xinference 1.0.1__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +2 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +77 -71
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +79 -19
- xinference/core/supervisor.py +172 -10
- xinference/core/utils.py +12 -8
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/core.py +16 -0
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +36 -111
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +99 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/embedding/core.py +203 -142
- xinference/model/embedding/model_spec.json +7 -0
- xinference/model/embedding/model_spec_modelscope.json +8 -0
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +45 -13
- xinference/model/llm/__init__.py +4 -2
- xinference/model/llm/llm_family.json +536 -53
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +454 -20
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +248 -52
- xinference/model/llm/sglang/core.py +1 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +2 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +36 -4
- xinference/model/llm/vllm/core.py +53 -10
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +11 -28
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +15 -0
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/METADATA +68 -32
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/RECORD +316 -122
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/tools/api.py +0 -943
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
- xinference/thirdparty/fish_speech/tools/webui.py +0 -548
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/tools → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/WHEEL +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -18,16 +18,15 @@ import argparse
|
|
|
18
18
|
import logging
|
|
19
19
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|
20
20
|
import os
|
|
21
|
-
|
|
22
21
|
import torch
|
|
23
22
|
from torch.utils.data import DataLoader
|
|
24
23
|
import torchaudio
|
|
25
24
|
from hyperpyyaml import load_hyperpyyaml
|
|
26
25
|
from tqdm import tqdm
|
|
27
26
|
from cosyvoice.cli.model import CosyVoiceModel
|
|
28
|
-
|
|
29
27
|
from cosyvoice.dataset.dataset import Dataset
|
|
30
28
|
|
|
29
|
+
|
|
31
30
|
def get_args():
|
|
32
31
|
parser = argparse.ArgumentParser(description='inference with your model')
|
|
33
32
|
parser.add_argument('--config', required=True, help='config file')
|
|
@@ -66,7 +65,8 @@ def main():
|
|
|
66
65
|
model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'])
|
|
67
66
|
model.load(args.llm_model, args.flow_model, args.hifigan_model)
|
|
68
67
|
|
|
69
|
-
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
|
68
|
+
test_dataset = Dataset(args.prompt_data, data_pipeline=configs['data_pipeline'], mode='inference', shuffle=False, partition=False,
|
|
69
|
+
tts_file=args.tts_text, prompt_utt2data=args.prompt_utt2data)
|
|
70
70
|
test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)
|
|
71
71
|
|
|
72
72
|
del configs
|
|
@@ -74,13 +74,11 @@ def main():
|
|
|
74
74
|
fn = os.path.join(args.result_dir, 'wav.scp')
|
|
75
75
|
f = open(fn, 'w')
|
|
76
76
|
with torch.no_grad():
|
|
77
|
-
for
|
|
77
|
+
for _, batch in tqdm(enumerate(test_data_loader)):
|
|
78
78
|
utts = batch["utts"]
|
|
79
79
|
assert len(utts) == 1, "inference mode only support batchsize 1"
|
|
80
|
-
text = batch["text"]
|
|
81
80
|
text_token = batch["text_token"].to(device)
|
|
82
81
|
text_token_len = batch["text_token_len"].to(device)
|
|
83
|
-
tts_text = batch["tts_text"]
|
|
84
82
|
tts_index = batch["tts_index"]
|
|
85
83
|
tts_text_token = batch["tts_text_token"].to(device)
|
|
86
84
|
tts_text_token_len = batch["tts_text_token_len"].to(device)
|
|
@@ -101,7 +99,7 @@ def main():
|
|
|
101
99
|
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
|
102
100
|
'llm_embedding': utt_embedding, 'flow_embedding': utt_embedding}
|
|
103
101
|
tts_speeches = []
|
|
104
|
-
for model_output in model.
