xinference 1.0.1__py3-none-any.whl → 1.2.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of xinference might be problematic. Click here for more details.

Files changed (343) hide show
  1. xinference/_compat.py +2 -0
  2. xinference/_version.py +3 -3
  3. xinference/api/restful_api.py +77 -71
  4. xinference/core/chat_interface.py +6 -1
  5. xinference/core/model.py +79 -19
  6. xinference/core/supervisor.py +172 -10
  7. xinference/core/utils.py +12 -8
  8. xinference/core/worker.py +102 -4
  9. xinference/deploy/cmdline.py +3 -1
  10. xinference/deploy/test/test_cmdline.py +56 -0
  11. xinference/isolation.py +24 -0
  12. xinference/model/audio/core.py +16 -0
  13. xinference/model/audio/cosyvoice.py +39 -6
  14. xinference/model/audio/f5tts.py +200 -0
  15. xinference/model/audio/f5tts_mlx.py +260 -0
  16. xinference/model/audio/fish_speech.py +36 -111
  17. xinference/model/audio/melotts.py +110 -0
  18. xinference/model/audio/model_spec.json +99 -3
  19. xinference/model/audio/model_spec_modelscope.json +27 -0
  20. xinference/model/audio/utils.py +32 -0
  21. xinference/model/audio/whisper.py +35 -10
  22. xinference/model/embedding/core.py +203 -142
  23. xinference/model/embedding/model_spec.json +7 -0
  24. xinference/model/embedding/model_spec_modelscope.json +8 -0
  25. xinference/model/image/core.py +69 -1
  26. xinference/model/image/model_spec.json +145 -4
  27. xinference/model/image/model_spec_modelscope.json +150 -4
  28. xinference/model/image/stable_diffusion/core.py +45 -13
  29. xinference/model/llm/__init__.py +4 -2
  30. xinference/model/llm/llm_family.json +536 -53
  31. xinference/model/llm/llm_family.py +15 -36
  32. xinference/model/llm/llm_family_modelscope.json +454 -20
  33. xinference/model/llm/memory.py +1 -1
  34. xinference/model/llm/mlx/core.py +248 -52
  35. xinference/model/llm/sglang/core.py +1 -0
  36. xinference/model/llm/transformers/chatglm.py +9 -5
  37. xinference/model/llm/transformers/cogagent.py +272 -0
  38. xinference/model/llm/transformers/core.py +2 -0
  39. xinference/model/llm/transformers/qwen2_vl.py +12 -1
  40. xinference/model/llm/transformers/utils.py +16 -8
  41. xinference/model/llm/utils.py +36 -4
  42. xinference/model/llm/vllm/core.py +53 -10
  43. xinference/model/llm/vllm/xavier/__init__.py +13 -0
  44. xinference/model/llm/vllm/xavier/allocator.py +74 -0
  45. xinference/model/llm/vllm/xavier/block.py +111 -0
  46. xinference/model/llm/vllm/xavier/block_manager.py +71 -0
  47. xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
  48. xinference/model/llm/vllm/xavier/collective.py +74 -0
  49. xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
  50. xinference/model/llm/vllm/xavier/engine.py +247 -0
  51. xinference/model/llm/vllm/xavier/executor.py +134 -0
  52. xinference/model/llm/vllm/xavier/scheduler.py +438 -0
  53. xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
  54. xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
  55. xinference/model/llm/vllm/xavier/transfer.py +319 -0
  56. xinference/model/video/diffusers.py +14 -0
  57. xinference/model/video/model_spec.json +15 -0
  58. xinference/model/video/model_spec_modelscope.json +16 -0
  59. xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
  60. xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
  61. xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
  62. xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
  63. xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
  64. xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
  65. xinference/thirdparty/cosyvoice/bin/train.py +42 -8
  66. xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
  67. xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
  68. xinference/thirdparty/cosyvoice/cli/model.py +330 -80
  69. xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
  70. xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
  71. xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
  72. xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
  73. xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
  74. xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
  75. xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
  76. xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
  77. xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
  78. xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
  79. xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
  80. xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
  81. xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
  82. xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
  83. xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
  84. xinference/thirdparty/cosyvoice/utils/common.py +28 -1
  85. xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
  86. xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
  87. xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
  88. xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
  89. xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
  90. xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
  91. xinference/thirdparty/f5_tts/api.py +166 -0
  92. xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
  93. xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
  94. xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
  95. xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
  96. xinference/thirdparty/f5_tts/eval/README.md +49 -0
  97. xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
  98. xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
  99. xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
