xinference 1.0.1__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +2 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +77 -71
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +79 -19
- xinference/core/supervisor.py +172 -10
- xinference/core/utils.py +12 -8
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/core.py +16 -0
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +36 -111
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +99 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/embedding/core.py +203 -142
- xinference/model/embedding/model_spec.json +7 -0
- xinference/model/embedding/model_spec_modelscope.json +8 -0
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +45 -13
- xinference/model/llm/__init__.py +4 -2
- xinference/model/llm/llm_family.json +536 -53
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +454 -20
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +248 -52
- xinference/model/llm/sglang/core.py +1 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +2 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +36 -4
- xinference/model/llm/vllm/core.py +53 -10
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +11 -28
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +15 -0
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/METADATA +68 -32
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/RECORD +316 -122
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/tools/api.py +0 -943
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
- xinference/thirdparty/fish_speech/tools/webui.py +0 -548
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/tools → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/WHEEL +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,75 @@
|
|
|
1
|
+
# training script.
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
from importlib.resources import files
|
|
5
|
+
|
|
6
|
+
import hydra
|
|
7
|
+
|
|
8
|
+
from f5_tts.model import CFM, DiT, Trainer, UNetT
|
|
9
|
+
from f5_tts.model.dataset import load_dataset
|
|
10
|
+
from f5_tts.model.utils import get_tokenizer
|
|
11
|
+
|
|
12
|
+
os.chdir(str(files("f5_tts").joinpath("../.."))) # change working directory to root of project (local editable)
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@hydra.main(version_base="1.3", config_path=str(files("f5_tts").joinpath("configs")), config_name=None)
|
|
16
|
+
def main(cfg):
|
|
17
|
+
tokenizer = cfg.model.tokenizer
|
|
18
|
+
mel_spec_type = cfg.model.mel_spec.mel_spec_type
|
|
19
|
+
exp_name = f"{cfg.model.name}_{mel_spec_type}_{cfg.model.tokenizer}_{cfg.datasets.name}"
|
|
20
|
+
|
|
21
|
+
# set text tokenizer
|
|
22
|
+
if tokenizer != "custom":
|
|
23
|
+
tokenizer_path = cfg.datasets.name
|
|
24
|
+
else:
|
|
25
|
+
tokenizer_path = cfg.model.tokenizer_path
|
|
26
|
+
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
|
27
|
+
|
|
28
|
+
# set model
|
|
29
|
+
if "F5TTS" in cfg.model.name:
|
|
30
|
+
model_cls = DiT
|
|
31
|
+
elif "E2TTS" in cfg.model.name:
|
|
32
|
+
model_cls = UNetT
|
|
33
|
+
wandb_resume_id = None
|
|
34
|
+
|
|
35
|
+
model = CFM(
|
|
36
|
+
transformer=model_cls(**cfg.model.arch, text_num_embeds=vocab_size, mel_dim=cfg.model.mel_spec.n_mel_channels),
|
|
37
|
+