|
|
102
|
+
for model_output in model.tts(**model_input):
|
|
105
103
|
tts_speeches.append(model_output['tts_speech'])
|
|
106
104
|
tts_speeches = torch.concat(tts_speeches, dim=1)
|
|
107
105
|
tts_key = '{}_{}'.format(utts[0], tts_index[0])
|
|
Binary file
|
|
@@ -18,6 +18,7 @@ import datetime
|
|
|
18
18
|
import logging
|
|
19
19
|
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
|
20
20
|
from copy import deepcopy
|
|
21
|
+
import os
|
|
21
22
|
import torch
|
|
22
23
|
import torch.distributed as dist
|
|
23
24
|
import deepspeed
|
|
@@ -67,13 +68,17 @@ def get_args():
|
|
|
67
68
|
action='store_true',
|
|
68
69
|
default=False,
|
|
69
70
|
help='Use pinned memory buffers used for reading')
|
|
71
|
+
parser.add_argument('--use_amp',
|
|
72
|
+
action='store_true',
|
|
73
|
+
default=False,
|
|
74
|
+
help='Use automatic mixed precision training')
|
|
70
75
|
parser.add_argument('--deepspeed.save_states',
|
|
71
76
|
dest='save_states',
|
|
72
77
|
default='model_only',
|
|
73
78
|
choices=['model_only', 'model+optimizer'],
|
|
74
79
|
help='save model/optimizer states')
|
|
75
80
|
parser.add_argument('--timeout',
|
|
76
|
-
default=
|
|
81
|
+
default=60,
|
|
77
82
|
type=int,
|
|
78
83
|
help='timeout (in seconds) of cosyvoice_join.')
|
|
79
84
|
parser = deepspeed.add_config_arguments(parser)
|
|
@@ -86,10 +91,16 @@ def main():
|
|
|
86
91
|
args = get_args()
|
|
87
92
|
logging.basicConfig(level=logging.DEBUG,
|
|
88
93
|
format='%(asctime)s %(levelname)s %(message)s')
|
|
94
|
+
# gan train has some special initialization logic
|
|
95
|
+
gan = True if args.model == 'hifigan' else False
|
|
89
96
|
|
|
90
|
-
override_dict = {k: None for k in ['llm', 'flow', 'hift'] if k != args.model}
|
|
97
|
+
override_dict = {k: None for k in ['llm', 'flow', 'hift', 'hifigan'] if k != args.model}
|
|
98
|
+
if gan is True:
|
|
99
|
+
override_dict.pop('hift')
|
|
91
100
|
with open(args.config, 'r') as f:
|
|
92
101
|
configs = load_hyperpyyaml(f, overrides=override_dict)
|
|
102
|
+
if gan is True:
|
|
103
|
+
configs['train_conf'] = configs['train_conf_gan']
|
|
93
104
|
configs['train_conf'].update(vars(args))
|
|
94
105
|
|
|
95
106
|
# Init env for ddp
|
|
@@ -97,7 +108,7 @@ def main():
|
|
|
97
108
|
|
|
98
109
|
# Get dataset & dataloader
|
|
99
110
|
train_dataset, cv_dataset, train_data_loader, cv_data_loader = \
|
|
100
|
-
init_dataset_and_dataloader(args, configs)
|
|
111
|
+
init_dataset_and_dataloader(args, configs, gan)
|
|
101
112
|
|
|
102
113
|
# Do some sanity checks and save config to arsg.model_dir
|
|
103
114
|
configs = check_modify_and_save_config(args, configs)
|
|
@@ -107,30 +118,53 @@ def main():
|
|
|
107
118
|
|
|
108
119
|
# load checkpoint
|
|
109
120
|
model = configs[args.model]
|
|
121
|
+
start_step, start_epoch = 0, -1
|
|
110
122
|
if args.checkpoint is not None:
|
|
111
|
-
|
|
123
|
+
if os.path.exists(args.checkpoint):
|
|
124
|
+
state_dict = torch.load(args.checkpoint, map_location='cpu')
|
|
125
|
+
model.load_state_dict(state_dict, strict=False)
|
|
126
|
+
if 'step' in state_dict:
|
|
127
|
+
start_step = state_dict['step']
|
|
128
|
+
if 'epoch' in state_dict:
|
|
129
|
+
start_epoch = state_dict['epoch']
|
|
