xinference 1.0.1__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +2 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +77 -71
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +79 -19
- xinference/core/supervisor.py +172 -10
- xinference/core/utils.py +12 -8
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/core.py +16 -0
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +36 -111
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +99 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/embedding/core.py +203 -142
- xinference/model/embedding/model_spec.json +7 -0
- xinference/model/embedding/model_spec_modelscope.json +8 -0
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +45 -13
- xinference/model/llm/__init__.py +4 -2
- xinference/model/llm/llm_family.json +536 -53
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +454 -20
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +248 -52
- xinference/model/llm/sglang/core.py +1 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +2 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +36 -4
- xinference/model/llm/vllm/core.py +53 -10
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +11 -28
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +15 -0
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/METADATA +68 -32
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/RECORD +316 -122
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/tools/api.py +0 -943
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
- xinference/thirdparty/fish_speech/tools/webui.py +0 -548
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/tools → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/WHEEL +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,319 @@
|
|
|
1
|
+
# Copyright 2022-2025 XProbe Inc.
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
import asyncio
|
|
15
|
+
import logging
|
|
16
|
+
from functools import lru_cache
|
|
17
|
+
from queue import Queue
|
|
18
|
+
from typing import Dict, List, Optional, no_type_check
|
|
19
|
+
|
|
20
|
+
import torch
|
|
21
|
+
import xoscar as xo
|
|
22
|
+
from vllm.core.scheduler import Scheduler
|
|
23
|
+
from vllm.utils import TORCH_DTYPE_TO_NUMPY_DTYPE, Device
|
|
24
|
+
from vllm.worker.cache_engine import CacheEngine
|
|
25
|
+
|
|
26
|
+
from .collective import CollectiveRank
|
|
27
|
+
|
|
28
|
+
logger = logging.getLogger(__name__)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class BufferTransferMixin:
|
|
32
|
+
def __init__(self):
|
|
33
|
+
self.num_buffer: int = 0
|
|
34
|
+
self.buffers: List[torch.Tensor] = []
|
|
35
|
+
self.buffer_queue: Optional[Queue] = None
|
|
36
|
+
self.transfer_block_num = 0
|
|
37
|
+
self.num_attn_layers = 0
|
|
38
|
+
|
|
39
|
+
def init_buffer(
|
|
40
|
+
self, num_buffer: int, buffer_shape, buffer_dtype, buffer_device, pin_memory
|
|
41
|
+
):
|
|
42
|
+
# (transfer_block_num, num_attn_layers, 2, *kv_cache_shape[2:])
|
|
43
|
+
|
|
44
|
+
if buffer_dtype is torch.bfloat16:
|
|
45
|
+
buffer_dtype = torch.float16
|
|
46
|
+
|
|
47
|
+
self.num_buffer = num_buffer
|
|
48
|
+
self.transfer_block_num = buffer_shape[0]
|
|
49
|
+
self.num_attn_layers = buffer_shape[1]
|
|
50
|
+
|
|
51
|
+
self.buffers = [
|
|
52
|
+
torch.zeros(
|
|
53
|
+
size=buffer_shape,
|
|
54
|
+
dtype=buffer_dtype,
|
|
55
|
+
device=buffer_device,
|
|
56
|
+
pin_memory=pin_memory,
|
|
57
|
+
)
|
|
58
|
+
for _ in range(self.num_buffer)
|
|
59
|
+
]
|
|
60
|
+
|
|
61
|
+
self.buffer_queue = Queue()
|
|
62
|
+
for i in range(self.num_buffer):
|
|
63
|
+
self.buffer_queue.put_nowait(i)
|
|
64
|
