
|
-
} else {
|
247
|
-
d.maxAlloc = dev_props3.maxMemoryAllocationSize;
|
248
|
-
}
|
249
|
-
|
250
|
-
std::string name(dev_props.deviceName);
|
251
|
-
size_t n_idx = ++count_by_name[name];
|
252
|
-
if (n_idx > 1) {
|
253
|
-
name += " (" + std::to_string(n_idx) + ")";
|
254
|
-
}
|
255
|
-
d.name = strdup(name.c_str());
|
256
|
-
|
257
|
-
results.push_back(d);
|
258
|
-
}
|
259
|
-
|
260
|
-
std::stable_sort(results.begin(), results.end(),
|
261
|
-
[](const ggml_vk_device& lhs, const ggml_vk_device& rhs) -> bool {
|
262
|
-
if (lhs.type != rhs.type) {
|
263
|
-
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return true;
|
264
|
-
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU) return false;
|
265
|
-
|
266
|
-
if (lhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return true;
|
267
|
-
if (rhs.type == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU) return false;
|
268
|
-
}
|
269
|
-
return lhs.heapSize < rhs.heapSize;
|
270
|
-
}
|
271
|
-
);
|
272
|
-
|
273
|
-
return results;
|
274
|
-
}
|
275
|
-
|
276
|
-
// public API returns a C-style array
|
277
|
-
ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count) {
|
278
|
-
auto devices = ggml_vk_available_devices_internal(memoryRequired);
|
279
|
-
*count = devices.size();
|
280
|
-
if (devices.empty()) {
|
281
|
-
return nullptr;
|
282
|
-
}
|
283
|
-
|
284
|
-
size_t nbytes = sizeof (ggml_vk_device) * (devices.size());
|
285
|
-
auto * arr = static_cast<ggml_vk_device *>(malloc(nbytes));
|
286
|
-
memcpy(arr, devices.data(), nbytes);
|
287
|
-
return arr;
|
288
|
-
}
|
289
|
-
|
290
|
-
static void ggml_vk_filterByVendor(std::vector<ggml_vk_device>& devices, const std::string& targetVendor) {
|
291
|
-
devices.erase(
|
292
|
-
std::remove_if(devices.begin(), devices.end(),
|
293
|
-
[&targetVendor](const ggml_vk_device& device) {
|
294
|
-
return device.vendor != targetVendor;
|
295
|
-
}),
|
296
|
-
devices.end()
|
297
|
-
);
|
298
|
-
}
|
299
|
-
|
300
|
-
static void ggml_vk_filterByName(std::vector<ggml_vk_device>& devices, const std::string& targetName) {
|
301
|
-
devices.erase(
|
302
|
-
std::remove_if(devices.begin(), devices.end(),
|
303
|
-
[&targetName](const ggml_vk_device& device) {
|
304
|
-
return device.name != targetName;
|
305
|
-
}),
|
306
|
-
devices.end()
|
307
|
-
);
|
308
|
-
}
|
309
|
-
|
310
|
-
static bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const std::string & name) {
|
311
|
-
if (name.empty())
|
312
|
-
return false;
|
313
|
-
|
314
|
-
auto devices = ggml_vk_available_devices_internal(memoryRequired);
|
315
|
-
if (name == "amd" || name == "nvidia" || name == "intel") {
|
316
|
-
ggml_vk_filterByVendor(devices, name);
|
317
|
-
} else if (name != "gpu") {
|
318
|
-
ggml_vk_filterByName(devices, name);
|
319
|
-
}
|
320
|
-
|
321
|
-
if (devices.empty())
|
322
|
-
return false;
|
323
|
-
|
324
|
-
*device = devices.front();
|
325
|
-
return true;
|
326
|
-
}
|
327
|
-
|
328
|
-
bool ggml_vk_get_device(ggml_vk_device * device, size_t memoryRequired, const char * name) {
|
329
|
-
return ggml_vk_get_device(device, memoryRequired, std::string(name));
|
330
|
-
}
|
331
|
-
|
332
|
-
bool ggml_vk_has_vulkan() {
|
333
|
-
return komputeManager()->hasVulkan();
|
334
|
-
}
|
335
|
-
|
336
|
-
bool ggml_vk_has_device() {
|
337
|
-
return komputeManager()->hasDevice();
|
338
|
-
}
|
339
|
-
|
340
|
-
ggml_vk_device ggml_vk_current_device() {
|
341
|
-
if (!komputeManager()->hasDevice())
|
342
|
-
return ggml_vk_device();
|
343
|
-
|
344
|
-
auto devices = ggml_vk_available_devices_internal(0);
|
345
|
-
ggml_vk_filterByName(devices, komputeManager()->physicalDevice()->getProperties().deviceName.data());
|
346
|
-
GGML_ASSERT(!devices.empty());
|
347
|
-
return devices.front();
|
348
|
-
}
|
349
|
-
|
350
|
-
static
|
351
|
-
void ggml_vk_allocate_descriptor_pool(struct ggml_kompute_context * ctx, size_t size) {
|
352
|
-
std::vector<vk::DescriptorPoolSize> descriptorPoolSizes = {
|
353
|
-
vk::DescriptorPoolSize(
|
354
|
-
vk::DescriptorType::eStorageBuffer,
|
355
|
-
3 * size // Descriptor count is number of possible tensors to pass into an algorithm
|
356
|
-
)
|
357
|
-
};
|
358
|
-
|
359
|
-
vk::DescriptorPoolCreateInfo descriptorPoolInfo(
|
360
|
-
vk::DescriptorPoolCreateFlags(),
|
361
|
-
size, // Max sets
|
362
|
-
static_cast<uint32_t>(descriptorPoolSizes.size()),
|
363
|
-
descriptorPoolSizes.data());
|
364
|
-
|
365
|
-
ctx->pool = std::make_shared<vk::DescriptorPool>();
|
366
|
-
vk::Result r = komputeManager()->device()->createDescriptorPool(
|
367
|
-
&descriptorPoolInfo, nullptr, ctx->pool.get());
|
368
|
-
if (r != vk::Result::eSuccess)
|
369
|
-
std::cerr << "Error allocating descriptor pool" << vk::to_string(r);
|
370
|
-
}
|
371
|
-
|
372
|
-
static
|
373
|
-
void ggml_vk_free_descriptor_pool(struct ggml_kompute_context * ctx) {
|
374
|
-
if (ctx->pool) {
|
375
|
-
komputeManager()->device()->destroy(
|
376
|
-
*ctx->pool,
|
377
|
-
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
378
|
-
ctx->pool = nullptr;
|
379
|
-
}
|
380
|
-
}
|
381
|
-
|
382
|
-
static
|
383
|
-
vk::Buffer *ggml_vk_allocate_buffer(size_t size) {
|
384
|
-
vk::BufferCreateInfo bufferCreateInfo;
|
385
|
-
bufferCreateInfo.size = size;
|
386
|
-
bufferCreateInfo.usage = vk::BufferUsageFlagBits::eStorageBuffer |
|
387
|
-
vk::BufferUsageFlagBits::eTransferSrc |
|
388
|
-
vk::BufferUsageFlagBits::eTransferDst;
|
389
|
-
bufferCreateInfo.sharingMode = vk::SharingMode::eExclusive;
|
390
|
-
|
391
|
-
vk::Buffer *vkBuffer = new vk::Buffer;
|
392
|
-
vk::Result r = komputeManager()->device()->createBuffer(&bufferCreateInfo, nullptr, vkBuffer);
|
393
|
-
if (r != vk::Result::eSuccess)
|
394
|
-
std::cerr << "Error allocating buffer " << vk::to_string(r) << std::endl;
|
395
|
-
return vkBuffer;
|
396
|
-
}
|
397
|
-
|
398
|
-
static
|
399
|
-
vk::DeviceMemory *ggml_vk_allocate(size_t size, vk::MemoryPropertyFlags flags, vk::MemoryRequirements requirements, bool *isHostVisible) {
|
400
|
-
|
401
|
-
uint32_t memoryTypeIndex = -1;
|
402
|
-
bool memoryTypeIndexFound = false;
|
403
|
-
vk::PhysicalDeviceMemoryProperties memoryProperties = komputeManager()->physicalDevice()->getMemoryProperties();
|
404
|
-
for (uint32_t i = 0; i < memoryProperties.memoryTypeCount; i++) {
|
405
|
-
const vk::MemoryType &memoryType = memoryProperties.memoryTypes[i];
|
406
|
-
const vk::MemoryHeap &memoryHeap = memoryProperties.memoryHeaps[memoryType.heapIndex];
|
407
|
-
if (memoryHeap.size < size) {
|
408
|
-
continue;
|
409
|
-
}
|
410
|
-
|
411
|
-
if (requirements.memoryTypeBits & (1 << i)) {
|
412
|
-
if (((memoryProperties.memoryTypes[i]).propertyFlags &
|
413
|
-
flags) == flags) {
|
414
|
-
memoryTypeIndex = i;
|
415
|
-
memoryTypeIndexFound = true;
|
416
|
-
if (isHostVisible && (memoryProperties.memoryTypes[i].propertyFlags & vk::MemoryPropertyFlagBits::eHostVisible)) {
|
417
|
-
*isHostVisible = true;
|
418
|
-
}
|
419
|
-
break;
|
420
|
-
}
|
421
|
-
}
|
422
|
-
}
|
423
|
-
if (!memoryTypeIndexFound) {
|
424
|
-
throw std::runtime_error(
|
425
|
-
"Memory type index for buffer creation not found");
|
426
|
-
}
|
427
|
-
|
428
|
-
vk::MemoryAllocateInfo allocInfo;
|
429
|
-
allocInfo.allocationSize = size;
|
430
|
-
allocInfo.memoryTypeIndex = memoryTypeIndex;
|
431
|
-
vk::DeviceMemory *vkDeviceMemory = new vk::DeviceMemory;
|
432
|
-
vk::Result r = komputeManager()->device()->allocateMemory(&allocInfo, nullptr, vkDeviceMemory);
|
433
|
-
if (r != vk::Result::eSuccess) {
|
434
|
-
std::cerr << "Error allocating memory " << vk::to_string(r) << std::endl;
|
435
|
-
throw std::runtime_error("Error allocating vulkan memory.");
|
436
|
-
}
|
437
|
-
return vkDeviceMemory;
|
438
|
-
}
|
439
|
-
|
440
|
-
static size_t ggml_vk_aligned_offset(ggml_backend_buffer_t buffer, size_t offset) {
|
441
|
-
size_t minStorageBufferOffsetAlignment = ggml_backend_buffer_get_alignment(buffer);
|
442
|
-
|
443
|
-
// If offset is already aligned, return it directly
|
444
|
-
if (offset % minStorageBufferOffsetAlignment == 0) {
|
445
|
-
return offset;
|
446
|
-
}
|
447
|
-
|
448
|
-
// Otherwise, return the largest multiple of minStorageBufferOffsetAlignment less than offset
|
449
|
-
return (offset / minStorageBufferOffsetAlignment) * minStorageBufferOffsetAlignment;
|
450
|
-
}
|
451
|
-
|
452
|
-
static ggml_vk_memory ggml_vk_allocate(size_t size) {
|
453
|
-
ggml_vk_memory memory;
|
454
|
-
bool isHostVisible = false;
|
455
|
-
{
|
456
|
-
memory.primaryBuffer = ggml_vk_allocate_buffer(size);
|
457
|
-
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.primaryBuffer);
|
458
|
-
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eDeviceLocal;
|
459
|
-
memory.primaryMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
|
460
|
-
komputeManager()->device()->bindBufferMemory(*memory.primaryBuffer, *memory.primaryMemory, 0);
|
461
|
-
if (isHostVisible) {
|
462
|
-
vk::Result r = komputeManager()->device()->mapMemory(*memory.primaryMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
|
463
|
-
if (r != vk::Result::eSuccess)
|
464
|
-
std::cerr << "Error mapping memory" << vk::to_string(r);
|
465
|
-
}
|
466
|
-
}
|
467
|
-
|
468
|
-
if (!isHostVisible) {
|
469
|
-
memory.stagingBuffer = ggml_vk_allocate_buffer(size);
|
470
|
-
vk::MemoryRequirements memoryRequirements = komputeManager()->device()->getBufferMemoryRequirements(*memory.stagingBuffer);
|
471
|
-
vk::MemoryPropertyFlags memoryPropertyFlags = vk::MemoryPropertyFlagBits::eHostVisible |
|
472
|
-
vk::MemoryPropertyFlagBits::eHostCoherent |
|
473
|
-
vk::MemoryPropertyFlagBits::eHostCached;
|
474
|
-
memory.stagingMemory = ggml_vk_allocate(size, memoryPropertyFlags, memoryRequirements, &isHostVisible);
|
475
|
-