130
|
+
else:
|
|
131
|
+
logging.warning('checkpoint {} do not exsist!'.format(args.checkpoint))
|
|
112
132
|
|
|
113
133
|
# Dispatch model from cpu to gpu
|
|
114
134
|
model = wrap_cuda_model(args, model)
|
|
115
135
|
|
|
116
136
|
# Get optimizer & scheduler
|
|
117
|
-
model, optimizer, scheduler = init_optimizer_and_scheduler(args, configs, model)
|
|
137
|
+
model, optimizer, scheduler, optimizer_d, scheduler_d = init_optimizer_and_scheduler(args, configs, model, gan)
|
|
138
|
+
scheduler.set_step(start_step)
|
|
139
|
+
if scheduler_d is not None:
|
|
140
|
+
scheduler_d.set_step(start_step)
|
|
118
141
|
|
|
119
142
|
# Save init checkpoints
|
|
120
143
|
info_dict = deepcopy(configs['train_conf'])
|
|
144
|
+
info_dict['step'] = start_step
|
|
145
|
+
info_dict['epoch'] = start_epoch
|
|
121
146
|
save_model(model, 'init', info_dict)
|
|
122
147
|
|
|
123
148
|
# Get executor
|
|
124
|
-
executor = Executor()
|
|
149
|
+
executor = Executor(gan=gan)
|
|
150
|
+
executor.step = start_step
|
|
125
151
|
|
|
152
|
+
# Init scaler, used for pytorch amp mixed precision training
|
|
153
|
+
scaler = torch.cuda.amp.GradScaler() if args.use_amp else None
|
|
154
|
+
print('start step {} start epoch {}'.format(start_step, start_epoch))
|
|
126
155
|
# Start training loop
|
|
127
|
-
for epoch in range(info_dict['max_epoch']):
|
|
156
|
+
for epoch in range(start_epoch + 1, info_dict['max_epoch']):
|
|
128
157
|
executor.epoch = epoch
|
|
129
158
|
train_dataset.set_epoch(epoch)
|
|
130
159
|
dist.barrier()
|
|
131
160
|
group_join = dist.new_group(backend="gloo", timeout=datetime.timedelta(seconds=args.timeout))
|
|
132
|
-
|
|
161
|
+
if gan is True:
|
|
162
|
+
executor.train_one_epoc_gan(model, optimizer, scheduler, optimizer_d, scheduler_d, train_data_loader, cv_data_loader,
|
|
163
|
+
writer, info_dict, scaler, group_join)
|
|
164
|
+
else:
|
|
165
|
+
executor.train_one_epoc(model, optimizer, scheduler, train_data_loader, cv_data_loader, writer, info_dict, scaler, group_join)
|
|
133
166
|
dist.destroy_process_group(group_join)
|
|
134
167
|
|
|
168
|
+
|
|
135
169
|
if __name__ == '__main__':
|
|
136
170
|
main()
|
|
@@ -13,15 +13,18 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
import os
|
|
15
15
|
import time
|
|
16
|
+
from tqdm import tqdm
|
|
16
17
|
from hyperpyyaml import load_hyperpyyaml
|
|
17
18
|
from modelscope import snapshot_download
|
|
19
|
+
import torch
|
|
18
20
|
from cosyvoice.cli.frontend import CosyVoiceFrontEnd
|
|
19
|
-
from cosyvoice.cli.model import CosyVoiceModel
|
|
21
|
+
from cosyvoice.cli.model import CosyVoiceModel, CosyVoice2Model
|
|
20
22
|
from cosyvoice.utils.file_utils import logging
|
|
21
23
|
|
|
24
|
+
|
|
22
25
|
class CosyVoice:
|
|
23
26
|
|
|
24
|
-
def __init__(self, model_dir, load_jit=True):
|
|
27
|
+
def __init__(self, model_dir, load_jit=True, load_onnx=False, fp16=True):
|
|
25
28
|
instruct = True if '-Instruct' in model_dir else False
|
|
26
29
|
self.model_dir = model_dir
|
|
27
30
|
if not os.path.exists(model_dir):
|
|
@@ -35,65 +38,133 @@ class CosyVoice:
|
|
|
35
38
|
'{}/spk2info.pt'.format(model_dir),
|
|
36
39
|
instruct,
|
|
37
40
|
configs['allowed_special'])
|
|
38
|
-
self.
