xinference 1.0.1__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +2 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +77 -71
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +79 -19
- xinference/core/supervisor.py +172 -10
- xinference/core/utils.py +12 -8
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/core.py +16 -0
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +36 -111
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +99 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/embedding/core.py +203 -142
- xinference/model/embedding/model_spec.json +7 -0
- xinference/model/embedding/model_spec_modelscope.json +8 -0
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +45 -13
- xinference/model/llm/__init__.py +4 -2
- xinference/model/llm/llm_family.json +536 -53
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +454 -20
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +248 -52
- xinference/model/llm/sglang/core.py +1 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +2 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +36 -4
- xinference/model/llm/vllm/core.py +53 -10
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +11 -28
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +15 -0
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/METADATA +68 -32
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/RECORD +316 -122
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/tools/api.py +0 -943
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
- xinference/thirdparty/fish_speech/tools/webui.py +0 -548
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/tools → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/WHEEL +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,538 @@
|
|
|
1
|
+
# A unified script for inference process
|
|
2
|
+
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
|
|
3
|
+
import os
|
|
4
|
+
import sys
|
|
5
|
+
|
|
6
|
+
os.environ["PYTOCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility
|
|
7
|
+
sys.path.append(f"../../{os.path.dirname(os.path.abspath(__file__))}/third_party/BigVGAN/")
|
|
8
|
+
|
|
9
|
+
import hashlib
|
|
10
|
+
import re
|
|
11
|
+
import tempfile
|
|
12
|
+
from importlib.resources import files
|
|
13
|
+
|
|
14
|
+
# import matplotlib
|
|
15
|
+
|
|
16
|
+
# matplotlib.use("Agg")
|
|
17
|
+
#
|
|
18
|
+
# import matplotlib.pylab as plt
|
|
19
|
+
import numpy as np
|
|
20
|
+
import torch
|
|
21
|
+
import torchaudio
|
|
22
|
+
import tqdm
|
|
23
|
+
from huggingface_hub import snapshot_download, hf_hub_download
|
|
24
|
+
from pydub import AudioSegment, silence
|
|
25
|
+
from transformers import pipeline
|
|
26
|
+
from vocos import Vocos
|
|
27
|
+
|
|
28
|
+
from f5_tts.model import CFM
|
|
29
|
+
from f5_tts.model.utils import (
|
|
30
|
+
get_tokenizer,
|
|
31
|
+
convert_char_to_pinyin,
|
|
32
|
+
)
|
|
33
|
+
|
|
34
|
+
_ref_audio_cache = {}
|
|
35
|
+
|
|
36
|
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
|
37
|
+
|
|
38
|
+
# -----------------------------------------
|
|
39
|
+
|
|
40
|
+
target_sample_rate = 24000
|
|
41
|
+
n_mel_channels = 100
|
|
42
|
+
hop_length = 256
|
|
43
|
+
win_length = 1024
|
|
44
|
+
n_fft = 1024
|
|
45
|
+
mel_spec_type = "vocos"
|
|
46
|
+
target_rms = 0.1
|
|
47
|
+
cross_fade_duration = 0.15
|
|
48
|
+
ode_method = "euler"
|
|
49
|
+
nfe_step = 32 # 16, 32
|
|
50
|
+
cfg_strength = 2.0
|
|
51
|
+
sway_sampling_coef = -1.0
|
|
52
|
+
speed = 1.0
|
|
53
|
+
fix_duration = None
|
|
54
|
+
|
|
55
|
+
# -----------------------------------------
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
# chunk text into smaller pieces
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
def chunk_text(text, max_chars=135):
|
|
62
|
+
"""
|
|
63
|
+
Splits the input text into chunks, each with a maximum number of characters.
|
|
64
|
+
|
|
65
|
+
Args:
|
|
66
|
+
text (str): The text to be split.
|
|
67
|
+
max_chars (int): The maximum number of characters per chunk.
|
|
68
|
+
|
|
69
|
+
Returns:
|
|
70
|
+
List[str]: A list of text chunks.