+
logger.debug(
|
|
65
|
+
f"Init buffer done. "
|
|
66
|
+
f"transfer_block_num: {self.transfer_block_num}, "
|
|
67
|
+
f"num_buffer: {self.num_buffer}, "
|
|
68
|
+
f"buffer_dtype: {buffer_dtype}, "
|
|
69
|
+
f"buffer_shape: {buffer_shape}"
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
@no_type_check
|
|
73
|
+
def get_buffer_index(self) -> int:
|
|
74
|
+
return self.buffer_queue.get()
|
|
75
|
+
|
|
76
|
+
@no_type_check
|
|
77
|
+
def free_buffer_index(self, index: int) -> None:
|
|
78
|
+
self.buffer_queue.put_nowait(index)
|
|
79
|
+
|
|
80
|
+
def get_swap_buffer(self, index: int, num_blocks: int) -> torch.Tensor:
|
|
81
|
+
buf = self.buffers[index]
|
|
82
|
+
buffer = buf[:num_blocks].view(
|
|
83
|
+
self.num_attn_layers, 2, num_blocks, *buf.shape[3:]
|
|
84
|
+
)
|
|
85
|
+
return buffer
|
|
86
|
+
|
|
87
|
+
@lru_cache(maxsize=None)
|
|
88
|
+
def get_gloo_dtype(self, input_dtype: torch.dtype):
|
|
89
|
+
from xoscar.collective.common import TypeMappingGloo
|
|
90
|
+
|
|
91
|
+
return TypeMappingGloo[TORCH_DTYPE_TO_NUMPY_DTYPE[input_dtype]]
|
|
92
|
+
|
|
93
|
+
|
|
94
|
+
class TransferActor(xo.StatelessActor, BufferTransferMixin, CollectiveRank):
|
|
95
|
+
@classmethod
|
|
96
|
+
def default_uid(cls):
|
|
97
|
+
return f"vllm-transfer-actor"
|
|
98
|
+
|
|
99
|
+
def __init__(
|
|
100
|
+
self,
|
|
101
|
+
rank: int,
|
|
102
|
+
world_size: int,
|
|
103
|
+
rank_address: str,
|
|
104
|
+
store_address: str,
|
|
105
|
+
store_port: int,
|
|
106
|
+
world_addresses: List[str],
|
|
107
|
+
):
|
|
108
|
+
super().__init__()
|
|
109
|
+
CollectiveRank.__init__(
|
|
110
|
+
self,
|
|
111
|
+
rank,
|
|
112
|
+
world_size,
|
|
113
|
+
rank_address,
|
|
114
|
+
store_address,
|
|
115
|
+
store_port,
|
|
116
|
+
world_addresses,
|
|
117
|
+
)
|
|
118
|
+
self._cache_engine: Optional[List[CacheEngine]] = None
|
|
119
|
+
self._scheduler: Optional[List[Scheduler]] = None
|
|
120
|
+
self._swap_stream = torch.cuda.Stream()
|
|
121
|
+
|
|
122
|
+
async def __post_create__(self):
|
|
123
|
+
self.init_rank()
|
|
124
|
+
|
|
125
|
+
def setup(
|
|
126
|
+
self,
|
|
127
|
+
cache_engine: List[CacheEngine],
|
|
128
|
+
scheduler: List[Scheduler],
|
|
129
|
+
num_buffer: int,
|
|
130
|
+
buffer_shape,
|
|
131
|
+
buffer_dtype,
|
|
132
|
+
buffer_device,
|
|
133
|
+
pin_memory: bool,
|
|
134
|
+
):
|
|
135
|
+
self._cache_engine = cache_engine
|
|
136
|
+
self._scheduler = scheduler
|
|
137
|
+
self.init_buffer(
|
|
138
|
+
num_buffer, buffer_shape, buffer_dtype, buffer_device, pin_memory
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
async def __pre_destroy__(self):
|
|
142
|
+
self._context.closeConnections()
|
|
143
|
+
|
|
144
|
+
def _get_cache_engine(self, virtual_engine: int) -> CacheEngine:
|
|
145
|
+
return self._cache_engine[virtual_engine] # type: ignore
|
|
146
|
+
|
|
147
|
+
@staticmethod
|
|
148
|
+
def _get_swap_block_ids(src_to_dst: Dict[int, int], is_sender: bool) -> List[int]:
|
|
149
|
+
return list(sorted([r if is_sender else l for r, l in src_to_dst.items()]))
|
|
150
|
+
|
|
151
|
+
def _swap_out_to_buffer(
|
|
152
|
+
self, cache_engine: CacheEngine, cpu_buf_index: int, block_ids: List[int]
|
|
153
|
+
) -> torch.Tensor:
|
|
154
|
+
num_blocks = len(block_ids)
|
|
155
|
+
src_to_dst = torch.tensor(
|
|
156
|
+
[(block_num, idx) for idx, block_num in enumerate(block_ids)],
|
|
157
|
+
device="cpu",
|
|
158
|
+
dtype=torch.int64,
|
|
159
|
+
).view(-1, 2)
|
|
160
|
+
cpu_buf = self.get_swap_buffer(cpu_buf_index, num_blocks)
|
|
161
|
+
with torch.cuda.stream(self._swap_stream):
|
|
162
|
+