mel_spec_kwargs=cfg.model.mel_spec,
|
|
38
|
+
vocab_char_map=vocab_char_map,
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
# init trainer
|
|
42
|
+
trainer = Trainer(
|
|
43
|
+
model,
|
|
44
|
+
epochs=cfg.optim.epochs,
|
|
45
|
+
learning_rate=cfg.optim.learning_rate,
|
|
46
|
+
num_warmup_updates=cfg.optim.num_warmup_updates,
|
|
47
|
+
save_per_updates=cfg.ckpts.save_per_updates,
|
|
48
|
+
checkpoint_path=str(files("f5_tts").joinpath(f"../../{cfg.ckpts.save_dir}")),
|
|
49
|
+
batch_size=cfg.datasets.batch_size_per_gpu,
|
|
50
|
+
batch_size_type=cfg.datasets.batch_size_type,
|
|
51
|
+
max_samples=cfg.datasets.max_samples,
|
|
52
|
+
grad_accumulation_steps=cfg.optim.grad_accumulation_steps,
|
|
53
|
+
max_grad_norm=cfg.optim.max_grad_norm,
|
|
54
|
+
logger=cfg.ckpts.logger,
|
|
55
|
+
wandb_project="CFM-TTS",
|
|
56
|
+
wandb_run_name=exp_name,
|
|
57
|
+
wandb_resume_id=wandb_resume_id,
|
|
58
|
+
last_per_steps=cfg.ckpts.last_per_steps,
|
|
59
|
+
log_samples=True,
|
|
60
|
+
bnb_optimizer=cfg.optim.bnb_optimizer,
|
|
61
|
+
mel_spec_type=mel_spec_type,
|
|
62
|
+
is_local_vocoder=cfg.model.vocoder.is_local,
|
|
63
|
+
local_vocoder_path=cfg.model.vocoder.local_path,
|
|
64
|
+
)
|
|
65
|
+
|
|
66
|
+
train_dataset = load_dataset(cfg.datasets.name, tokenizer, mel_spec_kwargs=cfg.model.mel_spec)
|
|
67
|
+
trainer.train(
|
|
68
|
+
train_dataset,
|
|
69
|
+
num_workers=cfg.datasets.num_workers,
|
|
70
|
+
resumable_with_seed=666, # seed for shuffling dataset
|
|
71
|
+
)
|
|
72
|
+
|
|
73
|
+
|
|
74
|
+
if __name__ == "__main__":
|
|
75
|
+
main()
|
|
@@ -2,41 +2,10 @@ from dataclasses import dataclass, field
|
|
|
2
2
|
from typing import Literal
|
|
3
3
|
|
|
4
4
|
import torch
|
|
5
|
-
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerFast
|
|
6
|
-
|
|
7
|
-
IM_START_TOKEN = "<|im_start|>"
|
|
8
|
-
IM_END_TOKEN = "<|im_end|>"
|
|
9
|
-
SEMANTIC_TOKEN = "<|semantic|>"
|
|
10
|
-
MEL_TOKEN = "<|mel|>"
|
|
11
|
-
PHONEME_START_TOKEN = "<|phoneme_start|>"
|
|
12
|
-
PHONEME_END_TOKEN = "<|phoneme_end|>"
|
|
13
|
-
ALL_SPECIAL_TOKENS = [
|
|
14
|
-
IM_START_TOKEN,
|
|
15
|
-
IM_END_TOKEN,
|
|
16
|
-
SEMANTIC_TOKEN,
|
|
17
|
-
MEL_TOKEN,
|
|
18
|
-
PHONEME_START_TOKEN,
|
|
19
|
-
PHONEME_END_TOKEN,
|
|
20
|
-
]
|
|
21
|
-
|
|
22
|
-
CODEBOOK_PAD_TOKEN_ID = 0
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
class FishTokenizerConfig(PretrainedConfig):
|
|
26
|
-
share_codebook_embeddings: bool = True
|
|
27
|
-
codebook_size: int = 1024
|
|
28
|
-
num_codebooks: int = 8
|
|
29
5
|
|
|
6
|
+
from .tokenizer import MODALITY_TOKENS, FishTokenizer
|
|
30
7
|
|
|
31
|
-
|
|
32
|
-
def __init__(self, *args, **kwargs):
|
|
33
|
-
super().__init__(*args, **kwargs)
|
|
34
|
-
self.share_codebook_embeddings = kwargs.pop("share_codebook_embeddings", True)
|
|
35
|
-
self.codebook_size = kwargs.pop("codebook_size", 1024)
|
|
36
|
-
self.num_codebooks = kwargs.pop("num_codebooks", 8)
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
AutoTokenizer.register(FishTokenizerConfig, fast_tokenizer_class=FishTokenizerFast)
|
|
8
|
+
CODEBOOK_PAD_TOKEN_ID = 0
|
|
40
9
|
|
|
41
10
|
|
|
42
11
|
@dataclass(kw_only=True)
|
|
@@ -54,77 +23,72 @@ class TextPart(BasePart):
|
|
|
54
23
|
text: str
|
|
55
