xinference 1.0.1__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +2 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +77 -71
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +79 -19
- xinference/core/supervisor.py +172 -10
- xinference/core/utils.py +12 -8
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/core.py +16 -0
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +36 -111
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +99 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/embedding/core.py +203 -142
- xinference/model/embedding/model_spec.json +7 -0
- xinference/model/embedding/model_spec_modelscope.json +8 -0
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +45 -13
- xinference/model/llm/__init__.py +4 -2
- xinference/model/llm/llm_family.json +536 -53
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +454 -20
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +248 -52
- xinference/model/llm/sglang/core.py +1 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +2 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +36 -4
- xinference/model/llm/vllm/core.py +53 -10
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +11 -28
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +15 -0
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/METADATA +68 -32
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/RECORD +316 -122
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/tools/api.py +0 -943
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
- xinference/thirdparty/fish_speech/tools/webui.py +0 -548
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/tools → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/WHEEL +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,285 @@
|
|
|
1
|
+
"""
|
|
2
|
+
ein notation:
|
|
3
|
+
b - batch
|
|
4
|
+
n - sequence
|
|
5
|
+
nt - text sequence
|
|
6
|
+
nw - raw wave length
|
|
7
|
+
d - dimension
|
|
8
|
+
"""
|
|
9
|
+
|
|
10
|
+
from __future__ import annotations
|
|
11
|
+
|
|
12
|
+
from random import random
|
|
13
|
+
from typing import Callable
|
|
14
|
+
|
|
15
|
+
import torch
|
|
16
|
+
import torch.nn.functional as F
|
|
17
|
+
from torch import nn
|
|
18
|
+
from torch.nn.utils.rnn import pad_sequence
|
|
19
|
+
from torchdiffeq import odeint
|
|
20
|
+
|
|
21
|
+
from f5_tts.model.modules import MelSpec
|
|
22
|
+
from f5_tts.model.utils import (
|
|
23
|
+
default,
|
|
24
|
+
exists,
|
|
25
|
+
lens_to_mask,
|
|
26
|
+
list_str_to_idx,
|
|
27
|
+
list_str_to_tensor,
|
|
28
|
+
mask_from_frac_lengths,
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class CFM(nn.Module):
|
|
33
|
+
def __init__(
|
|
34
|
+
self,
|
|
35
|
+
transformer: nn.Module,
|
|
36
|
+
sigma=0.0,
|
|
37
|
+
odeint_kwargs: dict = dict(
|
|
38
|
+
# atol = 1e-5,
|
|
39
|
+
# rtol = 1e-5,
|
|
40
|
+
method="euler" # 'midpoint'
|
|
41
|
+
),
|
|
42
|
+
audio_drop_prob=0.3,
|
|
43
|
+
cond_drop_prob=0.2,
|
|
44
|
+
num_channels=None,
|
|
45
|
+
mel_spec_module: nn.Module | None = None,
|
|
46
|
+
mel_spec_kwargs: dict = dict(),
|