  100. xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
  101. xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
  102. xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
  103. xinference/thirdparty/f5_tts/infer/README.md +191 -0
  104. xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
  105. xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
  106. xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
  107. xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
  108. xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
  109. xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
  110. xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
  111. xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
  112. xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
  113. xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
  114. xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
  115. xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
  116. xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
  117. xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
  118. xinference/thirdparty/f5_tts/model/__init__.py +10 -0
  119. xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
  120. xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
  121. xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
  122. xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
  123. xinference/thirdparty/f5_tts/model/cfm.py +285 -0
  124. xinference/thirdparty/f5_tts/model/dataset.py +319 -0
  125. xinference/thirdparty/f5_tts/model/modules.py +658 -0
  126. xinference/thirdparty/f5_tts/model/trainer.py +366 -0
  127. xinference/thirdparty/f5_tts/model/utils.py +185 -0
  128. xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
  129. xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
  130. xinference/thirdparty/f5_tts/socket_server.py +159 -0
  131. xinference/thirdparty/f5_tts/train/README.md +77 -0
  132. xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
  133. xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
  134. xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
  135. xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
  136. xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
  137. xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
  138. xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
  139. xinference/thirdparty/f5_tts/train/train.py +75 -0
  140. xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
  141. xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
  142. xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
  143. xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
  144. xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
  145. xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
  146. xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
  147. xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
  148. xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
  149. xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
  150. xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
  151. xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
  152. xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
  153. xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
  154. xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
  155. xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
  156. xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
  157. xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
  158. xinference/thirdparty/fish_speech/tools/schema.py +11 -28
  159. xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
  160. xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
  161. xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
  162. xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
  163. xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
  164. xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
  165. xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
  166. xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
  167. xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
  168. xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
  169. xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
  170. xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
  171. xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
  172. xinference/thirdparty/matcha/utils/utils.py +2 -2
  173. xinference/thirdparty/melo/api.py +135 -0
  174. xinference/thirdparty/melo/app.py +61 -0
  175. xinference/thirdparty/melo/attentions.py +459 -0
  176. xinference/thirdparty/melo/commons.py +160 -0
  177. xinference/thirdparty/melo/configs/config.json +94 -0
  178. xinference/thirdparty/melo/data/example/metadata.list +20 -0
  179. xinference/thirdparty/melo/data_utils.py +413 -0
  180. xinference/thirdparty/melo/download_utils.py +67 -0
  181. xinference/thirdparty/melo/infer.py +25 -0
  182. xinference/thirdparty/melo/init_downloads.py +14 -0
  183. xinference/thirdparty/melo/losses.py +58 -0
  184. xinference/thirdparty/melo/main.py +36 -0
  185. xinference/thirdparty/melo/mel_processing.py +174 -0
  186. xinference/thirdparty/melo/models.py +1030 -0
  187. xinference/thirdparty/melo/modules.py +598 -0
  188. xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
  189. xinference/thirdparty/melo/monotonic_align/core.py +46 -0
  190. xinference/thirdparty/melo/preprocess_text.py +135 -0
  191. xinference/thirdparty/melo/split_utils.py +174 -0
  192. xinference/thirdparty/melo/text/__init__.py +35 -0
