llama_cpp 0.16.2 → 0.17.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +18 -0
- data/README.md +7 -12
- data/ext/llama_cpp/extconf.rb +2 -43
- data/ext/llama_cpp/llama_cpp.cpp +8 -0
- data/lib/llama_cpp/version.rb +3 -3
- data/sig/llama_cpp.rbs +3 -0
- metadata +2 -171
- data/vendor/include/.gitkeep +0 -0
- data/vendor/lib/.gitkeep +0 -0
- data/vendor/tmp/llama.cpp/LICENSE +0 -21
- data/vendor/tmp/llama.cpp/Makefile +0 -1124
- data/vendor/tmp/llama.cpp/ggml-alloc.c +0 -1041
- data/vendor/tmp/llama.cpp/ggml-alloc.h +0 -76
- data/vendor/tmp/llama.cpp/ggml-backend-impl.h +0 -153
- data/vendor/tmp/llama.cpp/ggml-backend.c +0 -2225
- data/vendor/tmp/llama.cpp/ggml-backend.h +0 -236
- data/vendor/tmp/llama.cpp/ggml-blas.cpp +0 -363
- data/vendor/tmp/llama.cpp/ggml-blas.h +0 -23
- data/vendor/tmp/llama.cpp/ggml-common.h +0 -1805
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +0 -280
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +0 -196
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +0 -686
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +0 -490
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +0 -674
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +0 -319
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +0 -312
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +0 -345
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +0 -178
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +0 -88
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +0 -419
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +0 -221
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +0 -49
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +0 -94
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +0 -112
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +0 -271
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +0 -31
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +0 -206
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +0 -9
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +0 -8
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q2_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q3_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q6_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +0 -314
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +0 -51
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +0 -3069
- data/vendor/tmp/llama.cpp/ggml-cuda.h +0 -44
- data/vendor/tmp/llama.cpp/ggml-impl.h +0 -651
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +0 -2038
- data/vendor/tmp/llama.cpp/ggml-kompute.h +0 -46
- data/vendor/tmp/llama.cpp/ggml-metal.h +0 -66
- data/vendor/tmp/llama.cpp/ggml-metal.m +0 -3273
- data/vendor/tmp/llama.cpp/ggml-metal.metal +0 -6540
- data/vendor/tmp/llama.cpp/ggml-quants.c +0 -14994
- data/vendor/tmp/llama.cpp/ggml-quants.h +0 -133
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +0 -1178
- data/vendor/tmp/llama.cpp/ggml-rpc.h +0 -24
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +0 -6351
- data/vendor/tmp/llama.cpp/ggml-sycl.h +0 -40
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +0 -144508
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +0 -7183
- data/vendor/tmp/llama.cpp/ggml-vulkan.h +0 -29
- data/vendor/tmp/llama.cpp/ggml.c +0 -22506
- data/vendor/tmp/llama.cpp/ggml.h +0 -2458
- data/vendor/tmp/llama.cpp/llama.cpp +0 -18985
- data/vendor/tmp/llama.cpp/llama.h +0 -1147
- data/vendor/tmp/llama.cpp/scripts/get-flags.mk +0 -38
- data/vendor/tmp/llama.cpp/sgemm.cpp +0 -1032
- data/vendor/tmp/llama.cpp/sgemm.h +0 -14
- data/vendor/tmp/llama.cpp/unicode-data.cpp +0 -7033
- data/vendor/tmp/llama.cpp/unicode-data.h +0 -20
- data/vendor/tmp/llama.cpp/unicode.cpp +0 -810
- data/vendor/tmp/llama.cpp/unicode.h +0 -63
@@ -1,47 +0,0 @@
|
|
1
|
-
#include "tsembd.cuh"
|
2
|
-
|
3
|
-
static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) {
|
4
|
-
// blockIDx.y: idx of timesteps->ne[0]
|
5
|
-
// blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE
|
6
|
-
int i = blockIdx.y;
|
7
|
-
int j = threadIdx.x + blockIdx.x * blockDim.x;
|
8
|
-
float * embed_data = (float *)((char *)dst + i*nb1);
|
9
|
-
|
10
|
-
if (dim % 2 != 0 && j == ((dim + 1) / 2)) {
|
11
|
-
embed_data[dim] = 0.f;
|
12
|
-
}
|
13
|
-
|
14
|
-
int half = dim / 2;
|
15
|
-
if (j >= half) {
|
16
|
-
return;
|
17
|
-
}
|
18
|
-
|
19
|
-
float timestep = timesteps[i];
|
20
|
-
float freq = (float)expf(-logf(max_period) * j / half);
|
21
|
-
float arg = timestep * freq;
|
22
|
-
embed_data[j] = cosf(arg);
|
23
|
-
embed_data[j + half] = sinf(arg);
|
24
|
-
}
|
25
|
-
|
26
|
-
static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1,
|
27
|
-
const int dim, const int max_period, cudaStream_t stream) {
|
28
|
-
int half_ceil = (dim + 1) / 2;
|
29
|
-
int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE;
|
30
|
-
dim3 gridDim(num_blocks, ne00, 1);
|
31
|
-