komputeManager()->device()->bindBufferMemory(*memory.stagingBuffer, *memory.stagingMemory, 0);
|
476
|
-
vk::Result r = komputeManager()->device()->mapMemory(*memory.stagingMemory, 0, size, vk::MemoryMapFlags(), &memory.data);
|
477
|
-
if (r != vk::Result::eSuccess)
|
478
|
-
std::cerr << "Error mapping memory" << vk::to_string(r);
|
479
|
-
}
|
480
|
-
|
481
|
-
memory.size = size;
|
482
|
-
return memory;
|
483
|
-
}
|
484
|
-
|
485
|
-
static void ggml_vk_free_memory(ggml_vk_memory &memory)
|
486
|
-
{
|
487
|
-
komputeManager()->device()->destroy(
|
488
|
-
*memory.primaryBuffer,
|
489
|
-
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
490
|
-
if (memory.stagingBuffer) {
|
491
|
-
komputeManager()->device()->destroy(
|
492
|
-
*memory.stagingBuffer,
|
493
|
-
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
494
|
-
}
|
495
|
-
komputeManager()->device()->freeMemory(
|
496
|
-
*memory.primaryMemory,
|
497
|
-
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
498
|
-
if (memory.stagingMemory) {
|
499
|
-
komputeManager()->device()->freeMemory(
|
500
|
-
*memory.stagingMemory,
|
501
|
-
(vk::Optional<const vk::AllocationCallbacks>)nullptr);
|
502
|
-
}
|
503
|
-
}
|
504
|
-
|
505
|
-
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft);
|
506
|
-
|
507
|
-
static
|
508
|
-
ggml_vk_memory * ggml_vk_find_tensor(const struct ggml_tensor * t, uint64_t & offset) {
|
509
|
-
ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer;
|
510
|
-
|
511
|
-
// compatibility with ggml-backend
|
512
|
-
GGML_ASSERT(buffer && buffer->buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name);
|
513
|
-
|
514
|
-
ggml_vk_memory * buf_ctx = static_cast<ggml_vk_memory *>(buffer->context);
|
515
|
-
|
516
|
-
const intptr_t ioffs = intptr_t(t->data) - intptr_t(buf_ctx->data);
|
517
|
-
|
518
|
-
GGML_ASSERT(ioffs >= 0 && ioffs + int64_t(ggml_nbytes(t)) <= int64_t(buffer->size));
|
519
|
-
|
520
|
-
offset = uint64_t(ioffs);
|
521
|
-
return buf_ctx;
|
522
|
-
}
|
523
|
-
|
524
|
-
static
|
525
|
-
const std::shared_ptr<kp::Tensor> ggml_vk_get_tensor(const struct ggml_tensor * t, uint32_t * alignedOffset = nullptr) {
|
526
|
-
uint64_t originalOffset = 0;
|
527
|
-
auto * res = ggml_vk_find_tensor(t, originalOffset);
|
528
|
-
if (!res) {
|
529
|
-
static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
|
530
|
-
return nullTensor;
|
531
|
-
}
|
532
|
-
|
533
|
-
// Create a tensor whose memory will be composed of our buffers at the correct offset
|
534
|
-
const size_t nelements = ggml_nelements(t);
|
535
|
-
size_t nbytes = ggml_nbytes(t);
|
536
|
-
|
537
|
-
size_t vulkanOffset = ggml_vk_aligned_offset(t->buffer, originalOffset);
|
538
|
-
if (alignedOffset) {
|
539
|
-
*alignedOffset = originalOffset - vulkanOffset;
|
540
|
-
nbytes += *alignedOffset;
|
541
|
-
}
|
542
|
-
|
543
|
-
return komputeManager()->tensor(
|
544
|
-
t->data,
|
545
|
-
nelements,
|
546
|
-
nbytes, kp::Tensor::TensorDataTypes::eFloat,
|
547
|
-
res->primaryMemory, res->primaryBuffer,
|
548
|
-
res->stagingMemory, res->stagingBuffer,
|
549
|
-
vulkanOffset);
|
550
|
-
}
|
551
|
-
|
552
|
-
static std::vector<uint32_t> getSpirvShader(const unsigned char* rawData, size_t size) {
|
553
|
-
if (size % sizeof(uint32_t) != 0) {
|
554
|
-
throw std::runtime_error("Invalid size: must be divisible by sizeof(uint32_t)");
|
555
|
-
}
|
556
|
-
|
557
|
-
const uint32_t* data_ptr = reinterpret_cast<const uint32_t*>(rawData);
|
558
|
-
size_t count = size / sizeof(uint32_t);
|
559
|
-
return std::vector<uint32_t>(data_ptr, data_ptr + count);
|
560
|
-
}
|
561
|
-
|
562
|
-
inline static
|
563
|
-
uint32_t safe_divide(uint32_t a, uint32_t b) {
|
564
|
-
if (b <= 1) {
|
565
|
-
return a;
|
566
|
-
}
|
567
|
-
if ((a % b) != 0) {
|
568
|
-
fprintf(stderr, "((%u %% %u) == %u) != 0\n", a, b, a % b);
|
569
|
-
GGML_ASSERT(!"safe_divide result would've had remainder");
|
570
|
-
}
|
571
|
-
return a / b;
|
572
|
-
}
|
573
|
-
|
574
|
-
static void ggml_vk_add(
|
575
|
-
kp::Sequence& seq,
|
576
|
-
const std::shared_ptr<kp::Tensor>& inA,
|
577
|
-
const std::shared_ptr<kp::Tensor>& inB,
|
578
|
-
const std::shared_ptr<kp::Tensor>& out,
|
579
|
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
580
|
-
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
|
581
|
-
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
|
582
|
-
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
583
|
-
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
|
584
|
-
int32_t ne0,
|
585
|
-
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
|
586
|
-
) {
|
587
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_add_comp_spv,
|
588
|
-
kp::shader_data::op_add_comp_spv_len);
|
589
|
-
|
590
|
-
struct PushConstants {
|
591
|
-
uint32_t inAOff, inBOff, outOff;
|
592
|
-
int32_t ne00;
|
593
|
-
int32_t nb00, nb01, nb02, nb03;
|
594
|
-
int32_t ne10, ne11, ne12, ne13;
|
595
|
-
int32_t nb10, nb11, nb12, nb13;
|
596
|
-
int32_t ne0;
|
597
|
-
int32_t nb0, nb1, nb2, nb3;
|
598
|
-
} const pushConsts {
|
599
|
-
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
600
|
-
ne00,
|
601
|
-
nb00, nb01, nb02, nb03,
|
602
|
-
ne10, ne11, ne12, ne13,
|
603
|
-
nb10, nb11, nb12, nb13,
|
604
|
-
ne0,
|
605
|
-
nb0, nb1, nb2, nb3
|
606
|
-
};
|
607
|
-
|
608
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
609
|
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
610
|
-
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
|
611
|
-
} else {
|
612
|
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
613
|
-
s_algo->setTensors({inA, inB, out});
|
614
|
-
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
615
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
616
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
617
|
-
}
|
618
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
619
|
-
}
|
620
|
-
|
621
|
-
static void ggml_vk_addrow(kp::Sequence& seq,
|
622
|
-
const std::shared_ptr<kp::Tensor>& inA,
|
623
|
-
const std::shared_ptr<kp::Tensor>& inB,
|
624
|
-
const std::shared_ptr<kp::Tensor>& out,
|
625
|
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
626
|
-
uint32_t size, uint32_t row = 0) {
|
627
|
-
|
628
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_addrow_comp_spv,
|
629
|
-
kp::shader_data::op_addrow_comp_spv_len);
|
630
|
-
|
631
|
-
struct PushConstants {
|
632
|
-
uint32_t inAOff, inBOff, outOff;
|
633
|
-
uint32_t row;
|
634
|
-
} const pushConsts {
|
635
|
-
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
636
|
-
row
|
637
|
-
};
|
638
|
-
|
639
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
640
|
-
if (!komputeManager()->hasAlgorithm(__func__))
|
641
|
-
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
|
642
|
-
else {
|
643
|
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
644
|
-
s_algo->setTensors({inA, inB, out});
|
645
|
-
s_algo->setWorkgroup({size});
|
646
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
647
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
648
|
-
}
|
649
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
650
|
-
}
|
651
|
-
|
652
|
-
static void ggml_vk_mul(
|
653
|
-
kp::Sequence& seq,
|
654
|
-
const std::shared_ptr<kp::Tensor>& inA,
|
655
|
-
const std::shared_ptr<kp::Tensor>& inB,
|
656
|
-
const std::shared_ptr<kp::Tensor>& out,
|
657
|
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
658
|
-
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
|
659
|
-
int32_t nb00, int32_t nb01, int32_t nb02, int32_t nb03,
|
660
|
-
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
661
|
-
int32_t nb10, int32_t nb11, int32_t nb12, int32_t nb13,
|
662
|
-
int32_t ne0,
|
663
|
-
int32_t nb0, int32_t nb1, int32_t nb2, int32_t nb3
|
664
|
-
) {
|
665
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_comp_spv,
|
666
|
-
kp::shader_data::op_mul_comp_spv_len);
|
667
|
-
|
668
|
-
struct PushConstants {
|
669
|
-
uint32_t inAOff, inBOff, outOff;
|
670
|
-
int32_t ne00;
|
671
|
-
int32_t nb00, nb01, nb02, nb03;
|
672
|
-
int32_t ne10, ne11, ne12, ne13;
|
673
|
-
int32_t nb10, nb11, nb12, nb13;
|
674
|
-
int32_t ne0;
|
675
|
-
int32_t nb0, nb1, nb2, nb3;
|
676
|
-
} const pushConsts {
|
677
|
-
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
678
|
-
ne00,
|
679
|
-
nb00, nb01, nb02, nb03,
|
680
|
-
ne10, ne11, ne12, ne13,
|
681
|
-
nb10, nb11, nb12, nb13,
|
682
|
-
ne0,
|
683
|
-
nb0, nb1, nb2, nb3
|
684
|
-
};
|
685
|
-
|
686
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
687
|
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
688
|
-
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
|
689
|
-
} else {
|
690
|
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
691
|
-
s_algo->setTensors({inA, inB, out});
|
692
|
-
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
693
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
694
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
695
|
-
}
|
696
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
697
|
-
}
|
698
|
-
|
699
|
-
static void ggml_vk_scale(kp::Sequence& seq,
|
700
|
-
const std::shared_ptr<kp::Tensor>& in,
|
701
|
-
const std::shared_ptr<kp::Tensor>& out,
|
702
|
-
uint32_t inOff, uint32_t outOff,
|
703
|
-
uint32_t size, float scale) {
|
704
|
-
const static auto spirv_1 = getSpirvShader(
|
705
|
-
kp::shader_data::op_scale_comp_spv, kp::shader_data::op_scale_comp_spv_len
|
706
|
-
);
|
707
|
-
const static auto spirv_8 = getSpirvShader(
|
708
|
-
kp::shader_data::op_scale_8_comp_spv, kp::shader_data::op_scale_8_comp_spv_len
|
709
|
-
);
|
710
|
-
|
711
|
-
struct PushConstants {
|
712
|
-
uint32_t inOff, outOff;
|
713
|
-
float scale;
|
714
|
-
} const pushConsts {
|
715
|
-
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
716
|
-
scale
|
717
|
-
};
|
718
|
-
|
719
|
-
