xinference 1.0.1__py3-none-any.whl → 1.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of xinference might be problematic. Click here for more details.
- xinference/_compat.py +2 -0
- xinference/_version.py +3 -3
- xinference/api/restful_api.py +77 -71
- xinference/core/chat_interface.py +6 -1
- xinference/core/model.py +79 -19
- xinference/core/supervisor.py +172 -10
- xinference/core/utils.py +12 -8
- xinference/core/worker.py +102 -4
- xinference/deploy/cmdline.py +3 -1
- xinference/deploy/test/test_cmdline.py +56 -0
- xinference/isolation.py +24 -0
- xinference/model/audio/core.py +16 -0
- xinference/model/audio/cosyvoice.py +39 -6
- xinference/model/audio/f5tts.py +200 -0
- xinference/model/audio/f5tts_mlx.py +260 -0
- xinference/model/audio/fish_speech.py +36 -111
- xinference/model/audio/melotts.py +110 -0
- xinference/model/audio/model_spec.json +99 -3
- xinference/model/audio/model_spec_modelscope.json +27 -0
- xinference/model/audio/utils.py +32 -0
- xinference/model/audio/whisper.py +35 -10
- xinference/model/embedding/core.py +203 -142
- xinference/model/embedding/model_spec.json +7 -0
- xinference/model/embedding/model_spec_modelscope.json +8 -0
- xinference/model/image/core.py +69 -1
- xinference/model/image/model_spec.json +145 -4
- xinference/model/image/model_spec_modelscope.json +150 -4
- xinference/model/image/stable_diffusion/core.py +45 -13
- xinference/model/llm/__init__.py +4 -2
- xinference/model/llm/llm_family.json +536 -53
- xinference/model/llm/llm_family.py +15 -36
- xinference/model/llm/llm_family_modelscope.json +454 -20
- xinference/model/llm/memory.py +1 -1
- xinference/model/llm/mlx/core.py +248 -52
- xinference/model/llm/sglang/core.py +1 -0
- xinference/model/llm/transformers/chatglm.py +9 -5
- xinference/model/llm/transformers/cogagent.py +272 -0
- xinference/model/llm/transformers/core.py +2 -0
- xinference/model/llm/transformers/qwen2_vl.py +12 -1
- xinference/model/llm/transformers/utils.py +16 -8
- xinference/model/llm/utils.py +36 -4
- xinference/model/llm/vllm/core.py +53 -10
- xinference/model/llm/vllm/xavier/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/allocator.py +74 -0
- xinference/model/llm/vllm/xavier/block.py +111 -0
- xinference/model/llm/vllm/xavier/block_manager.py +71 -0
- xinference/model/llm/vllm/xavier/block_tracker.py +129 -0
- xinference/model/llm/vllm/xavier/collective.py +74 -0
- xinference/model/llm/vllm/xavier/collective_manager.py +147 -0
- xinference/model/llm/vllm/xavier/engine.py +247 -0
- xinference/model/llm/vllm/xavier/executor.py +134 -0
- xinference/model/llm/vllm/xavier/scheduler.py +438 -0
- xinference/model/llm/vllm/xavier/test/__init__.py +13 -0
- xinference/model/llm/vllm/xavier/test/test_xavier.py +147 -0
- xinference/model/llm/vllm/xavier/transfer.py +319 -0
- xinference/model/video/diffusers.py +14 -0
- xinference/model/video/model_spec.json +15 -0
- xinference/model/video/model_spec_modelscope.json +16 -0
- xinference/thirdparty/cosyvoice/bin/average_model.py +92 -0
- xinference/thirdparty/cosyvoice/bin/export_jit.py +12 -2
- xinference/thirdparty/cosyvoice/bin/export_onnx.py +112 -0
- xinference/thirdparty/cosyvoice/bin/export_trt.sh +9 -0
- xinference/thirdparty/cosyvoice/bin/inference.py +5 -7
- xinference/thirdparty/cosyvoice/bin/spk2info.pt +0 -0
- xinference/thirdparty/cosyvoice/bin/train.py +42 -8
- xinference/thirdparty/cosyvoice/cli/cosyvoice.py +96 -25
- xinference/thirdparty/cosyvoice/cli/frontend.py +77 -30
- xinference/thirdparty/cosyvoice/cli/model.py +330 -80
