xinference 1.0.1__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +2 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +77 -71
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +79 -19
- xinference/core/supervisor.py +172 -10
- xinference/core/utils.py +12 -8
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/core.py +16 -0
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +36 -111
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +99 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/embedding/core.py +203 -142
- xinference/model/embedding/model_spec.json +7 -0
- xinference/model/embedding/model_spec_modelscope.json +8 -0
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +45 -13
- xinference/model/llm/__init__.py +4 -2
- xinference/model/llm/llm_family.json +536 -53
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +454 -20
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +248 -52
- xinference/model/llm/sglang/core.py +1 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +2 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +36 -4
- xinference/model/llm/vllm/core.py +53 -10
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +11 -28
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +15 -0
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/METADATA +68 -32
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/RECORD +316 -122
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/tools/api.py +0 -943
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
- xinference/thirdparty/fish_speech/tools/webui.py +0 -548
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/tools → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/WHEEL +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,122 @@
|
|
|
1
|
+
import torch
|
|
2
|
+
from funasr import AutoModel
|
|
3
|
+
from loguru import logger
|
|
4
|
+
|
|
5
|
+
from tools.inference_engine import TTSInferenceEngine
|
|
6
|
+
from tools.llama.generate import (
|
|
7
|
+
launch_thread_safe_queue,
|
|
8
|
+
launch_thread_safe_queue_agent,
|
|
9
|
+
)
|
|
10
|
+
from tools.schema import ServeTTSRequest
|
|
11
|
+
from tools.server.inference import inference_wrapper as inference
|
|
12
|
+
from tools.vqgan.inference import load_model as load_decoder_model
|
|
13
|
+
|
|
14
|
+
ASR_MODEL_NAME = "iic/SenseVoiceSmall"
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class ModelManager:
|
|
18
|
+
def __init__(
|
|
19
|
+
self,
|
|
20
|
+
mode: str,
|
|
21
|
+
device: str,
|
|
22
|
+
half: bool,
|
|
23
|
+
compile: bool,
|
|
24
|
+
asr_enabled: bool,
|
|
25
|
+
llama_checkpoint_path: str,
|
|
26
|
+
decoder_checkpoint_path: str,
|
|
27
|
+
decoder_config_name: str,
|
|
28
|
+
) -> None:
|
|
29
|
+
|
|
30
|
+
self.mode = mode
|
|
31
|
+
self.device = device
|
|
32
|
+
self.half = half
|
|
33
|
+
self.compile = compile
|
|
34
|
+
|
|
35
|
+
self.precision = torch.half if half else torch.bfloat16
|
|
36
|
+
|
|
37
|
+
# Check if MPS or CUDA is available
|
|
38
|
+
if torch.backends.mps.is_available():
|
|
39
|
+
self.device = "mps"
|
|
40
|
+
logger.info("mps is available, running on mps.")
|
|
41
|
+
elif not torch.cuda.is_available():
|
|
42
|
+
self.device = "cpu"
|
|
43
|
+
logger.info("CUDA is not available, running on CPU.")
|
|
44
|
+
|
|
45
|
+
# Load the ASR model if enabled
|
|
46
|
+
if asr_enabled:
|
|
47
|
+
self.load_asr_model(self.device)
|
|
48
|
+
|
|
49
|
+
# Load the TTS models
|
|
50
|
+
self.load_llama_model(
|
|
51
|
+
llama_checkpoint_path, self.device, self.precision, self.compile, self.mode
|
|
52
|
+
)
|
|
53
|
+
self.load_decoder_model(
|
|
54
|
+
decoder_config_name, decoder_checkpoint_path, self.device
|
|
55
|
+
)
|
|
56
|
+
self.tts_inference_engine = TTSInferenceEngine(
|
|
57
|
+
llama_queue=self.llama_queue,
|
|
58
|
+
decoder_model=self.decoder_model,
|
|
59
|
+
precision=self.precision,
|
|
60
|
+
compile=self.compile,
|
|
61
|
+
)
|
|
62
|
+
|
|
63
|
+
# Warm up the models
|
|
64
|
+
if self.mode == "tts":
|
|
65
|
+
self.warm_up(self.tts_inference_engine)
|
|
66
|
+
|
|
67
|
+
def load_asr_model(self, device, hub="ms") -> None:
|
|
68
|
+
self.asr_model = AutoModel(
|
|
69
|
+
model=ASR_MODEL_NAME,
|
|
70
|
+
device=device,
|
|
71
|
+
disable_pbar=True,
|
|
72
|
+
hub=hub,
|
|
73
|
+
)
|
|
74
|
+
logger.info("ASR model loaded.")