|
|
71
|
+
"""
|
|
72
|
+
chunks = []
|
|
73
|
+
current_chunk = ""
|
|
74
|
+
# Split the text into sentences based on punctuation followed by whitespace
|
|
75
|
+
sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text)
|
|
76
|
+
|
|
77
|
+
for sentence in sentences:
|
|
78
|
+
if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars:
|
|
79
|
+
current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
|
|
80
|
+
else:
|
|
81
|
+
if current_chunk:
|
|
82
|
+
chunks.append(current_chunk.strip())
|
|
83
|
+
current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
|
|
84
|
+
|
|
85
|
+
if current_chunk:
|
|
86
|
+
chunks.append(current_chunk.strip())
|
|
87
|
+
|
|
88
|
+
return chunks
|
|
89
|
+
|
|
90
|
+
|
|
91
|
+
# load vocoder
|
|
92
|
+
def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=device, hf_cache_dir=None):
|
|
93
|
+
if vocoder_name == "vocos":
|
|
94
|
+
# vocoder = Vocos.from_pretrained("charactr/vocos-mel-24khz").to(device)
|
|
95
|
+
if is_local:
|
|
96
|
+
print(f"Load vocos from local path {local_path}")
|
|
97
|
+
config_path = f"{local_path}/config.yaml"
|
|
98
|
+
model_path = f"{local_path}/pytorch_model.bin"
|
|
99
|
+
else:
|
|
100
|
+
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
|
|
101
|
+
repo_id = "charactr/vocos-mel-24khz"
|
|
102
|
+
config_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="config.yaml")
|
|
103
|
+
model_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="pytorch_model.bin")
|
|
104
|
+
vocoder = Vocos.from_hparams(config_path)
|
|
105
|
+
state_dict = torch.load(model_path, map_location="cpu", weights_only=True)
|
|
106
|
+
from vocos.feature_extractors import EncodecFeatures
|
|
107
|
+
|
|
108
|
+
if isinstance(vocoder.feature_extractor, EncodecFeatures):
|
|
109
|
+
encodec_parameters = {
|
|
110
|
+
"feature_extractor.encodec." + key: value
|
|
111
|
+
for key, value in vocoder.feature_extractor.encodec.state_dict().items()
|
|
112
|
+
}
|
|
113
|
+
state_dict.update(encodec_parameters)
|
|
114
|
+
vocoder.load_state_dict(state_dict)
|
|
115
|
+
vocoder = vocoder.eval().to(device)
|
|
116
|
+
elif vocoder_name == "bigvgan":
|
|
117
|
+
try:
|
|
118
|
+
from third_party.BigVGAN import bigvgan
|
|
119
|
+
except ImportError:
|
|
120
|
+
print("You need to follow the README to init submodule and change the BigVGAN source code.")
|
|
121
|
+
if is_local:
|
|
122
|
+
"""download from https://huggingface.co/nvidia/bigvgan_v2_24khz_100band_256x/tree/main"""
|
|
123
|
+
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
|
|
124
|
+
else:
|
|
125
|
+
local_path = snapshot_download(repo_id="nvidia/bigvgan_v2_24khz_100band_256x", cache_dir=hf_cache_dir)
|
|
126
|
+
vocoder = bigvgan.BigVGAN.from_pretrained(local_path, use_cuda_kernel=False)
|
|
127
|
+
|
|
128
|
+
vocoder.remove_weight_norm()
|
|
129
|
+
vocoder = vocoder.eval().to(device)
|
|
130
|
+
return vocoder
|
|
131
|
+
|
|
132
|
+
|
|
133
|
+
# load asr pipeline
|
|
134
|
+
|
|
135
|
+
asr_pipe = None
|
|
136
|
+
|
|
137
|
+
|
|
138
|
+
def initialize_asr_pipeline(device: str = device, dtype=None):
|
|
139
|
+
if dtype is None:
|
|
140
|
+
dtype = (
|
|
141
|
+
torch.float16 if "cuda" in device and torch.cuda.get_device_properties(device).major >= 6 else torch.float32
|
|
142
|
+
)
|
|
143
|
+
global asr_pipe
|
|
144
|
+
asr_pipe = pipeline(
|
|
145
|
+
"automatic-speech-recognition",
|
|
146
|
+
model="openai/whisper-large-v3-turbo",
|
|
147
|
+