- xinference/thirdparty/cosyvoice/dataset/dataset.py +6 -2
- xinference/thirdparty/cosyvoice/dataset/processor.py +76 -14
- xinference/thirdparty/cosyvoice/flow/decoder.py +92 -13
- xinference/thirdparty/cosyvoice/flow/flow.py +99 -9
- xinference/thirdparty/cosyvoice/flow/flow_matching.py +110 -13
- xinference/thirdparty/cosyvoice/flow/length_regulator.py +5 -4
- xinference/thirdparty/cosyvoice/hifigan/discriminator.py +140 -0
- xinference/thirdparty/cosyvoice/hifigan/generator.py +58 -42
- xinference/thirdparty/cosyvoice/hifigan/hifigan.py +67 -0
- xinference/thirdparty/cosyvoice/llm/llm.py +139 -6
- xinference/thirdparty/cosyvoice/tokenizer/assets/multilingual_zh_ja_yue_char_del.tiktoken +58836 -0
- xinference/thirdparty/cosyvoice/tokenizer/tokenizer.py +279 -0
- xinference/thirdparty/cosyvoice/transformer/embedding.py +2 -2
- xinference/thirdparty/cosyvoice/transformer/encoder_layer.py +7 -7
- xinference/thirdparty/cosyvoice/transformer/upsample_encoder.py +318 -0
- xinference/thirdparty/cosyvoice/utils/common.py +28 -1
- xinference/thirdparty/cosyvoice/utils/executor.py +69 -7
- xinference/thirdparty/cosyvoice/utils/file_utils.py +2 -12
- xinference/thirdparty/cosyvoice/utils/frontend_utils.py +9 -5
- xinference/thirdparty/cosyvoice/utils/losses.py +20 -0
- xinference/thirdparty/cosyvoice/utils/scheduler.py +1 -2
- xinference/thirdparty/cosyvoice/utils/train_utils.py +101 -45
- xinference/thirdparty/f5_tts/api.py +166 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Base_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/E2TTS_Small_train.yaml +44 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Base_train.yaml +46 -0
- xinference/thirdparty/f5_tts/configs/F5TTS_Small_train.yaml +46 -0
- xinference/thirdparty/f5_tts/eval/README.md +49 -0
- xinference/thirdparty/f5_tts/eval/ecapa_tdnn.py +330 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.py +207 -0
- xinference/thirdparty/f5_tts/eval/eval_infer_batch.sh +13 -0
- xinference/thirdparty/f5_tts/eval/eval_librispeech_test_clean.py +84 -0
- xinference/thirdparty/f5_tts/eval/eval_seedtts_testset.py +84 -0
- xinference/thirdparty/f5_tts/eval/utils_eval.py +405 -0
- xinference/thirdparty/f5_tts/infer/README.md +191 -0
- xinference/thirdparty/f5_tts/infer/SHARED.md +74 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic.toml +11 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/country.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/main.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.toml +19 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/story.txt +1 -0
- xinference/thirdparty/f5_tts/infer/examples/multi/town.flac +0 -0
- xinference/thirdparty/f5_tts/infer/examples/vocab.txt +2545 -0
- xinference/thirdparty/f5_tts/infer/infer_cli.py +226 -0
- xinference/thirdparty/f5_tts/infer/infer_gradio.py +851 -0
- xinference/thirdparty/f5_tts/infer/speech_edit.py +193 -0
- xinference/thirdparty/f5_tts/infer/utils_infer.py +538 -0
- xinference/thirdparty/f5_tts/model/__init__.py +10 -0
- xinference/thirdparty/f5_tts/model/backbones/README.md +20 -0
- xinference/thirdparty/f5_tts/model/backbones/dit.py +163 -0
- xinference/thirdparty/f5_tts/model/backbones/mmdit.py +146 -0
- xinference/thirdparty/f5_tts/model/backbones/unett.py +219 -0
- xinference/thirdparty/f5_tts/model/cfm.py +285 -0
- xinference/thirdparty/f5_tts/model/dataset.py +319 -0
- xinference/thirdparty/f5_tts/model/modules.py +658 -0
- xinference/thirdparty/f5_tts/model/trainer.py +366 -0