24
|
|
|
56
25
|
|
|
57
|
-
@dataclass(kw_only=True)
|
|
58
|
-
class MelPart(BasePart):
|
|
59
|
-
mels: torch.Tensor
|
|
60
|
-
|
|
61
|
-
|
|
62
26
|
@dataclass(kw_only=True)
|
|
63
27
|
class EncodedMessage:
|
|
64
28
|
tokens: torch.Tensor
|
|
65
29
|
labels: torch.Tensor
|
|
30
|
+
vq_mask_tokens: torch.Tensor | None = None
|
|
31
|
+
vq_mask_labels: torch.Tensor | None = None
|
|
66
32
|
vq_parts: list[torch.Tensor]
|
|
67
|
-
mel_parts: list[torch.Tensor]
|
|
68
33
|
vq_require_losses: torch.Tensor | None = None
|
|
69
34
|
|
|
70
35
|
|
|
71
36
|
@dataclass(kw_only=True)
|
|
72
37
|
class Message:
|
|
73
38
|
role: Literal["system", "user", "assistant"]
|
|
74
|
-
parts: list[VQPart | TextPart
|
|
39
|
+
parts: list[VQPart | TextPart] = field(default_factory=list)
|
|
75
40
|
add_im_start: bool = True
|
|
76
41
|
add_im_end: bool = True
|
|
77
42
|
cal_loss: bool = False
|
|
43
|
+
modality: Literal["text", "voice", "interleave"] | None = None
|
|
78
44
|
|
|
79
45
|
# By default, ignore the loss of the auto-generated im_start token
|
|
80
46
|
ignore_im_start_loss: bool = True
|
|
81
47
|
|
|
82
48
|
def encode(
|
|
83
49
|
self: "Message",
|
|
84
|
-
tokenizer:
|
|
50
|
+
tokenizer: FishTokenizer,
|
|
85
51
|
) -> EncodedMessage:
|
|
86
52
|
all_tokens = []
|
|
87
53
|
all_labels = []
|
|
88
54
|
|
|
89
55
|
# Multi-modal tokens
|
|
90
56
|
vq_parts = []
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
semantic_id, mel_id = tokenizer.convert_tokens_to_ids(
|
|
94
|
-
[SEMANTIC_TOKEN, MEL_TOKEN]
|
|
95
|
-
)
|
|
57
|
+
vq_masks = []
|
|
96
58
|
|
|
97
59
|
parts = self.parts.copy()
|
|
98
60
|
if self.add_im_start:
|
|
99
|
-
|
|
61
|
+
modality_token = MODALITY_TOKENS[self.modality] if self.modality else ""
|
|
62
|
+
parts.insert(0, TextPart(text=f"<|im_start|>{self.role}\n{modality_token}"))
|
|
100
63
|
|
|
101
64
|
if self.add_im_end:
|
|
102
65
|
parts.append(TextPart(text="<|im_end|>"))
|
|
103
66
|
|
|
104
67
|
for part in parts:
|
|
105
68
|
if isinstance(part, TextPart):
|
|
106
|
-
tokens =
|
|
107
|
-
part.text,
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
return_tensors="pt",
|
|
111
|
-
).int()[0]
|
|
69
|
+
tokens = torch.tensor(
|
|
70
|
+
tokenizer.encode(part.text),
|
|
71
|
+
dtype=torch.int,
|
|
72
|
+
)
|
|
112
73
|
elif isinstance(part, VQPart):
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
tokens = torch.zeros(part.mels.shape[1], dtype=torch.int) + mel_id
|
|
123
|
-
mel_parts.append(part.mels)
|
|
74
|
+
curr_codes = part.codes.clone()
|
|
75
|
+
tokens = torch.tensor(
|
|
76
|
+
[
|
|
77
|
+
tokenizer.semantic_id_to_token_id[i.item()]
|
|
78
|
+
for i in curr_codes[0].int()
|
|
79
|
+
],
|
|
80
|
+
dtype=torch.int,
|
|
81
|
+
)
|
|
82
|
+
vq_parts.append(curr_codes)
|
|
124
83
|
else:
|
|
125
84
|
raise ValueError(f"Unsupported part type: {type(part)}")
|
|
126
85
|
|
|
127
86
|
all_tokens.append(tokens)
|
|
87
|
+
if isinstance(part, VQPart):
|
|
88
|
+
vq_masks.append(torch.ones_like(tokens, dtype=torch.bool))
|
|
89
|
+
else:
|
|
90
|
+
vq_masks.append(torch.zeros_like(tokens, dtype=torch.bool))
|
|
91
|
+
|
|
128
92
|
if self.cal_loss:
|
|
129
93
|
all_labels.append(tokens.clone())
|
|
130
94
|
else:
|
|
@@ -132,7 +96,9 @@ class Message:
|
|
