llama_cpp 0.16.2 → 0.17.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (177) hide show
  1. checksums.yaml +4 -4
  2. data/CHANGELOG.md +18 -0
  3. data/README.md +7 -12
  4. data/ext/llama_cpp/extconf.rb +2 -43
  5. data/ext/llama_cpp/llama_cpp.cpp +8 -0
  6. data/lib/llama_cpp/version.rb +3 -3
  7. data/sig/llama_cpp.rbs +3 -0
  8. metadata +2 -171
  9. data/vendor/include/.gitkeep +0 -0
  10. data/vendor/lib/.gitkeep +0 -0
  11. data/vendor/tmp/llama.cpp/LICENSE +0 -21
  12. data/vendor/tmp/llama.cpp/Makefile +0 -1124
  13. data/vendor/tmp/llama.cpp/ggml-alloc.c +0 -1041
  14. data/vendor/tmp/llama.cpp/ggml-alloc.h +0 -76
  15. data/vendor/tmp/llama.cpp/ggml-backend-impl.h +0 -153
  16. data/vendor/tmp/llama.cpp/ggml-backend.c +0 -2225
  17. data/vendor/tmp/llama.cpp/ggml-backend.h +0 -236
  18. data/vendor/tmp/llama.cpp/ggml-blas.cpp +0 -363
  19. data/vendor/tmp/llama.cpp/ggml-blas.h +0 -23
  20. data/vendor/tmp/llama.cpp/ggml-common.h +0 -1805
  21. data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +0 -47
  22. data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +0 -34
  23. data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +0 -104
  24. data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +0 -280
  25. data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +0 -34
  26. data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +0 -196
  27. data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +0 -686
  28. data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +0 -490
  29. data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +0 -40
  30. data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +0 -674
  31. data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +0 -319
  32. data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +0 -312
  33. data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +0 -345
  34. data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +0 -178
  35. data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +0 -104
  36. data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +0 -88
  37. data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +0 -419
  38. data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +0 -221
  39. data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +0 -49
  40. data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +0 -94
  41. data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +0 -112
  42. data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +0 -271
  43. data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +0 -31
  44. data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +0 -206
  45. data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +0 -40
  46. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +0 -5
  47. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +0 -5
  48. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +0 -5
  49. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +0 -5
  50. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +0 -5
  51. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +0 -5
  52. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +0 -5
  53. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +0 -5
  54. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +0 -5
  55. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +0 -5
  56. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +0 -5
  57. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +0 -5
  58. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +0 -5
  59. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +0 -5
  60. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +0 -5
  61. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +0 -5
  62. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +0 -5
  63. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +0 -5
  64. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +0 -5
  65. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +0 -5
  66. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +0 -5
  67. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +0 -5
  68. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +0 -5
  69. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +0 -5
  70. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +0 -5
  71. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +0 -5
  72. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +0 -5
  73. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +0 -5
  74. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +0 -5
  75. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +0 -5
  76. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +0 -5
  77. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +0 -5
  78. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +0 -5
  79. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +0 -5
  80. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +0 -5
  81. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +0 -5
  82. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +0 -5
  83. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +0 -5
  84. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +0 -5
  85. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +0 -5
  86. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +0 -5
  87. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +0 -5
  88. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +0 -5
  89. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +0 -5
  90. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +0 -5
  91. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +0 -5
  92. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +0 -5
  93. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +0 -5
  94. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +0 -5
  95. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +0 -5
  96. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +0 -5
  97. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +0 -5
  98. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +0 -5
  99. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +0 -5
  100. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +0 -5
  101. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +0 -5
  102. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +0 -5
  103. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +0 -5
  104. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +0 -5
  105. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +0 -5
  106. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +0 -5