timestep_embedding_f32<<<gridDim, CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE, 0, stream>>>(x, dst, nb1, dim, max_period);
|
32
|
-
}
|
33
|
-
|
34
|
-
void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
35
|
-
const ggml_tensor * src0 = dst->src[0];
|
36
|
-
const float * src0_d = (const float *)src0->data;
|
37
|
-
float * dst_d = (float *)dst->data;
|
38
|
-
cudaStream_t stream = ctx.stream();
|
39
|
-
|
40
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
41
|
-
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
42
|
-
|
43
|
-
const int dim = dst->op_params[0];
|
44
|
-
const int max_period = dst->op_params[1];
|
45
|
-
|
46
|
-
timestep_embedding_f32_cuda(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream);
|
47
|
-
}
|
@@ -1,314 +0,0 @@
|
|
1
|
-
#include "unary.cuh"
|
2
|
-
|
3
|
-
static __global__ void gelu_f32(const float * x, float * dst, const int k) {
|
4
|
-
const float GELU_COEF_A = 0.044715f;
|
5
|
-
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
6
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
7
|
-
|
8
|
-
if (i >= k) {
|
9
|
-
return;
|
10
|
-
}
|
11
|
-
|
12
|
-
float xi = x[i];
|
13
|
-
dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
|
14
|
-
}
|
15
|
-
|
16
|
-
static __global__ void gelu_quick_f32(const float * x, float * dst, int k) {
|
17
|
-
const float GELU_QUICK_COEF = -1.702f;
|
18
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
19
|
-
if (i >= k) {
|
20
|
-
return;
|
21
|
-
}
|
22
|
-
dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i])));
|
23
|
-
}
|
24
|
-
|
25
|
-
static __global__ void silu_f32(const float * x, float * dst, const int k) {
|
26
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
27
|
-
|
28
|
-
if (i >= k) {
|
29
|
-
return;
|
30
|
-
}
|
31
|
-
dst[i] = x[i] / (1.0f + expf(-x[i]));
|
32
|
-
}
|
33
|
-
|
34
|
-
static __global__ void tanh_f32(const float * x, float * dst, int k) {
|
35
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
36
|
-
if (i >= k) {
|
37
|
-
return;
|
38
|
-
}
|
39
|
-
dst[i] = tanhf(x[i]);
|
40
|
-
}
|
41
|
-
|
42
|
-
static __global__ void relu_f32(const float * x, float * dst, const int k) {
|
43
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
44
|
-
|
45
|
-
if (i >= k) {
|
46
|
-
return;
|
47
|
-
}
|
48
|
-
dst[i] = fmaxf(x[i], 0);
|
49
|
-
}
|
50
|
-
|
51
|
-
static __global__ void sigmoid_f32(const float * x, float * dst, const int k) {
|
52
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
53
|
-
|
54
|
-
if (i >= k) {
|
55
|
-
return;
|
56
|
-
}
|
57
|
-
dst[i] = 1.0f / (1.0f + expf(-x[i]));
|
58
|
-
}
|
59
|
-
|
60
|
-
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
|
61
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
62
|
-
|
63
|
-
if (i >= k) {
|
64
|
-
return;
|
65
|
-
}
|
66
|
-
dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
67
|
-
}
|
68
|
-
|
69
|
-
static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
|
70
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
71
|
-
|
72
|
-
if (i >= k) {
|
73
|
-
return;
|
74
|
-
}
|
75
|
-
dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
76
|
-
}
|
77
|
-
|
78
|
-
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
|
79
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
80
|
-
if (i >= k) {
|
81
|
-
return;
|
82
|
-
}
|
83
|
-
dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope;
|
84
|
-
}
|
85
|
-
|
86
|
-
static __global__ void sqr_f32(const float * x, float * dst, const int k) {
|
87
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
88
|
-
|
89
|
-
if (i >= k) {
|
90
|
-
return;
|
91
|
-
}
|
92
|
-
dst[i] = x[i] * x[i];
|
93
|
-
}
|
94
|
-
|
95
|
-
static __global__ void sqrt_f32(const float * x, float * dst, const int k) {
|
96
|
-
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
97
|
-
|
98
|
-
if (i >= k) {
|
99
|
-
return;
|
100
|
-
}
|
101
|
-
dst[i] = sqrtf(x[i]);
|
102
|
-
}
|
103
|
-
|
104
|
-
static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
105
|
-
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
106
|
-
gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
107
|
-
}
|
108
|
-
|
109
|
-
static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
110
|
-
const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
|
111
|
-
gelu_quick_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
112
|
-
}
|
113
|
-
|
114
|
-
static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
115
|
-
const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
|
116
|
-
silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
117
|
-
}
|
118
|
-
|
119
|
-
static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
120
|
-
const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE;
|
121
|
-
tanh_f32<<<num_blocks, CUDA_TANH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
122
|
-
}
|
123
|
-
|
124
|
-
static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
125
|
-
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
126
|
-