- xinference/thirdparty/f5_tts/model/utils.py +185 -0
- xinference/thirdparty/f5_tts/scripts/count_max_epoch.py +33 -0
- xinference/thirdparty/f5_tts/scripts/count_params_gflops.py +39 -0
- xinference/thirdparty/f5_tts/socket_server.py +159 -0
- xinference/thirdparty/f5_tts/train/README.md +77 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_csv_wavs.py +139 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_emilia.py +230 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_libritts.py +92 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_ljspeech.py +65 -0
- xinference/thirdparty/f5_tts/train/datasets/prepare_wenetspeech4tts.py +125 -0
- xinference/thirdparty/f5_tts/train/finetune_cli.py +174 -0
- xinference/thirdparty/f5_tts/train/finetune_gradio.py +1846 -0
- xinference/thirdparty/f5_tts/train/train.py +75 -0
- xinference/thirdparty/fish_speech/fish_speech/conversation.py +94 -83
- xinference/thirdparty/fish_speech/fish_speech/models/text2semantic/llama.py +63 -20
- xinference/thirdparty/fish_speech/fish_speech/text/clean.py +1 -26
- xinference/thirdparty/fish_speech/fish_speech/text/spliter.py +1 -1
- xinference/thirdparty/fish_speech/fish_speech/tokenizer.py +152 -0
- xinference/thirdparty/fish_speech/fish_speech/train.py +2 -2
- xinference/thirdparty/fish_speech/fish_speech/webui/manage.py +1 -1
- xinference/thirdparty/fish_speech/tools/{post_api.py → api_client.py} +7 -13
- xinference/thirdparty/fish_speech/tools/api_server.py +98 -0
- xinference/thirdparty/fish_speech/tools/download_models.py +5 -5
- xinference/thirdparty/fish_speech/tools/fish_e2e.py +2 -2
- xinference/thirdparty/fish_speech/tools/inference_engine/__init__.py +192 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/reference_loader.py +125 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/utils.py +39 -0
- xinference/thirdparty/fish_speech/tools/inference_engine/vq_manager.py +57 -0
- xinference/thirdparty/fish_speech/tools/llama/eval_in_context.py +2 -2
- xinference/thirdparty/fish_speech/tools/llama/generate.py +117 -89
- xinference/thirdparty/fish_speech/tools/run_webui.py +104 -0
- xinference/thirdparty/fish_speech/tools/schema.py +11 -28
- xinference/thirdparty/fish_speech/tools/server/agent/__init__.py +57 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generate.py +119 -0
- xinference/thirdparty/fish_speech/tools/server/agent/generation_utils.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/agent/pre_generation_utils.py +72 -0
- xinference/thirdparty/fish_speech/tools/server/api_utils.py +75 -0
- xinference/thirdparty/fish_speech/tools/server/exception_handler.py +27 -0
- xinference/thirdparty/fish_speech/tools/server/inference.py +45 -0
- xinference/thirdparty/fish_speech/tools/server/model_manager.py +122 -0
- xinference/thirdparty/fish_speech/tools/server/model_utils.py +129 -0
- xinference/thirdparty/fish_speech/tools/server/views.py +246 -0
- xinference/thirdparty/fish_speech/tools/webui/__init__.py +173 -0
- xinference/thirdparty/fish_speech/tools/webui/inference.py +91 -0
- xinference/thirdparty/fish_speech/tools/webui/variables.py +14 -0
- xinference/thirdparty/matcha/utils/utils.py +2 -2
- xinference/thirdparty/melo/api.py +135 -0
- xinference/thirdparty/melo/app.py +61 -0
- xinference/thirdparty/melo/attentions.py +459 -0
- xinference/thirdparty/melo/commons.py +160 -0
- xinference/thirdparty/melo/configs/config.json +94 -0
- xinference/thirdparty/melo/data/example/metadata.list +20 -0
- xinference/thirdparty/melo/data_utils.py +413 -0