|
47
|
+
frac_lengths_mask: tuple[float, float] = (0.7, 1.0),
|
|
48
|
+
vocab_char_map: dict[str:int] | None = None,
|
|
49
|
+
):
|
|
50
|
+
super().__init__()
|
|
51
|
+
|
|
52
|
+
self.frac_lengths_mask = frac_lengths_mask
|
|
53
|
+
|
|
54
|
+
# mel spec
|
|
55
|
+
self.mel_spec = default(mel_spec_module, MelSpec(**mel_spec_kwargs))
|
|
56
|
+
num_channels = default(num_channels, self.mel_spec.n_mel_channels)
|
|
57
|
+
self.num_channels = num_channels
|
|
58
|
+
|
|
59
|
+
# classifier-free guidance
|
|
60
|
+
self.audio_drop_prob = audio_drop_prob
|
|
61
|
+
self.cond_drop_prob = cond_drop_prob
|
|
62
|
+
|
|
63
|
+
# transformer
|
|
64
|
+
self.transformer = transformer
|
|
65
|
+
dim = transformer.dim
|
|
66
|
+
self.dim = dim
|
|
67
|
+
|
|
68
|
+
# conditional flow related
|
|
69
|
+
self.sigma = sigma
|
|
70
|
+
|
|
71
|
+
# sampling related
|
|
72
|
+
self.odeint_kwargs = odeint_kwargs
|
|
73
|
+
|
|
74
|
+
# vocab map for tokenization
|
|
75
|
+
self.vocab_char_map = vocab_char_map
|
|
76
|
+
|
|
77
|
+
@property
|
|
78
|
+
def device(self):
|
|
79
|
+
return next(self.parameters()).device
|
|
80
|
+
|
|
81
|
+
@torch.no_grad()
|
|
82
|
+
def sample(
|
|
83
|
+
self,
|
|
84
|
+
cond: float["b n d"] | float["b nw"], # noqa: F722
|
|
85
|
+
text: int["b nt"] | list[str], # noqa: F722
|
|
86
|
+
duration: int | int["b"], # noqa: F821
|
|
87
|
+
*,
|
|
88
|
+
lens: int["b"] | None = None, # noqa: F821
|
|
89
|
+
steps=32,
|
|
90
|
+
cfg_strength=1.0,
|
|
91
|
+
sway_sampling_coef=None,
|
|
92
|
+
seed: int | None = None,
|
|
93
|
+
max_duration=4096,
|
|
94
|
+
vocoder: Callable[[float["b d n"]], float["b nw"]] | None = None, # noqa: F722
|
|
95
|
+
no_ref_audio=False,
|
|
96
|
+
duplicate_test=False,
|
|
97
|
+
t_inter=0.1,
|
|
98
|
+
edit_mask=None,
|
|
99
|
+
):
|
|
100
|
+
self.eval()
|
|
101
|
+
# raw wave
|
|
102
|
+
|
|
103
|
+
if cond.ndim == 2:
|
|
104
|
+
cond = self.mel_spec(cond)
|
|
105
|
+
cond = cond.permute(0, 2, 1)
|
|
106
|
+
assert cond.shape[-1] == self.num_channels
|
|
107
|
+
|
|
108
|
+
cond = cond.to(next(self.parameters()).dtype)
|
|
109
|
+
|
|
110
|
+
batch, cond_seq_len, device = *cond.shape[:2], cond.device
|
|
111
|
+
if not exists(lens):
|
|
112
|
+
lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)
|
|
113
|
+
|
|
114
|
+
# text
|
|
115
|
+
|
|
116
|
+
if isinstance(text, list):
|
|
117
|
+
if exists(self.vocab_char_map):
|
|
118
|
+
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
|
119
|
+
else:
|
|
120
|
+
text = list_str_to_tensor(text).to(device)
|
|
121
|
+
assert text.shape[0] == batch
|
|
122
|
+
|
|
123
|
+
if exists(text):
|
|
124
|
+
text_lens = (text != -1).sum(dim=-1)
|
|
125
|
+
lens = torch.maximum(text_lens, lens) # make sure lengths are at least those of the text characters
|
|
126
|
+
|
|
127
|
+
# duration
|
|
128
|
+
|
|
129
|
+
cond_mask = lens_to_mask(lens)
|
|
130
|
+
if edit_mask is not None:
|
|
131
|
+
cond_mask = cond_mask & edit_mask
|
|
132
|
+
|
|
133
|
+
if isinstance(duration, int):
|
|
134
|
+