const auto * spirv = &spirv_1;
|
720
|
-
std::string name(__func__);
|
721
|
-
if (size % 8 == 0) {
|
722
|
-
size /= 8;
|
723
|
-
name += "_8";
|
724
|
-
spirv = &spirv_8;
|
725
|
-
}
|
726
|
-
|
727
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
728
|
-
if (!komputeManager()->hasAlgorithm(name)) {
|
729
|
-
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, *spirv, {size}, {}, {pushConsts});
|
730
|
-
} else {
|
731
|
-
s_algo = komputeManager()->getAlgorithm(name);
|
732
|
-
s_algo->setTensors({in, out});
|
733
|
-
s_algo->setWorkgroup({size});
|
734
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
735
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
736
|
-
}
|
737
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
738
|
-
}
|
739
|
-
|
740
|
-
static void ggml_vk_xxlu(
|
741
|
-
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
|
742
|
-
const std::shared_ptr<kp::Tensor>& in,
|
743
|
-
const std::shared_ptr<kp::Tensor>& out,
|
744
|
-
uint32_t inOff, uint32_t outOff,
|
745
|
-
uint32_t size
|
746
|
-
) {
|
747
|
-
struct PushConstants {
|
748
|
-
uint32_t inOff, outOff;
|
749
|
-
} const pushConsts {
|
750
|
-
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
751
|
-
};
|
752
|
-
|
753
|
-
auto name = std::string(__func__) + "_" + suffix;
|
754
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
755
|
-
if (!komputeManager()->hasAlgorithm(name)) {
|
756
|
-
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {size}, {}, {pushConsts});
|
757
|
-
} else {
|
758
|
-
s_algo = komputeManager()->getAlgorithm(name);
|
759
|
-
s_algo->setTensors({in, out});
|
760
|
-
s_algo->setWorkgroup({size});
|
761
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
762
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
763
|
-
}
|
764
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
765
|
-
}
|
766
|
-
|
767
|
-
template <typename... Args>
|
768
|
-
static void ggml_vk_silu(Args&&... args) {
|
769
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_silu_comp_spv,
|
770
|
-
kp::shader_data::op_silu_comp_spv_len);
|
771
|
-
|
772
|
-
ggml_vk_xxlu(spirv, "silu", std::forward<Args>(args)...);
|
773
|
-
}
|
774
|
-
|
775
|
-
template <typename... Args>
|
776
|
-
static void ggml_vk_relu(Args&&... args) {
|
777
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_relu_comp_spv,
|
778
|
-
kp::shader_data::op_relu_comp_spv_len);
|
779
|
-
|
780
|
-
ggml_vk_xxlu(spirv, "relu", std::forward<Args>(args)...);
|
781
|
-
}
|
782
|
-
|
783
|
-
template <typename... Args>
|
784
|
-
static void ggml_vk_gelu(Args&&... args) {
|
785
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_gelu_comp_spv,
|
786
|
-
kp::shader_data::op_gelu_comp_spv_len);
|
787
|
-
|
788
|
-
ggml_vk_xxlu(spirv, "gelu", std::forward<Args>(args)...);
|
789
|
-
}
|
790
|
-
|
791
|
-
static void ggml_vk_soft_max(
|
792
|
-
kp::Sequence& seq,
|
793
|
-
const std::shared_ptr<kp::Tensor>& inA,
|
794
|
-
const std::shared_ptr<kp::Tensor>& inB,
|
795
|
-
const std::shared_ptr<kp::Tensor>& out,
|
796
|
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
797
|
-
int32_t ne00, int32_t ne01, int32_t ne02, uint32_t ne03,
|
798
|
-
float scale
|
799
|
-
) {
|
800
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_softmax_comp_spv,
|
801
|
-
kp::shader_data::op_softmax_comp_spv_len);
|
802
|
-
|
803
|
-
struct PushConstants {
|
804
|
-
uint32_t inAOff, inBOff, outOff;
|
805
|
-
int32_t ne00, ne01, ne02;
|
806
|
-
float scale;
|
807
|
-
int32_t mask;
|
808
|
-
} pushConsts {
|
809
|
-
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
810
|
-
ne00, ne01, ne02,
|
811
|
-
scale,
|
812
|
-
bool(inB)
|
813
|
-
};
|
814
|
-
|
815
|
-
auto & inB_ = inB ? inB : inA;
|
816
|
-
|
817
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
818
|
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
819
|
-
// FIXME: The softmax kernel needs to be fixed to use the subgroupsize which can vary by device
|
820
|
-
const uint32_t local_x = 32;
|
821
|
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB_, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {local_x}, {pushConsts});
|
822
|
-
} else {
|
823
|
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
824
|
-
s_algo->setTensors({inA, inB_, out});
|
825
|
-
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
826
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
827
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
828
|
-
}
|
829
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
830
|
-
}
|
831
|
-
|
832
|
-
static void ggml_vk_norm_(
|
833
|
-
const std::vector<uint32_t>& spirv, const char * suffix, kp::Sequence& seq,
|
834
|
-
const std::shared_ptr<kp::Tensor>& in,
|
835
|
-
const std::shared_ptr<kp::Tensor>& out,
|
836
|
-
uint32_t inOff, uint32_t outOff,
|
837
|
-
int32_t ne00, int32_t nb01,
|
838
|
-
int32_t nrows, float epsilon
|
839
|
-
) {
|
840
|
-
GGML_ASSERT(nb01%sizeof(float) == 0);
|
841
|
-
GGML_ASSERT(ne00%sizeof(float) == 0);
|
842
|
-
|
843
|
-
struct PushConstants {
|
844
|
-
uint32_t inOff, outOff;
|
845
|
-
uint32_t ne00, nb01;
|
846
|
-
float eps;
|
847
|
-
} pushConsts {
|
848
|
-
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
849
|
-
(uint32_t)ne00, (uint32_t)nb01, epsilon
|
850
|
-
};
|
851
|
-
|
852
|
-
auto name = std::string(__func__) + "_" + suffix;
|
853
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
854
|
-
if (!komputeManager()->hasAlgorithm(name)) {
|
855
|
-
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {(uint32_t)nrows}, {}, {pushConsts});
|
856
|
-
} else {
|
857
|
-
s_algo = komputeManager()->getAlgorithm(name);
|
858
|
-
s_algo->setTensors({in, out});
|
859
|
-
s_algo->setWorkgroup({(uint32_t)nrows});
|
860
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
861
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
862
|
-
}
|
863
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
864
|
-
}
|
865
|
-
|
866
|
-
template <typename... Args>
|
867
|
-
static void ggml_vk_norm(Args&&... args) {
|
868
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_norm_comp_spv,
|
869
|
-
kp::shader_data::op_norm_comp_spv_len);
|
870
|
-
|
871
|
-
ggml_vk_norm_(spirv, "norm", std::forward<Args>(args)...);
|
872
|
-
}
|
873
|
-
|
874
|
-
template <typename... Args>
|
875
|
-
static void ggml_vk_rms_norm(Args&&... args) {
|
876
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_rmsnorm_comp_spv,
|
877
|
-
kp::shader_data::op_rmsnorm_comp_spv_len);
|
878
|
-
|
879
|
-
ggml_vk_norm_(spirv, "rms", std::forward<Args>(args)...);
|
880
|
-
}
|
881
|
-
|
882
|
-
static void ggml_vk_diag_mask_inf(kp::Sequence& seq,
|
883
|
-
const std::shared_ptr<kp::Tensor>& in,
|
884
|
-
const std::shared_ptr<kp::Tensor>& out,
|
885
|
-
uint32_t inOff, uint32_t outOff,
|
886
|
-
uint32_t n_past,
|
887
|
-
int32_t ne00, int32_t ne01, int32_t ne02) {
|
888
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_diagmask_comp_spv,
|
889
|
-
kp::shader_data::op_diagmask_comp_spv_len);
|
890
|
-
|
891
|
-
struct PushConstants {
|
892
|
-
uint32_t inOff, outOff;
|
893
|
-
uint32_t n_past;
|
894
|
-
int32_t ne00, ne01;
|
895
|
-
} pushConsts {
|
896
|
-
safe_divide(inOff, 4), safe_divide(outOff, 4),
|
897
|
-
n_past,
|
898
|
-
ne00, ne01
|
899
|
-
};
|
900
|
-
|
901
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
902
|
-
if (!komputeManager()->hasAlgorithm(__func__))
|
903
|
-
s_algo = komputeManager()->algorithm<float, PushConstants>(__func__, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne00), unsigned(ne01), unsigned(ne02)}, {}, {pushConsts});
|
904
|
-
else {
|
905
|
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
906
|
-
s_algo->setTensors({in, out});
|
907
|
-
s_algo->setWorkgroup({unsigned(ne00), unsigned(ne01), unsigned(ne02)});
|
908
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
909
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
910
|
-
}
|
911
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
912
|
-
}
|
913
|
-
|
914
|
-
static void ggml_vk_mul_mat_f16(
|
915
|
-
kp::Sequence& seq,
|
916
|
-
const std::shared_ptr<kp::Tensor>& inA,
|
917
|
-
const std::shared_ptr<kp::Tensor>& inB,
|
918
|
-
const std::shared_ptr<kp::Tensor>& out,
|
919
|
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
920
|
-
int32_t ne00, int32_t ne01, int32_t ne02,
|
921
|
-
uint32_t nb00, uint32_t nb01, uint32_t nb02,
|
922
|
-
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
923
|
-
uint32_t nb10, uint32_t nb11, uint32_t nb12,
|
924
|
-
int32_t ne0, int32_t ne1,
|
925
|
-
uint32_t r2, uint32_t r3
|
926
|
-
) {
|
927
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_f16_comp_spv,
|
928
|
-
kp::shader_data::op_mul_mat_f16_comp_spv_len);
|
929
|
-
|
930
|
-
struct PushConstants {
|
931
|
-
uint32_t inAOff, inBOff, outOff;
|
932
|
-
int32_t ne00, ne01, ne02;
|
933
|
-
uint32_t nb00, nb01, nb02;
|
934
|
-
int32_t ne10, ne11, ne12;
|
935
|
-
uint32_t nb10, nb11, nb12;
|
936
|
-
int32_t ne0, ne1;
|
937
|
-
uint32_t r2, r3;
|
938
|
-
} pushConsts {
|
939
|
-
safe_divide(inAOff, 2), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
940
|
-
ne00, ne01, ne02,
|
941
|
-
nb00, nb01, nb02,
|
942
|
-
ne10, ne11, ne12,
|
943
|
-
nb10, nb11, nb12,
|
944
|
-
ne0, ne1,
|
945
|
-
r2, r3
|
946
|
-
};
|
947
|
-
|
948
|
-
const unsigned ny = unsigned((ne11 + 4 - 1)/4);
|
949
|
-
|
950
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
951
|
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
952
|
-
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
|
953
|
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned(ne01), ny, unsigned(ne12*ne13)}, {local_x}, {pushConsts});
|
954
|
-
} else {
|
955
|
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
956
|
-
s_algo->setTensors({inA, inB, out});
|
957
|
-