for i in range(self.num_attn_layers):
|
|
163
|
+
cache_engine.attn_backend.swap_blocks(
|
|
164
|
+
cache_engine.gpu_cache[i], cpu_buf[i], src_to_dst
|
|
165
|
+
)
|
|
166
|
+
torch.cuda.Stream.synchronize(self._swap_stream)
|
|
167
|
+
return cpu_buf
|
|
168
|
+
|
|
169
|
+
def _swap_in_from_buffer(
|
|
170
|
+
self, cache_engine: CacheEngine, cpu_buf: torch.Tensor, block_ids: List[int]
|
|
171
|
+
) -> None:
|
|
172
|
+
src_to_dst = torch.tensor(
|
|
173
|
+
[(idx, block_num) for idx, block_num in enumerate(block_ids)],
|
|
174
|
+
device="cpu",
|
|
175
|
+
dtype=torch.int64,
|
|
176
|
+
).view(-1, 2)
|
|
177
|
+
with torch.cuda.stream(self._swap_stream):
|
|
178
|
+
for i in range(self.num_attn_layers):
|
|
179
|
+
cache_engine.attn_backend.swap_blocks(
|
|
180
|
+
cpu_buf[i], cache_engine.gpu_cache[i], src_to_dst
|
|
181
|
+
)
|
|
182
|
+
torch.cuda.Stream.synchronize(self._swap_stream)
|
|
183
|
+
|
|
184
|
+
def _incr_count_for_block_id(self, virtual_engine: int, block_ids: List[int]):
|
|
185
|
+
"""
|
|
186
|
+
The reference count of the `block_id` involved in the transfer is incremented by 1
|
|
187
|
+
to ensure it is not reclaimed.
|
|
188
|
+
"""
|
|
189
|
+
scheduler = self._scheduler[virtual_engine] # type: ignore
|
|
190
|
+
gpu_allocator = scheduler.block_manager.block_allocator._allocators[Device.GPU]
|
|
191
|
+
|
|
192
|
+
for _id in block_ids:
|
|
193
|
+
gpu_allocator._refcounter.incr(_id)
|
|
194
|
+
|
|
195
|
+
def _decr_count_for_block_id(self, virtual_engine: int, block_ids: List[int]):
|
|
196
|
+
"""
|
|
197
|
+
After the transfer, the reference count is decremented by 1.
|
|
198
|
+
"""
|
|
199
|
+
scheduler = self._scheduler[virtual_engine] # type: ignore
|
|
200
|
+
gpu_allocator = scheduler.block_manager.block_allocator._allocators[Device.GPU]
|
|
201
|
+
|
|
202
|
+
for _id in block_ids:
|
|
203
|
+
gpu_allocator._refcounter.decr(_id)
|
|
204
|
+
|
|
205
|
+
async def do_send(
|
|
206
|
+
self, virtual_engine: int, to_rank: int, src_to_dst: Dict[int, int]
|
|
207
|
+
):
|
|
208
|
+
"""
|
|
209
|
+
Sending logic: GPU -> Buffer -> Gloo send.
|
|
210
|
+
GPU -> Buffer is directly handled using the internal `swap_out` interface of vllm.
|
|
211
|
+
"""
|
|
212
|
+
from xoscar.collective import xoscar_pygloo as xp
|
|
213
|
+
|
|
214
|
+
cache_engine = self._get_cache_engine(virtual_engine)
|
|
215
|
+
|
|
216
|
+
block_ids = self._get_swap_block_ids(src_to_dst, is_sender=True)
|
|
217
|
+
self._incr_count_for_block_id(virtual_engine, block_ids)
|
|
218
|
+
cpu_buf_index = self.get_buffer_index()
|
|
219
|
+
total_blocks: int = len(block_ids)
|
|
220
|
+
|
|
221
|
+
try:
|
|
222
|
+
for start_idx in range(0, total_blocks, self.transfer_block_num):
|
|
223
|
+
offset = min(self.transfer_block_num, total_blocks - start_idx)
|
|
224
|
+
send_block_ids = block_ids[start_idx : start_idx + offset]
|
|
225
|
+
sendbuf = self._swap_out_to_buffer(
|
|
226
|
+
cache_engine, cpu_buf_index, send_block_ids
|
|
227
|
+
)
|
|
228
|
+
assert sendbuf.is_contiguous()
|
|
229
|
+
sendptr = sendbuf.numpy().ctypes.data
|
|
230
|
+
data_size = sendbuf.numel()
|
|
231
|
+
datatype = self.get_gloo_dtype(sendbuf.dtype)
|
|
232
|
+
peer = to_rank
|
|
233
|
+
xp.send(self._context, sendptr, data_size, datatype, peer)
|
|
234
|
+
finally:
|
|
235
|
+
self._decr_count_for_block_id(virtual_engine, block_ids)
|
|
236
|
+
self.free_buffer_index(cpu_buf_index)
|
|
237
|
+
|
|
238
|
+
async def do_recv(
|
|
239
|
+
self, virtual_engine: int, from_rank: int, src_to_dst: Dict[int, int]
|
|
240
|
+
):
|
|
241
|
+
"""
|
|
242
|
+
Receiving logic: Gloo recv -> Buffer -> GPU.