  193. xinference/thirdparty/melo/text/chinese.py +199 -0
  194. xinference/thirdparty/melo/text/chinese_bert.py +107 -0
  195. xinference/thirdparty/melo/text/chinese_mix.py +253 -0
  196. xinference/thirdparty/melo/text/cleaner.py +36 -0
  197. xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
  198. xinference/thirdparty/melo/text/cmudict.rep +129530 -0
  199. xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
  200. xinference/thirdparty/melo/text/english.py +284 -0
  201. xinference/thirdparty/melo/text/english_bert.py +39 -0
  202. xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
  203. xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
  204. xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
  205. xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
  206. xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
  207. xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
  208. xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
  209. xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
  210. xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
  211. xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
  212. xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
  213. xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
  214. xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
  215. xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
  216. xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
  217. xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
  218. xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
  219. xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
  220. xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
  221. xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
  222. xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
  223. xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
  224. xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
  225. xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
  226. xinference/thirdparty/melo/text/french.py +94 -0
  227. xinference/thirdparty/melo/text/french_bert.py +39 -0
  228. xinference/thirdparty/melo/text/japanese.py +647 -0
  229. xinference/thirdparty/melo/text/japanese_bert.py +49 -0
  230. xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
  231. xinference/thirdparty/melo/text/korean.py +192 -0
  232. xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
  233. xinference/thirdparty/melo/text/spanish.py +122 -0
  234. xinference/thirdparty/melo/text/spanish_bert.py +39 -0
  235. xinference/thirdparty/melo/text/symbols.py +290 -0
  236. xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
  237. xinference/thirdparty/melo/train.py +635 -0
  238. xinference/thirdparty/melo/train.sh +19 -0
  239. xinference/thirdparty/melo/transforms.py +209 -0
  240. xinference/thirdparty/melo/utils.py +424 -0
  241. xinference/types.py +15 -0
  242. xinference/web/ui/build/asset-manifest.json +6 -6
  243. xinference/web/ui/build/index.html +1 -1
  244. xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
  245. xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
  246. xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
  247. xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
  248. xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
  249. xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
  250. xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
  251. xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
  252. xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
  253. xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
  254. xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
  255. xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
  256. xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
  257. xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
  258. xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
  259. xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
  260. xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
  261. xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
  262. xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
  263. xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
  264. xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
  265. xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
  266. xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
  267. xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
  268. xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
  269. xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
  270. xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
  271. xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
  272. xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
  273. xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
  274. xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
  275. xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
  276. xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
  277. xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
  278. xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
  279. xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
  280. xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
  281. xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
  282. xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
  283. xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
  284. xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
  285. xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