|
132
96
|
|
|
133
97
|
tokens = torch.cat(all_tokens, dim=0)
|
|
134
98
|
labels = torch.cat(all_labels, dim=0)
|
|
135
|
-
|
|
99
|
+
vq_masks = torch.cat(vq_masks, dim=0)
|
|
100
|
+
|
|
101
|
+
assert tokens.shape == labels.shape == vq_masks.shape
|
|
136
102
|
|
|
137
103
|
if self.ignore_im_start_loss and self.add_im_start:
|
|
138
104
|
labels[: len(all_tokens[0])] = -100
|
|
@@ -141,7 +107,8 @@ class Message:
|
|
|
141
107
|
tokens=tokens,
|
|
142
108
|
labels=labels,
|
|
143
109
|
vq_parts=vq_parts,
|
|
144
|
-
|
|
110
|
+
vq_mask_tokens=vq_masks,
|
|
111
|
+
vq_mask_labels=vq_masks,
|
|
145
112
|
)
|
|
146
113
|
|
|
147
114
|
|
|
@@ -149,17 +116,23 @@ class Message:
|
|
|
149
116
|
class Conversation:
|
|
150
117
|
messages: list[Message]
|
|
151
118
|
|
|
119
|
+
def __init__(self: "Conversation", messages: list[Message] | None = None):
|
|
120
|
+
self.messages = messages or []
|
|
121
|
+
|
|
152
122
|
def encode(
|
|
153
123
|
self: "Conversation",
|
|
154
|
-
tokenizer:
|
|
124
|
+
tokenizer: FishTokenizer,
|
|
155
125
|
add_shift: bool = True,
|
|
126
|
+
ignore_loss_tokens: list[str] = [],
|
|
156
127
|
) -> EncodedMessage:
|
|
157
128
|
# Build the input_ids and labels
|
|
158
129
|
tokens = []
|
|
159
130
|
labels = []
|
|
160
131
|
vq_parts = []
|
|
161
|
-
|
|
132
|
+
vq_mask_tokens = []
|
|
133
|
+
vq_mask_labels = []
|
|
162
134
|
vq_require_losses = []
|
|
135
|
+
ignore_loss_token_ids = [tokenizer.get_token_id(i) for i in ignore_loss_tokens]
|
|
163
136
|
|
|
164
137
|
for message in self.messages:
|
|
165
138
|
encoded = message.encode(
|
|
@@ -168,16 +141,25 @@ class Conversation:
|
|
|
168
141
|
tokens.append(encoded.tokens)
|
|
169
142
|
labels.append(encoded.labels)
|
|
170
143
|
vq_parts.extend(encoded.vq_parts)
|
|
171
|
-
|
|
144
|
+
vq_mask_tokens.append(encoded.vq_mask_tokens)
|
|
145
|
+
vq_mask_labels.append(encoded.vq_mask_labels)
|
|
172
146
|
vq_require_losses.extend([message.cal_loss] * len(encoded.vq_parts))
|
|
173
147
|
|
|
174
148
|
tokens = torch.cat(tokens, dim=0)
|
|
175
149
|
labels = torch.cat(labels, dim=0)
|
|
150
|
+
vq_mask_tokens = torch.cat(vq_mask_tokens, dim=0)
|
|
151
|
+
vq_mask_labels = torch.cat(vq_mask_labels, dim=0)
|
|
176
152
|
vq_require_losses = torch.tensor(vq_require_losses, dtype=torch.bool)
|
|
177
153
|
|
|
178
154
|
if add_shift:
|
|
179
155
|
tokens = tokens[:-1]
|
|
180
156
|
labels = labels[1:]
|
|
157
|
+
vq_mask_tokens = vq_mask_tokens[:-1]
|
|
158
|
+
vq_mask_labels = vq_mask_labels[1:]
|
|
159
|
+
|
|
160
|
+
for i in ignore_loss_token_ids:
|
|
161
|
+
assert i != -100 and i is not None
|
|
162
|
+
labels[labels == i] = -100
|
|
181
163
|
|
|
182
164
|
assert tokens.dtype in [
|
|
183
165
|
torch.int,
|
|
@@ -188,15 +170,18 @@ class Conversation:
|
|
|
188
170
|
tokens=tokens,
|
|
189
171
|
labels=labels,
|
|
190
172
|
vq_parts=vq_parts,
|
|
191
|
-
|
|
173
|
+
vq_mask_tokens=vq_mask_tokens,
|
|
174
|
+
vq_mask_labels=vq_mask_labels,
|
|
192
175
|
vq_require_losses=vq_require_losses,
|
|
193
176
|
)
|
|
194
177
|
|
|
195
178
|
def encode_for_inference(
|
|
196
179
|
self: "Conversation",
|
|
197
|
-
tokenizer:
|
|
180
|
+
tokenizer: FishTokenizer,
|
|
198
181
|
num_codebooks: int,
|
|
199
182
|
) -> EncodedMessage:
|
|
183