|
|
243
|
+
Buffer -> GPU is directly handled using the internal `swap_in` interface of vllm.
|
|
244
|
+
"""
|
|
245
|
+
from xoscar.collective import xoscar_pygloo as xp
|
|
246
|
+
|
|
247
|
+
cache_engine = self._get_cache_engine(virtual_engine)
|
|
248
|
+
|
|
249
|
+
block_ids = self._get_swap_block_ids(src_to_dst, is_sender=False)
|
|
250
|
+
self._incr_count_for_block_id(virtual_engine, block_ids)
|
|
251
|
+
total_blocks = len(block_ids)
|
|
252
|
+
cpu_buf_index = self.get_buffer_index()
|
|
253
|
+
|
|
254
|
+
try:
|
|
255
|
+
for start_idx in range(0, total_blocks, self.transfer_block_num):
|
|
256
|
+
offset = min(self.transfer_block_num, total_blocks - start_idx)
|
|
257
|
+
recv_block_ids = block_ids[start_idx : start_idx + offset]
|
|
258
|
+
recvbuf = self.get_swap_buffer(cpu_buf_index, len(recv_block_ids))
|
|
259
|
+
assert recvbuf.is_contiguous()
|
|
260
|
+
recvptr = recvbuf.numpy().ctypes.data
|
|
261
|
+
data_size = recvbuf.numel()
|
|
262
|
+
datatype = self.get_gloo_dtype(recvbuf.dtype)
|
|
263
|
+
peer = from_rank
|
|
264
|
+
xp.recv(self._context, recvptr, data_size, datatype, peer)
|
|
265
|
+
|
|
266
|
+
self._swap_in_from_buffer(cache_engine, recvbuf, recv_block_ids)
|
|
267
|
+
finally:
|
|
268
|
+
self._decr_count_for_block_id(virtual_engine, block_ids)
|
|
269
|
+
self.free_buffer_index(cpu_buf_index)
|
|
270
|
+
|
|
271
|
+
async def recv(
|
|
272
|
+
self, virtual_engine: int, from_rank: int, src_to_dst: Dict[int, int]
|
|
273
|
+
):
|
|
274
|
+
"""
|
|
275
|
+
This is the external entry point for the call.
|
|
276
|
+
The transfer logic is as follows:
|
|
277
|
+
the receiver requests the sender to send the data directly to itself in a point-to-point manner.
|
|
278
|
+
"""
|
|
279
|
+
from_address = self._world_addresses[from_rank]
|
|
280
|
+
sender_ref = await xo.actor_ref(
|
|
281
|
+
address=from_address, uid=f"{TransferActor.default_uid()}-{from_rank}"
|
|
282
|
+
)
|
|
283
|
+
await asyncio.gather(
|
|
284
|
+
sender_ref.do_send(virtual_engine, self._rank, src_to_dst),
|
|
285
|
+
self.do_recv(virtual_engine, from_rank, src_to_dst),
|
|
286
|
+
)
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
class Rank0TransferActor(xo.StatelessActor, CollectiveRank):
|
|
290
|
+
"""
|
|
291
|
+
The Rank 0 transfer actor is only used for constructing the collective communication world,
|
|
292
|
+
so it only needs to inherit the `CollectiveWorld` class.