duration = torch.full((batch,), duration, device=device, dtype=torch.long)
|
|
135
|
+
|
|
136
|
+
duration = torch.maximum(lens + 1, duration) # just add one token so something is generated
|
|
137
|
+
duration = duration.clamp(max=max_duration)
|
|
138
|
+
max_duration = duration.amax()
|
|
139
|
+
|
|
140
|
+
# duplicate test corner for inner time step oberservation
|
|
141
|
+
if duplicate_test:
|
|
142
|
+
test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2 * cond_seq_len), value=0.0)
|
|
143
|
+
|
|
144
|
+
cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value=0.0)
|
|
145
|
+
cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value=False)
|
|
146
|
+
cond_mask = cond_mask.unsqueeze(-1)
|
|
147
|
+
step_cond = torch.where(
|
|
148
|
+
cond_mask, cond, torch.zeros_like(cond)
|
|
149
|
+
) # allow direct control (cut cond audio) with lens passed in
|
|
150
|
+
|
|
151
|
+
if batch > 1:
|
|
152
|
+
mask = lens_to_mask(duration)
|
|
153
|
+
else: # save memory and speed up, as single inference need no mask currently
|
|
154
|
+
mask = None
|
|
155
|
+
|
|
156
|
+
# test for no ref audio
|
|
157
|
+
if no_ref_audio:
|
|
158
|
+
cond = torch.zeros_like(cond)
|
|
159
|
+
|
|
160
|
+
# neural ode
|
|
161
|
+
|
|
162
|
+
def fn(t, x):
|
|
163
|
+
# at each step, conditioning is fixed
|
|
164
|
+
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
|
165
|
+
|
|
166
|
+
# predict flow
|
|
167
|
+
pred = self.transformer(
|
|
168
|
+
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False
|
|
169
|
+
)
|
|
170
|
+
if cfg_strength < 1e-5:
|
|
171
|
+
return pred
|
|
172
|
+
|
|
173
|
+
null_pred = self.transformer(
|
|
174
|
+
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True
|
|
175
|
+
)
|
|
176
|
+
return pred + (pred - null_pred) * cfg_strength
|
|
177
|
+
|
|
178
|
+
# noise input
|
|
179
|
+
# to make sure batch inference result is same with different batch size, and for sure single inference
|
|
180
|
+
# still some difference maybe due to convolutional layers
|
|
181
|
+
y0 = []
|
|
182
|
+
for dur in duration:
|
|
183
|
+
if exists(seed):
|
|
184
|
+
torch.manual_seed(seed)
|
|
185
|
+
y0.append(torch.randn(dur, self.num_channels, device=self.device, dtype=step_cond.dtype))
|
|
186
|
+
y0 = pad_sequence(y0, padding_value=0, batch_first=True)
|
|
187
|
+
|
|
188
|
+
t_start = 0
|
|
189
|
+
|
|
190
|
+
# duplicate test corner for inner time step oberservation
|
|
191
|
+
if duplicate_test:
|
|
192
|
+
t_start = t_inter
|
|
193
|
+
y0 = (1 - t_start) * y0 + t_start * test_cond
|
|
194
|
+
steps = int(steps * (1 - t_start))
|
|
195
|
+
|
|
196
|
+
t = torch.linspace(t_start, 1, steps + 1, device=self.device, dtype=step_cond.dtype)
|
|
197
|
+
if sway_sampling_coef is not None:
|
|
198
|
+
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
|
199
|
+
|
|
200
|
+
trajectory = odeint(fn, y0, t, **self.odeint_kwargs)
|
|
201
|
+
|
|
202
|
+
sampled = trajectory[-1]
|
|
203
|
+
out = sampled
|
|
204
|
+
out = torch.where(cond_mask, cond, out)
|
|
205
|
+
|
|
206
|
+
if exists(vocoder):
|
|
207
|
+
out = out.permute(0, 2, 1)