|
+
# self.visualize(tokenizer)
|
|
184
|
+
|
|
200
185
|
encoded = self.encode(tokenizer, add_shift=False)
|
|
201
186
|
tokens = encoded.tokens
|
|
202
187
|
values = torch.zeros((num_codebooks + 1, len(tokens)), dtype=torch.int)
|
|
@@ -205,24 +190,47 @@ class Conversation:
|
|
|
205
190
|
if encoded.vq_parts is None or len(encoded.vq_parts) == 0:
|
|
206
191
|
return values
|
|
207
192
|
|
|
208
|
-
semantic_id, mel_id = tokenizer.convert_tokens_to_ids(
|
|
209
|
-
[SEMANTIC_TOKEN, MEL_TOKEN]
|
|
210
|
-
)
|
|
211
193
|
vq_parts = encoded.vq_parts
|
|
194
|
+
vq_parts = [part.to(values.device) for part in vq_parts]
|
|
212
195
|
vq_parts = torch.cat(vq_parts, dim=1)
|
|
213
|
-
values[
|
|
196
|
+
values[0, encoded.vq_mask_tokens] = vq_parts[0] + tokenizer.semantic_begin_id
|
|
197
|
+
values[1:, encoded.vq_mask_tokens] = vq_parts
|
|
198
|
+
|
|
214
199
|
return values
|
|
215
200
|
|
|
216
|
-
def visualize(
|
|
217
|
-
|
|
201
|
+
def visualize(
|
|
202
|
+
self: "Conversation",
|
|
203
|
+
tokenizer: FishTokenizer,
|
|
204
|
+
ignore_loss_tokens: list[str] = [],
|
|
205
|
+
):
|
|
206
|
+
encoded = self.encode(
|
|
207
|
+
tokenizer, add_shift=False, ignore_loss_tokens=ignore_loss_tokens
|
|
208
|
+
)
|
|
218
209
|
|
|
219
|
-
|
|
220
|
-
|
|
210
|
+
# Colors for alternating tokens
|
|
211
|
+
colors = {
|
|
212
|
+
"blue": "\033[94m", # Light blue
|
|
213
|
+
"cyan": "\033[96m", # Cyan
|
|
214
|
+
"green": "\033[92m", # Light green
|
|
215
|
+
"dark_green": "\033[32m", # Dark green
|
|
216
|
+
}
|
|
217
|
+
blue_idx = 0
|
|
218
|
+
green_idx = 0
|
|
219
|
+
|
|
220
|
+
def print_in_blue(x):
|
|
221
|
+
nonlocal blue_idx
|
|
222
|
+
color = colors["blue"] if blue_idx % 2 == 0 else colors["cyan"]
|
|
223
|
+
print(f"{color}{x}\033[0m", end="")
|
|
224
|
+
blue_idx += 1
|
|
225
|
+
|
|
226
|
+
def print_in_green(x):
|
|
227
|
+
nonlocal green_idx
|
|
228
|
+
color = colors["green"] if green_idx % 2 == 0 else colors["dark_green"]
|
|
229
|
+
print(f"{color}{x}\033[0m", end="")
|
|
230
|
+
green_idx += 1
|
|
221
231
|
|
|
222
232
|
for tok, lab in zip(encoded.tokens, encoded.labels):
|
|
223
|
-
val = tokenizer.decode(tok
|
|
224
|
-
if val == "\n":
|
|
225
|
-
val = "\\n\n"
|
|
233
|
+
val = tokenizer.decode([tok])
|
|
226
234
|
|
|
227
235
|
if lab == -100:
|
|
228
236
|
print_in_green(val)
|
|
@@ -231,6 +239,9 @@ class Conversation:
|
|
|
231
239
|
|
|
232
240
|
print()
|
|
233
241
|
|
|
242
|
+
def append(self: "Conversation", message: Message):
|
|
243
|
+
self.messages.append(message)
|
|
244
|
+
|
|
234
245
|
|
|
235
246
|
if __name__ == "__main__":
|
|
236
247
|
message0 = Message(
|
|
@@ -248,7 +259,7 @@ if __name__ == "__main__":
|
|
|
248
259
|
cal_loss=True,
|
|
249
260
|
)
|
|
250
261
|
conversation = Conversation([message0, message1])
|
|
251
|
-
tokenizer =
|
|
262
|
+
tokenizer = FishTokenizer.from_pretrained("checkpoints/Qwen2-1.5B-Instruct")
|
|
252
263
|
conversation.visualize(tokenizer)
|
|
253
264
|
|
|
254
265
|
encoded = conversation.encode(tokenizer)
|
|
@@ -16,7 +16,7 @@ from torch.nn.attention import SDPBackend, sdpa_kernel
|
|
|
16
16
|
from torch.utils.checkpoint import checkpoint
|
|
17
17
|
from transformers import AutoTokenizer
|
|
18
18
|
|
|
19
|
-
from fish_speech.
