llama_cpp 0.16.2 → 0.17.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +18 -0
- data/README.md +7 -12
- data/ext/llama_cpp/extconf.rb +2 -43
- data/ext/llama_cpp/llama_cpp.cpp +8 -0
- data/lib/llama_cpp/version.rb +3 -3
- data/sig/llama_cpp.rbs +3 -0
- metadata +2 -171
- data/vendor/include/.gitkeep +0 -0
- data/vendor/lib/.gitkeep +0 -0
- data/vendor/tmp/llama.cpp/LICENSE +0 -21
- data/vendor/tmp/llama.cpp/Makefile +0 -1124
- data/vendor/tmp/llama.cpp/ggml-alloc.c +0 -1041
- data/vendor/tmp/llama.cpp/ggml-alloc.h +0 -76
- data/vendor/tmp/llama.cpp/ggml-backend-impl.h +0 -153
- data/vendor/tmp/llama.cpp/ggml-backend.c +0 -2225
- data/vendor/tmp/llama.cpp/ggml-backend.h +0 -236
- data/vendor/tmp/llama.cpp/ggml-blas.cpp +0 -363
- data/vendor/tmp/llama.cpp/ggml-blas.h +0 -23
- data/vendor/tmp/llama.cpp/ggml-common.h +0 -1805
- data/vendor/tmp/llama.cpp/ggml-cuda/acc.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/arange.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/argsort.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/binbcast.cu +0 -280
- data/vendor/tmp/llama.cpp/ggml-cuda/clamp.cu +0 -34
- data/vendor/tmp/llama.cpp/ggml-cuda/concat.cu +0 -196
- data/vendor/tmp/llama.cpp/ggml-cuda/convert.cu +0 -686
- data/vendor/tmp/llama.cpp/ggml-cuda/cpy.cu +0 -490
- data/vendor/tmp/llama.cpp/ggml-cuda/diagmask.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/dmmv.cu +0 -674
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f16.cu +0 -319
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn-tile-f32.cu +0 -312
- data/vendor/tmp/llama.cpp/ggml-cuda/fattn.cu +0 -345
- data/vendor/tmp/llama.cpp/ggml-cuda/getrows.cu +0 -178
- data/vendor/tmp/llama.cpp/ggml-cuda/im2col.cu +0 -104
- data/vendor/tmp/llama.cpp/ggml-cuda/mmq.cu +0 -88
- data/vendor/tmp/llama.cpp/ggml-cuda/mmvq.cu +0 -419
- data/vendor/tmp/llama.cpp/ggml-cuda/norm.cu +0 -221
- data/vendor/tmp/llama.cpp/ggml-cuda/pad.cu +0 -49
- data/vendor/tmp/llama.cpp/ggml-cuda/pool2d.cu +0 -94
- data/vendor/tmp/llama.cpp/ggml-cuda/quantize.cu +0 -112
- data/vendor/tmp/llama.cpp/ggml-cuda/rope.cu +0 -271
- data/vendor/tmp/llama.cpp/ggml-cuda/scale.cu +0 -31
- data/vendor/tmp/llama.cpp/ggml-cuda/softmax.cu +0 -206
- data/vendor/tmp/llama.cpp/ggml-cuda/sumrows.cu +0 -40
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu +0 -9
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu +0 -10
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu +0 -8
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q2_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q3_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q4_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_1.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q5_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q6_k.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/template-instances/mmq-instance-q8_0.cu +0 -5
- data/vendor/tmp/llama.cpp/ggml-cuda/tsembd.cu +0 -47
- data/vendor/tmp/llama.cpp/ggml-cuda/unary.cu +0 -314
- data/vendor/tmp/llama.cpp/ggml-cuda/upscale.cu +0 -51
- data/vendor/tmp/llama.cpp/ggml-cuda.cu +0 -3069
- data/vendor/tmp/llama.cpp/ggml-cuda.h +0 -44
- data/vendor/tmp/llama.cpp/ggml-impl.h +0 -651
- data/vendor/tmp/llama.cpp/ggml-kompute.cpp +0 -2038
- data/vendor/tmp/llama.cpp/ggml-kompute.h +0 -46
- data/vendor/tmp/llama.cpp/ggml-metal.h +0 -66
- data/vendor/tmp/llama.cpp/ggml-metal.m +0 -3273
- data/vendor/tmp/llama.cpp/ggml-metal.metal +0 -6540
- data/vendor/tmp/llama.cpp/ggml-quants.c +0 -14994
- data/vendor/tmp/llama.cpp/ggml-quants.h +0 -133
- data/vendor/tmp/llama.cpp/ggml-rpc.cpp +0 -1178
- data/vendor/tmp/llama.cpp/ggml-rpc.h +0 -24
- data/vendor/tmp/llama.cpp/ggml-sycl.cpp +0 -6351
- data/vendor/tmp/llama.cpp/ggml-sycl.h +0 -40
- data/vendor/tmp/llama.cpp/ggml-vulkan-shaders.hpp +0 -144508
- data/vendor/tmp/llama.cpp/ggml-vulkan.cpp +0 -7183
- data/vendor/tmp/llama.cpp/ggml-vulkan.h +0 -29
- data/vendor/tmp/llama.cpp/ggml.c +0 -22506
- data/vendor/tmp/llama.cpp/ggml.h +0 -2458
- data/vendor/tmp/llama.cpp/llama.cpp +0 -18985
- data/vendor/tmp/llama.cpp/llama.h +0 -1147
- data/vendor/tmp/llama.cpp/scripts/get-flags.mk +0 -38
- data/vendor/tmp/llama.cpp/sgemm.cpp +0 -1032
- data/vendor/tmp/llama.cpp/sgemm.h +0 -14
- data/vendor/tmp/llama.cpp/unicode-data.cpp +0 -7033
- data/vendor/tmp/llama.cpp/unicode-data.h +0 -20
- data/vendor/tmp/llama.cpp/unicode.cpp +0 -810
- data/vendor/tmp/llama.cpp/unicode.h +0 -63
@@ -1,1041 +0,0 @@
|
|
1
|
-
#include "ggml-alloc.h"
|
2
|
-
#include "ggml-backend-impl.h"
|
3
|
-
#include "ggml.h"
|
4
|
-
#include "ggml-impl.h"
|
5
|
-
#include <assert.h>
|
6
|
-
#include <limits.h>
|
7
|
-
#include <stdarg.h>
|
8
|
-
#include <stdio.h>
|
9
|
-
#include <stdlib.h>
|
10
|
-
#include <string.h>
|
11
|
-
|
12
|
-
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
13
|
-
#define MAX_FREE_BLOCKS 256
|
14
|
-
|
15
|
-
//#define GGML_ALLOCATOR_DEBUG
|
16
|
-
|
17
|
-
//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
|
18
|
-
#define AT_PRINTF(...)