torch_dtype=dtype,
|
|
148
|
+
device=device,
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
# transcribe
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
def transcribe(ref_audio, language=None):
|
|
156
|
+
global asr_pipe
|
|
157
|
+
if asr_pipe is None:
|
|
158
|
+
initialize_asr_pipeline(device=device)
|
|
159
|
+
return asr_pipe(
|
|
160
|
+
ref_audio,
|
|
161
|
+
chunk_length_s=30,
|
|
162
|
+
batch_size=128,
|
|
163
|
+
generate_kwargs={"task": "transcribe", "language": language} if language else {"task": "transcribe"},
|
|
164
|
+
return_timestamps=False,
|
|
165
|
+
)["text"].strip()
|
|
166
|
+
|
|
167
|
+
|
|
168
|
+
# load model checkpoint for inference
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
def load_checkpoint(model, ckpt_path, device: str, dtype=None, use_ema=True):
|
|
172
|
+
if dtype is None:
|
|
173
|
+
dtype = (
|
|
174
|
+
torch.float16 if "cuda" in device and torch.cuda.get_device_properties(device).major >= 6 else torch.float32
|
|
175
|
+
)
|
|
176
|
+
model = model.to(dtype)
|
|
177
|
+
|
|
178
|
+
ckpt_type = ckpt_path.split(".")[-1]
|
|
179
|
+
if ckpt_type == "safetensors":
|
|
180
|
+
from safetensors.torch import load_file
|
|
181
|
+
|
|
182
|
+
checkpoint = load_file(ckpt_path, device=device)
|
|
183
|
+
else:
|
|
184
|
+
checkpoint = torch.load(ckpt_path, map_location=device, weights_only=True)
|
|
185
|
+
|
|
186
|
+
if use_ema:
|
|
187
|
+
if ckpt_type == "safetensors":
|
|
188
|
+
checkpoint = {"ema_model_state_dict": checkpoint}
|
|
189
|
+
checkpoint["model_state_dict"] = {
|
|
190
|
+
k.replace("ema_model.", ""): v
|
|
191
|
+
for k, v in checkpoint["ema_model_state_dict"].items()
|
|
192
|
+
if k not in ["initted", "step"]
|
|
193
|
+
}
|
|
194
|
+
|
|
195
|
+
# patch for backward compatibility, 305e3ea
|
|
196
|
+
for key in ["mel_spec.mel_stft.mel_scale.fb", "mel_spec.mel_stft.spectrogram.window"]:
|
|
197
|
+
if key in checkpoint["model_state_dict"]:
|
|
198
|
+
del checkpoint["model_state_dict"][key]
|
|
199
|
+
|
|
200
|
+
model.load_state_dict(checkpoint["model_state_dict"])
|
|
201
|
+
else:
|
|
202
|
+
if ckpt_type == "safetensors":
|
|
203
|
+
checkpoint = {"model_state_dict": checkpoint}
|
|
204
|
+
model.load_state_dict(checkpoint["model_state_dict"])
|
|
205
|
+
|
|
206
|
+
del checkpoint
|
|
207
|
+
torch.cuda.empty_cache()
|
|
208
|
+
|
|
209
|
+
return model.to(device)
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
# load model for inference
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
def load_model(
|
|
216
|
+
model_cls,
|
|
217
|
+
model_cfg,
|
|
218
|
+
ckpt_path,
|
|
219
|
+
mel_spec_type=mel_spec_type,
|
|
220
|
+
vocab_file="",
|
|
221
|
+
ode_method=ode_method,
|
|
222
|
+
use_ema=True,
|
|
223
|
+
device=device,
|
|
224
|
+
):
|
|
225
|
+
if vocab_file == "":
|
|
226
|
+
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
|
|
227
|
+
tokenizer = "custom"
|
|
228
|
+
|
|
229
|
+
print("\nvocab : ", vocab_file)
|
|
230
|
+
print("token : ", tokenizer)
|
|
231
|
+
print("model : ", ckpt_path, "\n")
|
|
232
|
+
|
|
233
|
+
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer)
|
|
234
|
+
model = CFM(
|
|
235
|
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
|
236
|
+
mel_spec_kwargs=dict(
|
|
237
|
+
n_fft=n_fft,
|
|
238
|
+
hop_length=hop_length,
|
|
239
|
+
win_length=win_length,
|
|
240
|
+
n_mel_channels=n_mel_channels,
|
|
241
|
+
target_sample_rate=target_sample_rate,