|
|
293
|
+
"""
|
|
294
|
+
|
|
295
|
+
@classmethod
|
|
296
|
+
def default_uid(cls):
|
|
297
|
+
return f"vllm-transfer-actor"
|
|
298
|
+
|
|
299
|
+
def __init__(
|
|
300
|
+
self,
|
|
301
|
+
rank: int,
|
|
302
|
+
world_size: int,
|
|
303
|
+
rank_address: str,
|
|
304
|
+
store_address: str,
|
|
305
|
+
store_port: int,
|
|
306
|
+
world_addresses: List[str],
|
|
307
|
+
):
|
|
308
|
+
CollectiveRank.__init__(
|
|
309
|
+
self,
|
|
310
|
+
rank,
|
|
311
|
+
world_size,
|
|
312
|
+
rank_address,
|
|
313
|
+
store_address,
|
|
314
|
+
store_port,
|
|
315
|
+
world_addresses,
|
|
316
|
+
)
|
|
317
|
+
|
|
318
|
+
async def __post_create__(self):
|
|
319
|
+
self.init_rank()
|
|
@@ -91,6 +91,20 @@ class DiffUsersVideoModel:
|
|
|
91
91
|
pipeline = self._model = CogVideoXPipeline.from_pretrained(
|
|
92
92
|
self._model_path, **kwargs
|
|
93
93
|
)
|
|
94
|
+
elif self._model_spec.model_family == "HunyuanVideo":
|
|
95
|
+
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
|
|
96
|
+
|
|
97
|
+
transformer_torch_dtype = kwargs.pop("transformer_torch_dtype")
|
|
98
|
+
if isinstance(transformer_torch_dtype, str):
|
|
99
|
+
transformer_torch_dtype = getattr(torch, transformer_torch_dtype)
|
|
100
|
+
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
|
|
101
|
+
self._model_path,
|
|
102
|
+
subfolder="transformer",
|
|
103
|
+
torch_dtype=transformer_torch_dtype,
|
|
104
|
+
)
|
|
105
|
+
pipeline = self._model = HunyuanVideoPipeline.from_pretrained(
|
|
106
|
+
self._model_path, transformer=transformer, **kwargs
|
|
107
|
+
)
|
|
94
108
|
else:
|
|
95
109
|
raise Exception(
|
|
96
110
|
f"Unsupported model family: {self._model_spec.model_family}"
|
|
@@ -30,5 +30,20 @@
|
|
|
30
30
|
"default_generate_config": {
|
|
31
31
|
"guidance_scale": 7
|
|
32
32
|
}
|
|
33
|
+
},
|
|
34
|
+
{
|
|
35
|
+
"model_name": "HunyuanVideo",
|
|
36
|
+
"model_family": "HunyuanVideo",
|
|
37
|
+
"model_id": "hunyuanvideo-community/HunyuanVideo",
|
|
38
|
+
"model_revision": "e8c2aaa66fe3742a32c11a6766aecbf07c56e773",
|
|
39
|
+
"model_ability": [
|
|
40
|
+
"text2video"
|
|
41
|
+
],
|
|
42
|
+
"default_model_config": {
|
|
43
|
+
"transformer_torch_dtype": "bfloat16",
|
|
44
|
+
"torch_dtype": "float16"
|
|
45
|
+
},
|
|
46
|
+
"default_generate_config": {
|
|
47
|
+
}
|
|
33
48
|
}
|
|
34
49
|
]
|
|
@@ -32,5 +32,21 @@
|
|
|
32
32
|
"default_generate_config": {
|
|
33
33
|
"guidance_scale": 7
|
|
34
34
|
}
|
|
35
|
+
},
|
|
36
|
+
{
|
|
37
|
+
"model_name": "HunyuanVideo",
|
|
38
|
+
"model_family": "HunyuanVideo",
|
|
39
|
+
"model_hub": "modelscope",
|
|
40
|
+
"model_id": "Xorbits/HunyuanVideo",
|
|
41
|
+
"model_revision": "master",
|
|
42
|
+
"model_ability": [
|
|
43
|
+
"text2video"
|
|
44
|
+
],
|
|
45
|
+
"default_model_config": {
|
|
46
|
+
"transformer_torch_dtype": "bfloat16",
|
|
47
|
+
"torch_dtype": "float16"
|
|
48
|
+
},
|
|
49
|
+
"default_generate_config": {
|
|
50
|
+
}
|
|
35
51
|
}
|
|
36
52
|
]
|
|
@@ -0,0 +1,92 @@
|
|
|
1
|
+
# Copyright (c) 2020 Mobvoi Inc (Di Wu)
|
|
2
|
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
import os
|
|
17
|
+
import argparse
|
|
18
|
+
import glob
|
|
19
|
+
|
|
20
|
+
import yaml
|
|
21
|
+
import torch
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def get_args():
|
|
25
|
+
parser = argparse.ArgumentParser(description='average model')
|
|
26
|
+
parser.add_argument('--dst_model', required=True, help='averaged model')
|
|
27