s_algo->setWorkgroup({unsigned(ne01), ny, unsigned(ne12*ne13)});
|
958
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
959
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
960
|
-
}
|
961
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
962
|
-
}
|
963
|
-
|
964
|
-
static void ggml_vk_mul_mat_mat_f32(kp::Sequence& seq,
|
965
|
-
const std::shared_ptr<kp::Tensor>& inA,
|
966
|
-
const std::shared_ptr<kp::Tensor>& inB,
|
967
|
-
const std::shared_ptr<kp::Tensor>& out,
|
968
|
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
969
|
-
int32_t ne00, int32_t ne01, int32_t ne02,
|
970
|
-
uint32_t nb01, uint32_t nb02,
|
971
|
-
int32_t ne11, int32_t ne12,
|
972
|
-
uint32_t nb11, uint32_t nb12,
|
973
|
-
uint32_t nb1, uint32_t nb2) {
|
974
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_mat_f32_comp_spv,
|
975
|
-
kp::shader_data::op_mul_mat_mat_f32_comp_spv_len);
|
976
|
-
|
977
|
-
struct PushConstants {
|
978
|
-
uint32_t inAOff, inBOff, outOff;
|
979
|
-
int32_t ne00, ne01, ne02, ne11, ne12;
|
980
|
-
uint32_t nb01, nb02;
|
981
|
-
uint32_t nb11, nb12;
|
982
|
-
uint32_t nb1, nb2;
|
983
|
-
} pushConsts {
|
984
|
-
safe_divide(inAOff, 4), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
985
|
-
ne00, ne01, ne02, ne11, ne12,
|
986
|
-
nb01, nb02, nb11, nb12,
|
987
|
-
nb1, nb2
|
988
|
-
};
|
989
|
-
|
990
|
-
const uint32_t local_x = ggml_vk_current_device().subgroupSize;
|
991
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
992
|
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
993
|
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(),
|
994
|
-
{inA, inB, out}, spirv,
|
995
|
-
{unsigned(ne01),
|
996
|
-
unsigned(ne11),
|
997
|
-
unsigned(std::max(ne12, ne02))
|
998
|
-
},
|
999
|
-
{local_x},
|
1000
|
-
{pushConsts});
|
1001
|
-
} else {
|
1002
|
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
1003
|
-
s_algo->setTensors({inA, inB, out});
|
1004
|
-
s_algo->setWorkgroup({unsigned(ne01),
|
1005
|
-
unsigned(ne11),
|
1006
|
-
unsigned(std::max(ne12, ne02)),
|
1007
|
-
});
|
1008
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1009
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1010
|
-
}
|
1011
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1012
|
-
}
|
1013
|
-
|
1014
|
-
static void ggml_vk_mul_mat_impl(
|
1015
|
-
const std::vector<uint32_t>& spirv, const char * suffix, uint32_t block_size, kp::Sequence& seq,
|
1016
|
-
const std::shared_ptr<kp::Tensor>& inA,
|
1017
|
-
const std::shared_ptr<kp::Tensor>& inB,
|
1018
|
-
const std::shared_ptr<kp::Tensor>& out,
|
1019
|
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
1020
|
-
int32_t ne00, int32_t ne01, int32_t ne02,
|
1021
|
-
int32_t ne10, int32_t ne11, int32_t ne12, int32_t ne13,
|
1022
|
-
int32_t ne0, int32_t ne1,
|
1023
|
-
uint32_t r2, uint32_t r3
|
1024
|
-
) {
|
1025
|
-
struct PushConstants {
|
1026
|
-
uint32_t inAOff, inBOff, outOff;
|
1027
|
-
int32_t ne00, ne01, ne02;
|
1028
|
-
int32_t ne10, ne12;
|
1029
|
-
int32_t ne0, ne1;
|
1030
|
-
uint32_t r2, r3;
|
1031
|
-
} pushConsts {
|
1032
|
-
safe_divide(inAOff, block_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
1033
|
-
ne00, ne01, ne02,
|
1034
|
-
ne10, ne12,
|
1035
|
-
ne0, ne1,
|
1036
|
-
r2, r3
|
1037
|
-
};
|
1038
|
-
|
1039
|
-
auto name = std::string(__func__) + "_" + suffix;
|
1040
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1041
|
-
if (!komputeManager()->hasAlgorithm(name)) {
|
1042
|
-
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
|
1043
|
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)}, {local_x}, {pushConsts});
|
1044
|
-
} else {
|
1045
|
-
s_algo = komputeManager()->getAlgorithm(name);
|
1046
|
-
s_algo->setTensors({inA, inB, out});
|
1047
|
-
s_algo->setWorkgroup({unsigned((ne01 + 7)/8), unsigned(ne11), unsigned(ne12*ne13)});
|
1048
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1049
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1050
|
-
}
|
1051
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1052
|
-
}
|
1053
|
-
|
1054
|
-
template <typename... Args>
|
1055
|
-
static void ggml_vk_mul_mat_q4_0(Args&&... args) {
|
1056
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_0_comp_spv,
|
1057
|
-
kp::shader_data::op_mul_mat_q4_0_comp_spv_len);
|
1058
|
-
|
1059
|
-
ggml_vk_mul_mat_impl(spirv, "q4_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
|
1060
|
-
}
|
1061
|
-
|
1062
|
-
template <typename... Args>
|
1063
|
-
static void ggml_vk_mul_mat_q4_1(Args&&... args) {
|
1064
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q4_1_comp_spv,
|
1065
|
-
kp::shader_data::op_mul_mat_q4_1_comp_spv_len);
|
1066
|
-
|
1067
|
-
ggml_vk_mul_mat_impl(spirv, "q4_1", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
|
1068
|
-
}
|
1069
|
-
|
1070
|
-
template <typename... Args>
|
1071
|
-
static void ggml_vk_mul_mat_q8_0(Args&&... args) {
|
1072
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q8_0_comp_spv,
|
1073
|
-
kp::shader_data::op_mul_mat_q8_0_comp_spv_len);
|
1074
|
-
|
1075
|
-
ggml_vk_mul_mat_impl(spirv, "q8_0", 1/*We access blocks unaligned*/, std::forward<Args>(args)...);
|
1076
|
-
}
|
1077
|
-
|
1078
|
-
static void ggml_vk_mul_mat_q6_k(
|
1079
|
-
kp::Sequence& seq,
|
1080
|
-
const std::shared_ptr<kp::Tensor>& inA,
|
1081
|
-
const std::shared_ptr<kp::Tensor>& inB,
|
1082
|
-
const std::shared_ptr<kp::Tensor>& out,
|
1083
|
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
1084
|
-
int32_t ne00, int32_t ne10, int32_t ne0, int32_t ne1,
|
1085
|
-
int32_t ne01, int32_t ne11, int32_t ne12, int32_t ne02
|
1086
|
-
) {
|
1087
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_mul_mat_q6_k_comp_spv,
|
1088
|
-
kp::shader_data::op_mul_mat_q6_k_comp_spv_len);
|
1089
|
-
|
1090
|
-
struct PushConstants {
|
1091
|
-
uint32_t inAOff, inBOff, outOff;
|
1092
|
-
int32_t ne00, ne10, ne0, ne1, ne01, gqa;
|
1093
|
-
} pushConsts {
|
1094
|
-
inAOff, safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
1095
|
-
ne00, ne10, ne0, ne1, ne01, ne12/ne02
|
1096
|
-
};
|
1097
|
-
|
1098
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1099
|
-
if (!komputeManager()->hasAlgorithm(__func__)) {
|
1100
|
-
const uint32_t local_x = ggml_vk_current_device().subgroupSize * 2;
|
1101
|
-
s_algo = komputeManager()->algorithm<uint32_t, PushConstants>(__func__, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)}, {local_x}, {pushConsts});
|
1102
|
-
} else {
|
1103
|
-
s_algo = komputeManager()->getAlgorithm(__func__);
|
1104
|
-
s_algo->setTensors({inA, inB, out});
|
1105
|
-
s_algo->setWorkgroup({unsigned((ne01 + 1)/2), unsigned(ne11), unsigned(ne12)});
|
1106
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1107
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1108
|
-
}
|
1109
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1110
|
-
}
|
1111
|
-
|
1112
|
-
static void ggml_vk_get_rows(
|
1113
|
-
const std::vector<uint32_t>& spirv,
|
1114
|
-
const char * suffix,
|
1115
|
-
unsigned element_size, unsigned qk,
|
1116
|
-
kp::Sequence& seq,
|
1117
|
-
const std::shared_ptr<kp::Tensor>& inA,
|
1118
|
-
const std::shared_ptr<kp::Tensor>& inB,
|
1119
|
-
const std::shared_ptr<kp::Tensor>& out,
|
1120
|
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
1121
|
-
int32_t ne00, int32_t nb01, int32_t nb1,
|
1122
|
-
uint32_t size
|
1123
|
-
) {
|
1124
|
-
GGML_ASSERT(nb01%element_size == 0);
|
1125
|
-
GGML_ASSERT(nb1%sizeof(float) == 0);
|
1126
|
-
if (qk) GGML_ASSERT(ne00%qk == 0);
|
1127
|
-
|
1128
|
-
struct PushConstants {
|
1129
|
-
uint32_t inAOff, inBOff, outOff;
|
1130
|
-
int32_t ne00, nb01, nb1;
|
1131
|
-
} pushConsts {
|
1132
|
-
safe_divide(inAOff, element_size), safe_divide(inBOff, 4), safe_divide(outOff, 4),
|
1133
|
-
ne00, nb01, nb1
|
1134
|
-
};
|
1135
|
-
|
1136
|
-
auto name = std::string(__func__) + "_" + suffix;
|
1137
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1138
|
-
if (!komputeManager()->hasAlgorithm(name)) {
|
1139
|
-
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {inA, inB, out}, spirv, {size}, {}, {pushConsts});
|
1140
|
-
} else {
|
1141
|
-
s_algo = komputeManager()->getAlgorithm(name);
|
1142
|
-
s_algo->setTensors({inA, inB, out});
|
1143
|
-
s_algo->setWorkgroup({size});
|
1144
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1145
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1146
|
-
}
|
1147
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1148
|
-
}
|
1149
|
-
|
1150
|
-
template <typename... Args>
|
1151
|
-
static void ggml_vk_get_rows_f32(Args&&... args) {
|
1152
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f32_comp_spv,
|
1153
|
-
kp::shader_data::op_getrows_f32_comp_spv_len);
|
1154
|
-
|
1155
|
-
ggml_vk_get_rows(spirv, "f32", sizeof(float), 0, std::forward<Args>(args)...);
|
1156
|
-
}
|
1157
|
-
|
1158
|
-
template <typename... Args>
|
1159
|
-
static void ggml_vk_get_rows_f16(Args&&... args) {
|
1160
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_f16_comp_spv,
|
1161
|
-
kp::shader_data::op_getrows_f16_comp_spv_len);
|
1162
|
-
|
1163
|
-
ggml_vk_get_rows(spirv, "f16", sizeof(half), 0, std::forward<Args>(args)...);
|
1164
|
-
}
|
1165
|
-
|
1166
|
-
template <typename... Args>
|
1167
|
-
static void ggml_vk_get_rows_q4_0(Args&&... args) {
|
1168
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_0_comp_spv,
|
1169
|
-
kp::shader_data::op_getrows_q4_0_comp_spv_len);
|
1170
|
-
|
1171
|
-
ggml_vk_get_rows(spirv, "q4_0", 1/*We access blocks unaligned*/, QK4_0, std::forward<Args>(args)...);
|
1172
|
-
}
|
1173
|
-
|
1174
|
-
template <typename... Args>
|
1175
|
-
static void ggml_vk_get_rows_q4_1(Args&&... args) {
|
1176
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q4_1_comp_spv,
|
1177
|
-
kp::shader_data::op_getrows_q4_1_comp_spv_len);