|
|
242
|
+
mel_spec_type=mel_spec_type,
|
|
243
|
+
),
|
|
244
|
+
odeint_kwargs=dict(
|
|
245
|
+
method=ode_method,
|
|
246
|
+
),
|
|
247
|
+
vocab_char_map=vocab_char_map,
|
|
248
|
+
).to(device)
|
|
249
|
+
|
|
250
|
+
dtype = torch.float32 if mel_spec_type == "bigvgan" else None
|
|
251
|
+
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
|
|
252
|
+
|
|
253
|
+
return model
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
def remove_silence_edges(audio, silence_threshold=-42):
|
|
257
|
+
# Remove silence from the start
|
|
258
|
+
non_silent_start_idx = silence.detect_leading_silence(audio, silence_threshold=silence_threshold)
|
|
259
|
+
audio = audio[non_silent_start_idx:]
|
|
260
|
+
|
|
261
|
+
# Remove silence from the end
|
|
262
|
+
non_silent_end_duration = audio.duration_seconds
|
|
263
|
+
for ms in reversed(audio):
|
|
264
|
+
if ms.dBFS > silence_threshold:
|
|
265
|
+
break
|
|
266
|
+
non_silent_end_duration -= 0.001
|
|
267
|
+
trimmed_audio = audio[: int(non_silent_end_duration * 1000)]
|
|
268
|
+
|
|
269
|
+
return trimmed_audio
|
|
270
|
+
|
|
271
|
+
|
|
272
|
+
# preprocess reference audio and text
|
|
273
|
+
|
|
274
|
+
|
|
275
|
+
def preprocess_ref_audio_text(ref_audio_orig, ref_text, clip_short=True, show_info=print, device=device):
|
|
276
|
+
show_info("Converting audio...")
|
|
277
|
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
|
278
|
+
aseg = AudioSegment.from_file(ref_audio_orig)
|
|
279
|
+
|
|
280
|
+
if clip_short:
|
|
281
|
+
# 1. try to find long silence for clipping
|
|
282
|
+
non_silent_segs = silence.split_on_silence(
|
|
283
|
+
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000, seek_step=10
|
|
284
|
+
)
|
|
285
|
+
non_silent_wave = AudioSegment.silent(duration=0)
|
|
286
|
+
for non_silent_seg in non_silent_segs:
|
|
287
|
+
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
|
|
288
|
+
show_info("Audio is over 15s, clipping short. (1)")
|
|
289
|
+
break
|
|
290
|
+
non_silent_wave += non_silent_seg
|
|
291
|
+
|
|
292
|
+
# 2. try to find short silence for clipping if 1. failed
|
|
293
|
+
if len(non_silent_wave) > 15000:
|
|
294
|
+
non_silent_segs = silence.split_on_silence(
|
|
295
|
+
aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10
|
|
296
|
+
)
|
|
297
|
+
non_silent_wave = AudioSegment.silent(duration=0)
|
|
298
|
+
for non_silent_seg in non_silent_segs:
|
|
299
|
+
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
|
|
300
|
+
show_info("Audio is over 15s, clipping short. (2)")
|
|
301
|
+
break
|
|
302
|
+
non_silent_wave += non_silent_seg
|
|
303
|
+
|
|
304
|
+
aseg = non_silent_wave
|
|
305
|
+
|
|
306
|
+
# 3. if no proper silence found for clipping
|
|
307
|
+
if len(aseg) > 15000:
|
|
308
|
+
aseg = aseg[:15000]
|
|
309
|
+
show_info("Audio is over 15s, clipping short. (3)")
|
|
310
|
+
|
|
311
|
+
aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
|
|
312
|
+
aseg.export(f.name, format="wav")
|
|
313
|
+
ref_audio = f.name
|
|
314
|
+
|
|
315
|
+
# Compute a hash of the reference audio file
|
|
316
|
+
with open(ref_audio, "rb") as audio_file:
|
|
317
|
+
audio_data = audio_file.read()
|
|
318
|
+
audio_hash = hashlib.md5(audio_data).hexdigest()
|
|
319
|
+
|
|
320
|
+
if not ref_text.strip():
|
|
321
|
+
global _ref_audio_cache
|
|
322
|
+
if audio_hash in _ref_audio_cache:
|
|
323
|
+
# Use cached asr transcription
|
|
324
|
+
show_info("Using cached reference text...")