|
|
19
|
+
from fish_speech.tokenizer import SEMANTIC_TOKENS, FishTokenizer
|
|
20
20
|
from fish_speech.utils import RankedLogger
|
|
21
21
|
|
|
22
22
|
from .lora import LoraConfig, setup_lora
|
|
@@ -61,6 +61,7 @@ class BaseModelArgs:
|
|
|
61
61
|
# Dummy vars
|
|
62
62
|
is_reward_model: bool = False
|
|
63
63
|
share_codebook_embeddings: bool = True
|
|
64
|
+
scale_codebook_embeddings: bool = False
|
|
64
65
|
|
|
65
66
|
def __post_init__(self):
|
|
66
67
|
if self.n_local_heads == -1:
|
|
@@ -164,13 +165,17 @@ class BaseTransformerForwardResult:
|
|
|
164
165
|
|
|
165
166
|
class BaseTransformer(nn.Module):
|
|
166
167
|
def __init__(
|
|
167
|
-
self,
|
|
168
|
+
self,
|
|
169
|
+
config: BaseModelArgs,
|
|
170
|
+
tokenizer: FishTokenizer | AutoTokenizer,
|
|
171
|
+
init_weights: bool = True,
|
|
168
172
|
) -> None:
|
|
169
173
|
super().__init__()
|
|
170
174
|
self.config = config
|
|
171
175
|
self.tokenizer = tokenizer
|
|
172
|
-
|
|
173
|
-
|
|
176
|
+
self.semantic_token_ids = [
|
|
177
|
+
tokenizer.get_token_id(SEMANTIC_TOKEN) for SEMANTIC_TOKEN in SEMANTIC_TOKENS
|
|
178
|
+
]
|
|
174
179
|
|
|
175
180
|
# Slow transformer
|
|
176
181
|
self.embeddings = nn.Embedding(
|
|
@@ -245,8 +250,10 @@ class BaseTransformer(nn.Module):
|
|
|
245
250
|
vocab_embeds = [self.embeddings(x[:, 0])]
|
|
246
251
|
for i in range(self.config.num_codebooks):
|
|
247
252
|
emb = self.codebook_embeddings(x[:, i + 1] + i * self.config.codebook_size)
|
|
248
|
-
|
|
249
|
-
|
|
253
|
+
semantic_token_ids_tensor = torch.tensor(
|
|
254
|
+
self.semantic_token_ids, device=x.device
|
|
255
|
+
)
|
|
256
|
+
emb[~torch.isin(x[:, 0], semantic_token_ids_tensor)] = 0
|
|
250
257
|
|
|
251
258
|
x = torch.stack(vocab_embeds, dim=3)
|
|
252
259
|
x = x.sum(dim=3)
|
|
@@ -294,20 +301,45 @@ class BaseTransformer(nn.Module):
|
|
|
294
301
|
|
|
295
302
|
def forward_generate(
|
|
296
303
|
self,
|
|
297
|
-
|
|
304
|
+
inp: Tensor,
|
|
298
305
|
input_pos: Optional[Tensor] = None,
|
|
306
|
+
vq_masks: Optional[Tensor] = None, # this is not used in fact
|
|
299
307
|
return_all: bool = False,
|
|
300
308
|
) -> BaseTransformerForwardResult:
|
|
301
309
|
# This is used for generation, optimized for torch compile
|
|
302
|
-
assert (
|
|
303
|
-
|
|
304
|
-
), "Please call setup_caches before forward_generate"
|
|
310
|
+
# assert (
|
|
311
|
+
# self.max_seq_len != -1 and self.max_batch_size != -1
|
|
312
|
+
# ), "Please call setup_caches before forward_generate"
|
|
305
313
|
|
|
306
|
-
|
|
314
|
+
embeds = []
|
|
315
|
+
for i in range(self.config.num_codebooks):