|
1178
|
-
|
1179
|
-
ggml_vk_get_rows(spirv, "q4_1", 1/*We access blocks unaligned*/, QK4_1, std::forward<Args>(args)...);
|
1180
|
-
}
|
1181
|
-
|
1182
|
-
template <typename... Args>
|
1183
|
-
static void ggml_vk_get_rows_q6_k(Args&&... args) {
|
1184
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_getrows_q6_k_comp_spv,
|
1185
|
-
kp::shader_data::op_getrows_q6_k_comp_spv_len);
|
1186
|
-
ggml_vk_get_rows(spirv, "q6_k", 1/*We access blocks unaligned*/, QK_NL, std::forward<Args>(args)...);
|
1187
|
-
}
|
1188
|
-
|
1189
|
-
static void ggml_vk_rope(
|
1190
|
-
kp::Sequence& seq,
|
1191
|
-
const std::shared_ptr<kp::Tensor>& inA,
|
1192
|
-
const std::shared_ptr<kp::Tensor>& inB,
|
1193
|
-
const std::shared_ptr<kp::Tensor>& out,
|
1194
|
-
uint32_t inAOff, uint32_t inBOff, uint32_t outOff,
|
1195
|
-
ggml_type src0t, int32_t n_dims, int32_t mode, int32_t n_ctx_orig,
|
1196
|
-
float freq_base, float freq_scale, float ext_factor, float attn_factor, float beta_fast, float beta_slow,
|
1197
|
-
int32_t ne01, int32_t ne02, int32_t ne03,
|
1198
|
-
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
1199
|
-
int32_t ne0,
|
1200
|
-
uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
|
1201
|
-
) {
|
1202
|
-
GGML_ASSERT(src0t == GGML_TYPE_F16 || src0t == GGML_TYPE_F32);
|
1203
|
-
|
1204
|
-
static const auto spirv_f16 = getSpirvShader(
|
1205
|
-
kp::shader_data::op_rope_f16_comp_spv, kp::shader_data::op_rope_f16_comp_spv_len
|
1206
|
-
);
|
1207
|
-
static const auto spirv_f32 = getSpirvShader(
|
1208
|
-
kp::shader_data::op_rope_f32_comp_spv, kp::shader_data::op_rope_f32_comp_spv_len
|
1209
|
-
);
|
1210
|
-
|
1211
|
-
int type_size = src0t == GGML_TYPE_F16 ? 2 : 4;
|
1212
|
-
|
1213
|
-
GGML_ASSERT(nb03 % type_size == 0);
|
1214
|
-
GGML_ASSERT(nb02 % type_size == 0);
|
1215
|
-
GGML_ASSERT(nb01 % type_size == 0);
|
1216
|
-
GGML_ASSERT(nb00 % type_size == 0);
|
1217
|
-
GGML_ASSERT(nb3 % type_size == 0);
|
1218
|
-
GGML_ASSERT(nb2 % type_size == 0);
|
1219
|
-
GGML_ASSERT(nb1 % type_size == 0);
|
1220
|
-
GGML_ASSERT(nb0 % type_size == 0);
|
1221
|
-
|
1222
|
-
struct PushConstants {
|
1223
|
-
uint32_t inAOff, inBOff, outOff;
|
1224
|
-
int32_t n_dims, mode, n_ctx_orig;
|
1225
|
-
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
1226
|
-
uint32_t nb00, nb01, nb02, nb03;
|
1227
|
-
int32_t ne0;
|
1228
|
-
uint32_t nb0, nb1, nb2, nb3;
|
1229
|
-
} pushConsts {
|
1230
|
-
safe_divide(inAOff, type_size), safe_divide(inBOff, 4), safe_divide(outOff, type_size),
|
1231
|
-
n_dims, mode, n_ctx_orig,
|
1232
|
-
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
|
1233
|
-
nb00, nb01, nb02, nb03,
|
1234
|
-
ne0,
|
1235
|
-
nb0, nb1, nb2, nb3
|
1236
|
-
};
|
1237
|
-
|
1238
|
-
auto name = std::string(__func__) + (src0t == GGML_TYPE_F16 ? "_f16" : "_f32");
|
1239
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1240
|
-
if (!komputeManager()->hasAlgorithm(name)) {
|
1241
|
-
s_algo = komputeManager()->algorithm<float, PushConstants>(
|
1242
|
-
name, s_kompute_context->pool.get(), {inA, inB, out},
|
1243
|
-
src0t == GGML_TYPE_F16 ? spirv_f16 : spirv_f32,
|
1244
|
-
{unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts}
|
1245
|
-
);
|
1246
|
-
} else {
|
1247
|
-
s_algo = komputeManager()->getAlgorithm(name);
|
1248
|
-
s_algo->setTensors({inA, inB, out});
|
1249
|
-
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
1250
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1251
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1252
|
-
}
|
1253
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1254
|
-
}
|
1255
|
-
|
1256
|
-
static void ggml_vk_cpy(
|
1257
|
-
const std::vector<uint32_t>& spirv,
|
1258
|
-
uint32_t in_element_size, uint32_t out_element_size,
|
1259
|
-
kp::Sequence& seq,
|
1260
|
-
const std::shared_ptr<kp::Tensor>& in,
|
1261
|
-
const std::shared_ptr<kp::Tensor>& out,
|
1262
|
-
uint32_t inOff, uint32_t outOff,
|
1263
|
-
int32_t ne00, int32_t ne01, int32_t ne02, int32_t ne03,
|
1264
|
-
uint32_t nb00, uint32_t nb01, uint32_t nb02, uint32_t nb03,
|
1265
|
-
int32_t ne0, int32_t ne1, int32_t ne2,
|
1266
|
-
uint32_t nb0, uint32_t nb1, uint32_t nb2, uint32_t nb3
|
1267
|
-
) {
|
1268
|
-
struct PushConstants {
|
1269
|
-
uint32_t inOff, outOff;
|
1270
|
-
int32_t ne00, ne01, ne02;
|
1271
|
-
uint32_t nb00, nb01, nb02, nb03;
|
1272
|
-
int32_t ne0, ne1, ne2;
|
1273
|
-
uint32_t nb0, nb1, nb2, nb3;
|
1274
|
-
} pushConsts {
|
1275
|
-
safe_divide(inOff, in_element_size), safe_divide(outOff, out_element_size),
|
1276
|
-
ne00, ne01, ne02,
|
1277
|
-
nb00, nb01, nb02, nb03,
|
1278
|
-
ne0, ne1, ne2,
|
1279
|
-
nb0, nb1, nb2, nb3
|
1280
|
-
};
|
1281
|
-
|
1282
|
-
std::string name = std::string(__func__)
|
1283
|
-
+ "_i_" + std::to_string(in_element_size)
|
1284
|
-
+ "_o_" + std::to_string(out_element_size);
|
1285
|
-
std::shared_ptr<kp::Algorithm> s_algo = nullptr;
|
1286
|
-
if (!komputeManager()->hasAlgorithm(name))
|
1287
|
-
s_algo = komputeManager()->algorithm<float, PushConstants>(name, s_kompute_context->pool.get(), {in, out}, spirv, {unsigned(ne01), unsigned(ne02), unsigned(ne03)}, {}, {pushConsts});
|
1288
|
-
else {
|
1289
|
-
s_algo = komputeManager()->getAlgorithm(name);
|
1290
|
-
s_algo->setTensors({in, out});
|
1291
|
-
s_algo->setWorkgroup({unsigned(ne01), unsigned(ne02), unsigned(ne03)});
|
1292
|
-
s_algo->setPushConstants<PushConstants>({pushConsts});
|
1293
|
-
s_algo->updateDescriptors(s_kompute_context->pool.get());
|
1294
|
-
}
|
1295
|
-
seq.record<kp::OpAlgoDispatch>(s_algo);
|
1296
|
-
}
|
1297
|
-
|
1298
|
-
template <typename... Args>
|
1299
|
-
static void ggml_vk_cpy_f32_f16(Args&&... args) {
|
1300
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f16_comp_spv,
|
1301
|
-
kp::shader_data::op_cpy_f32_f16_comp_spv_len);
|
1302
|
-
ggml_vk_cpy(spirv, 4, 2, std::forward<Args>(args)...);
|
1303
|
-
}
|
1304
|
-
|
1305
|
-
template <typename... Args>
|
1306
|
-
static void ggml_vk_cpy_f32_f32(Args&&... args) {
|
1307
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f32_f32_comp_spv,
|
1308
|
-
kp::shader_data::op_cpy_f32_f32_comp_spv_len);
|
1309
|
-
ggml_vk_cpy(spirv, 4, 4, std::forward<Args>(args)...);
|
1310
|
-
}
|
1311
|
-
|
1312
|
-
template <typename... Args>
|
1313
|
-
static void ggml_vk_cpy_f16_f16(Args&&... args) {
|
1314
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f16_comp_spv,
|
1315
|
-
kp::shader_data::op_cpy_f16_f16_comp_spv_len);
|
1316
|
-
ggml_vk_cpy(spirv, 2, 2, std::forward<Args>(args)...);
|
1317
|
-
}
|
1318
|
-
|
1319
|
-
template <typename... Args>
|
1320
|
-
static void ggml_vk_cpy_f16_f32(Args&&... args) {
|
1321
|
-
const static auto spirv = getSpirvShader(kp::shader_data::op_cpy_f16_f32_comp_spv,
|
1322
|
-
kp::shader_data::op_cpy_f16_f32_comp_spv_len);
|
1323
|
-
ggml_vk_cpy(spirv, 2, 4, std::forward<Args>(args)...);
|
1324
|
-
}
|
1325
|
-
|
1326
|
-
static bool ggml_vk_supports_op(const struct ggml_tensor * op) {
|
1327
|
-
switch (op->type) {
|
1328
|
-
case GGML_TYPE_F16:
|
1329
|
-
case GGML_TYPE_F32:
|
1330
|
-
case GGML_TYPE_Q4_0:
|
1331
|
-
case GGML_TYPE_Q4_1:
|
1332
|
-
break;
|
1333
|
-
default:
|
1334
|
-
return false;
|
1335
|
-
}
|
1336
|
-
|
1337
|
-
switch (op->op) {
|
1338
|
-
case GGML_OP_UNARY:
|
1339
|
-
switch (ggml_get_unary_op(op)) {
|
1340
|
-
case GGML_UNARY_OP_RELU:
|
1341
|
-
case GGML_UNARY_OP_GELU:
|
1342
|
-
case GGML_UNARY_OP_SILU:
|
1343
|
-
return ggml_is_contiguous(op->src[0]);
|
1344
|
-
default:
|
1345
|
-
;
|
1346
|
-
}
|
1347
|
-
break;
|
1348
|
-
case GGML_OP_NONE:
|
1349
|
-
case GGML_OP_RESHAPE:
|
1350
|
-
case GGML_OP_VIEW:
|
1351
|
-
case GGML_OP_TRANSPOSE:
|
1352
|
-
case GGML_OP_PERMUTE:
|
1353
|
-
case GGML_OP_ADD:
|
1354
|
-
case GGML_OP_MUL:
|
1355
|
-
case GGML_OP_SCALE:
|
1356
|
-
case GGML_OP_SOFT_MAX:
|
1357
|
-
case GGML_OP_RMS_NORM:
|
1358
|
-
case GGML_OP_NORM:
|
1359
|
-
case GGML_OP_ROPE:
|
1360
|
-
return true;
|
1361
|
-
case GGML_OP_DUP:
|
1362
|
-
case GGML_OP_CPY:
|
1363
|
-
case GGML_OP_CONT:
|
1364
|
-
switch (op->src[0]->type) {
|
1365
|
-
case GGML_TYPE_F32:
|
1366
|
-
case GGML_TYPE_F16:
|
1367
|
-
break;
|
1368
|
-
default:
|
1369
|
-
return false;
|
1370
|
-
}
|
1371
|
-
switch (op->type) {
|
1372
|
-
case GGML_TYPE_F32:
|
1373
|
-
case GGML_TYPE_F16:
|
1374
|
-
break;
|
1375
|
-
default:
|
1376
|
-
return false;
|
1377
|
-
}
|
1378
|
-
return true;
|
1379
|
-
case GGML_OP_DIAG_MASK_INF:
|
1380
|
-
return op->ne[3] == 1;
|
1381
|
-
case GGML_OP_GET_ROWS:
|
1382
|
-
switch (op->src[0]->type) {
|
1383
|
-
case GGML_TYPE_F32:
|
1384
|
-
case GGML_TYPE_F16:
|
1385
|
-
case GGML_TYPE_Q4_0:
|
1386
|
-
case GGML_TYPE_Q4_1:
|
1387
|
-
case GGML_TYPE_Q6_K:
|
1388
|
-
return op->ne[2] == 1 && op->ne[3] == 1;
|
1389
|
-
default:
|
1390
|
-
;
|
1391
|
-
}
|
1392
|
-
return false;
|
1393
|
-
case GGML_OP_MUL_MAT:
|
1394
|
-
if (op->src[1]->type != GGML_TYPE_F32 || ggml_is_transposed(op->src[0]) || ggml_is_transposed(op->src[1]))
|
1395
|
-
return false;
|
1396
|
-
|
1397
|
-
switch (op->src[0]->type) {
|
1398
|
-
case GGML_TYPE_F32:
|
1399
|
-
case GGML_TYPE_Q6_K:
|
1400
|
-
return op->ne[3] == 1;
|
1401
|
-
case GGML_TYPE_F16:
|
1402
|
-
case GGML_TYPE_Q8_0:
|
1403
|
-
case GGML_TYPE_Q4_0:
|
1404
|
-
case GGML_TYPE_Q4_1:
|
1405
|
-
return true;
|
1406
|
-
default:
|
1407
|
-
;
|
1408
|
-
}
|
1409
|
-
default:
|
1410
|
-
;
|
1411
|
-
}
|
1412
|
-
return false;
|
1413
|
-
}
|
1414
|
-
|
1415
|
-
static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml_cgraph * gf) {
|
1416
|
-
const int n_seq = 8;
|
1417
|
-
|
1418
|
-
// FIXME: Figure out if we can somehow optimize the size of the pool... right now we're setting
|
1419
|
-
// it to the size of the graph, but I think it can be made smaller?