|
|
325
|
+
ref_text = _ref_audio_cache[audio_hash]
|
|
326
|
+
else:
|
|
327
|
+
show_info("No reference text provided, transcribing reference audio...")
|
|
328
|
+
ref_text = transcribe(ref_audio)
|
|
329
|
+
# Cache the transcribed text (not caching custom ref_text, enabling users to do manual tweak)
|
|
330
|
+
_ref_audio_cache[audio_hash] = ref_text
|
|
331
|
+
else:
|
|
332
|
+
show_info("Using custom reference text...")
|
|
333
|
+
|
|
334
|
+
# Ensure ref_text ends with a proper sentence-ending punctuation
|
|
335
|
+
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
|
|
336
|
+
if ref_text.endswith("."):
|
|
337
|
+
ref_text += " "
|
|
338
|
+
else:
|
|
339
|
+
ref_text += ". "
|
|
340
|
+
|
|
341
|
+
print("ref_text ", ref_text)
|
|
342
|
+
|
|
343
|
+
return ref_audio, ref_text
|
|
344
|
+
|
|
345
|
+
|
|
346
|
+
# infer process: chunk text -> infer batches [i.e. infer_batch_process()]
|
|
347
|
+
|
|
348
|
+
|
|
349
|
+
def infer_process(
|
|
350
|
+
ref_audio,
|
|
351
|
+
ref_text,
|
|
352
|
+
gen_text,
|
|
353
|
+
model_obj,
|
|
354
|
+
vocoder,
|
|
355
|
+
mel_spec_type=mel_spec_type,
|
|
356
|
+
show_info=print,
|
|
357
|
+
progress=tqdm,
|
|
358
|
+
target_rms=target_rms,
|
|
359
|
+
cross_fade_duration=cross_fade_duration,
|
|
360
|
+
nfe_step=nfe_step,
|
|
361
|
+
cfg_strength=cfg_strength,
|
|
362
|
+
sway_sampling_coef=sway_sampling_coef,
|
|
363
|
+
speed=speed,
|
|
364
|
+
fix_duration=fix_duration,
|
|
365
|
+
device=device,
|
|
366
|
+
):
|
|
367
|
+
# Split the input text into batches
|
|
368
|
+
audio, sr = torchaudio.load(ref_audio)
|
|
369
|
+
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
|
|
370
|
+
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
|
|
371
|
+
for i, gen_text in enumerate(gen_text_batches):
|
|
372
|
+
print(f"gen_text {i}", gen_text)
|
|
373
|
+
|
|
374
|
+
show_info(f"Generating audio in {len(gen_text_batches)} batches...")
|
|
375
|
+
return infer_batch_process(
|
|
376
|
+
(audio, sr),
|
|
377
|
+
ref_text,
|
|
378
|
+
gen_text_batches,
|
|
379
|
+
model_obj,
|
|
380
|
+
vocoder,
|
|
381
|
+
mel_spec_type=mel_spec_type,
|
|
382
|
+
progress=progress,
|
|
383
|
+
target_rms=target_rms,
|
|
384
|
+
cross_fade_duration=cross_fade_duration,
|
|
385
|
+
nfe_step=nfe_step,
|
|
386
|
+
cfg_strength=cfg_strength,
|
|
387
|
+
sway_sampling_coef=sway_sampling_coef,
|
|
388
|
+
speed=speed,
|
|
389
|
+
fix_duration=fix_duration,
|
|
390
|
+
device=device,
|
|
391
|
+
)
|
|
392
|
+
|
|
393
|
+
|
|
394
|
+
# infer batches
|
|
395
|
+
|
|
396
|
+
|
|
397
|
+
def infer_batch_process(
|
|
398
|
+
ref_audio,
|
|
399
|
+
ref_text,
|
|
400
|
+
gen_text_batches,
|
|
401
|
+
model_obj,
|
|
402
|
+
vocoder,
|
|
403
|
+
mel_spec_type="vocos",
|
|
404
|
+
progress=tqdm,
|
|
405
|
+
target_rms=0.1,
|
|
406
|
+
cross_fade_duration=0.15,
|
|
407
|
+
nfe_step=32,
|
|
408
|
+
cfg_strength=2.0,
|
|
409
|
+
sway_sampling_coef=-1,
|
|
410
|
+
speed=1,
|
|
411
|
+
fix_duration=None,
|
|
412
|
+
device=None,
|
|
413
|
+
):
|
|
414
|
+
audio, sr = ref_audio
|
|
415
|
+
if audio.shape[0] > 1:
|
|
416
|