|
19
|
-
|
20
|
-
|
21
|
-
static bool ggml_is_view(const struct ggml_tensor * t) {
|
22
|
-
return t->view_src != NULL;
|
23
|
-
}
|
24
|
-
|
25
|
-
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
26
|
-
if (a->type != b->type) {
|
27
|
-
return false;
|
28
|
-
}
|
29
|
-
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
30
|
-
if (a->ne[i] != b->ne[i]) {
|
31
|
-
return false;
|
32
|
-
}
|
33
|
-
if (a->nb[i] != b->nb[i]) {
|
34
|
-
return false;
|
35
|
-
}
|
36
|
-
}
|
37
|
-
return true;
|
38
|
-
}
|
39
|
-
|
40
|
-
static bool ggml_op_can_inplace(enum ggml_op op) {
|
41
|
-
switch (op) {
|
42
|
-
case GGML_OP_SCALE:
|
43
|
-
case GGML_OP_DIAG_MASK_ZERO:
|
44
|
-
case GGML_OP_DIAG_MASK_INF:
|
45
|
-
case GGML_OP_ADD:
|
46
|
-
case GGML_OP_ADD1:
|
47
|
-
case GGML_OP_SUB:
|
48
|
-
case GGML_OP_MUL:
|
49
|
-
case GGML_OP_DIV:
|
50
|
-
case GGML_OP_SQR:
|
51
|
-
case GGML_OP_SQRT:
|
52
|
-
case GGML_OP_LOG:
|
53
|
-
case GGML_OP_UNARY:
|
54
|
-
case GGML_OP_ROPE:
|
55
|
-
case GGML_OP_RMS_NORM:
|
56
|
-
case GGML_OP_SOFT_MAX:
|
57
|
-
return true;
|
58
|
-
|
59
|
-
default:
|
60
|
-
return false;
|
61
|
-
}
|
62
|
-
}
|
63
|
-
|
64
|
-
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
65
|
-
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
66
|
-
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
67
|
-
return offset + align;
|
68
|
-
}
|
69
|
-
|
70
|
-
// tallocr
|
71
|
-
|
72
|
-
struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
|
73
|
-
void * base = ggml_backend_buffer_get_base(buffer);
|
74
|
-
size_t align = ggml_backend_buffer_get_alignment(buffer);
|
75
|
-
|
76
|
-
assert(align && !(align & (align - 1))); // power of 2
|
77
|
-
|
78
|
-
struct ggml_tallocr talloc = (struct ggml_tallocr) {
|
79
|
-
/*.buffer = */ buffer,
|
80
|
-
/*.base = */ base,
|
81
|
-
/*.alignment = */ align,
|
82
|
-
/*.offset = */ aligned_offset(base, 0, align),
|
83
|
-
};
|
84
|
-
return talloc;
|
85
|
-
}
|
86
|
-
|
87
|
-
void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
|
88
|
-
size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
|
89
|
-
size = GGML_PAD(size, talloc->alignment);
|
90
|
-
|
91
|
-
if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) {
|
92
|
-
fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n",
|
93
|
-
__func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset);
|
94
|
-
GGML_ASSERT(!"not enough space in the buffer");
|
95
|
-
return;
|
96
|
-
}
|
97
|
-
|
98
|
-
void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset;
|
99
|
-
talloc->offset += size;
|
100
|
-
|
101
|
-
assert(((uintptr_t)addr % talloc->alignment) == 0);
|
102
|
-
|
103
|
-
ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
|
104
|
-
}
|
105
|
-
|
106
|
-
// dynamic tensor allocator
|
107
|
-
|
108
|
-
struct free_block {
|
109
|
-
size_t offset;
|
110
|
-
size_t size;
|
111
|
-
};
|
112
|
-
|
113
|
-
struct ggml_dyn_tallocr {
|
114
|
-
size_t alignment;
|
115
|
-
int n_free_blocks;
|
116
|
-
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
117
|
-
size_t max_size;
|
118
|
-
|
119
|
-
#ifdef GGML_ALLOCATOR_DEBUG
|
120
|
-
struct {
|
121
|
-
const struct ggml_tensor * tensor;
|
122
|
-
size_t offset;
|
123
|
-
} allocated_tensors[1024];
|
124
|
-
#endif
|
125
|
-
};
|
126
|
-
|
127
|
-
#ifdef GGML_ALLOCATOR_DEBUG
|
128
|
-
static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
|
129
|
-
for (int i = 0; i < 1024; i++) {
|
130
|
-
if (alloc->allocated_tensors[i].tensor == NULL) {
|
131
|
-
alloc->allocated_tensors[i].tensor = tensor;
|
132
|
-
alloc->allocated_tensors[i].offset = offset;
|
133
|
-
return;
|
134
|
-
}
|
135
|
-
}
|
136
|
-
GGML_ASSERT(!"out of allocated_tensors");
|
137
|
-
}
|
138
|
-
static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) {
|
139
|
-
for (int i = 0; i < 1024; i++) {
|
140
|
-
if (alloc->allocated_tensors[i].offset == offset) {
|
141
|
-
alloc->allocated_tensors[i].tensor = NULL;
|
142
|
-
return;
|
143
|
-
}
|
144
|
-
}
|
145
|
-
fprintf(stderr, "tried to free tensor %s not found\n", tensor->name);
|
146
|
-
GGML_ASSERT(!"tensor not found");
|
147
|
-
}
|
148
|
-
#endif
|
149
|
-
|
150
|
-
static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) {
|
151
|
-
size = aligned_offset(NULL, size, alloc->alignment);
|
152
|
-
|
153
|
-
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
154
|
-
|
155
|
-
size_t max_avail = 0;
|
156
|
-
|
157
|
-
// find the best fitting free block besides the last block
|
158
|
-
int best_fit_block = -1;
|
159
|
-
size_t best_fit_size = SIZE_MAX;
|
160
|
-
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
|
161
|
-
struct free_block * block = &alloc->free_blocks[i];
|
162
|
-
max_avail = MAX(max_avail, block->size);
|
163
|
-
if (block->size >= size && block->size <= best_fit_size) {
|
164
|
-
best_fit_block = i;
|
165
|
-
best_fit_size = block->size;
|
166
|
-
}
|
167
|
-
}
|
168
|
-
|
169
|
-
if (best_fit_block == -1) {
|
170
|
-
// the last block is our last resort
|
171
|
-
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
|
172
|
-
max_avail = MAX(max_avail, block->size);
|
173
|
-
if (block->size >= size) {
|
174
|
-
best_fit_block = alloc->n_free_blocks - 1;
|
175
|
-
} else {
|
176
|
-
// this should never happen
|
177
|
-
fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n",
|
178
|
-
__func__, size, max_avail);
|
179
|
-