|
|
316
|
+
if self.config.share_codebook_embeddings:
|
|
317
|
+
_tokens = inp[:, i + 1] + i * self.config.codebook_size
|
|
318
|
+
else:
|
|
319
|
+
_tokens = inp[:, i + 1]
|
|
307
320
|
|
|
308
|
-
|
|
309
|
-
|
|
310
|
-
|
|
321
|
+
emb = self.codebook_embeddings(_tokens)
|
|
322
|
+
embeds.append(emb)
|
|
323
|
+
|
|
324
|
+
vq_embeds_sum = torch.stack(embeds, dim=1).sum(dim=1)
|
|
325
|
+
# if self.config.use_codebook_mlp:
|
|
326
|
+
# vq_embeds_sum = vq_embeds_sum / self.config.num_codebooks
|
|
327
|
+
# vq_embeds_sum = self.codebook_mlp(vq_embeds_sum)
|
|
328
|
+
|
|
329
|
+
vq_masks = (inp[:, 0] >= self.tokenizer.semantic_begin_id) & (
|
|
330
|
+
inp[:, 0] <= self.tokenizer.semantic_end_id
|
|
331
|
+
)
|
|
332
|
+
|
|
333
|
+
vq_embeds_sum[~vq_masks] = 0
|
|
334
|
+
x = self.embeddings(inp[:, 0]) + vq_embeds_sum
|
|
335
|
+
|
|
336
|
+
if input_pos is None:
|
|
337
|
+
input_pos = torch.arange(inp.shape[-1], device=x.device)
|
|
338
|
+
max_seq_len = inp.shape[-1]
|
|
339
|
+
else:
|
|
340
|
+
max_seq_len = self.max_seq_len
|
|
341
|
+
|
|
342
|
+
mask = self.causal_mask[None, None, input_pos, :max_seq_len] # (B, N, Q, K)
|
|
311
343
|
freqs_cis = self.freqs_cis[input_pos]
|
|
312
344
|
|
|
313
345
|
for layer in self.layers:
|
|
@@ -320,7 +352,9 @@ class BaseTransformer(nn.Module):
|
|
|
320
352
|
# We got slow_out here
|
|
321
353
|
slow_out = self.norm(x)
|
|
322
354
|
|
|
323
|
-
if self.config.
|
|
355
|
+
if self.config.is_reward_model:
|
|
356
|
+
token_logits = self.score_output(slow_out)
|
|
357
|
+
elif self.config.tie_word_embeddings:
|
|
324
358
|
token_logits = F.linear(slow_out, self.embeddings.weight)
|
|
325
359
|
else:
|
|
326
360
|
token_logits = self.output(slow_out)
|
|
@@ -348,6 +382,7 @@ class BaseTransformer(nn.Module):
|
|
|
348
382
|
max_length: int | None = None,
|
|
349
383
|
lora_config: LoraConfig | None = None,
|
|
350
384
|
rope_base: int | None = None,
|
|
385
|
+
is_agent: bool = False,
|
|
351
386
|
) -> "BaseTransformer":
|
|
352
387
|
config = BaseModelArgs.from_pretrained(str(path))
|
|
353
388
|
if max_length is not None:
|
|
@@ -366,7 +401,12 @@ class BaseTransformer(nn.Module):
|
|
|
366
401
|
case _:
|
|
367
402
|
raise ValueError(f"Unknown model type: {config.model_type}")
|
|
368
403
|
|
|
369
|
-
|
|
404
|
+
if is_agent:
|
|
405
|
+
tokenizer = AutoTokenizer.from_pretrained(str(path))
|
|
406
|
+
else:
|
|
407
|
+
tokenizer_path = str(path) + "/tokenizer.tiktoken"
|
|
408
|
+
tokenizer = FishTokenizer(tokenizer_path)
|
|
409
|
+
|
|
370
410
|
log.info(f"Loading model from {path}, config: {config}")