|
|
75
|
+
|
|
76
|
+
def load_llama_model(
|
|
77
|
+
self, checkpoint_path, device, precision, compile, mode
|
|
78
|
+
) -> None:
|
|
79
|
+
|
|
80
|
+
if mode == "tts":
|
|
81
|
+
self.llama_queue = launch_thread_safe_queue(
|
|
82
|
+
checkpoint_path=checkpoint_path,
|
|
83
|
+
device=device,
|
|
84
|
+
precision=precision,
|
|
85
|
+
compile=compile,
|
|
86
|
+
)
|
|
87
|
+
elif mode == "agent":
|
|
88
|
+
self.llama_queue, self.tokenizer, self.config = (
|
|
89
|
+
launch_thread_safe_queue_agent(
|
|
90
|
+
checkpoint_path=checkpoint_path,
|
|
91
|
+
device=device,
|
|
92
|
+
precision=precision,
|
|
93
|
+
compile=compile,
|
|
94
|
+
)
|
|
95
|
+
)
|
|
96
|
+
else:
|
|
97
|
+
raise ValueError(f"Invalid mode: {mode}")
|
|
98
|
+
|
|
99
|
+
logger.info("LLAMA model loaded.")
|
|
100
|
+
|
|
101
|
+
def load_decoder_model(self, config_name, checkpoint_path, device) -> None:
|
|
102
|
+
self.decoder_model = load_decoder_model(
|
|
103
|
+
config_name=config_name,
|
|
104
|
+
checkpoint_path=checkpoint_path,
|
|
105
|
+
device=device,
|
|
106
|
+
)
|
|
107
|
+
logger.info("Decoder model loaded.")
|
|
108
|
+
|
|
109
|
+
def warm_up(self, tts_inference_engine) -> None:
|
|
110
|
+
request = ServeTTSRequest(
|
|
111
|
+
text="Hello world.",
|
|
112
|
+
references=[],
|
|
113
|
+
reference_id=None,
|
|
114
|
+
max_new_tokens=1024,
|
|
115
|
+
chunk_length=200,
|
|
116
|
+
top_p=0.7,
|
|
117
|
+
repetition_penalty=1.2,
|
|
118
|
+
temperature=0.7,
|
|
119
|
+
format="wav",
|
|
120
|
+
)
|
|
121
|
+
list(inference(request, tts_inference_engine))
|
|
122
|
+
logger.info("Models warmed up.")
|
|
@@ -0,0 +1,129 @@
|
|
|
1
|
+
import io
|
|
2
|
+
import re
|
|
3
|
+
|
|
4
|
+
import librosa
|
|
5
|
+
import torch
|
|
6
|
+
import torchaudio
|
|
7
|
+
from cachetools import LRUCache, cached
|
|
8
|
+
|
|
9
|
+
CACHE_MAXSIZE = 10000
|
|
10
|
+
MICRO_BATCH_SIZE = 8
|
|
11
|
+
ASR_SAMPLE_RATE = 16000
|
|
12
|
+
HUGE_GAP_THRESHOLD = 4000
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@torch.no_grad()
|
|
16
|
+
@torch.autocast(device_type="cuda", dtype=torch.half)
|
|
17
|
+
def batch_encode(model, audios_list: list[bytes]):
|
|
18
|
+
audios: list[torch.Tensor] = [
|
|
19
|
+
(
|
|
20
|
+
torch.from_numpy(
|
|
21
|
+
librosa.load(io.BytesIO(audio), sr=model.spec_transform.sample_rate)[0]
|
|
22
|
+
)[None]
|
|
23
|
+
if isinstance(audio, bytes)
|
|
24
|
+
else audio
|
|
25
|
+
)
|
|
26
|
+
for audio in audios_list
|
|
27
|
+
]
|
|
28
|
+
|
|
29
|
+
lengths = torch.tensor([audio.shape[-1] for audio in audios], device=model.device)
|
|
30
|
+
max_length = lengths.max().item()
|
|
31
|
+
|
|
32
|
+