GGML_ASSERT(!"not enough space in the buffer");
|
180
|
-
GGML_UNREACHABLE();
|
181
|
-
}
|
182
|
-
}
|
183
|
-
|
184
|
-
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
185
|
-
size_t offset = block->offset;
|
186
|
-
block->offset = offset + size;
|
187
|
-
block->size -= size;
|
188
|
-
if (block->size == 0) {
|
189
|
-
// remove block if empty
|
190
|
-
alloc->n_free_blocks--;
|
191
|
-
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
|
192
|
-
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
193
|
-
}
|
194
|
-
}
|
195
|
-
|
196
|
-
AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset);
|
197
|
-
|
198
|
-
#ifdef GGML_ALLOCATOR_DEBUG
|
199
|
-
add_allocated_tensor(alloc, offset, tensor);
|
200
|
-
size_t cur_max = offset + size;
|
201
|
-
if (cur_max > alloc->max_size) {
|
202
|
-
// sort allocated_tensors by offset
|
203
|
-
for (int i = 0; i < 1024; i++) {
|
204
|
-
for (int j = i + 1; j < 1024; j++) {
|
205
|
-
if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) {
|
206
|
-
const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor;
|
207
|
-
size_t tmp_offset = alloc->allocated_tensors[i].offset;
|
208
|
-
alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor;
|
209
|
-
alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset;
|
210
|
-
alloc->allocated_tensors[j].tensor = tmp_tensor;
|
211
|
-
alloc->allocated_tensors[j].offset = tmp_offset;
|
212
|
-
}
|
213
|
-
}
|
214
|
-
}
|
215
|
-
fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
|
216
|
-
for (int i = 0; i < 1024; i++) {
|
217
|
-
if (alloc->allocated_tensors[i].tensor) {
|
218
|
-
fprintf(stderr, "%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name,
|
219
|
-
alloc->allocated_tensors[i].offset,
|
220
|
-
alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor),
|
221
|
-
ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0);
|
222
|
-
}
|
223
|
-
}
|
224
|
-
fprintf(stderr, "\n");
|
225
|
-
}
|
226
|
-
#endif
|
227
|
-
|
228
|
-
alloc->max_size = MAX(alloc->max_size, offset + size);
|
229
|
-
|
230
|
-
return offset;
|
231
|
-
|
232
|
-
GGML_UNUSED(tensor);
|
233
|
-
}
|
234
|
-
|
235
|
-
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
236
|
-
static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) {
|
237
|
-
size = aligned_offset(NULL, size, alloc->alignment);
|
238
|
-
|
239
|
-
AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks);
|
240
|
-
|
241
|
-
#ifdef GGML_ALLOCATOR_DEBUG
|
242
|
-
remove_allocated_tensor(alloc, offset, tensor);
|
243
|
-
#endif
|
244
|
-
|
245
|
-
// see if we can merge with an existing block
|
246
|
-
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
247
|
-
struct free_block * block = &alloc->free_blocks[i];
|
248
|
-
// check if ptr is at the end of the block
|
249
|
-
if (block->offset + block->size == offset) {
|
250
|
-
block->size += size;
|
251
|
-
// check if we can merge with the next block
|
252
|
-
if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) {
|
253
|
-
block->size += alloc->free_blocks[i+1].size;
|
254
|
-
alloc->n_free_blocks--;
|
255
|
-
for (int j = i+1; j < alloc->n_free_blocks; j++) {
|
256
|
-
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
257
|
-
}
|
258
|
-
}
|
259
|
-
return;
|
260
|
-
}
|
261
|
-
// check if ptr is at the beginning of the block
|
262
|
-
if (offset + size == block->offset) {
|
263
|
-
block->offset = offset;
|
264
|
-
block->size += size;
|
265
|
-
// check if we can merge with the previous block
|
266
|
-
if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) {
|
267
|
-
alloc->free_blocks[i-1].size += block->size;
|
268
|
-
alloc->n_free_blocks--;
|
269
|
-
for (int j = i; j < alloc->n_free_blocks; j++) {
|
270
|
-
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
271
|
-
}
|
272
|
-
}
|
273
|
-
return;
|
274
|
-
}
|
275
|
-
}
|
276
|
-
// otherwise, add a new block
|
277
|
-
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
278
|
-
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
|
279
|
-
int insert_pos = 0;
|
280
|
-
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) {
|
281
|
-
insert_pos++;
|
282
|
-
}
|
283
|
-
// shift all blocks from insert_pos onward to make room for the new block
|
284
|
-
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
|
285
|
-
alloc->free_blocks[i] = alloc->free_blocks[i-1];
|
286
|
-
}
|
287
|
-
// insert the new block
|
288
|
-
alloc->free_blocks[insert_pos].offset = offset;
|
289
|
-
alloc->free_blocks[insert_pos].size = size;
|
290
|
-
alloc->n_free_blocks++;
|
291
|
-
|
292
|
-
GGML_UNUSED(tensor);
|
293
|
-
}
|
294
|
-
|
295
|
-
static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) {
|
296
|
-
alloc->n_free_blocks = 1;
|
297
|
-
alloc->free_blocks[0].offset = 0;
|
298
|
-
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
|
299
|
-
alloc->max_size = 0;
|
300
|
-
}
|
301
|
-
|
302
|
-
static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) {
|
303
|
-
struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr));
|
304
|
-
|
305
|
-
*alloc = (struct ggml_dyn_tallocr) {
|
306
|
-
/*.alignment = */ alignment,
|
307
|
-
/*.n_free_blocks = */ 0,
|
308
|
-
/*.free_blocks = */ {{0}},
|
309
|
-
/*.max_size = */ 0,
|
310
|
-
#ifdef GGML_ALLOCATOR_DEBUG
|
311
|
-
/*.allocated_tensors = */ {{0}},
|
312
|
-
#endif
|
313
|
-
};
|
314
|
-
|
315
|
-
ggml_dyn_tallocr_reset(alloc);
|
316
|
-
|
317
|