- xinference/thirdparty/melo/download_utils.py +67 -0
- xinference/thirdparty/melo/infer.py +25 -0
- xinference/thirdparty/melo/init_downloads.py +14 -0
- xinference/thirdparty/melo/losses.py +58 -0
- xinference/thirdparty/melo/main.py +36 -0
- xinference/thirdparty/melo/mel_processing.py +174 -0
- xinference/thirdparty/melo/models.py +1030 -0
- xinference/thirdparty/melo/modules.py +598 -0
- xinference/thirdparty/melo/monotonic_align/__init__.py +16 -0
- xinference/thirdparty/melo/monotonic_align/core.py +46 -0
- xinference/thirdparty/melo/preprocess_text.py +135 -0
- xinference/thirdparty/melo/split_utils.py +174 -0
- xinference/thirdparty/melo/text/__init__.py +35 -0
- xinference/thirdparty/melo/text/chinese.py +199 -0
- xinference/thirdparty/melo/text/chinese_bert.py +107 -0
- xinference/thirdparty/melo/text/chinese_mix.py +253 -0
- xinference/thirdparty/melo/text/cleaner.py +36 -0
- xinference/thirdparty/melo/text/cleaner_multiling.py +110 -0
- xinference/thirdparty/melo/text/cmudict.rep +129530 -0
- xinference/thirdparty/melo/text/cmudict_cache.pickle +0 -0
- xinference/thirdparty/melo/text/english.py +284 -0
- xinference/thirdparty/melo/text/english_bert.py +39 -0
- xinference/thirdparty/melo/text/english_utils/abbreviations.py +35 -0
- xinference/thirdparty/melo/text/english_utils/number_norm.py +97 -0
- xinference/thirdparty/melo/text/english_utils/time_norm.py +47 -0
- xinference/thirdparty/melo/text/es_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/es_phonemizer/cleaner.py +109 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.json +79 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_symbols_v2.json +83 -0
- xinference/thirdparty/melo/text/es_phonemizer/es_to_ipa.py +12 -0
- xinference/thirdparty/melo/text/es_phonemizer/example_ipa.txt +400 -0
- xinference/thirdparty/melo/text/es_phonemizer/gruut_wrapper.py +253 -0
- xinference/thirdparty/melo/text/es_phonemizer/punctuation.py +174 -0
- xinference/thirdparty/melo/text/es_phonemizer/spanish_symbols.txt +1 -0
- xinference/thirdparty/melo/text/es_phonemizer/test.ipynb +124 -0
- xinference/thirdparty/melo/text/fr_phonemizer/base.py +140 -0
- xinference/thirdparty/melo/text/fr_phonemizer/cleaner.py +122 -0
- xinference/thirdparty/melo/text/fr_phonemizer/en_symbols.json +78 -0
- xinference/thirdparty/melo/text/fr_phonemizer/example_ipa.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_symbols.json +89 -0
- xinference/thirdparty/melo/text/fr_phonemizer/fr_to_ipa.py +30 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_abbreviations.py +48 -0
- xinference/thirdparty/melo/text/fr_phonemizer/french_symbols.txt +1 -0
- xinference/thirdparty/melo/text/fr_phonemizer/gruut_wrapper.py +258 -0
- xinference/thirdparty/melo/text/fr_phonemizer/punctuation.py +172 -0
- xinference/thirdparty/melo/text/french.py +94 -0
- xinference/thirdparty/melo/text/french_bert.py +39 -0
- xinference/thirdparty/melo/text/japanese.py +647 -0
- xinference/thirdparty/melo/text/japanese_bert.py +49 -0
- xinference/thirdparty/melo/text/ko_dictionary.py +44 -0
- xinference/thirdparty/melo/text/korean.py +192 -0
- xinference/thirdparty/melo/text/opencpop-strict.txt +429 -0
- xinference/thirdparty/melo/text/spanish.py +122 -0
- xinference/thirdparty/melo/text/spanish_bert.py +39 -0
- xinference/thirdparty/melo/text/symbols.py +290 -0
- xinference/thirdparty/melo/text/tone_sandhi.py +769 -0
- xinference/thirdparty/melo/train.py +635 -0
- xinference/thirdparty/melo/train.sh +19 -0