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
|
417
|
+
|
|
418
|
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
|
419
|
+
if rms < target_rms:
|
|
420
|
+
audio = audio * target_rms / rms
|
|
421
|
+
if sr != target_sample_rate:
|
|
422
|
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
|
423
|
+
audio = resampler(audio)
|
|
424
|
+
audio = audio.to(device)
|
|
425
|
+
|
|
426
|
+
generated_waves = []
|
|
427
|
+
spectrograms = []
|
|
428
|
+
|
|
429
|
+
if len(ref_text[-1].encode("utf-8")) == 1:
|
|
430
|
+
ref_text = ref_text + " "
|
|
431
|
+
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
|
|
432
|
+
# Prepare the text
|
|
433
|
+
text_list = [ref_text + gen_text]
|
|
434
|
+
final_text_list = convert_char_to_pinyin(text_list)
|
|
435
|
+
|
|
436
|
+
ref_audio_len = audio.shape[-1] // hop_length
|
|
437
|
+
if fix_duration is not None:
|
|
438
|
+
duration = int(fix_duration * target_sample_rate / hop_length)
|
|
439
|
+
else:
|
|
440
|
+
# Calculate duration
|
|
441
|
+
ref_text_len = len(ref_text.encode("utf-8"))
|
|
442
|
+
gen_text_len = len(gen_text.encode("utf-8"))
|
|
443
|
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
|
444
|
+
|
|
445
|
+
# inference
|
|
446
|
+
with torch.inference_mode():
|
|
447
|
+
generated, _ = model_obj.sample(
|
|
448
|
+
cond=audio,
|
|
449
|
+
text=final_text_list,
|
|
450
|
+
duration=duration,
|
|
451
|
+
steps=nfe_step,
|
|
452
|
+
cfg_strength=cfg_strength,
|
|
453
|
+
sway_sampling_coef=sway_sampling_coef,
|
|
454
|
+
)
|
|
455
|
+
|
|
456
|
+
generated = generated.to(torch.float32)
|
|
457
|
+
generated = generated[:, ref_audio_len:, :]
|
|
458
|
+
generated_mel_spec = generated.permute(0, 2, 1)
|
|
459
|
+
if mel_spec_type == "vocos":
|
|
460
|
+
generated_wave = vocoder.decode(generated_mel_spec)
|
|
461
|
+
elif mel_spec_type == "bigvgan":
|
|
462
|
+
generated_wave = vocoder(generated_mel_spec)
|
|
463
|
+
if rms < target_rms:
|
|
464
|
+
generated_wave = generated_wave * rms / target_rms
|
|
465
|
+
|
|
466
|
+
# wav -> numpy
|
|
467
|
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
|
468
|
+
|
|
469
|
+
generated_waves.append(generated_wave)
|
|
470
|
+
spectrograms.append(generated_mel_spec[0].cpu().numpy())
|
|
471
|
+
|
|
472
|
+
# Combine all generated waves with cross-fading
|
|
473
|
+
if cross_fade_duration <= 0:
|
|
474
|
+
# Simply concatenate
|
|
475
|
+
final_wave = np.concatenate(generated_waves)
|
|
476
|
+
else:
|
|
477
|
+
final_wave = generated_waves[0]
|
|
478
|
+
for i in range(1, len(generated_waves)):
|
|
479
|
+
prev_wave = final_wave
|
|
480
|
+
next_wave = generated_waves[i]
|
|
481
|
+
|
|
482
|
+
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
|
|
483
|
+
cross_fade_samples = int(cross_fade_duration * target_sample_rate)
|
|
484
|
+
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
|
|
485
|
+
|
|
486
|
+
if cross_fade_samples <= 0:
|
|
487
|
+
# No overlap possible, concatenate
|
|
488
|
+
final_wave = np.concatenate([prev_wave, next_wave])
|
|
489
|
+
continue
|
|
490
|
+
|
|
491
|
+
# Overlapping parts
|
|
492
|
+