|
+
parser.add_argument('--src_path',
|
|
28
|
+
required=True,
|
|
29
|
+
help='src model path for average')
|
|
30
|
+
parser.add_argument('--val_best',
|
|
31
|
+
action="store_true",
|
|
32
|
+
help='averaged model')
|
|
33
|
+
parser.add_argument('--num',
|
|
34
|
+
default=5,
|
|
35
|
+
type=int,
|
|
36
|
+
help='nums for averaged model')
|
|
37
|
+
|
|
38
|
+
args = parser.parse_args()
|
|
39
|
+
print(args)
|
|
40
|
+
return args
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def main():
|
|
44
|
+
args = get_args()
|
|
45
|
+
val_scores = []
|
|
46
|
+
if args.val_best:
|
|
47
|
+
yamls = glob.glob('{}/*.yaml'.format(args.src_path))
|
|
48
|
+
yamls = [
|
|
49
|
+
f for f in yamls
|
|
50
|
+
if not (os.path.basename(f).startswith('train')
|
|
51
|
+
or os.path.basename(f).startswith('init'))
|
|
52
|
+
]
|
|
53
|
+
for y in yamls:
|
|
54
|
+
with open(y, 'r') as f:
|
|
55
|
+
dic_yaml = yaml.load(f, Loader=yaml.BaseLoader)
|
|
56
|
+
loss = float(dic_yaml['loss_dict']['loss'])
|
|
57
|
+
epoch = int(dic_yaml['epoch'])
|
|
58
|
+
step = int(dic_yaml['step'])
|
|
59
|
+
tag = dic_yaml['tag']
|
|
60
|
+
val_scores += [[epoch, step, loss, tag]]
|
|
61
|
+
sorted_val_scores = sorted(val_scores,
|
|
62
|
+
key=lambda x: x[2],
|
|
63
|
+
reverse=False)
|
|
64
|
+
print("best val (epoch, step, loss, tag) = " +
|
|
65
|
+
str(sorted_val_scores[:args.num]))
|
|
66
|
+
path_list = [
|
|
67
|
+
args.src_path + '/epoch_{}_whole.pt'.format(score[0])
|
|
68
|
+
for score in sorted_val_scores[:args.num]
|
|
69
|
+
]
|
|
70
|
+
print(path_list)
|
|
71
|
+
avg = {}
|
|
72
|
+
num = args.num
|
|
73
|
+
assert num == len(path_list)
|
|
74
|
+
for path in path_list:
|
|
75
|
+
print('Processing {}'.format(path))
|
|
76
|
+
states = torch.load(path, map_location=torch.device('cpu'))
|
|
77
|
+
for k in states.keys():
|
|
78
|
+
if k not in avg.keys():
|
|
79
|
+
avg[k] = states[k].clone()
|
|
80
|
+
else:
|
|
81
|
+
avg[k] += states[k]
|
|
82
|
+
# average
|
|
83
|
+
for k in avg.keys():
|
|
84
|
+
if avg[k] is not None:
|
|
85
|
+
# pytorch 1.6 use true_divide instead of /=
|
|
86
|
+
avg[k] = torch.true_divide(avg[k], num)
|
|
87
|
+
print('Saving to {}'.format(args.dst_model))
|
|
88
|
+
torch.save(avg, args.dst_model)
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
if __name__ == '__main__':
|
|
92
|
+
main()
|
|
@@ -19,12 +19,13 @@ import logging
|
|
|
19
19
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|
20
20
|
import os
|
|
21
21
|
import sys
|
|
22
|
+
import torch
|
|
22
23
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
23
24
|
sys.path.append('{}/../..'.format(ROOT_DIR))
|
|
24
25
|
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
|
25
|
-
import torch
|
|
26
26
|
from cosyvoice.cli.cosyvoice import CosyVoice
|
|
27
27
|
|
|
28
|
+
|
|
28
29
|
def get_args():
|
|
29
30
|
parser = argparse.ArgumentParser(description='export your model for deployment')
|
|
30
31
|
parser.add_argument('--model_dir',
|
|
@@ -35,6 +36,7 @@ def get_args():
|
|
|
35
36
|
print(args)
|
|
36
37
|
return args
|
|
37
38
|
|
|
39
|
+
|
|
38
40
|
def main():
|
|
39
41
|
args = get_args()
|
|
40
42
|
logging.basicConfig(level=logging.DEBUG,
|
|
@@ -44,7 +46,7 @@ def main():
|
|
|
44
46
|
torch._C._jit_set_profiling_mode(False)
|
|
45
47
|
torch._C._jit_set_profiling_executor(False)
|
|
46
48
|
|
|
47
|
-
cosyvoice = CosyVoice(args.model_dir, load_jit=False,
|
|
49
|
+