  107. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +0 -5
  108. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +0 -5
  109. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +0 -5
  110. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +0 -5
  111. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +0 -5
  112. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +0 -5
  113. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +0 -5
  114. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +0 -5
  115. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +0 -5
  116. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +0 -5
  117. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +0 -5
  118. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +0 -5
  119. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +0 -5
  120. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +0 -5
  121. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +0 -5
  122. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +0 -5
  123. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +0 -5
  124. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +0 -5
  125. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +0 -5
  126. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +0 -5
  127. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +0 -5
  128. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +0 -5
  129. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +0 -5
  130. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +0 -5
  131. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +0 -5
  132. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +0 -10
  133. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +0 -9
  134. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +0 -10
  135. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +0 -10
  136. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +0 -8
  137. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q2_k.cu +0 -5
  138. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q3_k.cu +0 -5
  139. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_0.cu +0 -5
  140. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_1.cu +0 -5
  141. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_k.cu +0 -5
  142. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_0.cu +0 -5
  143. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_1.cu +0 -5
  144. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_k.cu +0 -5
  145. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q6_k.cu +0 -5
  146. data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q8_0.cu +0 -5
  147. data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +0 -47
  148. data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +0 -314
  149. data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +0 -51
  150. data/vendor/tmp/llama.cpp/ggml-cuda.cu +0 -3069
  151. data/vendor/tmp/llama.cpp/ggml-cuda.h +0 -44
  152. data/vendor/tmp/llama.cpp/ggml-impl.h +0 -651
  153. data/vendor/tmp/llama.cpp/ggml-kompute.cpp +0 -2038
  154. data/vendor/tmp/llama.cpp/ggml-kompute.h +0 -46
  155. data/vendor/tmp/llama.cpp/ggml-metal.h +0 -66
  156. data/vendor/tmp/llama.cpp/ggml-metal.m +0 -3273
  157. data/vendor/tmp/llama.cpp/ggml-metal.metal +0 -6540
  158. data/vendor/tmp/llama.cpp/ggml-quants.c +0 -14994
  159. data/vendor/tmp/llama.cpp/ggml-quants.h +0 -133
  160. data/vendor/tmp/llama.cpp/ggml-rpc.cpp +0 -1178
  161. data/vendor/tmp/llama.cpp/ggml-rpc.h +0 -24
  162. data/vendor/tmp/llama.cpp/ggml-sycl.cpp +0 -6351
  163. data/vendor/tmp/llama.cpp/ggml-sycl.h +0 -40
  164. data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +0 -144508
  165. data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +0 -7183
  166. data/vendor/tmp/llama.cpp/ggml-vulkan.h +0 -29
  167. data/vendor/tmp/llama.cpp/ggml.c +0 -22506
  168. data/vendor/tmp/llama.cpp/ggml.h +0 -2458
  169. data/vendor/tmp/llama.cpp/llama.cpp +0 -18985
  170. data/vendor/tmp/llama.cpp/llama.h +0 -1147
  171. data/vendor/tmp/llama.cpp/scripts/get-flags.mk +0 -38
  172. data/vendor/tmp/llama.cpp/sgemm.cpp +0 -1032
  173. data/vendor/tmp/llama.cpp/sgemm.h +0 -14
  174. data/vendor/tmp/llama.cpp/unicode-data.cpp +0 -7033
  175. data/vendor/tmp/llama.cpp/unicode-data.h +0 -20
  176. data/vendor/tmp/llama.cpp/unicode.cpp +0 -810
  177. data/vendor/tmp/llama.cpp/unicode.h +0 -63
@@ -1,319 +0,0 @@
1
- #include "common.cuh"
2
- #include "fattn-common.cuh"
3
- #include "fattn-tile-f16.cuh"
4
-
5
- #define FATTN_KQ_STRIDE_TILE_F16 64
6
-
7
- template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
8
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
9
- __launch_bounds__(nwarps*WARP_SIZE, 1)
10
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
11
- static __global__ void flash_attn_tile_ext_f16(
12
- const char * __restrict__ Q,
13
- const char * __restrict__ K,
14
- const char * __restrict__ V,
15
- const char * __restrict__ mask,
16
- float * __restrict__ dst,
17
- float2 * __restrict__ dst_meta,
18
- const float scale,
19
- const float max_bias,
20
- const float m0,
21
- const float m1,
22
- const uint32_t n_head_log2,
23
- const int ne00,
24
- const int ne01,
25
- const int ne02,
26
- const int ne03,
27
- const int ne10,
28
- const int ne11,
29
- const int ne12,
30
- const int ne13,
31
- const int ne31,
32
- const int nb31,
33
- const int nb01,
34
- const int nb02,
35
- const int nb03,
36
- const int nb11,
37
- const int nb12,
38
- const int nb13,
39
- const int nb21,
40
- const int nb22,
41
- const int nb23,
42
- const int ne0,
43
- const int ne1,
44
- const int ne2,
45
- const int ne3) {
46
- #ifdef FP16_AVAILABLE
47
- //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
48
-
49
- const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
50
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
51
-
52
- const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
53
- const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
54
- const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
55
- const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
56
- const half * maskh = (const half *) mask + ne11*ic0;
57
-
58
- const int stride_KV2 = nb11 / sizeof(half2);
59
-
60
- const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
61
- const half slopeh = __float2half(slopef);
62
-
63
- static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
64
-
65
- __shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];
66
- half2 * KQ2 = (half2 *) KQ;
67
-
68
- __shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.