print(f"Encode max length: {max_length / model.spec_transform.sample_rate:.2f}s")
|
|
33
|
+
|
|
34
|
+
padded = torch.stack(
|
|
35
|
+
[
|
|
36
|
+
torch.nn.functional.pad(audio, (0, int(max_length - audio.shape[-1])))
|
|
37
|
+
for audio in audios
|
|
38
|
+
]
|
|
39
|
+
).to(model.device)
|
|
40
|
+
|
|
41
|
+
features, feature_lengths = model.encode(padded, audio_lengths=lengths)
|
|
42
|
+
features, feature_lengths = features.cpu(), feature_lengths.cpu()
|
|
43
|
+
|
|
44
|
+
return [feature[..., :length] for feature, length in zip(features, feature_lengths)]
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
@cached(
|
|
48
|
+
cache=LRUCache(maxsize=CACHE_MAXSIZE),
|
|
49
|
+
key=lambda model, audios: (model.device, tuple(audios)),
|
|
50
|
+
)
|
|
51
|
+
def cached_vqgan_batch_encode(model, audios: list[bytes]):
|
|
52
|
+
return batch_encode(model, audios)
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
@torch.no_grad()
|
|
56
|
+
@torch.autocast(device_type="cuda", dtype=torch.half)
|
|
57
|
+
def vqgan_decode(model, features):
|
|
58
|
+
lengths = torch.tensor(
|
|
59
|
+
[feature.shape[-1] for feature in features], device=model.device
|
|
60
|
+
)
|
|
61
|
+
max_length = lengths.max().item()
|
|
62
|
+
padded = torch.stack(
|
|
63
|
+
[
|
|
64
|
+
torch.nn.functional.pad(feature, (0, max_length - feature.shape[-1]))
|
|
65
|
+
for feature in features
|
|
66
|
+
]
|
|
67
|
+
).to(model.device)
|
|
68
|
+
|
|
69
|
+
# If bs too large, we do micro batch decode
|
|
70
|
+
audios, audio_lengths = [], []
|
|
71
|
+
for i in range(0, padded.shape[0], MICRO_BATCH_SIZE):
|
|
72
|
+
audio, audio_length = model.decode(
|
|
73
|
+
padded[i : i + MICRO_BATCH_SIZE],
|
|
74
|
+
feature_lengths=lengths[i : i + MICRO_BATCH_SIZE],
|
|
75
|
+
)
|
|
76
|
+
audios.append(audio)
|
|
77
|
+
audio_lengths.append(audio_length)
|
|
78
|
+
audios = torch.cat(audios, dim=0)
|
|
79
|
+
audio_lengths = torch.cat(audio_lengths, dim=0)
|
|
80
|
+
audios, audio_lengths = audios.cpu(), audio_lengths.cpu()
|
|
81
|
+
|
|
82
|
+
return [audio[..., :length].numpy() for audio, length in zip(audios, audio_lengths)]
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
@torch.no_grad()
|
|
86
|
+
def batch_asr(model, lock, audios, sr, language="auto"):
|
|
87
|
+
resampled_audios = []
|
|
88
|
+
for audio in audios:
|
|
89
|
+
audio = torchaudio.functional.resample(audio, sr, ASR_SAMPLE_RATE)
|
|
90
|
+
assert audio.ndim == 1
|
|
91
|
+
resampled_audios.append(audio)
|
|
92
|
+
|
|
93
|
+
with lock:
|
|
94
|
+
res = model.generate(
|
|
95
|
+
input=resampled_audios,
|
|
96
|
+
batch_size=len(resampled_audios),
|
|
97
|
+
language=language,
|
|
98
|
+
use_itn=True,