  286. xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
  287. xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
  288. xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
  289. xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
  290. xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
  291. xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
  292. xinference/web/ui/node_modules/.package-lock.json +67 -3
  293. xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
  294. xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
  295. xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
  296. xinference/web/ui/node_modules/i18next/package.json +129 -0
  297. xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
  298. xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
  299. xinference/web/ui/node_modules/react-i18next/package.json +162 -0
  300. xinference/web/ui/node_modules/void-elements/package.json +34 -0
  301. xinference/web/ui/package-lock.json +69 -3
  302. xinference/web/ui/package.json +2 -0
  303. xinference/web/ui/src/locales/en.json +186 -0
  304. xinference/web/ui/src/locales/zh.json +186 -0
  305. {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/METADATA +68 -32
  306. {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/RECORD +316 -122
  307. xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
  308. xinference/thirdparty/fish_speech/tools/api.py +0 -943
  309. xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
  310. xinference/thirdparty/fish_speech/tools/webui.py +0 -548
  311. xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
  312. xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
  313. xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
  314. xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
  315. xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
  316. xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
  317. xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
  318. xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
  319. xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
  320. xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
  321. xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
  322. xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
  323. xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
  324. xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
  325. xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
  326. xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
  327. xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
  328. xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
  329. xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
  330. xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
  331. xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
  332. xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
  333. xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
  334. /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
  335. /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
  336. /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
  337. /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
  338. /xinference/thirdparty/{fish_speech/tools → melo/text/fr_phonemizer}/__init__.py +0 -0
  339. /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
  340. {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
  341. {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/WHEEL +0 -0
  342. {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
  343. {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
@@ -15,6 +15,7 @@ import torch
15
15
  import numpy as np
16
16
  import threading
17
17
  import time
18
+ from torch.nn import functional as F
18
19
  from contextlib import nullcontext
19
20
  import uuid
20
21
  from cosyvoice.utils.common import fade_in_out
@@ -25,100 +26,134 @@ class CosyVoiceModel:
25
26
  def __init__(self,
26
27
  llm: torch.nn.Module,
27
28
  flow: torch.nn.Module,
28
- hift: torch.nn.Module):
29
+ hift: torch.nn.Module,
30
+ fp16: bool):
29
31
  self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
30
32
  self.llm = llm
31
33
  self.flow = flow
32
34
  self.hift = hift
33
- self.token_min_hop_len = 100
34
- self.token_max_hop_len = 200
35
+ self.fp16 = fp16
36
+ self.token_min_hop_len = 2 * self.flow.input_frame_rate
37
+ self.token_max_hop_len = 4 * self.flow.input_frame_rate
35
38
  self.token_overlap_len = 20
39
+ # here we fix set flow.decoder.estimator.static_chunk_size = 0 for compatibability
40
+ self.flow.decoder.estimator.static_chunk_size = 0
36
41
  # mel fade in out
37
- self.mel_overlap_len = 34
42
+ self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 22050 / 256)
38
43
  self.mel_window = np.hamming(2 * self.mel_overlap_len)
39
44
  # hift cache
40
45
  self.mel_cache_len = 20
41
46
  self.source_cache_len = int(self.mel_cache_len * 256)
47
+ # speech fade in out
48
+ self.speech_window = np.hamming(2 * self.source_cache_len)
42
49
  # rtf and decoding related
43
50
  self.stream_scale_factor = 1
44
51
  assert self.stream_scale_factor >= 1, 'stream_scale_factor should be greater than 1, change it according to your actual rtf'
45
52
  self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
46
- self.flow_hift_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
47
53
  self.lock = threading.Lock()
48
54
  # dict used to store session related variable
49
55
  self.tts_speech_token_dict = {}
50
56
  self.llm_end_dict = {}
51
57
  self.mel_overlap_dict = {}
58
+ self.flow_cache_dict = {}