|
|
208
|
+
out = vocoder(out)
|
|
209
|
+
|
|
210
|
+
return out, trajectory
|
|
211
|
+
|
|
212
|
+
def forward(
|
|
213
|
+
self,
|
|
214
|
+
inp: float["b n d"] | float["b nw"], # mel or raw wave # noqa: F722
|
|
215
|
+
text: int["b nt"] | list[str], # noqa: F722
|
|
216
|
+
*,
|
|
217
|
+
lens: int["b"] | None = None, # noqa: F821
|
|
218
|
+
noise_scheduler: str | None = None,
|
|
219
|
+
):
|
|
220
|
+
# handle raw wave
|
|
221
|
+
if inp.ndim == 2:
|
|
222
|
+
inp = self.mel_spec(inp)
|
|
223
|
+
inp = inp.permute(0, 2, 1)
|
|
224
|
+
assert inp.shape[-1] == self.num_channels
|
|
225
|
+
|
|
226
|
+
batch, seq_len, dtype, device, _σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma
|
|
227
|
+
|
|
228
|
+
# handle text as string
|
|
229
|
+
if isinstance(text, list):
|
|
230
|
+
if exists(self.vocab_char_map):
|
|
231
|
+
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
|
232
|
+
else:
|
|
233
|
+
text = list_str_to_tensor(text).to(device)
|
|
234
|
+
assert text.shape[0] == batch
|
|
235
|
+
|
|
236
|
+
# lens and mask
|
|
237
|
+
if not exists(lens):
|
|
238
|
+
lens = torch.full((batch,), seq_len, device=device)
|
|
239
|
+
|
|
240
|
+
mask = lens_to_mask(lens, length=seq_len) # useless here, as collate_fn will pad to max length in batch
|
|
241
|
+
|
|
242
|
+
# get a random span to mask out for training conditionally
|
|
243
|
+
frac_lengths = torch.zeros((batch,), device=self.device).float().uniform_(*self.frac_lengths_mask)
|
|
244
|
+
rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)
|
|
245
|
+
|
|
246
|
+
if exists(mask):
|
|
247
|
+
rand_span_mask &= mask
|
|
248
|
+
|
|
249
|
+
# mel is x1
|
|
250
|
+
x1 = inp
|
|
251
|
+
|
|
252
|
+
# x0 is gaussian noise
|
|
253
|
+
x0 = torch.randn_like(x1)
|
|
254
|
+
|
|
255
|
+
# time step
|
|
256
|
+
time = torch.rand((batch,), dtype=dtype, device=self.device)
|
|
257
|
+
# TODO. noise_scheduler
|
|
258
|
+
|
|
259
|
+
# sample xt (φ_t(x) in the paper)
|
|
260
|
+
t = time.unsqueeze(-1).unsqueeze(-1)
|
|
261
|
+
φ = (1 - t) * x0 + t * x1
|
|
262
|
+
flow = x1 - x0
|
|
263
|
+
|
|
264
|
+
# only predict what is within the random mask span for infilling
|
|
265
|
+
cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)
|
|
266
|
+
|
|
267
|
+
# transformer and cfg training with a drop rate
|
|
268
|
+
drop_audio_cond = random() < self.audio_drop_prob # p_drop in voicebox paper
|
|
269
|
+
if random() < self.cond_drop_prob: # p_uncond in voicebox paper
|
|
270
|
+
drop_audio_cond = True
|
|
271
|
+
drop_text = True
|
|
272
|
+
else:
|
|
273
|
+
drop_text = False
|
|
274
|
+
|
|
275
|
+
# if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here
|
|
276
|
+
# adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
|
|
277
|
+
pred = self.transformer(
|
|
278
|
+
x=φ, cond=cond, text=text, time=time, drop_audio_cond=drop_audio_cond, drop_text=drop_text
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
# flow matching loss
|
|
282
|
+
loss = F.mse_loss(pred, flow, reduction="none")
|
|
283
|
+
loss = loss[rand_span_mask]
|
|
284
|
+
|
|