|
|
41
|
+
self.sample_rate = configs['sample_rate']
|
|
42
|
+
if torch.cuda.is_available() is False and (fp16 is True or load_jit is True):
|
|
43
|
+
load_jit = False
|
|
44
|
+
fp16 = False
|
|
45
|
+
logging.warning('cpu do not support fp16 and jit, force set to False')
|
|
46
|
+
self.model = CosyVoiceModel(configs['llm'], configs['flow'], configs['hift'], fp16)
|
|
39
47
|
self.model.load('{}/llm.pt'.format(model_dir),
|
|
40
48
|
'{}/flow.pt'.format(model_dir),
|
|
41
49
|
'{}/hift.pt'.format(model_dir))
|
|
42
50
|
if load_jit:
|
|
43
51
|
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
|
44
|
-
|
|
52
|
+
'{}/llm.llm.fp16.zip'.format(model_dir),
|
|
53
|
+
'{}/flow.encoder.fp32.zip'.format(model_dir))
|
|
54
|
+
if load_onnx:
|
|
55
|
+
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
|
|
45
56
|
del configs
|
|
46
57
|
|
|
47
58
|
def list_avaliable_spks(self):
|
|
48
59
|
spks = list(self.frontend.spk2info.keys())
|
|
49
60
|
return spks
|
|
50
61
|
|
|
51
|
-
def inference_sft(self, tts_text, spk_id, stream=False):
|
|
52
|
-
for i in self.frontend.text_normalize(tts_text, split=True):
|
|
62
|
+
def inference_sft(self, tts_text, spk_id, stream=False, speed=1.0, text_frontend=True):
|
|
63
|
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
53
64
|
model_input = self.frontend.frontend_sft(i, spk_id)
|
|
54
65
|
start_time = time.time()
|
|
55
66
|
logging.info('synthesis text {}'.format(i))
|
|
56
|
-
for model_output in self.model.
|
|
57
|
-
speech_len = model_output['tts_speech'].shape[1] /
|
|
67
|
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
68
|
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
58
69
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
59
70
|
yield model_output
|
|
60
71
|
start_time = time.time()
|
|
61
72
|
|
|
62
|
-
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False):
|
|
63
|
-
prompt_text = self.frontend.text_normalize(prompt_text, split=False)
|
|
64
|
-
for i in self.frontend.text_normalize(tts_text, split=True):
|
|
65
|
-
|
|
73
|
+
def inference_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
74
|
+
prompt_text = self.frontend.text_normalize(prompt_text, split=False, text_frontend=text_frontend)
|
|
75
|
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
76
|
+
if len(i) < 0.5 * len(prompt_text):
|
|
77
|
+
logging.warning('synthesis text {} too short than prompt text {}, this may lead to bad performance'.format(i, prompt_text))
|
|
78
|
+
model_input = self.frontend.frontend_zero_shot(i, prompt_text, prompt_speech_16k, self.sample_rate)
|
|
66
79
|
start_time = time.time()
|
|
67
80
|
logging.info('synthesis text {}'.format(i))
|
|
68
|
-
for model_output in self.model.
|
|
69
|
-
speech_len = model_output['tts_speech'].shape[1] /
|
|
81
|
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
82
|
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
70
83
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
71
84
|
yield model_output
|
|
72
85
|
start_time = time.time()
|
|
73
86
|
|
|
74
|
-
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False):
|
|
75
|
-
if self.frontend.instruct is True:
|
|
87
|
+
def inference_cross_lingual(self, tts_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
88
|
+
if self.frontend.instruct is True and isinstance(self.model, CosyVoiceModel):
|
|
76
89
|
raise ValueError('{} do not support cross_lingual inference'.format(self.model_dir))
|
|
77
|
-
for i in self.frontend.text_normalize(tts_text, split=True):
|
|
78
|
-
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k)
|
|
90
|
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
91
|
+
model_input = self.frontend.frontend_cross_lingual(i, prompt_speech_16k, self.sample_rate)
|
|
79
92
|
start_time = time.time()
|
|
80
93
|
logging.info('synthesis text {}'.format(i))
|
|
81
|
-
for model_output in self.model.