-
return alloc;
|
318
|
-
}
|
319
|
-
|
320
|
-
static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) {
|
321
|
-
free(alloc);
|
322
|
-
}
|
323
|
-
|
324
|
-
static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) {
|
325
|
-
return alloc->max_size;
|
326
|
-
}
|
327
|
-
|
328
|
-
|
329
|
-
/////////////////////////////////////
|
330
|
-
|
331
|
-
// graph allocator
|
332
|
-
|
333
|
-
struct hash_node {
|
334
|
-
int n_children;
|
335
|
-
int n_views;
|
336
|
-
int buffer_id;
|
337
|
-
size_t offset; // offset within the buffer
|
338
|
-
bool allocated;
|
339
|
-
};
|
340
|
-
|
341
|
-
struct tensor_alloc {
|
342
|
-
int buffer_id;
|
343
|
-
size_t offset;
|
344
|
-
size_t size_max; // 0 = pre-allocated, unused, or view
|
345
|
-
};
|
346
|
-
|
347
|
-
struct leaf_alloc {
|
348
|
-
int buffer_id;
|
349
|
-
struct tensor_alloc leaf;
|
350
|
-
};
|
351
|
-
|
352
|
-
struct node_alloc {
|
353
|
-
struct tensor_alloc dst;
|
354
|
-
struct tensor_alloc src[GGML_MAX_SRC];
|
355
|
-
};
|
356
|
-
|
357
|
-
struct ggml_gallocr {
|
358
|
-
ggml_backend_buffer_type_t * bufts; // [n_buffers]
|
359
|
-
ggml_backend_buffer_t * buffers; // [n_buffers]
|
360
|
-
struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers]
|
361
|
-
int n_buffers;
|
362
|
-
|
363
|
-
struct ggml_hash_set hash_set;
|
364
|
-
struct hash_node * hash_values; // [hash_set.size]
|
365
|
-
|
366
|
-
struct node_alloc * node_allocs; // [n_nodes]
|
367
|
-
int n_nodes;
|
368
|
-
|
369
|
-
struct leaf_alloc * leaf_allocs; // [n_leafs]
|
370
|
-
int n_leafs;
|
371
|
-
};
|
372
|
-
|
373
|
-
ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) {
|
374
|
-
ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(1, sizeof(struct ggml_gallocr));
|
375
|
-
GGML_ASSERT(galloc != NULL);
|
376
|
-
|
377
|
-
galloc->bufts = calloc(n_bufs, sizeof(ggml_backend_buffer_type_t));
|
378
|
-
GGML_ASSERT(galloc->bufts != NULL);
|
379
|
-
|
380
|
-
galloc->buffers = calloc(n_bufs, sizeof(ggml_backend_buffer_t));
|
381
|
-
GGML_ASSERT(galloc->buffers != NULL);
|
382
|
-
|
383
|
-
galloc->buf_tallocs = calloc(n_bufs, sizeof(struct ggml_dyn_tallocr *));
|
384
|
-
GGML_ASSERT(galloc->buf_tallocs != NULL);
|
385
|
-
|
386
|
-
for (int i = 0; i < n_bufs; i++) {
|
387
|
-
galloc->bufts[i] = bufts[i];
|
388
|
-
galloc->buffers[i] = NULL;
|
389
|
-
|
390
|
-
// check if the same buffer type is used multiple times and reuse the same allocator
|
391
|
-
for (int j = 0; j < i; j++) {
|
392
|
-
if (bufts[i] == bufts[j]) {
|
393
|
-
galloc->buf_tallocs[i] = galloc->buf_tallocs[j];
|
394
|
-
break;
|
395
|
-
}
|
396
|
-
}
|
397
|
-
|
398
|
-
if (galloc->buf_tallocs[i] == NULL) {
|
399
|
-
size_t alignment = ggml_backend_buft_get_alignment(bufts[i]);
|
400
|
-
galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment);
|
401
|
-
}
|
402
|
-
}
|
403
|
-
galloc->n_buffers = n_bufs;
|
404
|
-
|
405
|
-
return galloc;
|
406
|
-
}
|
407
|
-
|
408
|
-
ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) {
|
409
|
-
return ggml_gallocr_new_n(&buft, 1);
|
410
|
-
}
|
411
|
-
|
412
|
-
void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
413
|
-
if (galloc == NULL) {
|
414
|
-
return;
|
415
|
-
}
|
416
|
-
|
417
|
-
for (int i = 0; i < galloc->n_buffers; i++) {
|
418
|
-
if (galloc->buffers != NULL) {
|
419
|
-
// skip if already freed
|
420
|
-
bool freed = false;
|
421
|
-
for (int j = 0; j < i; j++) {
|
422
|
-
if (galloc->buffers[j] == galloc->buffers[i]) {
|
423
|
-
freed = true;
|
424
|
-
break;
|
425
|
-
}
|
426
|
-
}
|
427
|
-
if (!freed) {
|
428
|
-
ggml_backend_buffer_free(galloc->buffers[i]);
|
429
|
-
}
|
430
|
-
}
|
431
|
-
if (galloc->buf_tallocs != NULL) {
|
432
|
-
// skip if already freed
|
433
|
-
bool freed = false;
|
434
|
-
for (int j = 0; j < i; j++) {
|
435
|
-
if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
|
436
|
-
freed = true;
|
437
|
-
break;
|
438
|
-
}
|
439
|
-
}
|
440
|
-
if (!freed) {
|
441
|
-
ggml_dyn_tallocr_free(galloc->buf_tallocs[i]);
|
442
|
-
}
|
443
|
-
}
|
444
|
-
}
|
445
|
-
|
446
|
-
free(galloc->hash_set.keys);
|
447
|
-
free(galloc->hash_values);
|
448
|
-
free(galloc->bufts);
|
449
|
-
free(galloc->buffers);
|
450
|
-
free(galloc->buf_tallocs);
|
451
|
-
free(galloc->node_allocs);
|
452
|
-
free(galloc->leaf_allocs);
|
453
|
-
free(galloc);
|
454
|
-
}
|
455
|
-
|
456
|
-
typedef struct ggml_gallocr * ggml_gallocr_t;
|
457
|
-
|
458
|
-
static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
|
459
|
-
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
|
460
|
-
return &galloc->hash_values[i];
|
461
|
-
}
|
462
|
-
|
463
|
-
static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) {
|
464
|
-
return ggml_gallocr_hash_get(galloc, t)->allocated;
|
465
|
-
}
|
466
|
-
|
467
|
-
static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) {
|
468
|
-
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
469
|
-
hn->buffer_id = buffer_id;
|
470
|
-
hn->offset = offset;
|
471
|
-
hn->allocated = true;
|
472
|
-
}
|
473
|
-
|
474
|
-
static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) {
|
475
|
-
return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated;
|
476
|
-
}
|
477
|
-
|
478
|
-
static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
|
479
|
-
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
480
|
-
|
481
|
-
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