69
-
70
- half kqmax[ncols/nwarps];
71
- #pragma unroll
72
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
73
- kqmax[j0/nwarps] = -HALF_MAX_HALF;
74
- }
75
- half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};
76
-
77
- half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
78
-
79
- // Convert Q to half2 and store in registers:
80
- __shared__ half2 Q_h2[ncols][D/2];
81
- #pragma unroll
82
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
83
- const int j = j0 + threadIdx.y;
84
-
85
- #pragma unroll
86
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
87
- const int i = i0 + threadIdx.x;
88
-
89
- const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
90
- Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
91
- }
92
- }
93
-
94
- __syncthreads();
95
-
96
- const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F16;
97
- for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F16) {
98
- // Calculate KQ tile and keep track of new maximum KQ values:
99
-
100
- half kqmax_new[ncols/nwarps];
101
- #pragma unroll
102
- for (int j = 0; j < ncols/nwarps; ++j) {
103
- kqmax_new[j] = kqmax[j];
104
- }
105
-
106
- #pragma unroll
107
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {
108
- const int i_KQ = i_KQ_0 + threadIdx.y;
109
-
110
- #pragma unroll
111
- for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
112
- const int k_KQ = k_KQ_0 + threadIdx.x;
113
-
114
- KV_tmp[i_KQ][k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
115
- }
116
- }
117
-
118
- __syncthreads();
119
-
120
- half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};
121
-
122
- #pragma unroll
123
- for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {
124
- half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];
125
- half2 Q_k[ncols/nwarps];
126
-
127
- #pragma unroll
128
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
129
- const int i_KQ = i_KQ_0 + threadIdx.x;
130
-
131
- K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
132
- }
133
- #pragma unroll
134
- for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
135
- const int j_KQ = j_KQ_0 + threadIdx.y;
136
-
137
- Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];
138
- }
139
-
140
- #pragma unroll
141
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
142
- #pragma unroll
143
- for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
144
- sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];
145
- }
146
- }
147
- }
148
-
149
- #pragma unroll
150
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
151
- const int i_KQ = i_KQ_0 + threadIdx.x;
152
-
153
- #pragma unroll
154
- for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
155
- const int j_KQ = j_KQ_0 + threadIdx.y;
156
-
157
- half sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
158
- sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
159
-
160
- kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
161
-
162
- KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;
163
- }
164
- }
165
-
166
- __syncthreads();
167
-
168
- #pragma unroll
169
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
170
- const int j = j0 + threadIdx.y;
171
-
172
- kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
173
- const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));
174
- kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
175
-
176
- #pragma unroll
177
- for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {
178
- const int i = i0 + threadIdx.x;
179
-
180
- const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);
181
- const half2 val = h2exp(diff);
182
- kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;
183
- KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;
184
- }
185
-
186
- #pragma unroll
187
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
188
- VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
189
- }
190
- }
191
-
192
- __syncthreads();
193
-
194
- #pragma unroll
195
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {
196
- const int k = k0 + threadIdx.y;
197
-
198
- #pragma unroll
199
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
200
- const int i = i0 + threadIdx.x;
201
-
202
- KV_tmp[k][i] = V_h2[(k_VKQ_0 + k)*stride_KV2 + i];
203
- }
204
- }
205
-
206
- __syncthreads();
207
-
208
- #pragma unroll
209
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {
210
- half2 V_k[(D/2)/WARP_SIZE][2];
211
- half2 KQ_k[ncols/nwarps];
212
-
213
- #pragma unroll
214
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
215
- const int i = i0 + threadIdx.x;
216
-
217
- V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];
218
- V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];
219
- }
220
- #pragma unroll
221
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
222
- const int j = j0 + threadIdx.y;
223
-
224
- KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];
225
- }
226
-
227
- #pragma unroll
228
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
229
- #pragma unroll
230
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
231
- VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);
232
- VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);
233
- }
234
- }
235
- }
236
-
237
- __syncthreads();
238
- }
239
-
240
- #pragma unroll
241
- for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
242
- const int j_VKQ = j_VKQ_0 + threadIdx.y;
243
-
244
- if (ic0 + j_VKQ >= ne01) {
245
- return;
246
- }
247
-
248
- half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
249
- kqsum_j = warp_reduce_sum(kqsum_j);
250
-
251
- #pragma unroll
252
- for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
253
- const int i0 = i00 + 2*threadIdx.x;
254
-
255
- half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
256
- if (parallel_blocks == 1) {
257
- dst_val /= __half2half2(kqsum_j);
258
- }
259
- const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