prev_overlap = prev_wave[-cross_fade_samples:]
|
|
493
|
+
next_overlap = next_wave[:cross_fade_samples]
|
|
494
|
+
|
|
495
|
+
# Fade out and fade in
|
|
496
|
+
fade_out = np.linspace(1, 0, cross_fade_samples)
|
|
497
|
+
fade_in = np.linspace(0, 1, cross_fade_samples)
|
|
498
|
+
|
|
499
|
+
# Cross-faded overlap
|
|
500
|
+
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
|
|
501
|
+
|
|
502
|
+
# Combine
|
|
503
|
+
new_wave = np.concatenate(
|
|
504
|
+
[prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]]
|
|
505
|
+
)
|
|
506
|
+
|
|
507
|
+
final_wave = new_wave
|
|
508
|
+
|
|
509
|
+
# Create a combined spectrogram
|
|
510
|
+
combined_spectrogram = np.concatenate(spectrograms, axis=1)
|
|
511
|
+
|
|
512
|
+
return final_wave, target_sample_rate, combined_spectrogram
|
|
513
|
+
|
|
514
|
+
|
|
515
|
+
# remove silence from generated wav
|
|
516
|
+
|
|
517
|
+
|
|
518
|
+
def remove_silence_for_generated_wav(filename):
|
|
519
|
+
aseg = AudioSegment.from_file(filename)
|
|
520
|
+
non_silent_segs = silence.split_on_silence(
|
|
521
|
+
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500, seek_step=10
|
|
522
|
+
)
|
|
523
|
+
non_silent_wave = AudioSegment.silent(duration=0)
|
|
524
|
+
for non_silent_seg in non_silent_segs:
|
|
525
|
+
non_silent_wave += non_silent_seg
|
|
526
|
+
aseg = non_silent_wave
|
|
527
|
+
aseg.export(filename, format="wav")
|
|
528
|
+
|
|
529
|
+
|
|
530
|
+
# save spectrogram
|
|
531
|
+
|
|
532
|
+
|
|
533
|
+
def save_spectrogram(spectrogram, path):
|
|
534
|
+
plt.figure(figsize=(12, 4))
|
|
535
|
+
plt.imshow(spectrogram, origin="lower", aspect="auto")
|
|
536
|
+
plt.colorbar()
|
|
537
|
+
plt.savefig(path)
|
|
538
|
+
plt.close()
|
|
@@ -0,0 +1,10 @@
|
|
|
1
|
+
from f5_tts.model.cfm import CFM
|
|
2
|
+
|
|
3
|
+
from f5_tts.model.backbones.unett import UNetT
|
|
4
|
+
from f5_tts.model.backbones.dit import DiT
|
|
5
|
+
from f5_tts.model.backbones.mmdit import MMDiT
|
|
6
|
+
|
|
7
|
+
# from f5_tts.model.trainer import Trainer
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
__all__ = ["CFM", "UNetT", "DiT", "MMDiT"] # , "Trainer"]
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
## Backbones quick introduction
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
### unett.py
|
|
5
|
+
- flat unet transformer
|
|
6
|
+
- structure same as in e2-tts & voicebox paper except using rotary pos emb
|
|
7
|
+
- update: allow possible abs pos emb & convnextv2 blocks for embedded text before concat
|
|
8
|
+
|
|
9
|
+
### dit.py
|
|
10
|
+
- adaln-zero dit
|
|
11
|
+
- embedded timestep as condition
|
|
12
|
+
- concatted noised_input + masked_cond + embedded_text, linear proj in
|
|
13
|
+
- possible abs pos emb & convnextv2 blocks for embedded text before concat
|
|
14
|
+
- possible long skip connection (first layer to last layer)
|
|
15
|
+
|
|
16
|
+
### mmdit.py
|
|
17
|
+
- sd3 structure
|
|
18
|
+
- timestep as condition
|
|
19
|
+
- left stream: text embedded and applied a abs pos emb
|
|
20
|
+
- right stream: masked_cond & noised_input concatted and with same conv pos emb as unett
|