|
482
|
-
hn->allocated = true;
|
483
|
-
assert(hn->offset == 0);
|
484
|
-
|
485
|
-
// try to reuse a parent's buffer (inplace)
|
486
|
-
if (ggml_op_can_inplace(node->op)) {
|
487
|
-
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
488
|
-
struct ggml_tensor * parent = node->src[i];
|
489
|
-
if (parent == NULL) {
|
490
|
-
continue;
|
491
|
-
}
|
492
|
-
|
493
|
-
// if the node's data is external, then we cannot re-use it
|
494
|
-
if (!ggml_gallocr_is_own(galloc, parent)) {
|
495
|
-
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
|
496
|
-
continue;
|
497
|
-
}
|
498
|
-
|
499
|
-
// outputs cannot be reused
|
500
|
-
if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) {
|
501
|
-
AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name);
|
502
|
-
continue;
|
503
|
-
}
|
504
|
-
|
505
|
-
if (!ggml_are_same_layout(node, parent)) {
|
506
|
-
AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name);
|
507
|
-
continue;
|
508
|
-
}
|
509
|
-
|
510
|
-
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
|
511
|
-
if (p_hn->n_children == 1 && p_hn->n_views == 0) {
|
512
|
-
if (ggml_is_view(parent)) {
|
513
|
-
struct ggml_tensor * view_src = parent->view_src;
|
514
|
-
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
|
515
|
-
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
516
|
-
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
517
|
-
assert(view_src_hn->offset == p_hn->offset);
|
518
|
-
hn->buffer_id = p_hn->buffer_id;
|
519
|
-
hn->offset = p_hn->offset;
|
520
|
-
p_hn->allocated = false; // avoid freeing the parent
|
521
|
-
view_src_hn->allocated = false;
|
522
|
-
return;
|
523
|
-
}
|
524
|
-
} else {
|
525
|
-
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
526
|
-
hn->buffer_id = p_hn->buffer_id;
|
527
|
-
hn->offset = p_hn->offset;
|
528
|
-
p_hn->allocated = false; // avoid freeing the parent
|
529
|
-
return;
|
530
|
-
}
|
531
|
-
}
|
532
|
-
}
|
533
|
-
}
|
534
|
-
// allocate tensor from the buffer
|
535
|
-
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
|
536
|
-
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
|
537
|
-
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
|
538
|
-
size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node);
|
539
|
-
hn->buffer_id = buffer_id;
|
540
|
-
hn->offset = offset;
|
541
|
-
return;
|
542
|
-
}
|
543
|
-
}
|
544
|
-
|
545
|
-
static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
|
546
|
-
// graph outputs are never freed
|
547
|
-
if (node->flags & GGML_TENSOR_FLAG_OUTPUT) {
|
548
|
-
AT_PRINTF("not freeing output %s\n", node->name);
|
549
|
-
return;
|
550
|
-
}
|
551
|
-
|
552
|
-
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
553
|
-
size_t offset = hn->offset;
|
554
|
-
int buffer_id = hn->buffer_id;
|
555
|
-
struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id];
|
556
|
-
ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id];
|
557
|
-
size_t size = ggml_backend_buft_get_alloc_size(buft, node);
|
558
|
-
ggml_dyn_tallocr_free_tensor(alloc, offset, size, node);
|
559
|
-
hn->allocated = false;
|
560
|
-
}
|
561
|
-
|
562
|
-
static int get_node_buffer_id(const int * node_buffer_ids, int i) {
|
563
|
-
return node_buffer_ids ? node_buffer_ids[i] : 0;
|
564
|
-
}
|
565
|
-
|
566
|
-
static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
|
567
|
-
// clear hash tables
|
568
|
-
memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *));
|
569
|
-
memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node));
|
570
|
-
|
571
|
-
// allocate leafs
|
572
|
-
// these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes
|
573
|
-
for (int i = 0; i < graph->n_leafs; i++) {
|
574
|
-
struct ggml_tensor * leaf = graph->leafs[i];
|
575
|
-
ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i));
|
576
|
-
}
|
577
|
-
|
578
|
-
// count number of children and views
|
579
|
-
// allocate other graph inputs and leafs first to avoid overwriting them
|
580
|
-
for (int i = 0; i < graph->n_nodes; i++) {
|
581
|
-
struct ggml_tensor * node = graph->nodes[i];
|
582
|
-
|
583
|
-
// TODO: better way to add external dependencies
|
584
|
-
// GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to
|
585
|
-
// control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node
|
586
|
-
// itself is never used and should not be considered a dependency
|
587
|
-
if (ggml_is_view(node) && node->op != GGML_OP_NONE) {
|
588
|
-
struct ggml_tensor * view_src = node->view_src;
|
589
|
-
ggml_gallocr_hash_get(galloc, view_src)->n_views += 1;
|
590
|
-
}
|
591
|
-
|
592
|
-
if (node->flags & GGML_TENSOR_FLAG_INPUT) {
|
593
|
-
ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i));
|
594
|
-
}
|
595
|
-
|
596
|
-
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
597
|
-
struct ggml_tensor * src = node->src[j];
|
598
|
-
if (src == NULL) {
|
599
|
-
continue;
|
600
|
-
}
|
601
|
-
|
602
|
-
ggml_gallocr_hash_get(galloc, src)->n_children += 1;
|
603
|
-
|
604
|
-
// allocate explicit inputs
|
605
|
-
if (src->flags & GGML_TENSOR_FLAG_INPUT) {
|
606
|
-
ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i));
|
607
|
-
}
|
608
|
-
}
|
609
|
-
}
|
610
|
-
|
611
|
-
// allocate tensors
|
612
|
-
for (int i = 0; i < graph->n_nodes; i++) {
|
613
|
-
struct ggml_tensor * node = graph->nodes[i];
|
614
|
-