- xinference/thirdparty/melo/transforms.py +209 -0
- xinference/thirdparty/melo/utils.py +424 -0
- xinference/types.py +15 -0
- xinference/web/ui/build/asset-manifest.json +6 -6
- xinference/web/ui/build/index.html +1 -1
- xinference/web/ui/build/static/css/main.51a587ff.css +2 -0
- xinference/web/ui/build/static/css/main.51a587ff.css.map +1 -0
- xinference/web/ui/build/static/js/main.b0936c54.js +3 -0
- xinference/web/ui/build/static/js/main.b0936c54.js.map +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/03c4052f1b91f6ba0c5389bdcf49c43319b4076c08e4b8585dab312538ae290a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/1786b83003b8e9605a0f5f855a185d4d16e38fc893dfb326a2a9cca206b4240a.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/17cbc181dd674b9150b80c73ed6a82656de0082d857f6e5f66d9716129ac0b38.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/185ceb8872d562e032b47e79df6a45670e06345b8ed70aad1a131e0476783c5c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/26b8c9f34b0bed789b3a833767672e39302d1e0c09b4276f4d58d1df7b6bd93b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2b484da66c724d0d56a40849c109327408796a668b1381511b6e9e03baa48658.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2cbbbce9b84df73330d4c42b82436ed881b3847628f2fbc346aa62e2859fd88c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/2ec9b14431ed33ce6901bf9f27007be4e6e472709c99d6e22b50ce528e4b78ee.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3b966db018f96be4a055d6ca205f0990d4d0b370e2980c17d8bca2c9a021819c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/3eefb411b24c2b3ce053570ef50daccf154022f0e168be5ed0fec21394baf9f4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/522b229e3cac219123f0d69673f5570e191c2d2a505dc65b312d336eae2279c0.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/52e45f17ba300580ea3fcc9f9228ccba194bb092b76f25e9255af311f8b05aab.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/5a0bc4631f936459afc1a3b1d3ec2420118b1f00e11f60ccac3e08088f3f27a8.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/611fa2c6c53b66039991d06dfb0473b5ab37fc63b4564e0f6e1718523768a045.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/6329bc76c406fe5eb305412383fbde5950f847bb5e43261f73f37622c365acb4.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/63c8e07687ea53a4f8a910ee5e42e0eb26cd1acbfbe820f3e3248a786ee51401.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/69b2d5001684174ec9da57e07914eed3eac4960018bceb6cbfa801d861301d7c.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/710c1acda69e561e30a933b98c6a56d50197868b15c21e2aad55ab6d46649eb6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/720deca1fce5a1dc5056048fa8258fd138a82ea855f350b6613f104a73fb761f.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/76a23b92d26a499c57e61eea2b895fbc9771bd0849a72e66f8e633192017978b.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/858063f23b34dfe600254eb5afd85518b0002ec4b30b7386616c45600826e3b2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/920b82c1c89124cf217109eeedbfcd3aae3b917be50c9dfb6bbb4ce26bdfd2e7.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/94d8b7aeb0076f2ce07db598cea0e87b13bc8d5614eb530b8d6e696c2daf6f88.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9e917fe7022d01b2ccbe5cc0ce73d70bb72bee584ff293bad71bdff6695dee28.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/9f28fdb8399f1d0474f0aca86f1658dc94f5bf0c90f6146352de150692de8862.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a0dfafa06b2bb7cba8cad41c482503f61944f759f4318139362602ef5cc47ccb.