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False)
|
|
48
50
|
|
|
49
51
|
# 1. export llm text_encoder
|
|
50
52
|
llm_text_encoder = cosyvoice.model.llm.text_encoder.half()
|
|
@@ -60,5 +62,13 @@ def main():
|
|
|
60
62
|
script = torch.jit.optimize_for_inference(script)
|
|
61
63
|
script.save('{}/llm.llm.fp16.zip'.format(args.model_dir))
|
|
62
64
|
|
|
65
|
+
# 3. export flow encoder
|
|
66
|
+
flow_encoder = cosyvoice.model.flow.encoder
|
|
67
|
+
script = torch.jit.script(flow_encoder)
|
|
68
|
+
script = torch.jit.freeze(script)
|
|
69
|
+
script = torch.jit.optimize_for_inference(script)
|
|
70
|
+
script.save('{}/flow.encoder.fp32.zip'.format(args.model_dir))
|
|
71
|
+
|
|
72
|
+
|
|
63
73
|
if __name__ == '__main__':
|
|
64
74
|
main()
|
|
@@ -0,0 +1,112 @@
|
|
|
1
|
+
# Copyright (c) 2024 Antgroup Inc (authors: Zhoubofan, hexisyztem@icloud.com)
|
|
2
|
+
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu)
|
|
3
|
+
#
|
|
4
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
5
|
+
# you may not use this file except in compliance with the License.
|
|
6
|
+
# You may obtain a copy of the License at
|
|
7
|
+
#
|
|
8
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
9
|
+
#
|
|
10
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
11
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
12
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
13
|
+
# See the License for the specific language governing permissions and
|
|
14
|
+
# limitations under the License.
|
|
15
|
+
|
|
16
|
+
from __future__ import print_function
|
|
17
|
+
|
|
18
|
+
import argparse
|
|
19
|
+
import logging
|
|
20
|
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|
21
|
+
import os
|
|
22
|
+
import sys
|
|
23
|
+
import onnxruntime
|
|
24
|
+
import random
|
|
25
|
+
import torch
|
|
26
|
+
from tqdm import tqdm
|
|
27
|
+
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
28
|
+
sys.path.append('{}/../..'.format(ROOT_DIR))
|
|
29
|
+
sys.path.append('{}/../../third_party/Matcha-TTS'.format(ROOT_DIR))
|
|
30
|
+
from cosyvoice.cli.cosyvoice import CosyVoice
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def get_dummy_input(batch_size, seq_len, out_channels, device):
|
|
34
|
+
x = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
|
35
|
+
mask = torch.ones((batch_size, 1, seq_len), dtype=torch.float32, device=device)
|
|
36
|
+
mu = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
|
37
|
+
t = torch.rand((batch_size), dtype=torch.float32, device=device)
|
|
38
|
+
spks = torch.rand((batch_size, out_channels), dtype=torch.float32, device=device)
|
|
39
|
+
cond = torch.rand((batch_size, out_channels, seq_len), dtype=torch.float32, device=device)
|
|
40
|
+
return x, mask, mu, t, spks, cond
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def get_args():
|
|
44
|
+
parser = argparse.ArgumentParser(description='export your model for deployment')
|
|
45
|
+
parser.add_argument('--model_dir',
|
|
46
|
+
type=str,
|
|
47
|
+
default='pretrained_models/CosyVoice-300M',
|
|
48
|
+
help='local path')
|
|
49
|
+
args = parser.parse_args()
|
|
50
|
+
print(args)
|
|
51
|
+
return args
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def main():
|
|
55
|
+
args = get_args()
|
|
56
|
+
logging.basicConfig(level=logging.DEBUG,
|
|
57
|
+
format='%(asctime)s %(levelname)s %(message)s')
|
|
58
|
+
|
|
59
|
+
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_onnx=False)
|
|
60