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
results = []
|
|
102
|
+
for r, audio in zip(res, audios):
|
|
103
|
+
text = r["text"]
|
|
104
|
+
text = re.sub(r"<\|.*?\|>", "", text)
|
|
105
|
+
duration = len(audio) / sr * 1000
|
|
106
|
+
huge_gap = False
|
|
107
|
+
|
|
108
|
+
if "timestamp" in r and len(r["timestamp"]) > 2:
|
|
109
|
+
for timestamp_a, timestamp_b in zip(
|
|
110
|
+
r["timestamp"][:-1], r["timestamp"][1:]
|
|
111
|
+
):
|
|
112
|
+
# If there is a gap of more than 4 seconds, we consider it as a huge gap
|
|
113
|
+
if timestamp_b[0] - timestamp_a[1] > HUGE_GAP_THRESHOLD:
|
|
114
|
+
huge_gap = True
|
|
115
|
+
break
|
|
116
|
+
|
|
117
|
+
# Doesn't make sense to have a huge gap at the end
|
|
118
|
+
if duration - r["timestamp"][-1][1] > HUGE_GAP_THRESHOLD:
|
|
119
|
+
huge_gap = True
|
|
120
|
+
|
|
121
|
+
results.append(
|
|
122
|
+
{
|
|
123
|
+
"text": text,
|
|
124
|
+
"duration": duration,
|
|
125
|
+
"huge_gap": huge_gap,
|
|
126
|
+
}
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
return results
|
|
@@ -0,0 +1,246 @@
|
|
|
1
|
+
import io
|
|
2
|
+
import os
|
|
3
|
+
import time
|
|
4
|
+
from http import HTTPStatus
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import ormsgpack
|
|
8
|
+
import soundfile as sf
|
|
9
|
+
import torch
|
|
10
|
+
from kui.asgi import HTTPException, HttpView, JSONResponse, StreamResponse, request
|
|
11
|
+
from loguru import logger
|
|
12
|
+
|
|
13
|
+
from tools.schema import (
|
|
14
|
+
ServeASRRequest,
|
|
15
|
+
ServeASRResponse,
|
|
16
|
+
ServeChatRequest,
|
|
17
|
+
ServeTTSRequest,
|
|
18
|
+
ServeVQGANDecodeRequest,
|
|
19
|
+
ServeVQGANDecodeResponse,
|
|
20
|
+
ServeVQGANEncodeRequest,
|
|
21
|
+
ServeVQGANEncodeResponse,
|
|
22
|
+
)
|
|
23
|
+
from tools.server.agent import get_response_generator
|
|
24
|
+
from tools.server.api_utils import (
|
|
25
|
+
buffer_to_async_generator,
|
|
26
|
+
get_content_type,
|
|
27
|
+
inference_async,
|
|
28
|
+
)
|
|
29
|
+
from tools.server.inference import inference_wrapper as inference
|
|
30
|
+
from tools.server.model_manager import ModelManager
|
|
31
|
+
from tools.server.model_utils import batch_asr, cached_vqgan_batch_encode, vqgan_decode
|
|
32
|
+
|
|
33
|
+
MAX_NUM_SAMPLES = int(os.getenv("NUM_SAMPLES", 1))
|
|
34
|
+
|
|
35
|
+
|
|
36
|
+
class HealthView(HttpView):
|
|
37
|
+
"""
|
|
38
|
+
Return the health status of the server.
|
|
39
|
+
"""
|
|
40
|
+
|
|
41
|
+
@classmethod
|
|
42
|
+
async def post(cls):
|
|
43
|
+
return JSONResponse({"status": "ok"})
|
|
44
|
+
|
|
45
|
+
|
|
46
|
+
class VQGANEncodeView(HttpView):
|
|
47
|
+
"""
|
|
48
|
+
Encode the audio into symbolic tokens.