285
|
+
return loss.mean(), cond, pred
|
|
@@ -0,0 +1,319 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import random
|
|
3
|
+
from importlib.resources import files
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
import torch.nn.functional as F
|
|
7
|
+
import torchaudio
|
|
8
|
+
from datasets import Dataset as Dataset_
|
|
9
|
+
from datasets import load_from_disk
|
|
10
|
+
from torch import nn
|
|
11
|
+
from torch.utils.data import Dataset, Sampler
|
|
12
|
+
from tqdm import tqdm
|
|
13
|
+
|
|
14
|
+
from f5_tts.model.modules import MelSpec
|
|
15
|
+
from f5_tts.model.utils import default
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
class HFDataset(Dataset):
|
|
19
|
+
def __init__(
|
|
20
|
+
self,
|
|
21
|
+
hf_dataset: Dataset,
|
|
22
|
+
target_sample_rate=24_000,
|
|
23
|
+
n_mel_channels=100,
|
|
24
|
+
hop_length=256,
|
|
25
|
+
n_fft=1024,
|
|
26
|
+
win_length=1024,
|
|
27
|
+
mel_spec_type="vocos",
|
|
28
|
+
):
|
|
29
|
+
self.data = hf_dataset
|
|
30
|
+
self.target_sample_rate = target_sample_rate
|
|
31
|
+
self.hop_length = hop_length
|
|
32
|
+
|
|
33
|
+
self.mel_spectrogram = MelSpec(
|
|
34
|
+
n_fft=n_fft,
|
|
35
|
+
hop_length=hop_length,
|
|
36
|
+
win_length=win_length,
|
|
37
|
+
n_mel_channels=n_mel_channels,
|
|
38
|
+
target_sample_rate=target_sample_rate,
|
|
39
|
+
mel_spec_type=mel_spec_type,
|
|
40
|
+
)
|
|
41
|
+
|
|
42
|
+
def get_frame_len(self, index):
|
|
43
|
+
row = self.data[index]
|
|
44
|
+
audio = row["audio"]["array"]
|
|
45
|
+
sample_rate = row["audio"]["sampling_rate"]
|
|
46
|
+
return audio.shape[-1] / sample_rate * self.target_sample_rate / self.hop_length
|
|
47
|
+
|
|
48
|
+
def __len__(self):
|
|
49
|
+
return len(self.data)
|
|
50
|
+
|
|
51
|
+
def __getitem__(self, index):
|
|
52
|
+
row = self.data[index]
|
|
53
|
+
audio = row["audio"]["array"]
|
|
54
|
+
|
|
55
|
+
# logger.info(f"Audio shape: {audio.shape}")
|
|
56
|
+
|
|
57
|
+
sample_rate = row["audio"]["sampling_rate"]
|
|
58
|
+
duration = audio.shape[-1] / sample_rate
|
|
59
|
+
|
|
60
|
+
if duration > 30 or duration < 0.3:
|
|
61
|
+
return self.__getitem__((index + 1) % len(self.data))
|
|
62
|
+
|
|
63
|
+
audio_tensor = torch.from_numpy(audio).float()
|
|
64
|
+
|
|
65
|
+
if sample_rate != self.target_sample_rate:
|
|
66
|
+
resampler = torchaudio.transforms.Resample(sample_rate, self.target_sample_rate)
|
|
67
|
+
audio_tensor = resampler(audio_tensor)
|
|
68
|
+
|
|
69
|
+
audio_tensor = audio_tensor.unsqueeze(0) # 't -> 1 t')
|
|
70
|
+
|
|
71
|
+
mel_spec = self.mel_spectrogram(audio_tensor)
|
|
72
|
+
|
|
73
|
+
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t'
|
|
74
|
+
|
|
75
|
+
text = row["text"]
|
|
76
|
+
|
|
77
|
+
return dict(
|
|
78
|
+
mel_spec=mel_spec,
|
|
79
|
+
text=text,
|
|
80
|
+
)
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
class CustomDataset(Dataset):
|
|
84
|
+
def __init__(
|
|
85
|
+
self,
|
|
86
|
+
custom_dataset: Dataset,
|
|
87
|
+
durations=None,
|
|
88
|
+
target_sample_rate=24_000,
|
|
89
|
+
hop_length=256,