int buffer_id = get_node_buffer_id(node_buffer_ids, i);
|
615
|
-
|
616
|
-
// allocate parents (only leafs need to be allocated at this point)
|
617
|
-
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
618
|
-
struct ggml_tensor * parent = node->src[j];
|
619
|
-
if (parent == NULL) {
|
620
|
-
continue;
|
621
|
-
}
|
622
|
-
ggml_gallocr_allocate_node(galloc, parent, buffer_id);
|
623
|
-
}
|
624
|
-
|
625
|
-
// allocate node
|
626
|
-
ggml_gallocr_allocate_node(galloc, node, buffer_id);
|
627
|
-
|
628
|
-
AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name);
|
629
|
-
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
630
|
-
struct ggml_tensor * parent = node->src[j];
|
631
|
-
if (parent == NULL) {
|
632
|
-
continue;
|
633
|
-
}
|
634
|
-
AT_PRINTF("%s", parent->name);
|
635
|
-
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
636
|
-
AT_PRINTF(", ");
|
637
|
-
}
|
638
|
-
}
|
639
|
-
AT_PRINTF("\n");
|
640
|
-
|
641
|
-
// update parents
|
642
|
-
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
643
|
-
struct ggml_tensor * parent = node->src[j];
|
644
|
-
if (parent == NULL) {
|
645
|
-
continue;
|
646
|
-
}
|
647
|
-
struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent);
|
648
|
-
p_hn->n_children -= 1;
|
649
|
-
|
650
|
-
AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n",
|
651
|
-
parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated);
|
652
|
-
|
653
|
-
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
654
|
-
if (ggml_is_view(parent)) {
|
655
|
-
struct ggml_tensor * view_src = parent->view_src;
|
656
|
-
struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src);
|
657
|
-
view_src_hn->n_views -= 1;
|
658
|
-
AT_PRINTF("view_src %s: %d children, %d views\n",
|
659
|
-
view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
660
|
-
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) {
|
661
|
-
ggml_gallocr_free_node(galloc, view_src);
|
662
|
-
}
|
663
|
-
}
|
664
|
-
else if (p_hn->allocated) {
|
665
|
-
ggml_gallocr_free_node(galloc, parent);
|
666
|
-
}
|
667
|
-
}
|
668
|
-
AT_PRINTF("\n");
|
669
|
-
}
|
670
|
-
}
|
671
|
-
}
|
672
|
-
|
673
|
-
bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) {
|
674
|
-
size_t hash_size = graph->visited_hash_table.size;
|
675
|
-
|
676
|
-
// initialize hash table
|
677
|
-
if (galloc->hash_set.size < hash_size) {
|
678
|
-
free(galloc->hash_set.keys);
|
679
|
-
free(galloc->hash_values);
|
680
|
-
galloc->hash_set.size = hash_size;
|
681
|
-
galloc->hash_set.keys = calloc(hash_size, sizeof(struct ggml_tensor *));
|
682
|
-
galloc->hash_values = calloc(hash_size, sizeof(struct hash_node));
|
683
|
-
GGML_ASSERT(galloc->hash_set.keys != NULL);
|
684
|
-
GGML_ASSERT(galloc->hash_values != NULL);
|
685
|
-
} else {
|
686
|
-
// reset hash table
|
687
|
-
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size);
|
688
|
-
memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size);
|
689
|
-
}
|
690
|
-
|
691
|
-
// reset allocators
|
692
|
-
for (int i = 0; i < galloc->n_buffers; i++) {
|
693
|
-
ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]);
|
694
|
-
}
|
695
|
-
|
696
|
-
// allocate in hash table
|
697
|
-
ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids);
|
698
|
-
|
699
|
-
// set the node_allocs from the hash table
|
700
|
-
if (galloc->n_nodes < graph->n_nodes) {
|
701
|
-
free(galloc->node_allocs);
|
702
|
-
galloc->node_allocs = calloc(graph->n_nodes, sizeof(struct node_alloc));
|
703
|
-
GGML_ASSERT(galloc->node_allocs != NULL);
|
704
|
-
}
|
705
|
-
galloc->n_nodes = graph->n_nodes;
|
706
|
-
for (int i = 0; i < graph->n_nodes; i++) {
|
707
|
-
struct ggml_tensor * node = graph->nodes[i];
|
708
|
-
struct node_alloc * node_alloc = &galloc->node_allocs[i];
|
709
|
-
if (node->view_src || node->data) {
|
710
|
-
node_alloc->dst.buffer_id = -1;
|
711
|
-
node_alloc->dst.offset = SIZE_MAX;
|
712
|
-
node_alloc->dst.size_max = 0;
|
713
|
-
} else {
|
714
|
-
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
|
715
|
-
node_alloc->dst.buffer_id = hn->buffer_id;
|
716
|
-
node_alloc->dst.offset = hn->offset;
|
717
|
-
node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node);
|
718
|
-
}
|
719
|
-
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
720
|
-
struct ggml_tensor * src = node->src[j];
|
721
|
-
if (!src || src->view_src || src->data) {
|
722
|
-
node_alloc->src[j].buffer_id = -1;
|
723
|
-
node_alloc->src[j].offset = SIZE_MAX;
|
724
|
-
node_alloc->src[j].size_max = 0;
|
725
|
-
} else {
|
726
|
-
struct hash_node * hn = ggml_gallocr_hash_get(galloc, src);
|
727
|
-
node_alloc->src[j].buffer_id = hn->buffer_id;
|
728
|
-
node_alloc->src[j].offset = hn->offset;
|
729
|
-
node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src);
|
730
|
-
}
|
731
|
-
}
|
732
|
-
}
|
733
|
-
if (galloc->n_leafs < graph->n_leafs) {
|
734
|
-
free(galloc->leaf_allocs);
|
735
|
-
galloc->leaf_allocs = calloc(graph->n_leafs, sizeof(galloc->leaf_allocs[0]));
|
736
|
-
GGML_ASSERT(galloc->leaf_allocs != NULL);
|
737
|
-
}
|
738
|
-
galloc->n_leafs = graph->n_leafs;
|
739
|
-
for (int i = 0; i < graph->n_leafs; i++) {
|
740
|
-
struct ggml_tensor * leaf = graph->leafs[i];
|
741
|
-
struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf);
|
742
|
-
galloc->leaf_allocs[i].buffer_id = hn->buffer_id;
|
743
|
-
if (leaf->view_src || leaf->data) {