52
59
  self.hift_cache_dict = {}
53
60
 
54
61
  def load(self, llm_model, flow_model, hift_model):
55
- self.llm.load_state_dict(torch.load(llm_model, map_location=self.device))
62
+ self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
56
63
  self.llm.to(self.device).eval()
57
- self.llm.half()
58
- self.flow.load_state_dict(torch.load(flow_model, map_location=self.device))
64
+ if self.fp16 is True:
65
+ self.llm.half()
66
+ self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
59
67
  self.flow.to(self.device).eval()
60
- self.hift.load_state_dict(torch.load(hift_model, map_location=self.device))
68
+ # in case hift_model is a hifigan model
69
+ hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
70
+ self.hift.load_state_dict(hift_state_dict, strict=True)
61
71
  self.hift.to(self.device).eval()
62
72
 
63
- def load_jit(self, llm_text_encoder_model, llm_llm_model):
64
- llm_text_encoder = torch.jit.load(llm_text_encoder_model)
73
+ def load_jit(self, llm_text_encoder_model, llm_llm_model, flow_encoder_model):
74
+ assert self.fp16 is True, "we only provide fp16 jit model, set fp16=True if you want to use jit model"
75
+ llm_text_encoder = torch.jit.load(llm_text_encoder_model, map_location=self.device)
65
76
  self.llm.text_encoder = llm_text_encoder
66
- llm_llm = torch.jit.load(llm_llm_model)
77
+ llm_llm = torch.jit.load(llm_llm_model, map_location=self.device)
67
78
  self.llm.llm = llm_llm
79
+ flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
80
+ self.flow.encoder = flow_encoder
81
+
82
+ def load_onnx(self, flow_decoder_estimator_model):
83
+ import onnxruntime
84
+ option = onnxruntime.SessionOptions()
85
+ option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
86
+ option.intra_op_num_threads = 1
87
+ providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
88
+ del self.flow.decoder.estimator
89
+ self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
68
90
 
69
91
  def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
92
+ if self.fp16 is True:
93
+ llm_embedding = llm_embedding.half()
70
94
  with self.llm_context:
71
95
  for i in self.llm.inference(text=text.to(self.device),
72
- text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
73
- prompt_text=prompt_text.to(self.device),
74
- prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
75
- prompt_speech_token=llm_prompt_speech_token.to(self.device),
76
- prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
77
- embedding=llm_embedding.to(self.device).half(),
78
- sampling=25,
79
- max_token_text_ratio=30,
80
- min_token_text_ratio=3):
96
+ text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
97
+ prompt_text=prompt_text.to(self.device),
98
+ prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
99
+ prompt_speech_token=llm_prompt_speech_token.to(self.device),
100
+ prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
101
+ embedding=llm_embedding.to(self.device)):
81
102
  self.tts_speech_token_dict[uuid].append(i)
82
103
  self.llm_end_dict[uuid] = True
83
104
 
84
- def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False):
85
- with self.flow_hift_context:
86
- tts_mel = self.flow.inference(token=token.to(self.device),
87
- token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
88
- prompt_token=prompt_token.to(self.device),
89
- prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
90
- prompt_feat=prompt_feat.to(self.device),
91
- prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
92
- embedding=embedding.to(self.device))
93
- # mel overlap fade in out
94
- # if self.mel_overlap_dict[uuid] is not None:
95
- # tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
96
- # append hift cache
105
+ def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, finalize=False, speed=1.0):
106
+ tts_mel, flow_cache = self.flow.inference(token=token.to(self.device),
107
+ token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
108
+ prompt_token=prompt_token.to(self.device),
109
+ prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
110
+ prompt_feat=prompt_feat.to(self.device),
111
+ prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
112
+ embedding=embedding.to(self.device),
113
+ flow_cache=self.flow_cache_dict[uuid])
114
+ self.flow_cache_dict[uuid] = flow_cache
115
+
116
+ # mel overlap fade in out
117
+ if self.mel_overlap_dict[uuid].shape[2] != 0:
118
+ tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
119
+ # append hift cache
120
+ if self.hift_cache_dict[uuid] is not None:
121
+ hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
122
+ tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
123
+ else:
124
+ hift_cache_source = torch.zeros(1, 1, 0)
125
+ # keep overlap mel and hift cache
126
+ if finalize is False:
127
+ self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
128
+ tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
129
+ tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
130
+ if self.hift_cache_dict[uuid] is not None:
131
+ tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
132
+ self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
133
+ 'source': tts_source[:, :, -self.source_cache_len:],
134
+ 'speech': tts_speech[:, -self.source_cache_len:]}
135
+ tts_speech = tts_speech[:, :-self.source_cache_len]
136
+ else:
137
+ if speed != 1.0:
138
+ assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
139
+ tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
140
+ tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
97
141
  if self.hift_cache_dict[uuid] is not None:
98
- hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
99
- tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
100
- else:
101
- hift_cache_source = torch.zeros(1, 1, 0)
102
- # keep overlap mel and hift cache
103
- if finalize is False:
104
- self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
105
- tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
106
- tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
107
- self.hift_cache_dict[uuid] = {'source': tts_source[:, :, -self.source_cache_len:], 'mel': tts_mel[:, :, -self.mel_cache_len:]}
108
- tts_speech = tts_speech[:, :-self.source_cache_len]
109
- else:
110
- tts_speech, tts_source = self.hift.inference(mel=tts_mel, cache_source=hift_cache_source)
142
+ tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
111
143
  return tts_speech
112
144
 
113
- def inference(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
114
- prompt_text=torch.zeros(1, 0, dtype=torch.int32),
115
- llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
116
- flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
117
- prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, **kwargs):
145
+ def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
146
+ prompt_text=torch.zeros(1, 0, dtype=torch.int32),
147
+ llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
148
+ flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
149
+ prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
118
150
  # this_uuid is used to track variables related to this inference thread
119
151
  this_uuid = str(uuid.uuid1())
120
152
  with self.lock:
121
- self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid], self.mel_overlap_dict[this_uuid], self.hift_cache_dict[this_uuid] = [], False, None, None
153
+ self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
154
+ self.hift_cache_dict[this_uuid] = None
155
+ self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
156
+ self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
122
157
  p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
123
158
  p.start()
124
159
  if stream is True:
@@ -126,15 +161,15 @@ class CosyVoiceModel:
126
161
  while True:
127
162
  time.sleep(0.1)
128
163
  if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
129
- this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len], dim=1)
130
- with self.flow_hift_context:
131
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
132
- prompt_token=flow_prompt_speech_token,
133
- prompt_feat=prompt_speech_feat,
134
- embedding=flow_embedding,
135
- uuid=this_uuid,
136
- finalize=False)
137
- yield {'tts_speech': this_tts_speech.cpu()}
164
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
165
+ .unsqueeze(dim=0)
166
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
167
+ prompt_token=flow_prompt_speech_token,
168
+ prompt_feat=prompt_speech_feat,
169
+ embedding=flow_embedding,
170
+ uuid=this_uuid,
171
+ finalize=False)
172
+ yield {'tts_speech': this_tts_speech.cpu()}
138
173
  with self.lock:
139
174
  self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
140
175
  # increase token_hop_len for better speech quality
@@ -143,31 +178,246 @@ class CosyVoiceModel:
143
178
  break
144
179
  p.join()
145
180
  # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
146
- this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
147
- with self.flow_hift_context:
148
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
149
- prompt_token=flow_prompt_speech_token,
150
- prompt_feat=prompt_speech_feat,
151
- embedding=flow_embedding,
152
- uuid=this_uuid,
153
- finalize=True)
181
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
182
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
183
+ prompt_token=flow_prompt_speech_token,
184
+ prompt_feat=prompt_speech_feat,
185
+ embedding=flow_embedding,
186
+ uuid=this_uuid,
187
+ finalize=True)
154
188
  yield {'tts_speech': this_tts_speech.cpu()}
155
189
  else:
156
190
  # deal with all tokens
157
191
  p.join()
158
- this_tts_speech_token = torch.concat(self.tts_speech_token_dict[this_uuid], dim=1)
159
- with self.flow_hift_context:
160
- this_tts_speech = self.token2wav(token=this_tts_speech_token,
161
- prompt_token=flow_prompt_speech_token,
162
- prompt_feat=prompt_speech_feat,
163
- embedding=flow_embedding,
164
- uuid=this_uuid,
165
- finalize=True)
192
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
193
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
194
+ prompt_token=flow_prompt_speech_token,
195
+ prompt_feat=prompt_speech_feat,
196
+ embedding=flow_embedding,
197
+ uuid=this_uuid,
198
+ finalize=True,
199
+ speed=speed)
166
200
  yield {'tts_speech': this_tts_speech.cpu()}
167
201
  with self.lock:
168
202
  self.tts_speech_token_dict.pop(this_uuid)
169
203
  self.llm_end_dict.pop(this_uuid)
170
204
  self.mel_overlap_dict.pop(this_uuid)
171
205
  self.hift_cache_dict.pop(this_uuid)
172
- if torch.cuda.is_initialized():
173
- torch.cuda.synchronize()
206
+ self.flow_cache_dict.pop(this_uuid)
207
+
208
+ def vc(self, source_speech_token, flow_prompt_speech_token, prompt_speech_feat, flow_embedding, stream=False, speed=1.0, **kwargs):
209
+ # this_uuid is used to track variables related to this inference thread
210
+ this_uuid = str(uuid.uuid1())
211
+ with self.lock:
212
+ self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = source_speech_token.flatten().tolist(), True
213
+ self.hift_cache_dict[this_uuid] = None
214
+ self.mel_overlap_dict[this_uuid] = torch.zeros(1, 80, 0)
215
+ self.flow_cache_dict[this_uuid] = torch.zeros(1, 80, 0, 2)
216
+ if stream is True:
217
+ token_hop_len = self.token_min_hop_len
218
+ while True:
219