|
1420
|
-
ggml_vk_allocate_descriptor_pool(ctx, gf->n_nodes);
|
1421
|
-
|
1422
|
-
std::vector<std::shared_ptr<kp::Sequence>> sequences(n_seq);
|
1423
|
-
|
1424
|
-
for (auto& sequence : sequences) {
|
1425
|
-
sequence = komputeManager()->sequence();
|
1426
|
-
}
|
1427
|
-
for (int seq_idx = 0; seq_idx < n_seq; ++seq_idx) {
|
1428
|
-
const int n_nodes_per_seq = (gf->n_nodes + n_seq - 1) / n_seq;
|
1429
|
-
|
1430
|
-
auto& seq = *sequences[seq_idx];
|
1431
|
-
|
1432
|
-
const int node_start = (seq_idx + 0) * n_nodes_per_seq;
|
1433
|
-
const int node_end = std::min((seq_idx == n_seq - 1) ? gf->n_nodes : (seq_idx + 1) * n_nodes_per_seq, gf->n_nodes);
|
1434
|
-
|
1435
|
-
bool any_commands_recorded = false;
|
1436
|
-
|
1437
|
-
for (int i = node_start; i < node_end; ++i) {
|
1438
|
-
struct ggml_tensor * src0 = gf->nodes[i]->src[0];
|
1439
|
-
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
|
1440
|
-
struct ggml_tensor * src2 = gf->nodes[i]->src[2]; GGML_UNUSED(src2);
|
1441
|
-
struct ggml_tensor * dst = gf->nodes[i];
|
1442
|
-
GGML_ASSERT(dst->data != nullptr);
|
1443
|
-
|
1444
|
-
if (ggml_is_empty(dst)) {
|
1445
|
-
continue;
|
1446
|
-
}
|
1447
|
-
|
1448
|
-
switch (dst->op) {
|
1449
|
-
case GGML_OP_NONE:
|
1450
|
-
case GGML_OP_RESHAPE:
|
1451
|
-
case GGML_OP_VIEW:
|
1452
|
-
case GGML_OP_TRANSPOSE:
|
1453
|
-
case GGML_OP_PERMUTE:
|
1454
|
-
continue; // noop -> next node
|
1455
|
-
default:
|
1456
|
-
break;
|
1457
|
-
}
|
1458
|
-
|
1459
|
-
any_commands_recorded = true;
|
1460
|
-
|
1461
|
-
if (!ggml_vk_supports_op(dst)) {
|
1462
|
-
fprintf(stderr, "%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst));
|
1463
|
-
GGML_ASSERT(!"unsupported op");
|
1464
|
-
}
|
1465
|
-
|
1466
|
-
const int32_t ne00 = src0 ? src0->ne[0] : 0;
|
1467
|
-
const int32_t ne01 = src0 ? src0->ne[1] : 0;
|
1468
|
-
const int32_t ne02 = src0 ? src0->ne[2] : 0;
|
1469
|
-
const int32_t ne03 = src0 ? src0->ne[3] : 0;
|
1470
|
-
|
1471
|
-
const uint32_t nb00 = src0 ? src0->nb[0] : 0;
|
1472
|
-
const uint32_t nb01 = src0 ? src0->nb[1] : 0;
|
1473
|
-
const uint32_t nb02 = src0 ? src0->nb[2] : 0;
|
1474
|
-
const uint32_t nb03 = src0 ? src0->nb[3] : 0;
|
1475
|
-
|
1476
|
-
const int32_t ne10 = src1 ? src1->ne[0] : 0;
|
1477
|
-
const int32_t ne11 = src1 ? src1->ne[1] : 0;
|
1478
|
-
const int32_t ne12 = src1 ? src1->ne[2] : 0;
|
1479
|
-
const int32_t ne13 = src1 ? src1->ne[3] : 0;
|
1480
|
-
|
1481
|
-
const uint32_t nb10 = src1 ? src1->nb[0] : 0;
|
1482
|
-
const uint32_t nb11 = src1 ? src1->nb[1] : 0;
|
1483
|
-
const uint32_t nb12 = src1 ? src1->nb[2] : 0;
|
1484
|
-
const uint32_t nb13 = src1 ? src1->nb[3] : 0;
|
1485
|
-
|
1486
|
-
const int32_t ne0 = dst ? dst->ne[0] : 0;
|
1487
|
-
const int32_t ne1 = dst ? dst->ne[1] : 0;
|
1488
|
-
const int32_t ne2 = dst ? dst->ne[2] : 0;
|
1489
|
-
// const int32_t ne3 = dst ? dst->ne[3] : 0;
|
1490
|
-
|
1491
|
-
const uint32_t nb0 = dst ? dst->nb[0] : 0;
|
1492
|
-
const uint32_t nb1 = dst ? dst->nb[1] : 0;
|
1493
|
-
const uint32_t nb2 = dst ? dst->nb[2] : 0;
|
1494
|
-
const uint32_t nb3 = dst ? dst->nb[3] : 0;
|
1495
|
-
|
1496
|
-
const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
|
1497
|
-
const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
|
1498
|
-
const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT;
|
1499
|
-
|
1500
|
-
const static std::shared_ptr<kp::Tensor> nullTensor = nullptr;
|
1501
|
-
uint32_t off_src0 = 0;
|
1502
|
-
uint32_t off_src1 = 0;
|
1503
|
-
uint32_t off_dst = 0;
|
1504
|
-
const std::shared_ptr<kp::Tensor>& id_src0 = src0 ? ggml_vk_get_tensor(src0, &off_src0) : nullTensor;
|
1505
|
-
const std::shared_ptr<kp::Tensor>& id_src1 = src1 ? ggml_vk_get_tensor(src1, &off_src1) : nullTensor;
|
1506
|
-
const std::shared_ptr<kp::Tensor>& id_dst = dst ? ggml_vk_get_tensor(dst, &off_dst) : nullTensor;
|
1507
|
-
|
1508
|
-
switch (dst->op) {
|
1509
|
-
case GGML_OP_ADD:
|
1510
|
-
{
|
1511
|
-
if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
|
1512
|
-
// src1 is a row
|
1513
|
-
ggml_vk_addrow(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ggml_nelements(dst)/4, ne00);
|
1514
|
-
} else {
|
1515
|
-
ggml_vk_add(
|
1516
|
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1517
|
-
ne00, ne01, ne02, ne03,
|
1518
|
-
nb00, nb01, nb02, nb03,
|
1519
|
-
ne10, ne11, ne12, ne13,
|
1520
|
-
nb10, nb11, nb12, nb13,
|
1521
|
-
ne0,
|
1522
|
-
nb0, nb1, nb2, nb3
|
1523
|
-
);
|
1524
|
-
}
|
1525
|
-
} break;
|
1526
|
-
case GGML_OP_MUL:
|
1527
|
-
{
|
1528
|
-
ggml_vk_mul(
|
1529
|
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1530
|
-
ne00, ne01, ne02, ne03,
|
1531
|
-
nb00, nb01, nb02, nb03,
|
1532
|
-
ne10, ne11, ne12, ne13,
|
1533
|
-
nb10, nb11, nb12, nb13,
|
1534
|
-
ne0,
|
1535
|
-
nb0, nb1, nb2, nb3
|
1536
|
-
);
|
1537
|
-
} break;
|
1538
|
-
case GGML_OP_SCALE:
|
1539
|
-
{
|
1540
|
-
float scale; memcpy(&scale, dst->op_params, sizeof(float));
|
1541
|
-
|
1542
|
-
ggml_vk_scale(seq, id_src0, id_dst, off_src0, off_dst, ggml_nelements(dst), scale);
|
1543
|
-
} break;
|
1544
|
-
case GGML_OP_UNARY:
|
1545
|
-
{
|
1546
|
-
int64_t n = ggml_nelements(dst);
|
1547
|
-
GGML_ASSERT(n % 4 == 0);
|
1548
|
-
switch (ggml_get_unary_op(gf->nodes[i])) {
|
1549
|
-
case GGML_UNARY_OP_SILU:
|
1550
|
-
{
|
1551
|
-
ggml_vk_silu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
|
1552
|
-
} break;
|
1553
|
-
case GGML_UNARY_OP_RELU:
|
1554
|
-
{
|
1555
|
-
ggml_vk_relu(seq, id_src0, id_dst, off_src0, off_dst, n/4);
|
1556
|
-
} break;
|
1557
|
-
case GGML_UNARY_OP_GELU:
|
1558
|
-
{
|
1559
|
-
GGML_ASSERT(n % 8 == 0);
|
1560
|
-
ggml_vk_gelu(seq, id_src0, id_dst, off_src0, off_dst, n/8);
|
1561
|
-
} break;
|
1562
|
-
default:
|
1563
|
-
{
|
1564
|
-
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
1565
|
-
GGML_ASSERT(false);
|
1566
|
-
}
|
1567
|
-
}
|
1568
|
-
} break;
|
1569
|
-
case GGML_OP_SOFT_MAX:
|
1570
|
-
{
|
1571
|
-
float scale;
|
1572
|
-
float max_bias;
|
1573
|
-
|
1574
|
-
memcpy(&scale, (float *)dst->op_params + 0, sizeof(float));
|
1575
|
-
memcpy(&max_bias, (float *)dst->op_params + 1, sizeof(float));
|
1576
|
-
|
1577
|
-
#pragma message("TODO: add ggml_vk_soft_max() F16 src1 support")
|
1578
|
-
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5021")
|
1579
|
-
GGML_ASSERT(!src1 || src1t == GGML_TYPE_F32);
|
1580
|
-
|
1581
|
-
#pragma message("TODO: add ALiBi support")
|
1582
|
-
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192")
|
1583
|
-
GGML_ASSERT(max_bias == 0.0f);
|
1584
|
-
|
1585
|
-
ggml_vk_soft_max(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, ne01, ne02, ne03, scale);
|
1586
|
-
} break;
|
1587
|
-
case GGML_OP_DIAG_MASK_INF:
|
1588
|
-
{
|
1589
|
-
const int n_past = ((int32_t *)(dst->op_params))[0];
|
1590
|
-
ggml_vk_diag_mask_inf(seq, id_src0, id_dst, off_src0, off_dst, n_past, ne00, ne01, ne02);
|
1591
|
-
} break;
|
1592
|
-
case GGML_OP_NORM:
|
1593
|
-
{
|
1594
|
-
float eps;
|
1595
|
-
memcpy(&eps, dst->op_params, sizeof(float));
|
1596
|
-
ggml_vk_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
|
1597
|
-
} break;
|
1598
|
-
case GGML_OP_RMS_NORM:
|
1599
|
-
{
|
1600
|
-
GGML_ASSERT(ne00 % 4 == 0);
|
1601
|
-
|
1602
|
-
float eps;
|
1603
|
-
memcpy(&eps, dst->op_params, sizeof(float));
|
1604
|
-
ggml_vk_rms_norm(seq, id_src0, id_dst, off_src0, off_dst, ne00, nb01, ggml_nrows(src0), eps);
|
1605
|
-
} break;
|
1606
|
-
case GGML_OP_MUL_MAT:
|
1607
|
-
{
|
1608
|
-
GGML_ASSERT(ne00 == ne10);
|
1609
|
-
|
1610
|
-
GGML_ASSERT(ne12 % ne02 == 0);
|
1611
|
-
GGML_ASSERT(ne13 % ne03 == 0);
|
1612
|
-
|
1613
|
-
const uint32_t r2 = ne12/ne02;
|
1614
|
-
const uint32_t r3 = ne13/ne03;
|
1615
|
-
|
1616
|
-
if (src1t != GGML_TYPE_F32) {
|
1617
|
-
fprintf(stderr, "%s: %s: Unsupported src1 type: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
|
1618
|
-
goto not_implemented;
|
1619
|
-
}
|
1620
|
-
|
1621
|
-
if (ggml_is_transposed(src0) ||
|
1622
|
-
ggml_is_transposed(src1)) {
|
1623
|
-
fprintf(stderr, "%s: %s: matmul on tranposed tensor not supported: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
|
1624
|
-
goto not_implemented;
|
1625
|
-
}
|
1626
|
-
|
1627
|
-
switch (src0t) {
|
1628
|
-
case GGML_TYPE_F32:
|
1629
|
-
ggml_vk_mul_mat_mat_f32(
|
1630
|
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1631
|
-
ne00, ne01, ne02, nb01, nb02, ne11, ne12, nb11, nb12, nb1, nb2