|
|
49
|
+
"""
|
|
50
|
+
|
|
51
|
+
@classmethod
|
|
52
|
+
async def post(cls):
|
|
53
|
+
# Decode the request
|
|
54
|
+
payload = await request.data()
|
|
55
|
+
req = ServeVQGANEncodeRequest(**payload)
|
|
56
|
+
|
|
57
|
+
# Get the model from the app
|
|
58
|
+
model_manager: ModelManager = request.app.state.model_manager
|
|
59
|
+
decoder_model = model_manager.decoder_model
|
|
60
|
+
|
|
61
|
+
# Encode the audio
|
|
62
|
+
start_time = time.time()
|
|
63
|
+
tokens = cached_vqgan_batch_encode(decoder_model, req.audios)
|
|
64
|
+
logger.info(
|
|
65
|
+
f"[EXEC] VQGAN encode time: {(time.time() - start_time) * 1000:.2f}ms"
|
|
66
|
+
)
|
|
67
|
+
|
|
68
|
+
# Return the response
|
|
69
|
+
return ormsgpack.packb(
|
|
70
|
+
ServeVQGANEncodeResponse(tokens=[i.tolist() for i in tokens]),
|
|
71
|
+
option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
class VQGANDecodeView(HttpView):
|
|
76
|
+
"""
|
|
77
|
+
Decode the symbolic tokens into audio.
|
|
78
|
+
"""
|
|
79
|
+
|
|
80
|
+
@classmethod
|
|
81
|
+
async def post(cls):
|
|
82
|
+
# Decode the request
|
|
83
|
+
payload = await request.data()
|
|
84
|
+
req = ServeVQGANDecodeRequest(**payload)
|
|
85
|
+
|
|
86
|
+
# Get the model from the app
|
|
87
|
+
model_manager: ModelManager = request.app.state.model_manager
|
|
88
|
+
decoder_model = model_manager.decoder_model
|
|
89
|
+
|
|
90
|
+
# Decode the audio
|
|
91
|
+
tokens = [torch.tensor(token, dtype=torch.int) for token in req.tokens]
|
|
92
|
+
start_time = time.time()
|
|
93
|
+
audios = vqgan_decode(decoder_model, tokens)
|
|
94
|
+
logger.info(
|
|
95
|
+
f"[EXEC] VQGAN decode time: {(time.time() - start_time) * 1000:.2f}ms"
|
|
96
|
+
)
|
|
97
|
+
audios = [audio.astype(np.float16).tobytes() for audio in audios]
|
|
98
|
+
|
|
99
|
+
# Return the response
|
|
100
|
+
return ormsgpack.packb(
|
|
101
|
+
ServeVQGANDecodeResponse(audios=audios),
|
|
102
|
+
option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
class ASRView(HttpView):
|
|
107
|
+
"""
|
|
108
|
+
Perform automatic speech recognition on the audio.
|
|
109
|
+
"""
|
|
110
|
+
|
|
111
|
+
@classmethod
|
|
112
|
+
async def post(cls):
|
|
113
|
+
# Decode the request
|
|
114
|
+
payload = await request.data()
|
|
115
|
+
req = ServeASRRequest(**payload)
|
|
116
|
+
|
|
117
|
+
# Get the model from the app
|
|
118
|
+
model_manager: ModelManager = request.app.state.model_manager
|
|
119
|
+
asr_model = model_manager.asr_model
|
|
120
|
+
lock = request.app.state.lock
|
|
121
|
+
|
|
122
|
+
# Perform ASR
|
|
123
|
+
start_time = time.time()
|
|
124
|
+
audios = [np.frombuffer(audio, dtype=np.float16) for audio in req.audios]
|
|
125
|
+
audios = [torch.from_numpy(audio).float() for audio in audios]
|
|
126
|
+
|
|
127
|
+
if any(audios.shape[-1] >= 30 * req.sample_rate for audios in audios):
|
|
128
|
+
raise HTTPException(status_code=400, content="Audio length is too long")
|
|
129
|
+
|
|
130
|
+
transcriptions = batch_asr(
|
|
131
|
+
asr_model, lock, audios=audios, sr=req.sample_rate, language=req.language
|
|
132
|
+
)
|
|
133
|
+
logger.info(f"[EXEC] ASR time: {(time.time() - start_time) * 1000:.2f}ms")
|
|
134
|
+
|
|
135
|
+
# Return the response
|
|
136
|
+
return ormsgpack.packb(
|
|
137
|
+
ServeASRResponse(transcriptions=transcriptions),
|
|
138
|
+
option=ormsgpack.OPT_SERIALIZE_PYDANTIC,
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
class TTSView(HttpView):
|
|
143
|
+
"""
|
|
144
|
+
Perform text-to-speech on the input text.