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
127
|
-
}
|
128
|
-
|
129
|
-
static void sigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
130
|
-
const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE;
|
131
|
-
sigmoid_f32<<<num_blocks, CUDA_SIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
132
|
-
}
|
133
|
-
|
134
|
-
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
135
|
-
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
|
136
|
-
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
137
|
-
}
|
138
|
-
|
139
|
-
static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
140
|
-
const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
|
141
|
-
hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
142
|
-
}
|
143
|
-
|
144
|
-
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
|
145
|
-
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
146
|
-
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
|
147
|
-
}
|
148
|
-
|
149
|
-
static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
150
|
-
const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE;
|
151
|
-
sqr_f32<<<num_blocks, CUDA_SQR_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
152
|
-
}
|
153
|
-
|
154
|
-
static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
155
|
-
const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE;
|
156
|
-
sqrt_f32<<<num_blocks, CUDA_SQRT_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
157
|
-
}
|
158
|
-
|
159
|
-
void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
160
|
-
const ggml_tensor * src0 = dst->src[0];
|
161
|
-
const float * src0_d = (const float *)src0->data;
|
162
|
-
float * dst_d = (float *)dst->data;
|
163
|
-
cudaStream_t stream = ctx.stream();
|
164
|
-
|
165
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
166
|
-
|
167
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
168
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
169
|
-
|
170
|
-
gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
171
|
-
}
|
172
|
-
|
173
|
-
void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
174
|
-
const ggml_tensor * src0 = dst->src[0];
|
175
|
-
const float * src0_d = (const float *)src0->data;
|
176
|
-
float * dst_d = (float *)dst->data;
|
177
|
-
cudaStream_t stream = ctx.stream();
|
178
|
-
|
179
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
180
|
-
|
181
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
182
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
183
|
-
|
184
|
-
silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
185
|
-
}
|
186
|
-
|
187
|
-
void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
188
|
-
const ggml_tensor * src0 = dst->src[0];
|
189
|
-
const float * src0_d = (const float *)src0->data;
|
190
|
-
float * dst_d = (float *)dst->data;
|
191
|
-
cudaStream_t stream = ctx.stream();
|
192
|
-
|
193
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
194
|
-
|
195
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
196
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
197
|
-
|
198
|
-
gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
199
|
-
}
|
200
|
-
|
201
|
-
void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
202
|
-
const ggml_tensor * src0 = dst->src[0];
|
203
|
-
const float * src0_d = (const float *)src0->data;
|
204
|
-
float * dst_d = (float *)dst->data;
|
205
|
-
cudaStream_t stream = ctx.stream();
|
206
|
-
|
207
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
208
|
-
|
209
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
210
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
211
|
-
|
212
|
-
tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
213
|
-
}
|
214
|
-
|
215
|
-
void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
216
|
-
const ggml_tensor * src0 = dst->src[0];
|
217
|
-
const float * src0_d = (const float *)src0->data;
|
218
|
-
float * dst_d = (float *)dst->data;
|
219
|
-
cudaStream_t stream = ctx.stream();
|
220
|
-
|
221
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
222
|
-
|
223
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
224
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
225
|
-
|
226
|
-
relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
227
|
-
}
|
228
|
-
|
229
|
-
void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
230
|
-
const ggml_tensor * src0 = dst->src[0];
|
231
|
-
const float * src0_d = (const float *)src0->data;
|
232
|
-
float * dst_d = (float *)dst->data;
|
233
|
-
cudaStream_t stream = ctx.stream();
|
234
|
-
|
235
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
236
|
-
|
237
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
238
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
239
|
-
|
240
|
-
sigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
241
|
-
}
|
242
|
-
|
243
|
-
void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
244
|
-
const ggml_tensor * src0 = dst->src[0];
|
245
|
-