|
1632
|
-
);
|
1633
|
-
break;
|
1634
|
-
case GGML_TYPE_F16:
|
1635
|
-
ggml_vk_mul_mat_f16(
|
1636
|
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1637
|
-
ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, ne13, nb10, nb11, nb12,
|
1638
|
-
ne0, ne1, r2, r3
|
1639
|
-
);
|
1640
|
-
break;
|
1641
|
-
case GGML_TYPE_Q8_0:
|
1642
|
-
ggml_vk_mul_mat_q8_0(
|
1643
|
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1644
|
-
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
|
1645
|
-
);
|
1646
|
-
break;
|
1647
|
-
case GGML_TYPE_Q4_0:
|
1648
|
-
ggml_vk_mul_mat_q4_0(
|
1649
|
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1650
|
-
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
|
1651
|
-
);
|
1652
|
-
break;
|
1653
|
-
case GGML_TYPE_Q4_1:
|
1654
|
-
ggml_vk_mul_mat_q4_1(
|
1655
|
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1656
|
-
ne00, ne01, ne02, ne10, ne11, ne12, ne13, ne0, ne1, r2, r3
|
1657
|
-
);
|
1658
|
-
break;
|
1659
|
-
case GGML_TYPE_Q6_K:
|
1660
|
-
ggml_vk_mul_mat_q6_k(
|
1661
|
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst,
|
1662
|
-
ne00, ne10, ne0, ne1, ne01, ne11, ne12, ne02
|
1663
|
-
);
|
1664
|
-
break;
|
1665
|
-
default: {
|
1666
|
-
fprintf(stderr, "%s: %s: Unsupported quantization: %u/%u\n", __func__, ggml_op_name(dst->op), src0t, src1t);
|
1667
|
-
goto not_implemented;
|
1668
|
-
}
|
1669
|
-
}
|
1670
|
-
|
1671
|
-
} break;
|
1672
|
-
case GGML_OP_GET_ROWS:
|
1673
|
-
{
|
1674
|
-
if (src0t == GGML_TYPE_F32) {
|
1675
|
-
ggml_vk_get_rows_f32(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1676
|
-
} else if (src0t == GGML_TYPE_F16) {
|
1677
|
-
ggml_vk_get_rows_f16(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1678
|
-
} else if (src0t == GGML_TYPE_Q4_0) {
|
1679
|
-
ggml_vk_get_rows_q4_0(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1680
|
-
} else if (src0t == GGML_TYPE_Q4_1) {
|
1681
|
-
ggml_vk_get_rows_q4_1(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1682
|
-
} else if (src0t == GGML_TYPE_Q6_K) {
|
1683
|
-
ggml_vk_get_rows_q6_k(seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, ne00, nb01, nb1, ggml_nelements(src1));
|
1684
|
-
} else {
|
1685
|
-
fprintf(stderr, "%s: %s: Unsupported quantization: %u\n", __func__, ggml_op_name(dst->op), src0t);
|
1686
|
-
goto not_implemented;
|
1687
|
-
}
|
1688
|
-
} break;
|
1689
|
-
case GGML_OP_ROPE:
|
1690
|
-
{
|
1691
|
-
#pragma message("TODO: implement phi3 frequency factors support")
|
1692
|
-
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
|
1693
|
-
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
|
1694
|
-
|
1695
|
-
#pragma message("TODO: update rope NORM mode to match NEOX mode")
|
1696
|
-
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7634")
|
1697
|
-
|
1698
|
-
GGML_ASSERT(ne10 == ne02);
|
1699
|
-
GGML_ASSERT(src0t == dstt);
|
1700
|
-
// const int n_past = ((int32_t *) dst->op_params)[0];
|
1701
|
-
const int n_dims = ((int32_t *) dst->op_params)[1];
|
1702
|
-
const int mode = ((int32_t *) dst->op_params)[2];
|
1703
|
-
// skip 3, n_ctx used in GLM RoPE, unimplemented in Vulkan
|
1704
|
-
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
1705
|
-
|
1706
|
-
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
1707
|
-
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
1708
|
-
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
1709
|
-
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
1710
|
-
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
|
1711
|
-
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
1712
|
-
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
1713
|
-
ggml_vk_rope(
|
1714
|
-
seq, id_src0, id_src1, id_dst, off_src0, off_src1, off_dst, src0t, n_dims, mode, n_ctx_orig,
|
1715
|
-
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow,
|
1716
|
-
ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, nb0, nb1, nb2, nb3
|
1717
|
-
);
|
1718
|
-
} break;
|
1719
|
-
case GGML_OP_DUP:
|
1720
|
-
case GGML_OP_CPY:
|
1721
|
-
case GGML_OP_CONT:
|
1722
|
-
{
|
1723
|
-
switch (src0t) {
|
1724
|
-
case GGML_TYPE_F32:
|
1725
|
-
{
|
1726
|
-
switch (dstt) {
|
1727
|
-
case GGML_TYPE_F16: ggml_vk_cpy_f32_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
1728
|
-
case GGML_TYPE_F32: ggml_vk_cpy_f32_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
1729
|
-
default: goto not_implemented;
|
1730
|
-
}
|
1731
|
-
} break;
|
1732
|
-
case GGML_TYPE_F16:
|
1733
|
-
{
|
1734
|
-
switch (dstt) {
|
1735
|
-
case GGML_TYPE_F16: ggml_vk_cpy_f16_f16(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
1736
|
-
case GGML_TYPE_F32: ggml_vk_cpy_f16_f32(seq, id_src0, id_dst, off_src0, off_dst, ne00, ne01, ne02, ne03, nb00, nb01, nb02, nb03, ne0, ne1, ne2, nb0, nb1, nb2, nb3); break;
|
1737
|
-
default: goto not_implemented;
|
1738
|
-
} break;
|
1739
|
-
default: goto not_implemented;
|
1740
|
-
}
|
1741
|
-
}
|
1742
|
-
} break;
|
1743
|
-
default: goto not_implemented;
|
1744
|
-
}
|
1745
|
-
continue;
|
1746
|
-
not_implemented: {}
|
1747
|
-
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
|
1748
|
-
//GGML_ASSERT(false);
|
1749
|
-
}
|
1750
|
-
|
1751
|
-
// Evaluate sequence
|
1752
|
-
if (any_commands_recorded) {
|
1753
|
-
seq.evalAsync();
|
1754
|
-
}
|
1755
|
-
}
|
1756
|
-
|
1757
|
-
// Wait for all sequences to finish
|
1758
|
-
for (auto& sequence : sequences) {
|
1759
|
-
if (sequence->isRunning())
|
1760
|
-
sequence->evalAwait();
|
1761
|
-
}
|
1762
|
-
|
1763
|
-
ggml_vk_free_descriptor_pool(ctx);
|
1764
|
-
}
|
1765
|
-
|
1766
|
-
template<>
|
1767
|
-
kp::Tensor::TensorDataTypes
|
1768
|
-
kp::TensorT<half>::dataType()
|
1769
|
-
{
|
1770
|
-
return TensorDataTypes::eFloat;
|
1771
|
-
}
|
1772
|
-
|
1773
|
-
template<>
|
1774
|
-
kp::Tensor::TensorDataTypes
|
1775
|
-
kp::TensorT<uint8_t>::dataType()
|
1776
|
-
{
|
1777
|
-
return TensorDataTypes::eUnsignedInt;
|
1778
|
-
}
|
1779
|
-
|
1780
|
-
////////////////////////////////////////////////////////////////////////////////
|
1781
|
-
|
1782
|
-
// backend interface
|
1783
|
-
|
1784
|
-
struct ggml_backend_kompute_buffer_type_context {
|
1785
|
-
int device;
|
1786
|
-
int device_ref = 0;
|
1787
|
-
uint64_t buffer_alignment;
|
1788
|
-
uint64_t max_alloc;
|
1789
|
-
std::string name;
|
1790
|
-
|
1791
|
-
ggml_backend_kompute_buffer_type_context(int device, uint64_t buffer_alignment, uint64_t max_alloc)
|
1792
|
-
: device(device), buffer_alignment(buffer_alignment), max_alloc(max_alloc), name(ggml_kompute_format_name(device)) {}
|
1793
|
-
};
|
1794
|
-
|
1795
|
-
static void ggml_backend_kompute_device_ref(ggml_backend_buffer_type_t buft) {
|
1796
|
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
1797
|
-
|
1798
|
-
if (!ctx->device_ref) {
|
1799
|
-
komputeManager()->initializeDevice(
|
1800
|
-
ctx->device, {}, {
|
1801
|
-
"VK_KHR_shader_float16_int8", "VK_KHR_8bit_storage",
|
1802
|
-
"VK_KHR_16bit_storage", "VK_KHR_shader_non_semantic_info"
|
1803
|
-
}
|
1804
|
-
);
|
1805
|
-
}
|
1806
|
-
|
1807
|
-
assert(ggml_vk_has_device());
|
1808
|
-
ctx->device_ref++;
|
1809
|
-
}
|
1810
|
-
|
1811
|
-
static void ggml_backend_kompute_device_unref(ggml_backend_buffer_type_t buft) {
|
1812
|
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
1813
|
-
|
1814
|
-
assert(ctx->device_ref > 0);
|
1815
|
-
|
1816
|
-
ctx->device_ref--;
|
1817
|
-
|
1818
|
-
if (!ctx->device_ref) {
|
1819
|
-
komputeManager.destroy();
|
1820
|
-
}
|
1821
|
-
}
|
1822
|
-
|
1823
|
-
static const char * ggml_backend_kompute_buffer_get_name(ggml_backend_buffer_t buffer) {
|
1824
|
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buffer->buft->context);
|
1825
|
-
return ctx->name.c_str();
|
1826
|
-
}
|
1827
|
-
|
1828
|
-
static void ggml_backend_kompute_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
1829
|
-
auto * memory = (ggml_vk_memory *)buffer->context;
|
1830
|
-
if (ggml_vk_has_device()) {
|
1831
|
-
ggml_vk_free_memory(*memory);
|
1832
|
-
}
|
1833
|
-
delete memory;
|
1834
|
-
}
|
1835
|
-
|
1836
|
-
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
|
1837
|
-
return ((ggml_vk_memory *)buffer->context)->data;
|
1838
|
-
}
|
1839
|
-
|
1840
|
-
static void ggml_backend_kompute_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
1841
|
-
GGML_UNUSED(buffer);
|
1842
|
-
|
1843
|
-
const auto res = ggml_vk_get_tensor(tensor);
|
1844
|
-
GGML_ASSERT(res);
|
1845