|
|
145
|
+
"""
|
|
146
|
+
|
|
147
|
+
@classmethod
|
|
148
|
+
async def post(cls):
|
|
149
|
+
# Decode the request
|
|
150
|
+
payload = await request.data()
|
|
151
|
+
req = ServeTTSRequest(**payload)
|
|
152
|
+
|
|
153
|
+
# Get the model from the app
|
|
154
|
+
app_state = request.app.state
|
|
155
|
+
model_manager: ModelManager = app_state.model_manager
|
|
156
|
+
engine = model_manager.tts_inference_engine
|
|
157
|
+
sample_rate = engine.decoder_model.spec_transform.sample_rate
|
|
158
|
+
|
|
159
|
+
# Check if the text is too long
|
|
160
|
+
if app_state.max_text_length > 0 and len(req.text) > app_state.max_text_length:
|
|
161
|
+
raise HTTPException(
|
|
162
|
+
HTTPStatus.BAD_REQUEST,
|
|
163
|
+
content=f"Text is too long, max length is {app_state.max_text_length}",
|
|
164
|
+
)
|
|
165
|
+
|
|
166
|
+
# Check if streaming is enabled
|
|
167
|
+
if req.streaming and req.format != "wav":
|
|
168
|
+
raise HTTPException(
|
|
169
|
+
HTTPStatus.BAD_REQUEST,
|
|
170
|
+
content="Streaming only supports WAV format",
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
# Perform TTS
|
|
174
|
+
if req.streaming:
|
|
175
|
+
return StreamResponse(
|
|
176
|
+
iterable=inference_async(req, engine),
|
|
177
|
+
headers={
|
|
178
|
+
"Content-Disposition": f"attachment; filename=audio.{req.format}",
|
|
179
|
+
},
|
|
180
|
+
content_type=get_content_type(req.format),
|
|
181
|
+
)
|
|
182
|
+
else:
|
|
183
|
+
fake_audios = next(inference(req, engine))
|
|
184
|
+
buffer = io.BytesIO()
|
|
185
|
+
sf.write(
|
|
186
|
+
buffer,
|
|
187
|
+
fake_audios,
|
|
188
|
+
sample_rate,
|
|
189
|
+
format=req.format,
|
|
190
|
+
)
|
|
191
|
+
|
|
192
|
+
return StreamResponse(
|
|
193
|
+
iterable=buffer_to_async_generator(buffer.getvalue()),
|
|
194
|
+
headers={
|
|
195
|
+
"Content-Disposition": f"attachment; filename=audio.{req.format}",
|
|
196
|
+
},
|
|
197
|
+
content_type=get_content_type(req.format),
|
|
198
|
+
)
|
|
199
|
+
|
|
200
|
+
|
|
201
|
+
class ChatView(HttpView):
|
|
202
|
+
"""
|
|
203
|
+
Perform chatbot inference on the input text.