|
|
82
|
-
speech_len = model_output['tts_speech'].shape[1] /
|
|
94
|
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
95
|
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
83
96
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
84
97
|
yield model_output
|
|
85
98
|
start_time = time.time()
|
|
86
99
|
|
|
87
|
-
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False):
|
|
100
|
+
def inference_instruct(self, tts_text, spk_id, instruct_text, stream=False, speed=1.0, text_frontend=True):
|
|
101
|
+
assert isinstance(self.model, CosyVoiceModel)
|
|
88
102
|
if self.frontend.instruct is False:
|
|
89
103
|
raise ValueError('{} do not support instruct inference'.format(self.model_dir))
|
|
90
|
-
instruct_text = self.frontend.text_normalize(instruct_text, split=False)
|
|
91
|
-
for i in self.frontend.text_normalize(tts_text, split=True):
|
|
104
|
+
instruct_text = self.frontend.text_normalize(instruct_text, split=False, text_frontend=text_frontend)
|
|
105
|
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
92
106
|
model_input = self.frontend.frontend_instruct(i, spk_id, instruct_text)
|
|
93
107
|
start_time = time.time()
|
|
94
108
|
logging.info('synthesis text {}'.format(i))
|
|
95
|
-
for model_output in self.model.
|
|
96
|
-
speech_len = model_output['tts_speech'].shape[1] /
|
|
109
|
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
110
|
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
111
|
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
112
|
+
yield model_output
|
|
113
|
+
start_time = time.time()
|
|
114
|
+
|
|
115
|
+
def inference_instruct2(self, tts_text, instruct_text, prompt_speech_16k, stream=False, speed=1.0, text_frontend=True):
|
|
116
|
+
assert isinstance(self.model, CosyVoice2Model)
|
|
117
|
+
for i in tqdm(self.frontend.text_normalize(tts_text, split=True, text_frontend=text_frontend)):
|
|
118
|
+
model_input = self.frontend.frontend_instruct2(i, instruct_text, prompt_speech_16k, self.sample_rate)
|
|
119
|
+
start_time = time.time()
|
|
120
|
+
logging.info('synthesis text {}'.format(i))
|
|
121
|
+
for model_output in self.model.tts(**model_input, stream=stream, speed=speed):
|
|
122
|
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
97
123
|
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
98
124
|
yield model_output
|
|
99
125
|
start_time = time.time()
|
|
126
|
+
|
|
127
|
+
def inference_vc(self, source_speech_16k, prompt_speech_16k, stream=False, speed=1.0):
|
|
128
|
+
model_input = self.frontend.frontend_vc(source_speech_16k, prompt_speech_16k, self.sample_rate)
|
|
129
|
+
start_time = time.time()
|
|
130
|
+
for model_output in self.model.vc(**model_input, stream=stream, speed=speed):
|
|
131
|
+
speech_len = model_output['tts_speech'].shape[1] / self.sample_rate
|
|
132
|
+
logging.info('yield speech len {}, rtf {}'.format(speech_len, (time.time() - start_time) / speech_len))
|
|
133
|
+
yield model_output
|
|
134
|
+
start_time = time.time()
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
class CosyVoice2(CosyVoice):
|
|
138
|
+
|
|
139
|
+
def __init__(self, model_dir, load_jit=False, load_onnx=False, load_trt=False):
|
|
140
|
+
instruct = True if '-Instruct' in model_dir else False
|
|
141
|
+
self.model_dir = model_dir
|
|
142
|
+
if not os.path.exists(model_dir):
|
|
143
|
+
model_dir = snapshot_download(model_dir)
|
|
144
|
+
with open('{}/cosyvoice.yaml'.format(model_dir), 'r') as f:
|
|
145
|
+
configs = load_hyperpyyaml(f, overrides={'qwen_pretrain_path': os.path.join(model_dir, 'CosyVoice-BlankEN')})
|
|
146
|
+
self.frontend = CosyVoiceFrontEnd(configs['get_tokenizer'],
|
|
147
|
+
configs['feat_extractor'],
|
|
148
|
+