|
|
371
411
|
model = model_cls(config, tokenizer=tokenizer)
|
|
372
412
|
|
|
@@ -452,7 +492,7 @@ class BaseTransformer(nn.Module):
|
|
|
452
492
|
|
|
453
493
|
|
|
454
494
|
class NaiveTransformer(BaseTransformer):
|
|
455
|
-
def __init__(self, config: NaiveModelArgs, tokenizer:
|
|
495
|
+
def __init__(self, config: NaiveModelArgs, tokenizer: FishTokenizer) -> None:
|
|
456
496
|
super().__init__(config, init_weights=False, tokenizer=tokenizer)
|
|
457
497
|
|
|
458
498
|
self.codebook_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
|
@@ -498,7 +538,7 @@ class NaiveTransformer(BaseTransformer):
|
|
|
498
538
|
|
|
499
539
|
|
|
500
540
|
class DualARTransformer(BaseTransformer):
|
|
501
|
-
def __init__(self, config: NaiveModelArgs, tokenizer:
|
|
541
|
+
def __init__(self, config: NaiveModelArgs, tokenizer: FishTokenizer) -> None:
|
|
502
542
|
super().__init__(config, init_weights=False, tokenizer=tokenizer)
|
|
503
543
|
|
|
504
544
|
# Project to fast dim if needed
|
|
@@ -654,9 +694,12 @@ class DualARTransformer(BaseTransformer):
|
|
|
654
694
|
return codebook_logits
|
|
655
695
|
|
|
656
696
|
def forward_generate(
|
|
657
|
-
self,
|
|
697
|
+
self,
|
|
698
|
+
x: Tensor,
|
|
699
|
+
input_pos: Optional[Tensor] = None,
|
|
700
|
+
vq_masks: Optional[Tensor] = None,
|
|
658
701
|
) -> TransformerForwardResult:
|
|
659
|
-
x = super().forward_generate(x, input_pos)
|
|
702
|
+
x = super().forward_generate(x, input_pos, vq_masks)
|
|
660
703
|
x.hidden_states = self.fast_project_in(x.hidden_states)
|
|
661
704
|
return x
|
|
662
705
|
|
|
@@ -1,33 +1,8 @@
|
|
|
1
1
|
import re
|
|
2
2
|
|
|
3
3
|
SYMBOLS_MAPPING = {
|
|
4
|
-
"\n": "",
|
|
5
|
-
"…": ".",
|
|
6
|
-
"“": "'",
|
|
7
|
-
"”": "'",
|
|
8
4
|
"‘": "'",
|
|
9
5
|
"’": "'",
|
|
10
|
-
"【": "",
|
|
11
|
-
"】": "",
|
|
12
|
-
"[": "",
|
|
13
|
-
"]": "",
|
|
14
|
-
"(": "",
|
|
15
|
-
")": "",
|
|
16
|
-
"(": "",
|
|
17
|
-
")": "",
|
|
18
|
-
"・": "",
|
|
19
|
-
"·": "",
|
|
20
|
-
"「": "'",
|
|
21
|
-
"」": "'",
|
|
22
|
-
"《": "'",
|
|
23
|
-
"》": "'",
|
|
24
|
-
"—": "",
|
|
25
|
-
"~": "",
|
|
26
|
-
"~": "",
|
|
27
|
-
":": ",",
|
|
28
|
-
";": ",",
|
|
29
|
-
";": ",",
|
|
30
|
-
":": ",",
|
|
31
6
|
}
|
|
32
7
|
|
|
33
8
|
REPLACE_SYMBOL_REGEX = re.compile(
|
|
@@ -57,6 +32,6 @@ def clean_text(text):
|
|
|
57
32
|
text = EMOJI_REGEX.sub(r"", text)
|
|
58
33
|
|
|
59
34
|
# Remove continuous periods (...) and commas (,,,)
|
|
60
|
-
text = re.sub(r"[
|
|
35
|
+
text = re.sub(r"[,]{2,}", lambda m: m.group()[0], text)
|
|
61
36
|
|
|
62
37
|
return text
|