|
|
204
|
+
"""
|
|
205
|
+
|
|
206
|
+
@classmethod
|
|
207
|
+
async def post(cls):
|
|
208
|
+
# Decode the request
|
|
209
|
+
payload = await request.data()
|
|
210
|
+
req = ServeChatRequest(**payload)
|
|
211
|
+
|
|
212
|
+
# Check that the number of samples requested is correct
|
|
213
|
+
if req.num_samples < 1 or req.num_samples > MAX_NUM_SAMPLES:
|
|
214
|
+
raise HTTPException(
|
|
215
|
+
HTTPStatus.BAD_REQUEST,
|
|
216
|
+
content=f"Number of samples must be between 1 and {MAX_NUM_SAMPLES}",
|
|
217
|
+
)
|
|
218
|
+
|
|
219
|
+
# Get the type of content provided
|
|
220
|
+
content_type = request.headers.get("Content-Type", "application/json")
|
|
221
|
+
json_mode = "application/json" in content_type
|
|
222
|
+
|
|
223
|
+
# Get the models from the app
|
|
224
|
+
model_manager: ModelManager = request.app.state.model_manager
|
|
225
|
+
llama_queue = model_manager.llama_queue
|
|
226
|
+
tokenizer = model_manager.tokenizer
|
|
227
|
+
config = model_manager.config
|
|
228
|
+
|
|
229
|
+
device = request.app.state.device
|
|
230
|
+
|
|
231
|
+
# Get the response generators
|
|
232
|
+
response_generator = get_response_generator(
|
|
233
|
+
llama_queue, tokenizer, config, req, device, json_mode
|
|
234
|
+
)
|
|
235
|
+
|
|
236
|
+
# Return the response in the correct format
|
|
237
|
+
if req.streaming is False:
|
|
238
|
+
result = response_generator()
|
|
239
|
+
if json_mode:
|
|
240
|
+
return JSONResponse(result.model_dump())
|
|
241
|
+
else:
|
|
242
|
+
return ormsgpack.packb(result, option=ormsgpack.OPT_SERIALIZE_PYDANTIC)
|
|
243
|
+
|
|
244
|
+
return StreamResponse(
|
|
245
|
+
iterable=response_generator(), content_type="text/event-stream"
|
|
246
|
+
)
|
|
@@ -0,0 +1,173 @@
|
|
|
1
|
+
from typing import Callable
|
|
2
|
+
|
|
3
|
+
import gradio as gr
|
|
4
|
+
|
|
5
|
+
from fish_speech.i18n import i18n
|
|
6
|
+
from tools.inference_engine.utils import normalize_text
|
|
7
|
+
from tools.webui.variables import HEADER_MD, TEXTBOX_PLACEHOLDER
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
def build_app(inference_fct: Callable, theme: str = "light") -> gr.Blocks:
|
|
11
|
+
with gr.Blocks(theme=gr.themes.Base()) as app:
|
|
12
|
+
gr.Markdown(HEADER_MD)
|
|
13
|
+
|
|
14
|
+
# Use light theme by default
|
|
15
|
+
app.load(
|
|
16
|
+
None,
|
|
17
|
+
None,
|
|
18
|
+
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
|
|
19
|
+
% theme,
|
|
20
|
+
)
|
|
21
|
+
|
|
22
|
+
# Inference
|
|
23
|
+
with gr.Row():
|
|
24
|
+
with gr.Column(scale=3):
|
|
25
|
+
text = gr.Textbox(
|
|
26
|
+
label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10
|
|
27
|
+
)
|
|
28
|
+
refined_text = gr.Textbox(
|
|
29
|
+
label=i18n("Realtime Transform Text"),
|
|
30
|
+
placeholder=i18n(
|
|
31
|
+
"Normalization Result Preview (Currently Only Chinese)"
|
|
32
|
+
),
|
|
33
|
+
lines=5,
|
|
34
|
+
interactive=False,
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
with gr.Row():
|
|
38
|
+
normalize = gr.Checkbox(
|
|
39
|
+
label=i18n("Text Normalization"),
|
|
40
|
+
value=False,
|
|
41
|
+
)
|
|
42
|
+
|
|
43
|
+
with gr.Row():
|
|
44
|
+
with gr.Column():
|
|
45
|
+
with gr.Tab(label=i18n("Advanced Config")):
|
|
46
|
+
with gr.Row():
|
|
47
|
+
chunk_length = gr.Slider(
|
|
48
|
+
label=i18n("Iterative Prompt Length, 0 means off"),
|
|
49
|
+
minimum=0,
|
|
50
|
+
maximum=300,
|
|
51
|
+
value=200,
|
|
52
|
+
step=8,
|
|
53
|
+
)
|
|
54
|
+
|
|
55
|
+
max_new_tokens = gr.Slider(
|
|
56
|
+
label=i18n(
|
|
57
|
+
"Maximum tokens per batch, 0 means no limit"
|
|
58
|
+
),
|
|
59
|
+
minimum=0,
|
|
60
|
+
maximum=2048,
|
|
61
|
+
value=0,
|
|
62
|
+
step=8,
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
with gr.Row():
|
|
66
|
+
top_p = gr.Slider(
|
|
67
|
+
label="Top-P",
|
|
68
|
+
minimum=0.6,
|
|
69
|
+
maximum=0.9,
|
|
70
|
+
value=0.7,
|
|
71
|
+
step=0.01,
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
repetition_penalty = gr.Slider(
|
|
75
|
+
label=i18n("Repetition Penalty"),
|
|
76
|
+
minimum=1,
|
|
77
|
+
maximum=1.5,
|
|
78
|
+
value=1.2,
|
|
79
|
+
step=0.01,
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
with gr.Row():
|
|
83
|
+
temperature = gr.Slider(
|
|
84
|
+
label="Temperature",
|
|
85
|
+
minimum=0.6,
|
|
86
|
+
maximum=0.9,
|
|
87
|
+
value=0.7,
|
|
88
|
+
step=0.01,
|
|
89
|
+
)
|
|
90
|
+
seed = gr.Number(
|
|
91
|
+
label="Seed",
|
|
92
|
+
info="0 means randomized inference, otherwise deterministic",
|
|
93
|
+
value=0,
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
with gr.Tab(label=i18n("Reference Audio")):
|
|
97
|
+
with gr.Row():
|
|
98
|
+
gr.Markdown(
|
|
99
|
+
i18n(
|
|
100
|
+
"5 to 10 seconds of reference audio, useful for specifying speaker."