|
744
|
-
galloc->leaf_allocs[i].leaf.buffer_id = -1;
|
745
|
-
galloc->leaf_allocs[i].leaf.offset = SIZE_MAX;
|
746
|
-
galloc->leaf_allocs[i].leaf.size_max = 0;
|
747
|
-
} else {
|
748
|
-
galloc->leaf_allocs[i].leaf.buffer_id = hn->buffer_id;
|
749
|
-
galloc->leaf_allocs[i].leaf.offset = hn->offset;
|
750
|
-
galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf);
|
751
|
-
}
|
752
|
-
}
|
753
|
-
|
754
|
-
// reallocate buffers if needed
|
755
|
-
for (int i = 0; i < galloc->n_buffers; i++) {
|
756
|
-
// if the buffer type is used multiple times, we reuse the same buffer
|
757
|
-
for (int j = 0; j < i; j++) {
|
758
|
-
if (galloc->buf_tallocs[j] == galloc->buf_tallocs[i]) {
|
759
|
-
galloc->buffers[i] = galloc->buffers[j];
|
760
|
-
break;
|
761
|
-
}
|
762
|
-
}
|
763
|
-
|
764
|
-
size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0;
|
765
|
-
size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]);
|
766
|
-
|
767
|
-
// even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views
|
768
|
-
if (new_size > cur_size || galloc->buffers[i] == NULL) {
|
769
|
-
#ifndef NDEBUG
|
770
|
-
fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
|
771
|
-
#endif
|
772
|
-
|
773
|
-
ggml_backend_buffer_free(galloc->buffers[i]);
|
774
|
-
galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size);
|
775
|
-
if (galloc->buffers[i] == NULL) {
|
776
|
-
fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size);
|
777
|
-
return false;
|
778
|
-
}
|
779
|
-
}
|
780
|
-
}
|
781
|
-
|
782
|
-
return true;
|
783
|
-
}
|
784
|
-
|
785
|
-
bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) {
|
786
|
-
return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL);
|
787
|
-
}
|
788
|
-
|
789
|
-
static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, struct tensor_alloc * tensor_alloc) {
|
790
|
-
int buffer_id = tensor_alloc->buffer_id;
|
791
|
-
assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
|
792
|
-
|
793
|
-
if (tensor->view_src != NULL) {
|
794
|
-
if (tensor->buffer == NULL) {
|
795
|
-
assert(tensor_alloc->offset == SIZE_MAX);
|
796
|
-
if (tensor->view_src->buffer == NULL) {
|
797
|
-
// this tensor was allocated without ggml-backend
|
798
|
-
return;
|
799
|
-
}
|
800
|
-
ggml_backend_view_init(tensor);
|
801
|
-
}
|
802
|
-
} else {
|
803
|
-
if (tensor->data == NULL) {
|
804
|
-
assert(tensor_alloc->offset != SIZE_MAX);
|
805
|
-
assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max);
|
806
|
-
void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]);
|
807
|
-
void * addr = (char *)base + tensor_alloc->offset;
|
808
|
-
ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr);
|
809
|
-
} else {
|
810
|
-
if (tensor->buffer == NULL) {
|
811
|
-
// this tensor was allocated without ggml-backend
|
812
|
-
return;
|
813
|
-
}
|
814
|
-
}
|
815
|
-
}
|
816
|
-
}
|
817
|
-
|
818
|
-
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
|
819
|
-
ggml_backend_buffer_type_t buft = talloc->buffer_id != -1 ? galloc->bufts[talloc->buffer_id] : NULL;
|
820
|
-
size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node);
|
821
|
-
return talloc->size_max >= node_size;
|
822
|
-
}
|
823
|
-
|
824
|
-
static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
|
825
|
-
if (galloc->n_nodes != graph->n_nodes) {
|
826
|
-
#ifndef NDEBUG
|
827
|
-
fprintf(stderr, "%s: graph has different number of nodes\n", __func__);
|
828
|
-
#endif
|
829
|
-
return true;
|
830
|
-
}
|
831
|
-
|
832
|
-
if (galloc->n_leafs != graph->n_leafs) {
|
833
|
-
#ifndef NDEBUG
|
834
|
-
fprintf(stderr, "%s: graph has different number of leafs\n", __func__);
|
835
|
-
#endif
|
836
|
-
return true;
|
837
|
-
}
|
838
|
-
|
839
|
-
for (int i = 0; i < graph->n_nodes; i++) {
|
840
|
-
struct ggml_tensor * node = graph->nodes[i];
|
841
|
-
struct node_alloc * node_alloc = &galloc->node_allocs[i];
|
842
|
-
|
843
|
-
if (!ggml_gallocr_node_needs_realloc(galloc, node, &node_alloc->dst)) {
|
844
|
-
#ifndef NDEBUG
|
845
|
-
fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name);
|
846
|
-
#endif
|
847
|
-
return true;
|
848
|
-
}
|
849
|
-
|
850
|
-
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
851
|
-
struct ggml_tensor * src = node->src[j];
|
852
|
-
if (src == NULL) {
|
853
|
-
continue;
|
854
|
-
}
|
855
|
-
if (!ggml_gallocr_node_needs_realloc(galloc, src, &node_alloc->src[j])) {
|
856
|
-
#ifndef NDEBUG
|
857
|
-
fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name);
|
858
|
-
#endif
|
859
|
-
return true;
|
860
|
-
}
|
861
|
-
}
|
862
|
-
}
|
863
|
-
|
864
|
-
return false;
|
865
|
-
}
|
866
|
-
|
867
|
-
bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) {
|
868
|
-
if (ggml_gallocr_needs_realloc(galloc, graph)) {
|
869
|
-
if (galloc->n_buffers == 1) {
|
870
|
-
#ifndef NDEBUG
|
871
|
-
fprintf(stderr, "%s: reallocating buffers automatically\n", __func__);
|
872
|
-
#endif
|
873
|
-
if (!ggml_gallocr_reserve(galloc, graph)) {
|
874
|
-
return false;
|
875
|
-
}
|
876
|
-
} else {
|
877
|
-
#ifndef NDEBUG
|
878
|
-
fprintf(stderr, "%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__);
|
879
|
-
#endif
|
880
|
-
return false;
|
881
|
-
}
|
882
|
-
}
|
883
|
-
|
884
|
-
// reset buffers
|
885
|
-
for (int i = 0; i < galloc->n_buffers; i++) {
|
886
|
-
if (galloc->buffers[i] != NULL) {
|
887
|
-
ggml_backend_buffer_reset(galloc->buffers[i]);