+ if len(self.tts_speech_token_dict[this_uuid]) >= token_hop_len + self.token_overlap_len:
220
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_hop_len + self.token_overlap_len]) \
221
+ .unsqueeze(dim=0)
222
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
223
+ prompt_token=flow_prompt_speech_token,
224
+ prompt_feat=prompt_speech_feat,
225
+ embedding=flow_embedding,
226
+ uuid=this_uuid,
227
+ finalize=False)
228
+ yield {'tts_speech': this_tts_speech.cpu()}
229
+ with self.lock:
230
+ self.tts_speech_token_dict[this_uuid] = self.tts_speech_token_dict[this_uuid][token_hop_len:]
231
+ # increase token_hop_len for better speech quality
232
+ token_hop_len = min(self.token_max_hop_len, int(token_hop_len * self.stream_scale_factor))
233
+ if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) < token_hop_len + self.token_overlap_len:
234
+ break
235
+ # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
236
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
237
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
238
+ prompt_token=flow_prompt_speech_token,
239
+ prompt_feat=prompt_speech_feat,
240
+ embedding=flow_embedding,
241
+ uuid=this_uuid,
242
+ finalize=True)
243
+ yield {'tts_speech': this_tts_speech.cpu()}
244
+ else:
245
+ # deal with all tokens
246
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
247
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
248
+ prompt_token=flow_prompt_speech_token,
249
+ prompt_feat=prompt_speech_feat,
250
+ embedding=flow_embedding,
251
+ uuid=this_uuid,
252
+ finalize=True,
253
+ speed=speed)
254
+ yield {'tts_speech': this_tts_speech.cpu()}
255
+ with self.lock:
256
+ self.tts_speech_token_dict.pop(this_uuid)
257
+ self.llm_end_dict.pop(this_uuid)
258
+ self.mel_overlap_dict.pop(this_uuid)
259
+ self.hift_cache_dict.pop(this_uuid)
260
+
261
+
262
+ class CosyVoice2Model:
263
+
264
+ def __init__(self,
265
+ llm: torch.nn.Module,
266
+ flow: torch.nn.Module,
267
+ hift: torch.nn.Module):
268
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
269
+ self.llm = llm
270
+ self.flow = flow
271
+ self.hift = hift
272
+ self.token_hop_len = 2 * self.flow.input_frame_rate
273
+ # here we fix flow encoder/decoder decoding_chunk_size, in the future we will send it as arguments, or use cache
274
+ self.flow.encoder.static_chunk_size = 2 * self.flow.input_frame_rate
275
+ self.flow.decoder.estimator.static_chunk_size = 2 * self.flow.input_frame_rate * self.flow.token_mel_ratio
276
+ # hift cache
277
+ self.mel_cache_len = 8
278
+ self.source_cache_len = int(self.mel_cache_len * 480)
279
+ # speech fade in out
280
+ self.speech_window = np.hamming(2 * self.source_cache_len)
281
+ # rtf and decoding related
282
+ self.stream_scale_factor = 1
283
+ self.llm_context = torch.cuda.stream(torch.cuda.Stream(self.device)) if torch.cuda.is_available() else nullcontext()
284
+ self.lock = threading.Lock()
285
+ # dict used to store session related variable
286
+ self.tts_speech_token_dict = {}
287
+ self.llm_end_dict = {}
288
+ self.hift_cache_dict = {}
289
+
290
+ def load(self, llm_model, flow_model, hift_model):
291
+ self.llm.load_state_dict(torch.load(llm_model, map_location=self.device), strict=True)
292
+ self.llm.to(self.device).eval()
293
+ self.flow.load_state_dict(torch.load(flow_model, map_location=self.device), strict=True)
294
+ self.flow.to(self.device).eval()
295
+ self.flow.decoder.fp16 = False
296
+ # in case hift_model is a hifigan model
297
+ hift_state_dict = {k.replace('generator.', ''): v for k, v in torch.load(hift_model, map_location=self.device).items()}
298
+ self.hift.load_state_dict(hift_state_dict, strict=True)
299
+ self.hift.to(self.device).eval()
300
+
301
+ def load_jit(self, flow_encoder_model):
302
+ flow_encoder = torch.jit.load(flow_encoder_model, map_location=self.device)
303
+ self.flow.encoder = flow_encoder
304
+
305
+ def load_onnx(self, flow_decoder_estimator_model):
306
+ import onnxruntime
307
+ option = onnxruntime.SessionOptions()
308
+ option.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
309
+ option.intra_op_num_threads = 1
310
+ providers = ['CUDAExecutionProvider' if torch.cuda.is_available() else 'CPUExecutionProvider']
311
+ del self.flow.decoder.estimator
312
+ self.flow.decoder.estimator = onnxruntime.InferenceSession(flow_decoder_estimator_model, sess_options=option, providers=providers)
313
+
314
+ def load_trt(self, flow_decoder_estimator_model):
315
+ del self.flow.decoder.estimator
316
+ import tensorrt as trt
317
+ with open(flow_decoder_estimator_model, 'rb') as f:
318
+ self.flow.decoder.estimator_engine = trt.Runtime(trt.Logger(trt.Logger.INFO)).deserialize_cuda_engine(f.read())
319
+ self.flow.decoder.estimator = self.flow.decoder.estimator_engine.create_execution_context()
320
+ self.flow.decoder.fp16 = True
321
+
322
+ def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
323
+ with self.llm_context:
324
+ for i in self.llm.inference(text=text.to(self.device),
325
+ text_len=torch.tensor([text.shape[1]], dtype=torch.int32).to(self.device),
326
+ prompt_text=prompt_text.to(self.device),
327
+ prompt_text_len=torch.tensor([prompt_text.shape[1]], dtype=torch.int32).to(self.device),
328
+ prompt_speech_token=llm_prompt_speech_token.to(self.device),
329
+ prompt_speech_token_len=torch.tensor([llm_prompt_speech_token.shape[1]], dtype=torch.int32).to(self.device),
330
+ embedding=llm_embedding.to(self.device)):
331
+ self.tts_speech_token_dict[uuid].append(i)
332
+ self.llm_end_dict[uuid] = True
333
+
334
+ def token2wav(self, token, prompt_token, prompt_feat, embedding, uuid, token_offset, finalize=False, speed=1.0):
335