'{}/campplus.onnx'.format(model_dir),
|
|
149
|
+
'{}/speech_tokenizer_v2.onnx'.format(model_dir),
|
|
150
|
+
'{}/spk2info.pt'.format(model_dir),
|
|
151
|
+
instruct,
|
|
152
|
+
configs['allowed_special'])
|
|
153
|
+
self.sample_rate = configs['sample_rate']
|
|
154
|
+
if torch.cuda.is_available() is False and load_jit is True:
|
|
155
|
+
load_jit = False
|
|
156
|
+
logging.warning('cpu do not support jit, force set to False')
|
|
157
|
+
self.model = CosyVoice2Model(configs['llm'], configs['flow'], configs['hift'])
|
|
158
|
+
self.model.load('{}/llm.pt'.format(model_dir),
|
|
159
|
+
'{}/flow.pt'.format(model_dir),
|
|
160
|
+
'{}/hift.pt'.format(model_dir))
|
|
161
|
+
if load_jit:
|
|
162
|
+
self.model.load_jit('{}/flow.encoder.fp32.zip'.format(model_dir))
|
|
163
|
+
if load_trt is True and load_onnx is True:
|
|
164
|
+
load_onnx = False
|
|
165
|
+
logging.warning('can not set both load_trt and load_onnx to True, force set load_onnx to False')
|
|
166
|
+
if load_onnx:
|
|
167
|
+
self.model.load_onnx('{}/flow.decoder.estimator.fp32.onnx'.format(model_dir))
|
|
168
|
+
if load_trt:
|
|
169
|
+
self.model.load_trt('{}/flow.decoder.estimator.fp16.Volta.plan'.format(model_dir))
|
|
170
|
+
del configs
|
|
@@ -12,6 +12,7 @@
|
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
from functools import partial
|
|
15
|
+
import json
|
|
15
16
|
import onnxruntime
|
|
16
17
|
import torch
|
|
17
18
|
import numpy as np
|
|
@@ -50,9 +51,13 @@ class CosyVoiceFrontEnd:
|
|
|
50
51
|
option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
51
52
|
option.intra_op_num_threads = 1
|
|
52
53
|
self.campplus_session = onnxruntime.InferenceSession(campplus_model, sess_options=option, providers=["CPUExecutionProvider"])
|
|
53
|
-
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
|
|
54
|
+
self.speech_tokenizer_session = onnxruntime.InferenceSession(speech_tokenizer_model, sess_options=option,
|
|
55
|
+
providers=["CUDAExecutionProvider" if torch.cuda.is_available() else
|
|
56
|
+
"CPUExecutionProvider"])
|
|
54
57
|
if os.path.exists(spk2info):
|
|
55
58
|
self.spk2info = torch.load(spk2info, map_location=self.device)
|
|
59
|
+
else:
|
|
60
|
+
self.spk2info = {}
|
|
56
61
|
self.instruct = instruct
|
|
57
62
|
self.allowed_special = allowed_special
|
|
58
63
|
self.inflect_parser = inflect.engine()
|
|
@@ -60,10 +65,9 @@ class CosyVoiceFrontEnd:
|
|
|
60
65
|
if self.use_ttsfrd:
|
|
61
66
|
self.frd = ttsfrd.TtsFrontendEngine()
|
|
62
67
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
|
|
63
|
-
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True,
|
|
64
|
-
|
|
65
|
-
self.frd.
|
|
66
|
-
self.frd.set_breakmodel_index(1)
|
|
68
|
+
assert self.frd.initialize('{}/../../pretrained_models/CosyVoice-ttsfrd/resource'.format(ROOT_DIR)) is True, \
|
|
69
|
+
'failed to initialize ttsfrd resource'
|
|
70
|
+
self.frd.set_lang_type('pinyinvg')
|
|
67
71
|
else:
|
|
68
72
|
self.zh_tn_model = ZhNormalizer(remove_erhua=False, full_to_half=False)
|
|
69
73
|
self.en_tn_model = EnNormalizer()
|
|
@@ -75,9 +79,13 @@ class CosyVoiceFrontEnd:
|
|
|
75
79
|
return text_token, text_token_len
|
|
76
80
|
|
|
77
81
|
def _extract_speech_token(self, speech):
|
|
82
|
+
assert speech.shape[1] / 16000 <= 30, 'do not support extract speech token for audio longer than 30s'
|
|
78
83
|
feat = whisper.log_mel_spectrogram(speech, n_mels=128)
|
|
79
|
-
speech_token = self.speech_tokenizer_session.run(None,
|
|
80
|
-
|
|
84
|
+
speech_token = self.speech_tokenizer_session.run(None,
|
|
85
|
+
{self.speech_tokenizer_session.get_inputs()[0].name:
|
|
86
|
+
feat.detach().cpu().numpy(),
|
|
87
|
+
self.speech_tokenizer_session.get_inputs()[1].name:
|
|
88
|