|
888
|
-
}
|
889
|
-
}
|
890
|
-
|
891
|
-
// allocate the graph tensors from the previous assignments
|
892
|
-
// leafs
|
893
|
-
for (int i = 0; i < graph->n_leafs; i++) {
|
894
|
-
struct ggml_tensor * leaf = graph->leafs[i];
|
895
|
-
struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i];
|
896
|
-
ggml_gallocr_init_tensor(galloc, leaf, &leaf_alloc->leaf);
|
897
|
-
}
|
898
|
-
// nodes
|
899
|
-
for (int i = 0; i < graph->n_nodes; i++) {
|
900
|
-
struct ggml_tensor * node = graph->nodes[i];
|
901
|
-
struct node_alloc * node_alloc = &galloc->node_allocs[i];
|
902
|
-
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
903
|
-
struct ggml_tensor * src = node->src[j];
|
904
|
-
if (src == NULL) {
|
905
|
-
continue;
|
906
|
-
}
|
907
|
-
ggml_gallocr_init_tensor(galloc, src, &node_alloc->src[j]);
|
908
|
-
}
|
909
|
-
ggml_gallocr_init_tensor(galloc, node, &node_alloc->dst);
|
910
|
-
}
|
911
|
-
|
912
|
-
return true;
|
913
|
-
}
|
914
|
-
|
915
|
-
size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
|
916
|
-
GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers);
|
917
|
-
|
918
|
-
if (galloc->buffers[buffer_id] == NULL) {
|
919
|
-
return 0;
|
920
|
-
}
|
921
|
-
|
922
|
-
for (int i = 0; i < buffer_id; i++) {
|
923
|
-
if (galloc->buffers[i] == galloc->buffers[buffer_id]) {
|
924
|
-
// this buffer is the same as a previous one due to the same buffer type being used multiple times
|
925
|
-
// only return the buffer size the first time it appears to avoid double counting
|
926
|
-
return 0;
|
927
|
-
}
|
928
|
-
}
|
929
|
-
|
930
|
-
return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]);
|
931
|
-
}
|
932
|
-
|
933
|
-
// utils
|
934
|
-
|
935
|
-
static bool alloc_tensor_range(struct ggml_context * ctx,
|
936
|
-
struct ggml_tensor * first, struct ggml_tensor * last,
|
937
|
-
ggml_backend_buffer_type_t buft, size_t size,
|
938
|
-
ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
|
939
|
-
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
|
940
|
-
if (buffer == NULL) {
|
941
|
-
#ifndef NDEBUG
|
942
|
-
fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
|
943
|
-
#endif
|
944
|
-
for (size_t i = 0; i < *n_buffers; i++) {
|
945
|
-
ggml_backend_buffer_free((*buffers)[i]);
|
946
|
-
}
|
947
|
-
free(*buffers);
|
948
|
-
return false;
|
949
|
-
}
|
950
|
-
|
951
|
-
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
|
952
|
-
|
953
|
-
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
|
954
|
-
if (t->data == NULL) {
|
955
|
-
if (t->view_src == NULL) {
|
956
|
-
ggml_tallocr_alloc(&tallocr, t);
|
957
|
-
} else if (t->buffer == NULL) {
|
958
|
-
ggml_backend_view_init(t);
|
959
|
-
}
|
960
|
-
} else {
|
961
|
-
if (t->view_src != NULL && t->buffer == NULL) {
|
962
|
-
// view of a pre-allocated tensor
|
963
|
-
ggml_backend_view_init(t);
|
964
|
-
}
|
965
|
-
}
|
966
|
-
}
|
967
|
-
|
968
|
-
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
|
969
|
-
(*buffers)[(*n_buffers)++] = buffer;
|
970
|
-
|
971
|
-
return true;
|
972
|
-
}
|
973
|
-
|
974
|
-
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
|
975
|
-
GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
|
976
|
-
|
977
|
-
size_t alignment = ggml_backend_buft_get_alignment(buft);
|
978
|
-
size_t max_size = ggml_backend_buft_get_max_size(buft);
|
979
|
-
|
980
|
-
ggml_backend_buffer_t * buffers = NULL;
|
981
|
-
size_t n_buffers = 0;
|
982
|
-
|
983
|
-
size_t cur_buf_size = 0;
|
984
|
-
struct ggml_tensor * first = ggml_get_first_tensor(ctx);
|
985
|
-
for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
986
|
-
size_t this_size = 0;
|
987
|
-
if (t->data == NULL && t->view_src == NULL) {
|
988
|
-
this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
|
989
|
-
}
|
990
|
-
|
991
|
-
if (this_size > max_size) {
|
992
|
-
fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
|
993
|
-
__func__, t->name,
|
994
|
-
ggml_backend_buft_name(buft),
|
995
|
-
this_size, max_size);
|
996
|
-
for (size_t i = 0; i < n_buffers; i++) {
|
997
|
-
ggml_backend_buffer_free(buffers[i]);
|
998
|
-
}
|
999
|
-
free(buffers);
|
1000
|
-
return NULL;
|
1001
|
-
}
|
1002
|
-
|
1003
|
-
if ((cur_buf_size + this_size) > max_size) {
|
1004
|
-
// allocate tensors in the current buffer
|
1005
|
-
if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
|
1006
|
-
return NULL;
|
1007
|
-
}
|
1008
|
-
first = t;
|
1009
|
-
cur_buf_size = this_size;
|
1010
|
-
} else {
|
1011
|
-
cur_buf_size += this_size;
|
1012
|
-
}
|
1013
|
-
}
|
1014
|
-
|
1015
|
-
// allocate remaining tensors
|
1016
|
-
if (cur_buf_size > 0) {
|
1017
|
-
if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
|
1018
|
-
return NULL;
|
1019
|
-
}
|
1020
|
-
}
|
1021
|
-
|
1022
|
-
if (n_buffers == 0) {
|
1023
|
-
#ifndef NDEBUG
|
1024
|
-
fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
|
1025
|
-
#endif
|
1026
|
-
return NULL;
|
1027
|
-
}
|
1028
|
-
|
1029
|
-
ggml_backend_buffer_t buffer;
|
1030
|
-
if (n_buffers == 1) {
|
1031
|
-
buffer = buffers[0];
|
1032
|
-
} else {
|
1033
|
-
buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
|
1034
|
-
}
|
1035
|
-
free(buffers);
|
1036
|
-
return buffer;
|
1037
|
-
}
|
1038
|
-
|
1039
|
-
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
|
1040
|
-
return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
|
1041
|
-
}
|