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/a3ff866acddf34917a7ee399e0e571a4dfd8ba66d5057db885f243e16a6eb17d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/afb8084f539534cd594755ea2205ecd5bd1f62dddcfdf75a2eace59a28131278.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b57b1438b77294c1f3f6cfce12ac487d8106c6f016975ba0aec94d98997e2e1e.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/b9917b0bf8e4d55ccbac1c334aa04d6ff3c5b6ed9e5d38b9ea2c687fa7d3f5a9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bbcc94b0149963d1d6f267ee1f4f03d3925b758392ce2f516c3fe8af0e0169fc.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/bdee44abeadc4abc17d41c52eb49c6e19a4b1a267b6e16876ce91bdeeebfc52d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/beb112b70f4a56db95920a9e20efb6c97c37b68450716730217a9ee1a9ae92be.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/c88db97be0cdf440193b3995996e83510a04cb00048135485fc0e26d197e80b5.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d49e5314d34310a62d01a03067ce1bec5da00abce84c5196aa9c6842fa79a430.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d7664d18c4ddbad9c3a6a31b91f7c00fb0dde804608674a9860ee50f33e54708.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/d9072c318b819b7c90a0f7e9cc0b6413b4dbeb8e9859898e53d75ea882fcde99.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/db16a983bc08a05f0439cc61ca0840e49e1d8400eef678909f16c032a418a3d6.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/dc249829767b8abcbc3677e0b07b6d3ecbfdfe6d08cfe23a665eb33373a9aa9d.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/e242c583c2dbc2784f0fcf513523975f7d5df447e106c1c17e49e8578a6fc3ed.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/eac5f1296513e69e4b96f750ddccd4d0264e2bae4e4c449144e83274a48698d9.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/ed57202cb79649bb716400436590245547df241988fc7c8e1d85d132299542d2.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f125bf72e773a14cdaebd0c343e80adb909d12e317ee5c00cd4a57442fbe2c62.json +1 -0
- xinference/web/ui/node_modules/.cache/babel-loader/f91af913d7f91c410719ab13136aaed3aaf0f8dda06652f25c42cb5231587398.json +1 -0
- xinference/web/ui/node_modules/.package-lock.json +67 -3
- xinference/web/ui/node_modules/@babel/runtime/package.json +592 -538
- xinference/web/ui/node_modules/html-parse-stringify/package.json +50 -0
- xinference/web/ui/node_modules/i18next/dist/esm/package.json +1 -0
- xinference/web/ui/node_modules/i18next/package.json +129 -0
- xinference/web/ui/node_modules/react-i18next/.eslintrc.json +74 -0
- xinference/web/ui/node_modules/react-i18next/dist/es/package.json +1 -0
- xinference/web/ui/node_modules/react-i18next/package.json +162 -0
- xinference/web/ui/node_modules/void-elements/package.json +34 -0
- xinference/web/ui/package-lock.json +69 -3
- xinference/web/ui/package.json +2 -0
- xinference/web/ui/src/locales/en.json +186 -0
- xinference/web/ui/src/locales/zh.json +186 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/METADATA +68 -32
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/RECORD +316 -122
- xinference/thirdparty/cosyvoice/bin/export_trt.py +0 -8
- xinference/thirdparty/fish_speech/tools/api.py +0 -943
- xinference/thirdparty/fish_speech/tools/msgpack_api.py +0 -95
- xinference/thirdparty/fish_speech/tools/webui.py +0 -548
- xinference/web/ui/build/static/css/main.5061c4c3.css +0 -2
- xinference/web/ui/build/static/css/main.5061c4c3.css.map +0 -1
- xinference/web/ui/build/static/js/main.2f269bb3.js +0 -3