+
np.array([feat.shape[2]], dtype=np.int32)})[0].flatten().tolist()
|
|
81
89
|
speech_token = torch.tensor([speech_token], dtype=torch.int32).to(self.device)
|
|
82
90
|
speech_token_len = torch.tensor([speech_token.shape[1]], dtype=torch.int32).to(self.device)
|
|
83
91
|
return speech_token, speech_token_len
|
|
@@ -88,7 +96,8 @@ class CosyVoiceFrontEnd:
|
|
|
88
96
|
dither=0,
|
|
89
97
|
sample_frequency=16000)
|
|
90
98
|
feat = feat - feat.mean(dim=0, keepdim=True)
|
|
91
|
-
embedding = self.campplus_session.run(None,
|
|
99
|
+
embedding = self.campplus_session.run(None,
|
|
100
|
+
{self.campplus_session.get_inputs()[0].name: feat.unsqueeze(dim=0).cpu().numpy()})[0].flatten().tolist()
|
|
92
101
|
embedding = torch.tensor([embedding]).to(self.device)
|
|
93
102
|
return embedding
|
|
94
103
|
|
|
@@ -98,32 +107,34 @@ class CosyVoiceFrontEnd:
|
|
|
98
107
|
speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32).to(self.device)
|
|
99
108
|
return speech_feat, speech_feat_len
|
|
100
109
|
|
|
101
|
-
def text_normalize(self, text, split=True):
|
|
110
|
+
def text_normalize(self, text, split=True, text_frontend=True):
|
|
111
|
+
if text_frontend is False:
|
|
112
|
+
return [text] if split is True else text
|
|
102
113
|
text = text.strip()
|
|
103
114
|
if contains_chinese(text):
|
|
104
115
|
if self.use_ttsfrd:
|
|
105
|
-
|
|
116
|
+
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
|
117
|
+
text = ''.join(texts)
|
|
106
118
|
else:
|
|
107
119
|
text = self.zh_tn_model.normalize(text)
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
comma_split=False)]
|
|
120
|
+
text = text.replace("\n", "")
|
|
121
|
+
text = replace_blank(text)
|
|
122
|
+
text = replace_corner_mark(text)
|
|
123
|
+
text = text.replace(".", "。")
|
|
124
|
+
text = text.replace(" - ", ",")
|
|
125
|
+
text = remove_bracket(text)
|
|
126
|
+
text = re.sub(r'[,,、]+$', '。', text)
|
|
127
|
+
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "zh", token_max_n=80,
|
|
128
|
+
token_min_n=60, merge_len=20, comma_split=False))
|
|
118
129
|
else:
|
|
119
130
|
if self.use_ttsfrd:
|
|
120
|
-
|
|
131
|
+
texts = [i["text"] for i in json.loads(self.frd.do_voicegen_frd(text))["sentences"]]
|
|
132
|
+
text = ''.join(texts)
|
|
121
133
|
else:
|
|
122
134
|
text = self.en_tn_model.normalize(text)
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
comma_split=False)]
|
|
135
|
+
text = spell_out_number(text, self.inflect_parser)
|
|
136
|
+
texts = list(split_paragraph(text, partial(self.tokenizer.encode, allowed_special=self.allowed_special), "en", token_max_n=80,
|
|
137
|
+
token_min_n=60, merge_len=20, comma_split=False))
|
|
127
138
|
if split is False:
|
|
128
139
|
return text
|
|
129
140
|
return texts
|
|
@@ -134,12 +145,17 @@ class CosyVoiceFrontEnd:
|
|
|
134
145
|
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len, 'llm_embedding': embedding, 'flow_embedding': embedding}
|
|
135
146
|
return model_input
|
|
136
147
|
|
|
137
|
-
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k):
|
|
148
|
+
def frontend_zero_shot(self, tts_text, prompt_text, prompt_speech_16k, resample_rate):
|
|
138
149
|
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
|
139
150
|
prompt_text_token, prompt_text_token_len = self._extract_text_token(prompt_text)
|
|
140
|
-
|
|
141
|
-
speech_feat, speech_feat_len = self._extract_speech_feat(
|
|
151
|
+
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
|
152
|
+
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
|
142
153
|
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
|
154
|
+
if resample_rate == 24000:
|
|
155
|
+
# cosyvoice2, force speech_feat % speech_token = 2
|
|
156
|
+