|
+
|
|
61
|
+
# 1. export flow decoder estimator
|
|
62
|
+
estimator = cosyvoice.model.flow.decoder.estimator
|
|
63
|
+
|
|
64
|
+
device = cosyvoice.model.device
|
|
65
|
+
batch_size, seq_len = 1, 256
|
|
66
|
+
out_channels = cosyvoice.model.flow.decoder.estimator.out_channels
|
|
67
|
+
x, mask, mu, t, spks, cond = get_dummy_input(batch_size, seq_len, out_channels, device)
|
|
68
|
+
torch.onnx.export(
|
|
69
|
+
estimator,
|
|
70
|
+
(x, mask, mu, t, spks, cond),
|
|
71
|
+
'{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
|
72
|
+
export_params=True,
|
|
73
|
+
opset_version=18,
|
|
74
|
+
do_constant_folding=True,
|
|
75
|
+
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
|
76
|
+
output_names=['estimator_out'],
|
|
77
|
+
dynamic_axes={
|
|
78
|
+
'x': {0: 'batch_size', 2: 'seq_len'},
|
|
79
|
+
'mask': {0: 'batch_size', 2: 'seq_len'},
|
|
80
|
+
'mu': {0: 'batch_size', 2: 'seq_len'},
|
|
81
|
+
'cond': {0: 'batch_size', 2: 'seq_len'},
|
|
82
|
+
't': {0: 'batch_size'},
|
|
83
|
+
'spks': {0: 'batch_size'},
|
|
84
|
+
'estimator_out': {0: 'batch_size', 2: 'seq_len'},
|
|
85
|
+
}
|
|
86
|
+
)
|
|
87
|
+
|
|
88
|
+
# 2. test computation consistency
|
|
89
|
+
option = onnxruntime.SessionOptions()
|
|
90
|
+
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
91
|
+
option.intra_op_num_threads = 1
|
|
92
|
+
providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
|
|
93
|
+
estimator_onnx = onnxruntime.InferenceSession('{}/flow.decoder.estimator.fp32.onnx'.format(args.model_dir),
|
|
94
|
+
sess_options=option, providers=providers)
|
|
95
|
+
|
|
96
|
+
for _ in tqdm(range(10)):
|
|
97
|
+
x, mask, mu, t, spks, cond = get_dummy_input(random.randint(1, 6), random.randint(16, 512), out_channels, device)
|
|
98
|
+
output_pytorch = estimator(x, mask, mu, t, spks, cond)
|
|
99
|
+
ort_inputs = {
|
|
100
|
+
'x': x.cpu().numpy(),
|
|
101
|
+
'mask': mask.cpu().numpy(),
|
|
102
|
+
'mu': mu.cpu().numpy(),
|
|
103
|
+
't': t.cpu().numpy(),
|
|
104
|
+
'spks': spks.cpu().numpy(),
|
|
105
|
+
'cond': cond.cpu().numpy()
|
|
106
|
+
}
|
|
107
|
+
output_onnx = estimator_onnx.run(None, ort_inputs)[0]
|
|
108
|
+
torch.testing.assert_allclose(output_pytorch, torch.from_numpy(output_onnx).to(device), rtol=1e-2, atol=1e-4)
|
|
109
|
+
|
|
110
|
+
|
|
111
|
+
if __name__ == "__main__":
|
|
112
|
+
main()
|
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
#!/bin/bash
|
|
2
|
+
# Copyright 2024 Alibaba Inc. All Rights Reserved.
|
|
3
|
+
# download tensorrt from https://developer.nvidia.com/tensorrt/download/10x, check your system and cuda for compatibability
|
|
4
|
+
# for example for linux + cuda12.4, you can download https://developer.nvidia.com/downloads/compute/machine-learning/tensorrt/10.0.1/tars/TensorRT-10.0.1.6.Linux.x86_64-gnu.cuda-12.4.tar.gz
|
|
5
|
+
TRT_DIR=<YOUR_TRT_DIR>
|
|
6
|
+
MODEL_DIR=<COSYVOICE2_MODEL_DIR>
|
|
7
|
+
|
|
8
|
+
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TRT_DIR/lib:/usr/local/cuda/lib64
|
|
9
|
+
$TRT_DIR/bin/trtexec --onnx=$MODEL_DIR/flow.decoder.estimator.fp32.onnx --saveEngine=$MODEL_DIR/flow.decoder.estimator.fp16.mygpu.plan --fp16 --minShapes=x:2x80x4,mask:2x1x4,mu:2x80x4,cond:2x80x4 --optShapes=x:2x80x193,mask:2x1x193,mu:2x80x193,cond:2x80x193 --maxShapes=x:2x80x6800,mask:2x1x6800,mu:2x80x6800,cond:2x80x6800 --inputIOFormats=fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw,fp16:chw --outputIOFormats=fp16:chw
|