260
- dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = __low2float(dst_val);
261
- dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = __high2float(dst_val);
262
- }
263
-
264
- if (parallel_blocks != 1 && threadIdx.x == 0) {
265
- dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
266
- }
267
- }
268
- #else
269
- NO_DEVICE_CODE;
270
- #endif // FP16_AVAILABLE
271
- }
272
-
273
- template <int cols_per_block, int parallel_blocks>
274
- void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
275
- const ggml_tensor * Q = dst->src[0];
276
- switch (Q->ne[0]) {
277
- case 64: {
278
- constexpr int D = 64;
279
- constexpr int nwarps = 8;
280
- fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
281
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
282
- } break;
283
- case 128: {
284
- constexpr int D = 128;
285
- constexpr int nwarps = 8;
286
- fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
287
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
288
- } break;
289
- default: {
290
- GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
291
- } break;
292
- }
293
- }
294
-
295
- void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
296
- const ggml_tensor * KQV = dst;
297
- const ggml_tensor * Q = dst->src[0];
298
-
299
- const int32_t precision = KQV->op_params[2];
300
- GGML_ASSERT(precision == GGML_PREC_DEFAULT);
301
-
302
- if (Q->ne[1] <= 16) {
303
- constexpr int cols_per_block = 16;
304
- constexpr int parallel_blocks = 4;
305
- launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
306
- return;
307
- }
308
-
309
- if (Q->ne[1] <= 32) {
310
- constexpr int cols_per_block = 32;
311
- constexpr int parallel_blocks = 4;
312
- launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
313
- return;
314
- }
315
-
316
- constexpr int cols_per_block = 32;
317
- constexpr int parallel_blocks = 1;
318
- launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
319
- }
@@ -1,312 +0,0 @@
1
- #include "common.cuh"
2
- #include "fattn-common.cuh"
3
- #include "fattn-tile-f32.cuh"
4
-
5
- #define FATTN_KQ_STRIDE_TILE_F32 32
6
-
7
- template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
8
- #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
9
- __launch_bounds__(nwarps*WARP_SIZE, 1)
10
- #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
11
- static __global__ void flash_attn_tile_ext_f32(
12
- const char * __restrict__ Q,
13
- const char * __restrict__ K,
14
- const char * __restrict__ V,
15
- const char * __restrict__ mask,
16
- float * __restrict__ dst,
17
- float2 * __restrict__ dst_meta,
18
- const float scale,
19
- const float max_bias,
20
- const float m0,
21
- const float m1,
22
- const uint32_t n_head_log2,
23
- const int ne00,
24
- const int ne01,
25
- const int ne02,
26
- const int ne03,
27
- const int ne10,
28
- const int ne11,
29
- const int ne12,
30
- const int ne13,
31
- const int ne31,
32
- const int nb31,
33
- const int nb01,
34
- const int nb02,
35
- const int nb03,
36
- const int nb11,
37
- const int nb12,
38
- const int nb13,
39
- const int nb21,
40
- const int nb22,
41
- const int nb23,
42
- const int ne0,
43
- const int ne1,
44
- const int ne2,
45
- const int ne3) {
46
- //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
47
-
48
- const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
49
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
50
-
51
- const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
52
- const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
53
- const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
54
- const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
55
- const half * maskh = (const half *) mask + ne11*ic0;
56
-
57
- const int stride_KV2 = nb11 / sizeof(half2);
58
-
59
- const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
60
-
61
- static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
62
-
63
- __shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
64
-
65
- __shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
66
- float2 * KV_tmp2 = (float2 *) KV_tmp;
67
-
68
- float kqmax[ncols/nwarps];
69
- #pragma unroll
70
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
71
- kqmax[j0/nwarps] = -FLT_MAX/2.0f;
72
- }
73
- float kqsum[ncols/nwarps] = {0.0f};
74
-
75
- float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
76
-
77
- // Convert Q to half2 and store in registers:
78
- __shared__ float Q_f[ncols][D];
79
- #pragma unroll
80
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
81
- const int j = j0 + threadIdx.y;
82
-
83
- #pragma unroll
84
- for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
85
- float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
86
- Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
87
- Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
88
- }
89
- }
90
-
91
- __syncthreads();
92
-
93
- const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32;
94
- for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) {
95
- // Calculate KQ tile and keep track of new maximum KQ values:
96
-
97
- float kqmax_new[ncols/nwarps];
98
- #pragma unroll
99
- for (int j = 0; j < ncols/nwarps; ++j) {
100
- kqmax_new[j] = kqmax[j];
101
- }
102
-
103
- #pragma unroll
104
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
105
- const int i_KQ = i_KQ_0 + threadIdx.y;
106
-
107
- #pragma unroll
108
- for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
109
- const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
110
- KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
111
- KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
112
- }
113
- }
114
-
115
- __syncthreads();
116
-
117
- float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
118
-
119
- #pragma unroll
120
- for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
121
- float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