+ tts_mel, _ = self.flow.inference(token=token.to(self.device),
336
+ token_len=torch.tensor([token.shape[1]], dtype=torch.int32).to(self.device),
337
+ prompt_token=prompt_token.to(self.device),
338
+ prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32).to(self.device),
339
+ prompt_feat=prompt_feat.to(self.device),
340
+ prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32).to(self.device),
341
+ embedding=embedding.to(self.device),
342
+ finalize=finalize)
343
+ tts_mel = tts_mel[:, :, token_offset * self.flow.token_mel_ratio:]
344
+ # append hift cache
345
+ if self.hift_cache_dict[uuid] is not None:
346
+ hift_cache_mel, hift_cache_source = self.hift_cache_dict[uuid]['mel'], self.hift_cache_dict[uuid]['source']
347
+ tts_mel = torch.concat([hift_cache_mel, tts_mel], dim=2)
348
+ else:
349
+ hift_cache_source = torch.zeros(1, 1, 0)
350
+ # keep overlap mel and hift cache
351
+ if finalize is False:
352
+ tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
353
+ if self.hift_cache_dict[uuid] is not None:
354
+ tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
355
+ self.hift_cache_dict[uuid] = {'mel': tts_mel[:, :, -self.mel_cache_len:],
356
+ 'source': tts_source[:, :, -self.source_cache_len:],
357
+ 'speech': tts_speech[:, -self.source_cache_len:]}
358
+ tts_speech = tts_speech[:, :-self.source_cache_len]
359
+ else:
360
+ if speed != 1.0:
361
+ assert self.hift_cache_dict[uuid] is None, 'speed change only support non-stream inference mode'
362
+ tts_mel = F.interpolate(tts_mel, size=int(tts_mel.shape[2] / speed), mode='linear')
363
+ tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
364
+ if self.hift_cache_dict[uuid] is not None:
365
+ tts_speech = fade_in_out(tts_speech, self.hift_cache_dict[uuid]['speech'], self.speech_window)
366
+ return tts_speech
367
+
368
+ def tts(self, text, flow_embedding, llm_embedding=torch.zeros(0, 192),
369
+ prompt_text=torch.zeros(1, 0, dtype=torch.int32),
370
+ llm_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
371
+ flow_prompt_speech_token=torch.zeros(1, 0, dtype=torch.int32),
372
+ prompt_speech_feat=torch.zeros(1, 0, 80), stream=False, speed=1.0, **kwargs):
373
+ # this_uuid is used to track variables related to this inference thread
374
+ this_uuid = str(uuid.uuid1())
375
+ with self.lock:
376
+ self.tts_speech_token_dict[this_uuid], self.llm_end_dict[this_uuid] = [], False
377
+ self.hift_cache_dict[this_uuid] = None
378
+ p = threading.Thread(target=self.llm_job, args=(text, prompt_text, llm_prompt_speech_token, llm_embedding, this_uuid))
379
+ p.start()
380
+ if stream is True:
381
+ token_offset = 0
382
+ while True:
383
+ time.sleep(0.1)
384
+ if len(self.tts_speech_token_dict[this_uuid]) - token_offset >= self.token_hop_len + self.flow.pre_lookahead_len:
385
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid][:token_offset + self.token_hop_len + self.flow.pre_lookahead_len]).unsqueeze(dim=0)
386
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
387
+ prompt_token=flow_prompt_speech_token,
388
+ prompt_feat=prompt_speech_feat,
389
+ embedding=flow_embedding,
390
+ uuid=this_uuid,
391
+ token_offset=token_offset,
392
+ finalize=False)
393
+ token_offset += self.token_hop_len
394
+ yield {'tts_speech': this_tts_speech.cpu()}
395
+ if self.llm_end_dict[this_uuid] is True and len(self.tts_speech_token_dict[this_uuid]) - token_offset < self.token_hop_len + self.flow.pre_lookahead_len:
396
+ break
397
+ p.join()
398
+ # deal with remain tokens, make sure inference remain token len equals token_hop_len when cache_speech is not None
399
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
400
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
401
+ prompt_token=flow_prompt_speech_token,
402
+ prompt_feat=prompt_speech_feat,
403
+ embedding=flow_embedding,
404
+ uuid=this_uuid,
405
+ token_offset=token_offset,
406
+ finalize=True)
407
+ yield {'tts_speech': this_tts_speech.cpu()}
408
+ else:
409
+ # deal with all tokens
410
+ p.join()
411
+ this_tts_speech_token = torch.tensor(self.tts_speech_token_dict[this_uuid]).unsqueeze(dim=0)
412
+ this_tts_speech = self.token2wav(token=this_tts_speech_token,
413
+ prompt_token=flow_prompt_speech_token,
414
+ prompt_feat=prompt_speech_feat,
415
+ embedding=flow_embedding,
416
+ uuid=this_uuid,
417
+ token_offset=0,
418
+ finalize=True,
419
+ speed=speed)
420
+ yield {'tts_speech': this_tts_speech.cpu()}
421
+ with self.lock:
422
+ self.tts_speech_token_dict.pop(this_uuid)
423
+ self.llm_end_dict.pop(this_uuid)
@@ -126,6 +126,7 @@ class DataList(IterableDataset):
126
126
  def Dataset(data_list_file,
127
127
  data_pipeline,
128
128
  mode='train',
129
+ gan=False,
129
130
  shuffle=True,
130
131
  partition=True,
131
132
  tts_file='',
@@ -148,13 +149,16 @@ def Dataset(data_list_file,
148
149
  tts_data = json.load(f)
149
150
  utt2lists = read_json_lists(prompt_utt2data)
150
151
  # filter unnecessary file in inference mode
151
- lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists]))
152
+ lists = list({utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists})
152
153
  dataset = DataList(lists,
153
154
  shuffle=shuffle,
154
155
  partition=partition)
155
156
  if mode == 'inference':
156
- # map partial arg tts_data in inference mode
157
+ # map partial arg to parquet_opener func in inference mode
157
158
  data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data)
159
+ if gan is True:
160
+ # map partial arg to padding func in gan mode
161
+ data_pipeline[-1] = partial(data_pipeline[-1], gan=gan)
158
162
  for func in data_pipeline:
159
163
  dataset = Processor(dataset, func, mode=mode)
160
164
  return dataset