|
|
90
|
+
n_mel_channels=100,
|
|
91
|
+
n_fft=1024,
|
|
92
|
+
win_length=1024,
|
|
93
|
+
mel_spec_type="vocos",
|
|
94
|
+
preprocessed_mel=False,
|
|
95
|
+
mel_spec_module: nn.Module | None = None,
|
|
96
|
+
):
|
|
97
|
+
self.data = custom_dataset
|
|
98
|
+
self.durations = durations
|
|
99
|
+
self.target_sample_rate = target_sample_rate
|
|
100
|
+
self.hop_length = hop_length
|
|
101
|
+
self.n_fft = n_fft
|
|
102
|
+
self.win_length = win_length
|
|
103
|
+
self.mel_spec_type = mel_spec_type
|
|
104
|
+
self.preprocessed_mel = preprocessed_mel
|
|
105
|
+
|
|
106
|
+
if not preprocessed_mel:
|
|
107
|
+
self.mel_spectrogram = default(
|
|
108
|
+
mel_spec_module,
|
|
109
|
+
MelSpec(
|
|
110
|
+
n_fft=n_fft,
|
|
111
|
+
hop_length=hop_length,
|
|
112
|
+
win_length=win_length,
|
|
113
|
+
n_mel_channels=n_mel_channels,
|
|
114
|
+
target_sample_rate=target_sample_rate,
|
|
115
|
+
mel_spec_type=mel_spec_type,
|
|
116
|
+
),
|
|
117
|
+
)
|
|
118
|
+
|
|
119
|
+
def get_frame_len(self, index):
|
|
120
|
+
if (
|
|
121
|
+
self.durations is not None
|
|
122
|
+
): # Please make sure the separately provided durations are correct, otherwise 99.99% OOM
|
|
123
|
+
return self.durations[index] * self.target_sample_rate / self.hop_length
|
|
124
|
+
return self.data[index]["duration"] * self.target_sample_rate / self.hop_length
|
|
125
|
+
|
|
126
|
+
def __len__(self):
|
|
127
|
+
return len(self.data)
|
|
128
|
+
|
|
129
|
+
def __getitem__(self, index):
|
|
130
|
+
while True:
|
|
131
|
+
row = self.data[index]
|
|
132
|
+
audio_path = row["audio_path"]
|
|
133
|
+
text = row["text"]
|
|
134
|
+
duration = row["duration"]
|
|
135
|
+
|
|
136
|
+
# filter by given length
|
|
137
|
+
if 0.3 <= duration <= 30:
|
|
138
|
+
break # valid
|
|
139
|
+
|
|
140
|
+
index = (index + 1) % len(self.data)
|
|
141
|
+
|
|
142
|
+
if self.preprocessed_mel:
|
|
143
|
+
mel_spec = torch.tensor(row["mel_spec"])
|
|
144
|
+
else:
|
|
145
|
+
audio, source_sample_rate = torchaudio.load(audio_path)
|
|
146
|
+
|
|
147
|
+
# make sure mono input
|
|
148
|
+
if audio.shape[0] > 1:
|
|
149
|
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
|
150
|
+
|
|
151
|
+
# resample if necessary
|
|
152
|
+
if source_sample_rate != self.target_sample_rate:
|
|
153
|
+
resampler = torchaudio.transforms.Resample(source_sample_rate, self.target_sample_rate)
|
|
154
|
+
audio = resampler(audio)
|
|
155
|
+
|
|
156
|
+
# to mel spectrogram
|
|
157
|
+
mel_spec = self.mel_spectrogram(audio)
|
|
158
|
+
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t'
|
|
159
|
+
|
|
160
|
+
return {
|
|
161
|
+
"mel_spec": mel_spec,
|
|
162
|
+
"text": text,
|
|
163
|
+
}
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
# Dynamic Batch Sampler
|
|
167
|
+
class DynamicBatchSampler(Sampler[list[int]]):
|
|
168
|
+
"""Extension of Sampler that will do the following:
|
|
169
|
+
1. Change the batch size (essentially number of sequences)
|
|
170
|
+
in a batch to ensure that the total number of frames are less
|
|
171
|
+
than a certain threshold.