122
- float Q_k[ncols/nwarps];
123
-
124
- #pragma unroll
125
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
126
- const int i_KQ = i_KQ_0 + threadIdx.x;
127
-
128
- K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
129
- }
130
- #pragma unroll
131
- for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
132
- const int j_KQ = j_KQ_0 + threadIdx.y;
133
-
134
- Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
135
- }
136
-
137
- #pragma unroll
138
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
139
- #pragma unroll
140
- for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
141
- sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
142
- }
143
- }
144
- }
145
-
146
- #pragma unroll
147
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
148
- const int i_KQ = i_KQ_0 + threadIdx.x;
149
-
150
- #pragma unroll
151
- for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
152
- const int j_KQ = j_KQ_0 + threadIdx.y;
153
-
154
- sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
155
-
156
- kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
157
-
158
- KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
159
- }
160
- }
161
-
162
- __syncthreads();
163
-
164
- #pragma unroll
165
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
166
- const int j = j0 + threadIdx.y;
167
-
168
- kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
169
- const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
170
- kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
171
-
172
- float kqsum_add = 0.0f;
173
- #pragma unroll
174
- for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
175
- const int i = i0 + threadIdx.x;
176
-
177
- const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
178
- const float val = expf(diff);
179
- kqsum_add += val;
180
- KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
181
- }
182
- kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
183
-
184
- #pragma unroll
185
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
186
- VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
187
- VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
188
- }
189
- }
190
-
191
- __syncthreads();
192
-
193
- #pragma unroll
194
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
195
- const int k = k0 + threadIdx.y;
196
-
197
- #pragma unroll
198
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
199
- const int i = i0 + threadIdx.x;
200
-
201
- KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
202
- KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
203
- }
204
- }
205
-
206
- __syncthreads();
207
-
208
- #pragma unroll
209
- for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
210
- float2 V_k[(D/2)/WARP_SIZE];
211
- float KQ_k[ncols/nwarps];
212
-
213
- #pragma unroll
214
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
215
- const int i = i0 + threadIdx.x;
216
-
217
- V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
218
- }
219
- #pragma unroll
220
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
221
- const int j = j0 + threadIdx.y;
222
-
223
- KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
224
- }
225
-
226
- #pragma unroll
227
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
228
- #pragma unroll
229
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
230
- VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
231
- VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
232
- }
233
- }
234
- }
235
-
236
- __syncthreads();
237
- }
238
-
239
- #pragma unroll
240
- for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
241
- const int j_VKQ = j_VKQ_0 + threadIdx.y;
242
-
243
- if (ic0 + j_VKQ >= ne01) {
244
- return;
245
- }
246
-
247
- float kqsum_j = kqsum[j_VKQ_0/nwarps];
248
- kqsum_j = warp_reduce_sum(kqsum_j);
249
-
250
- #pragma unroll
251
- for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
252
- const int i0 = i00 + 2*threadIdx.x;
253
-
254
- float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
255
- if (parallel_blocks == 1) {
256
- dst_val.x /= kqsum_j;
257
- dst_val.y /= kqsum_j;
258
- }
259
- const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
260
- dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x;
261
- dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y;
262
- }
263
-
264
- if (parallel_blocks != 1 && threadIdx.x == 0) {
265
- dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
266
- }
267
- }
268
- }
269
-
270
- template <int cols_per_block, int parallel_blocks>
271
- void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
272
- const ggml_tensor * Q = dst->src[0];
273
- switch (Q->ne[0]) {
274
- case 64: {
275
- constexpr int D = 64;
276
- constexpr int nwarps = 8;
277
- fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
278
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
279
- } break;
280
- case 128: {
281
- constexpr int D = 128;
282
- constexpr int nwarps = 8;
283
- fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
284
- launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block, true, true);
285
- } break;
286
- default: {
287
- GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
288
- } break;
289
- }
290
- }
291
-
292
- void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
293
- const ggml_tensor * Q = dst->src[0];
294
-
295
- if (Q->ne[1] <= 16) {
296
- constexpr int cols_per_block = 16;
297
- constexpr int parallel_blocks = 4;
298
- launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
299
- return;
300
- }
301
-
302
- if (Q->ne[1] <= 32) {
303
- constexpr int cols_per_block = 32;
304
- constexpr int parallel_blocks = 4;
305
- launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
306
- return;
307
- }
308
-
309
- constexpr int cols_per_block = 32;
310
- constexpr int parallel_blocks = 1;
311
- launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
312
- }