|
-
|
1846
|
-
memcpy((char *)tensor->data + offset, data, size);
|
1847
|
-
|
1848
|
-
komputeManager()->sequence()->eval<kp::OpTensorSyncDevice>({res});
|
1849
|
-
}
|
1850
|
-
|
1851
|
-
static void ggml_backend_kompute_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
1852
|
-
GGML_UNUSED(buffer);
|
1853
|
-
|
1854
|
-
const auto res = ggml_vk_get_tensor(tensor);
|
1855
|
-
GGML_ASSERT(res);
|
1856
|
-
|
1857
|
-
komputeManager()->sequence()->eval<kp::OpTensorSyncLocal>({res});
|
1858
|
-
|
1859
|
-
memcpy(data, (const char *)tensor->data + offset, size);
|
1860
|
-
}
|
1861
|
-
|
1862
|
-
static void ggml_backend_kompute_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
1863
|
-
auto * memory = (ggml_vk_memory *)buffer->context;
|
1864
|
-
memset(memory->data, value, buffer->size);
|
1865
|
-
|
1866
|
-
if (memory->stagingBuffer)
|
1867
|
-
komputeManager()->sequence()->eval<kp::OpBufferSyncDevice>(memory->primaryBuffer, memory->stagingBuffer, memory->size);
|
1868
|
-
}
|
1869
|
-
|
1870
|
-
static ggml_backend_buffer_i ggml_backend_kompute_buffer_i = {
|
1871
|
-
/* .get_name = */ ggml_backend_kompute_buffer_get_name,
|
1872
|
-
/* .free_buffer = */ ggml_backend_kompute_buffer_free_buffer,
|
1873
|
-
/* .get_base = */ ggml_backend_kompute_buffer_get_base,
|
1874
|
-
/* .init_tensor = */ NULL,
|
1875
|
-
/* .set_tensor = */ ggml_backend_kompute_buffer_set_tensor,
|
1876
|
-
/* .get_tensor = */ ggml_backend_kompute_buffer_get_tensor,
|
1877
|
-
/* .cpy_tensor = */ NULL,
|
1878
|
-
/* .clear = */ ggml_backend_kompute_buffer_clear,
|
1879
|
-
/* .reset = */ NULL,
|
1880
|
-
};
|
1881
|
-
|
1882
|
-
// default buffer type
|
1883
|
-
|
1884
|
-
static const char * ggml_backend_kompute_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
1885
|
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
1886
|
-
return ctx->name.c_str();
|
1887
|
-
}
|
1888
|
-
|
1889
|
-
static ggml_backend_buffer_t ggml_backend_kompute_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
1890
|
-
ggml_backend_kompute_device_ref(buft);
|
1891
|
-
auto * ctx = new ggml_vk_memory(ggml_vk_allocate(size));
|
1892
|
-
return ggml_backend_buffer_init(buft, ggml_backend_kompute_buffer_i, ctx, size);
|
1893
|
-
}
|
1894
|
-
|
1895
|
-
static size_t ggml_backend_kompute_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
1896
|
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
1897
|
-
return ctx->buffer_alignment;
|
1898
|
-
}
|
1899
|
-
|
1900
|
-
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
1901
|
-
auto * ctx = static_cast<ggml_backend_kompute_buffer_type_context *>(buft->context);
|
1902
|
-
return ctx->max_alloc;
|
1903
|
-
}
|
1904
|
-
|
1905
|
-
static ggml_backend_buffer_type_i ggml_backend_kompute_buffer_type_interface = {
|
1906
|
-
/* .get_name = */ ggml_backend_kompute_buffer_type_get_name,
|
1907
|
-
/* .alloc_buffer = */ ggml_backend_kompute_buffer_type_alloc_buffer,
|
1908
|
-
/* .get_alignment = */ ggml_backend_kompute_buffer_type_get_alignment,
|
1909
|
-
/* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
|
1910
|
-
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
1911
|
-
/* .is_host = */ NULL,
|
1912
|
-
};
|
1913
|
-
|
1914
|
-
ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
|
1915
|
-
static std::vector<ggml_backend_buffer_type> bufts = []() {
|
1916
|
-
std::vector<ggml_backend_buffer_type> vec;
|
1917
|
-
auto devices = ggml_vk_available_devices_internal(0);
|
1918
|
-
vec.reserve(devices.size());
|
1919
|
-
|
1920
|
-
for (const auto & dev : devices) {
|
1921
|
-
vec.push_back({
|
1922
|
-
/* .iface = */ ggml_backend_kompute_buffer_type_interface,
|
1923
|
-
/* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
|
1924
|
-
});
|
1925
|
-
}
|
1926
|
-
return vec;
|
1927
|
-
}();
|
1928
|
-
|
1929
|
-
auto it = std::find_if(bufts.begin(), bufts.end(), [device](const ggml_backend_buffer_type & t) {
|
1930
|
-
return device == static_cast<ggml_backend_kompute_buffer_type_context *>(t.context)->device;
|
1931
|
-
});
|
1932
|
-
return it < bufts.end() ? &*it : nullptr;
|
1933
|
-
}
|
1934
|
-
|
1935
|
-
// backend
|
1936
|
-
|
1937
|
-
static const char * ggml_backend_kompute_name(ggml_backend_t backend) {
|
1938
|
-
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
|
1939
|
-
return ctx->name.c_str();
|
1940
|
-
}
|
1941
|
-
|
1942
|
-
static void ggml_backend_kompute_free(ggml_backend_t backend) {
|
1943
|
-
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
|
1944
|
-
|
1945
|
-
assert(ctx == s_kompute_context);
|
1946
|
-
s_kompute_context = nullptr;
|
1947
|
-
if (ctx != nullptr) {
|
1948
|
-
delete ctx;
|
1949
|
-
}
|
1950
|
-
|
1951
|
-
delete backend;
|
1952
|
-
}
|
1953
|
-
|
1954
|
-
static ggml_backend_buffer_type_t ggml_backend_kompute_get_default_buffer_type(ggml_backend_t backend) {
|
1955
|
-
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
|
1956
|
-
return ggml_backend_kompute_buffer_type(ctx->device);
|
1957
|
-
}
|
1958
|
-
|
1959
|
-
static ggml_status ggml_backend_kompute_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
1960
|
-
auto * ctx = static_cast<ggml_kompute_context *>(backend->context);
|
1961
|
-
ggml_vk_graph_compute(ctx, cgraph);
|
1962
|
-
return GGML_STATUS_SUCCESS;
|
1963
|
-
}
|
1964
|
-
|
1965
|
-
static bool ggml_backend_kompute_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
1966
|
-
GGML_UNUSED(backend);
|
1967
|
-
return ggml_vk_supports_op(op);
|
1968
|
-
}
|
1969
|
-
|
1970
|
-
static bool ggml_backend_kompute_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
1971
|
-
GGML_UNUSED(backend);
|
1972
|
-
return buft->iface.get_name == ggml_backend_kompute_buffer_type_get_name;
|
1973
|
-
}
|
1974
|
-
|
1975
|
-
static struct ggml_backend_i kompute_backend_i = {
|
1976
|
-
/* .get_name = */ ggml_backend_kompute_name,
|
1977
|
-
/* .free = */ ggml_backend_kompute_free,
|
1978
|
-
/* .get_default_buffer_type = */ ggml_backend_kompute_get_default_buffer_type,
|
1979
|
-
/* .set_tensor_async = */ NULL,
|
1980
|
-
/* .get_tensor_async = */ NULL,
|
1981
|
-
/* .cpy_tensor_async = */ NULL,
|
1982
|
-
/* .synchronize = */ NULL,
|
1983
|
-
/* .graph_plan_create = */ NULL,
|
1984
|
-
/* .graph_plan_free = */ NULL,
|
1985
|
-
/* .graph_plan_update = */ NULL,
|
1986
|
-
/* .graph_plan_compute = */ NULL,
|
1987
|
-
/* .graph_compute = */ ggml_backend_kompute_graph_compute,
|
1988
|
-
/* .supports_op = */ ggml_backend_kompute_supports_op,
|
1989
|
-
/* .supports_buft = */ ggml_backend_kompute_supports_buft,
|
1990
|
-
/* .offload_op = */ NULL,
|
1991
|
-
/* .event_new = */ NULL,
|
1992
|
-
/* .event_free = */ NULL,
|
1993
|
-
/* .event_record = */ NULL,
|
1994
|
-
/* .event_wait = */ NULL,
|
1995
|
-
/* .event_synchronize = */ NULL,
|
1996
|
-
};
|
1997
|
-
|
1998
|
-
static ggml_guid_t ggml_backend_kompute_guid() {
|
1999
|
-
static ggml_guid guid = { 0x7b, 0x57, 0xdc, 0xaf, 0xde, 0x12, 0x1d, 0x49, 0xfb, 0x35, 0xfa, 0x9b, 0x18, 0x31, 0x1d, 0xca };
|
2000
|
-
return &guid;
|
2001
|
-
}
|
2002
|
-
|
2003
|
-
ggml_backend_t ggml_backend_kompute_init(int device) {
|
2004
|
-
GGML_ASSERT(s_kompute_context == nullptr);
|
2005
|
-
s_kompute_context = new ggml_kompute_context(device);
|
2006
|
-
|
2007
|
-
ggml_backend_t kompute_backend = new ggml_backend {
|
2008
|
-
/* .guid = */ ggml_backend_kompute_guid(),
|
2009
|
-
/* .interface = */ kompute_backend_i,
|
2010
|
-
/* .context = */ s_kompute_context,
|
2011
|
-
};
|
2012
|
-
|
2013
|
-
return kompute_backend;
|
2014
|
-
}
|
2015
|
-
|
2016
|
-
bool ggml_backend_is_kompute(ggml_backend_t backend) {
|
2017
|
-
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
|
2018
|
-
}
|
2019
|
-
|
2020
|
-
static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
|
2021
|
-
GGML_UNUSED(params);
|
2022
|
-
return ggml_backend_kompute_init(intptr_t(user_data));
|
2023
|
-
}
|
2024
|
-
|
2025
|
-
extern "C" int ggml_backend_kompute_reg_devices();
|
2026
|
-
|
2027
|
-
int ggml_backend_kompute_reg_devices() {
|
2028
|
-
auto devices = ggml_vk_available_devices_internal(0);
|
2029
|
-
for (const auto & device : devices) {
|
2030
|
-
ggml_backend_register(
|
2031
|
-
ggml_kompute_format_name(device.index).c_str(),
|
2032
|
-
ggml_backend_reg_kompute_init,
|
2033
|
-
ggml_backend_kompute_buffer_type(device.index),
|
2034
|
-
reinterpret_cast<void *>(intptr_t(device.index))
|
2035
|
-
);
|
2036
|
-
}
|
2037
|
-
return devices.size();
|
2038
|
-
}
|