|
|
172
|
+
2. Make sure the padding efficiency in the batch is high.
|
|
173
|
+
"""
|
|
174
|
+
|
|
175
|
+
def __init__(
|
|
176
|
+
self, sampler: Sampler[int], frames_threshold: int, max_samples=0, random_seed=None, drop_last: bool = False
|
|
177
|
+
):
|
|
178
|
+
self.sampler = sampler
|
|
179
|
+
self.frames_threshold = frames_threshold
|
|
180
|
+
self.max_samples = max_samples
|
|
181
|
+
|
|
182
|
+
indices, batches = [], []
|
|
183
|
+
data_source = self.sampler.data_source
|
|
184
|
+
|
|
185
|
+
for idx in tqdm(
|
|
186
|
+
self.sampler, desc="Sorting with sampler... if slow, check whether dataset is provided with duration"
|
|
187
|
+
):
|
|
188
|
+
indices.append((idx, data_source.get_frame_len(idx)))
|
|
189
|
+
indices.sort(key=lambda elem: elem[1])
|
|
190
|
+
|
|
191
|
+
batch = []
|
|
192
|
+
batch_frames = 0
|
|
193
|
+
for idx, frame_len in tqdm(
|
|
194
|
+
indices, desc=f"Creating dynamic batches with {frames_threshold} audio frames per gpu"
|
|
195
|
+
):
|
|
196
|
+
if batch_frames + frame_len <= self.frames_threshold and (max_samples == 0 or len(batch) < max_samples):
|
|
197
|
+
batch.append(idx)
|
|
198
|
+
batch_frames += frame_len
|
|
199
|
+
else:
|
|
200
|
+
if len(batch) > 0:
|
|
201
|
+
batches.append(batch)
|
|
202
|
+
if frame_len <= self.frames_threshold:
|
|
203
|
+
batch = [idx]
|
|
204
|
+
batch_frames = frame_len
|
|
205
|
+
else:
|
|
206
|
+
batch = []
|
|
207
|
+
batch_frames = 0
|
|
208
|
+
|
|
209
|
+
if not drop_last and len(batch) > 0:
|
|
210
|
+
batches.append(batch)
|
|
211
|
+
|
|
212
|
+
del indices
|
|
213
|
+
|
|
214
|
+
# if want to have different batches between epochs, may just set a seed and log it in ckpt
|
|
215
|
+
# cuz during multi-gpu training, although the batch on per gpu not change between epochs, the formed general minibatch is different
|
|
216
|
+
# e.g. for epoch n, use (random_seed + n)
|
|
217
|
+
random.seed(random_seed)
|
|
218
|
+
random.shuffle(batches)
|
|
219
|
+
|
|
220
|
+
self.batches = batches
|
|
221
|
+
|
|
222
|
+
def __iter__(self):
|
|
223
|
+
return iter(self.batches)
|
|
224
|
+
|
|
225
|
+
def __len__(self):
|
|
226
|
+
return len(self.batches)
|
|
227
|
+
|
|
228
|
+
|
|
229
|
+
# Load dataset
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
def load_dataset(
|
|
233
|
+
dataset_name: str,
|
|
234
|
+
tokenizer: str = "pinyin",
|
|
235
|
+
dataset_type: str = "CustomDataset",
|
|
236
|
+
audio_type: str = "raw",
|
|
237
|
+
mel_spec_module: nn.Module | None = None,
|
|
238
|
+
mel_spec_kwargs: dict = dict(),
|
|
239
|
+
) -> CustomDataset | HFDataset:
|
|
240
|
+
"""
|
|
241
|
+
dataset_type - "CustomDataset" if you want to use tokenizer name and default data path to load for train_dataset
|
|
242
|
+
- "CustomDatasetPath" if you just want to pass the full path to a preprocessed dataset without relying on tokenizer
|
|
243
|
+
"""
|
|
244
|
+
|
|
245
|
+
print("Loading dataset ...")