- xinference/web/ui/build/static/js/main.2f269bb3.js.map +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/07ce9e632e6aff24d7aa3ad8e48224433bbfeb0d633fca723453f1fcae0c9f1c.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1130403f9e46f5738a23b45ac59b57de8f360c908c713e2c0670c2cce9bd367a.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/131091b25d26b17cdca187d7542a21475c211138d900cf667682260e76ef9463.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/1f269fb2a368363c1cb2237825f1dba093b6bdd8c44cc05954fd19ec2c1fff03.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/331312668fa8bd3d7401818f4a25fa98135d7f61371cd6bfff78b18cf4fbdd92.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/40f17338fc75ae095de7d2b4d8eae0d5ca0193a7e2bcece4ee745b22a7a2f4b7.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/4de9a6942c5f1749d6cbfdd54279699975f16016b182848bc253886f52ec2ec3.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/822586ed1077201b64b954f12f25e3f9b45678c1acbabe53d8af3ca82ca71f33.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/8d33354bd2100c8602afc3341f131a88cc36aaeecd5a4b365ed038514708e350.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/9375a35b05d56989b2755bf72161fa707c92f28569d33765a75f91a568fda6e9.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/a158a9ffa0c9b169aee53dd4a0c44501a596755b4e4f6ede7746d65a72e2a71f.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/bd6ad8159341315a1764c397621a560809f7eb7219ab5174c801fca7e969d943.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/c7bf40bab396765f67d0fed627ed3665890608b2d0edaa3e8cb7cfc96310db45.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/d6c643278a0b28320e6f33a60f5fb64c053997cbdc39a60e53ccc574688ade9e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e42b72d4cc1ea412ebecbb8d040dc6c6bfee462c33903c2f1f3facb602ad742e.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/e64b7e8cedcf43d4c95deba60ec1341855c887705805bb62431693118b870c69.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f5039ddbeb815c51491a1989532006b96fc3ae49c6c60e3c097f875b4ae915ae.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/f72f011744c4649fabddca6f7a9327861ac0a315a89b1a2e62a39774e7863845.json +0 -1
- xinference/web/ui/node_modules/.cache/babel-loader/feabb04b4aa507102da0a64398a40818e878fd1df9b75dda8461b3e1e7ff3f11.json +0 -1
- /xinference/thirdparty/{cosyvoice/bin → f5_tts}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/flow → melo}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/hifigan → melo/text/english_utils}/__init__.py +0 -0
- /xinference/thirdparty/{cosyvoice/llm → melo/text/es_phonemizer}/__init__.py +0 -0
- /xinference/thirdparty/{fish_speech/tools → melo/text/fr_phonemizer}/__init__.py +0 -0
- /xinference/web/ui/build/static/js/{main.2f269bb3.js.LICENSE.txt → main.b0936c54.js.LICENSE.txt} +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/LICENSE +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/WHEEL +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/entry_points.txt +0 -0
- {xinference-1.0.1.dist-info → xinference-1.2.1.dist-info}/top_level.txt +0 -0
|
@@ -23,7 +23,7 @@ import torch.nn.functional as F
|
|
|
23
23
|
|
|
24
24
|
torchaudio.set_audio_backend('soundfile')
|
|
25
25
|
|
|
26
|
-
AUDIO_FORMAT_SETS =
|
|
26
|
+
AUDIO_FORMAT_SETS = {'flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'}
|
|
27
27
|
|
|
28
28
|
|
|
29
29
|
def parquet_opener(data, mode='train', tts_data={}):
|
|