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
|
157
|
+
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
|
158
|
+
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
|
143
159
|
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
|
144
160
|
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
|
145
161
|
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
|
@@ -149,8 +165,8 @@ class CosyVoiceFrontEnd:
|
|
|
149
165
|
'llm_embedding': embedding, 'flow_embedding': embedding}
|
|
150
166
|
return model_input
|
|
151
167
|
|
|
152
|
-
def frontend_cross_lingual(self, tts_text, prompt_speech_16k):
|
|
153
|
-
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k)
|
|
168
|
+
def frontend_cross_lingual(self, tts_text, prompt_speech_16k, resample_rate):
|
|
169
|
+
model_input = self.frontend_zero_shot(tts_text, '', prompt_speech_16k, resample_rate)
|
|
154
170
|
# in cross lingual mode, we remove prompt in llm
|
|
155
171
|
del model_input['prompt_text']
|
|
156
172
|
del model_input['prompt_text_len']
|
|
@@ -166,3 +182,34 @@ class CosyVoiceFrontEnd:
|
|
|
166
182
|
model_input['prompt_text'] = instruct_text_token
|
|
167
183
|
model_input['prompt_text_len'] = instruct_text_token_len
|
|
168
184
|
return model_input
|
|
185
|
+
|
|
186
|
+
def frontend_instruct2(self, tts_text, instruct_text, prompt_speech_16k, resample_rate):
|
|
187
|
+
tts_text_token, tts_text_token_len = self._extract_text_token(tts_text)
|
|
188
|
+
prompt_text_token, prompt_text_token_len = self._extract_text_token(instruct_text + '<|endofprompt|>')
|
|
189
|
+
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
|
190
|
+
speech_feat, speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
|
191
|
+
speech_token, speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
|
192
|
+
if resample_rate == 24000:
|
|
193
|
+
# cosyvoice2, force speech_feat % speech_token = 2
|
|
194
|
+
token_len = min(int(speech_feat.shape[1] / 2), speech_token.shape[1])
|
|
195
|
+
speech_feat, speech_feat_len[:] = speech_feat[:, :2 * token_len], 2 * token_len
|
|
196
|
+
speech_token, speech_token_len[:] = speech_token[:, :token_len], token_len
|
|
197
|
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
|
198
|
+
model_input = {'text': tts_text_token, 'text_len': tts_text_token_len,
|
|
199
|
+
'prompt_text': prompt_text_token, 'prompt_text_len': prompt_text_token_len,
|
|
200
|
+
'flow_prompt_speech_token': speech_token, 'flow_prompt_speech_token_len': speech_token_len,
|
|
201
|
+
'prompt_speech_feat': speech_feat, 'prompt_speech_feat_len': speech_feat_len,
|
|
202
|
+
'llm_embedding': embedding, 'flow_embedding': embedding}
|
|
203
|
+
return model_input
|
|
204
|
+
|
|
205
|
+
def frontend_vc(self, source_speech_16k, prompt_speech_16k, resample_rate):
|
|
206
|
+
prompt_speech_token, prompt_speech_token_len = self._extract_speech_token(prompt_speech_16k)
|
|
207
|
+
prompt_speech_resample = torchaudio.transforms.Resample(orig_freq=16000, new_freq=resample_rate)(prompt_speech_16k)
|
|
208
|
+
prompt_speech_feat, prompt_speech_feat_len = self._extract_speech_feat(prompt_speech_resample)
|
|
209
|
+
embedding = self._extract_spk_embedding(prompt_speech_16k)
|
|
210
|
+
source_speech_token, source_speech_token_len = self._extract_speech_token(source_speech_16k)
|
|
211
|
+
model_input = {'source_speech_token': source_speech_token, 'source_speech_token_len': source_speech_token_len,
|
|
212
|
+
'flow_prompt_speech_token': prompt_speech_token, 'flow_prompt_speech_token_len': prompt_speech_token_len,
|
|
213
|
+
'prompt_speech_feat': prompt_speech_feat, 'prompt_speech_feat_len': prompt_speech_feat_len,
|
|
214
|
+
'flow_embedding': embedding}
|
|
215
|
+
return model_input
|