|
|
246
|
+
|
|
247
|
+
if dataset_type == "CustomDataset":
|
|
248
|
+
rel_data_path = str(files("f5_tts").joinpath(f"../../data/{dataset_name}_{tokenizer}"))
|
|
249
|
+
if audio_type == "raw":
|
|
250
|
+
try:
|
|
251
|
+
train_dataset = load_from_disk(f"{rel_data_path}/raw")
|
|
252
|
+
except: # noqa: E722
|
|
253
|
+
train_dataset = Dataset_.from_file(f"{rel_data_path}/raw.arrow")
|
|
254
|
+
preprocessed_mel = False
|
|
255
|
+
elif audio_type == "mel":
|
|
256
|
+
train_dataset = Dataset_.from_file(f"{rel_data_path}/mel.arrow")
|
|
257
|
+
preprocessed_mel = True
|
|
258
|
+
with open(f"{rel_data_path}/duration.json", "r", encoding="utf-8") as f:
|
|
259
|
+
data_dict = json.load(f)
|
|
260
|
+
durations = data_dict["duration"]
|
|
261
|
+
train_dataset = CustomDataset(
|
|
262
|
+
train_dataset,
|
|
263
|
+
durations=durations,
|
|
264
|
+
preprocessed_mel=preprocessed_mel,
|
|
265
|
+
mel_spec_module=mel_spec_module,
|
|
266
|
+
**mel_spec_kwargs,
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
elif dataset_type == "CustomDatasetPath":
|
|
270
|
+
try:
|
|
271
|
+
train_dataset = load_from_disk(f"{dataset_name}/raw")
|
|
272
|
+
except: # noqa: E722
|
|
273
|
+
train_dataset = Dataset_.from_file(f"{dataset_name}/raw.arrow")
|
|
274
|
+
|
|
275
|
+
with open(f"{dataset_name}/duration.json", "r", encoding="utf-8") as f:
|
|
276
|
+
data_dict = json.load(f)
|
|
277
|
+
durations = data_dict["duration"]
|
|
278
|
+
train_dataset = CustomDataset(
|
|
279
|
+
train_dataset, durations=durations, preprocessed_mel=preprocessed_mel, **mel_spec_kwargs
|
|
280
|
+
)
|
|
281
|
+
|
|
282
|
+
elif dataset_type == "HFDataset":
|
|
283
|
+
print(
|
|
284
|
+
"Should manually modify the path of huggingface dataset to your need.\n"
|
|
285
|
+
+ "May also the corresponding script cuz different dataset may have different format."
|
|
286
|
+
)
|
|
287
|
+
pre, post = dataset_name.split("_")
|
|
288
|
+
train_dataset = HFDataset(
|
|
289
|
+
load_dataset(f"{pre}/{pre}", split=f"train.{post}", cache_dir=str(files("f5_tts").joinpath("../../data"))),
|
|
290
|
+
)
|
|
291
|
+
|
|
292
|
+
return train_dataset
|
|
293
|
+
|
|
294
|
+
|
|
295
|
+
# collation
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
def collate_fn(batch):
|
|
299
|
+
mel_specs = [item["mel_spec"].squeeze(0) for item in batch]
|
|
300
|
+
mel_lengths = torch.LongTensor([spec.shape[-1] for spec in mel_specs])
|
|
301
|
+
max_mel_length = mel_lengths.amax()
|
|
302
|
+
|
|
303
|
+
padded_mel_specs = []
|
|
304
|
+
for spec in mel_specs: # TODO. maybe records mask for attention here
|
|
305
|
+
padding = (0, max_mel_length - spec.size(-1))
|
|
306
|
+
padded_spec = F.pad(spec, padding, value=0)
|
|
307
|
+
padded_mel_specs.append(padded_spec)
|
|
308
|
+
|
|
309
|
+
mel_specs = torch.stack(padded_mel_specs)
|
|
310
|
+
|
|
311
|
+
text = [item["text"] for item in batch]
|
|
312
|
+
text_lengths = torch.LongTensor([len(item) for item in text])
|
|
313
|
+
|
|
314
|
+
return dict(
|
|
315
|
+
mel=mel_specs,
|
|
316
|
+
mel_lengths=mel_lengths,
|
|
317
|
+
text=text,
|
|
318
|
+
text_lengths=text_lengths,
|
|
319
|
+
)
|