const float * src0_d = (const float *)src0->data;
|
246
|
-
float * dst_d = (float *)dst->data;
|
247
|
-
cudaStream_t stream = ctx.stream();
|
248
|
-
|
249
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
250
|
-
|
251
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
252
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
253
|
-
|
254
|
-
hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
255
|
-
}
|
256
|
-
|
257
|
-
void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
258
|
-
const ggml_tensor * src0 = dst->src[0];
|
259
|
-
const float * src0_d = (const float *)src0->data;
|
260
|
-
float * dst_d = (float *)dst->data;
|
261
|
-
cudaStream_t stream = ctx.stream();
|
262
|
-
|
263
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
264
|
-
|
265
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
266
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
267
|
-
|
268
|
-
hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
269
|
-
}
|
270
|
-
|
271
|
-
void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
272
|
-
const ggml_tensor * src0 = dst->src[0];
|
273
|
-
const float * src0_d = (const float *)src0->data;
|
274
|
-
float * dst_d = (float *)dst->data;
|
275
|
-
cudaStream_t stream = ctx.stream();
|
276
|
-
|
277
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
278
|
-
|
279
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
280
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
281
|
-
|
282
|
-
float negative_slope;
|
283
|
-
memcpy(&negative_slope, dst->op_params, sizeof(float));
|
284
|
-
|
285
|
-
leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream);
|
286
|
-
}
|
287
|
-
|
288
|
-
void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
289
|
-
const ggml_tensor * src0 = dst->src[0];
|
290
|
-
const float * src0_d = (const float *)src0->data;
|
291
|
-
float * dst_d = (float *)dst->data;
|
292
|
-
cudaStream_t stream = ctx.stream();
|
293
|
-
|
294
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
295
|
-
|
296
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
297
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
298
|
-
|
299
|
-
sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
300
|
-
}
|
301
|
-
|
302
|
-
void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
303
|
-
const ggml_tensor * src0 = dst->src[0];
|
304
|
-
const float * src0_d = (const float *)src0->data;
|
305
|
-
float * dst_d = (float *)dst->data;
|
306
|
-
cudaStream_t stream = ctx.stream();
|
307
|
-
|
308
|
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
309
|
-
|
310
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
311
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
312
|
-
|
313
|
-
sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream);
|
314
|
-
}
|
@@ -1,51 +0,0 @@
|
|
1
|
-
#include "upscale.cuh"
|
2
|
-
|
3
|
-
static __global__ void upscale_f32(const float * x, float * dst,
|
4
|
-
const int nb00, const int nb01, const int nb02, const int nb03,
|
5
|
-
const int ne10, const int ne11, const int ne12, const int ne13,
|
6
|
-
const float sf0, const float sf1, const float sf2, const float sf3) {
|
7
|
-
int index = threadIdx.x + blockIdx.x * blockDim.x;
|
8
|
-
if (index >= ne10 * ne11 * ne12 * ne13) {
|
9
|
-
return;
|
10
|
-
}
|
11
|
-
|
12
|
-
int i10 = index % ne10;
|
13
|
-
int i11 = (index / ne10) % ne11;
|
14
|
-
int i12 = (index / (ne10 * ne11)) % ne12;
|
15
|
-
int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
|
16
|
-
|
17
|
-
int i00 = i10 / sf0;
|
18
|
-
int i01 = i11 / sf1;
|
19
|
-
int i02 = i12 / sf2;
|
20
|
-
int i03 = i13 / sf3;
|
21
|
-
|
22
|
-
dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
|
23
|
-
}
|
24
|
-
|
25
|
-
static void upscale_f32_cuda(const float * x, float * dst,
|
26
|
-
const int nb00, const int nb01, const int nb02, const int nb03,
|
27
|
-
const int ne10, const int ne11, const int ne12, const int ne13,
|
28
|
-
const float sf0, const float sf1, const float sf2, const float sf3,
|
29
|
-
cudaStream_t stream) {
|
30
|
-
int dst_size = ne10 * ne11 * ne12 * ne13;
|
31
|
-
int num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
|
32
|
-
|
33
|
-
upscale_f32<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3);
|
34
|
-
}
|
35
|
-
|
36
|
-
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
37
|
-
const ggml_tensor * src0 = dst->src[0];
|
38
|
-
const float * src0_d = (const float *)src0->data;
|
39
|
-
float * dst_d = (float *)dst->data;
|
40
|
-
cudaStream_t stream = ctx.stream();
|
41
|
-
|
42
|
-
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
43
|
-
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
44
|
-
|
45
|
-
const float sf0 = (float)dst->ne[0]/src0->ne[0];
|
46
|
-
const float sf1 = (float)dst->ne[1]/src0->ne[1];
|
47
|
-
const float sf2 = (float)dst->ne[2]/src0->ne[2];
|
48
|
-
const float sf3 = (float)dst->ne[3]/src0->ne[3];
|
49
|
-
|
50
|
-
upscale_f32_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, stream);
|
51
|
-
}
|