|
|
101
|
+
)
|
|
102
|
+
)
|
|
103
|
+
with gr.Row():
|
|
104
|
+
reference_id = gr.Textbox(
|
|
105
|
+
label=i18n("Reference ID"),
|
|
106
|
+
placeholder="Leave empty to use uploaded references",
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
with gr.Row():
|
|
110
|
+
use_memory_cache = gr.Radio(
|
|
111
|
+
label=i18n("Use Memory Cache"),
|
|
112
|
+
choices=["on", "off"],
|
|
113
|
+
value="on",
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
with gr.Row():
|
|
117
|
+
reference_audio = gr.Audio(
|
|
118
|
+
label=i18n("Reference Audio"),
|
|
119
|
+
type="filepath",
|
|
120
|
+
)
|
|
121
|
+
with gr.Row():
|
|
122
|
+
reference_text = gr.Textbox(
|
|
123
|
+
label=i18n("Reference Text"),
|
|
124
|
+
lines=1,
|
|
125
|
+
placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
|
|
126
|
+
value="",
|
|
127
|
+
)
|
|
128
|
+
|
|
129
|
+
with gr.Column(scale=3):
|
|
130
|
+
with gr.Row():
|
|
131
|
+
error = gr.HTML(
|
|
132
|
+
label=i18n("Error Message"),
|
|
133
|
+
visible=True,
|
|
134
|
+
)
|
|
135
|
+
with gr.Row():
|
|
136
|
+
audio = gr.Audio(
|
|
137
|
+
label=i18n("Generated Audio"),
|
|
138
|
+
type="numpy",
|
|
139
|
+
interactive=False,
|
|
140
|
+
visible=True,
|
|
141
|
+
)
|
|
142
|
+
|
|
143
|
+
with gr.Row():
|
|
144
|
+
with gr.Column(scale=3):
|
|
145
|
+
generate = gr.Button(
|
|
146
|
+
value="\U0001F3A7 " + i18n("Generate"),
|
|
147
|
+
variant="primary",
|
|
148
|
+
)
|
|
149
|
+
|
|
150
|
+
text.input(fn=normalize_text, inputs=[text, normalize], outputs=[refined_text])
|
|
151
|
+
|
|
152
|
+
# Submit
|
|
153
|
+
generate.click(
|
|
154
|
+
inference_fct,
|
|
155
|
+
[
|
|
156
|
+
refined_text,
|
|
157
|
+
normalize,
|
|
158
|
+
reference_id,
|
|
159
|
+
reference_audio,
|
|
160
|
+
reference_text,
|
|
161
|
+
max_new_tokens,
|
|
162
|
+
chunk_length,
|
|
163
|
+
top_p,
|
|
164
|
+
repetition_penalty,
|
|
165
|
+
temperature,
|
|
166
|
+
seed,
|
|
167
|
+
use_memory_cache,
|
|
168
|
+
],
|
|
169
|
+
[audio, error],
|
|
170
|
+
concurrency_limit=1,
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
return app
|