@@ -40,20 +40,22 @@ def parquet_opener(data, mode='train', tts_data={}):
|
|
|
40
40
|
assert 'src' in sample
|
|
41
41
|
url = sample['src']
|
|
42
42
|
try:
|
|
43
|
-
df
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
43
|
+
for df in pq.ParquetFile(url).iter_batches(batch_size=64):
|
|
44
|
+
df = df.to_pandas()
|
|
45
|
+
for i in range(len(df)):
|
|
46
|
+
if mode == 'inference' and df.loc[i, 'utt'] not in tts_data:
|
|
47
|
+
continue
|
|
48
|
+
sample.update(dict(df.loc[i]))
|
|
49
|
+
if mode == 'train':
|
|
50
|
+
# NOTE do not return sample directly, must initialize a new dict
|
|
51
|
+
yield {**sample}
|
|
52
|
+
else:
|
|
53
|
+
for index, text in enumerate(tts_data[df.loc[i, 'utt']]):
|
|
54
|
+
yield {**sample, 'tts_index': index, 'tts_text': text}
|
|
54
55
|
except Exception as ex:
|
|
55
56
|
logging.warning('Failed to open {}, ex info {}'.format(url, ex))
|
|
56
57
|
|
|
58
|
+
|
|
57
59
|
def filter(data,
|
|
58
60
|
max_length=10240,
|
|
59
61
|
min_length=10,
|
|
@@ -84,6 +86,7 @@ def filter(data,
|
|
|
84
86
|
"""
|
|
85
87
|
for sample in data:
|
|
86
88
|
sample['speech'], sample['sample_rate'] = torchaudio.load(BytesIO(sample['audio_data']))
|
|
89
|
+
sample['speech'] = sample['speech'].mean(dim=0, keepdim=True)
|
|
87
90
|
del sample['audio_data']
|
|
88
91
|
# sample['wav'] is torch.Tensor, we have 100 frames every second
|
|
89
92
|
num_frames = sample['speech'].size(1) / sample['sample_rate'] * 100
|
|
@@ -133,6 +136,27 @@ def resample(data, resample_rate=22050, min_sample_rate=16000, mode='train'):
|
|
|
133
136
|
yield sample
|
|
134
137
|
|
|
135
138
|
|
|
139
|
+
def truncate(data, truncate_length=24576, mode='train'):
|
|
140
|
+
""" Truncate data.
|
|
141
|
+
|
|
142
|
+
Args:
|
|
143
|
+
data: Iterable[{key, wav, label, sample_rate}]
|
|
144
|
+
truncate_length: truncate length
|
|
145
|
+
|
|
146
|
+
Returns:
|
|
147
|
+
Iterable[{key, wav, label, sample_rate}]
|
|
148
|
+
"""
|
|
149
|
+
for sample in data:
|
|
150
|
+
waveform = sample['speech']
|
|
151
|
+
if waveform.shape[1] > truncate_length:
|
|
152
|
+
start = random.randint(0, waveform.shape[1] - truncate_length)
|
|
153
|
+
waveform = waveform[:, start: start + truncate_length]
|
|
154
|
+
else:
|
|
155
|
+
waveform = torch.concat([waveform, torch.zeros(1, truncate_length - waveform.shape[1])], dim=1)
|
|
156
|
+
sample['speech'] = waveform
|
|
157
|
+
yield sample
|
|
158
|
+
|
|
159
|
+
|
|
136
160
|
def compute_fbank(data,
|
|
137
161
|
feat_extractor,
|
|
138
162
|
mode='train'):
|
|
@@ -152,7 +176,27 @@ def compute_fbank(data,
|
|
|
152
176
|
waveform = sample['speech']
|
|
153
177
|
mat = feat_extractor(waveform).squeeze(dim=0).transpose(0, 1)
|
|
154
178
|
sample['speech_feat'] = mat
|
|
155
|
-
|
|
179
|
+
yield sample
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
def compute_f0(data, pitch_extractor, mode='train'):
|
|
183
|
+
""" Extract f0
|
|
184
|
+
|
|
185
|
+
Args:
|
|
186
|
+
data: Iterable[{key, wav, label, sample_rate}]
|
|
187
|
+
|
|
188
|
+
Returns:
|
|
189
|
+
Iterable[{key, feat, label}]
|
|
190
|
+
"""
|
|
191
|
+
for sample in data:
|
|
192
|
+
assert 'sample_rate' in sample
|
|
193
|
+
assert 'speech' in sample
|
|
194
|
+
assert 'utt' in sample
|
|
195
|
+
assert 'text_token' in sample
|
|
196
|
+
waveform = sample['speech']
|
|
197
|
+
mat = pitch_extractor(waveform).transpose(1, 2)
|
|
198
|
+
mat = F.interpolate(mat, size=sample['speech_feat'].shape[0], mode='linear')
|
|
199
|
+
sample['pitch_feat'] = mat[0, 0]
|
|
156
200
|
yield sample
|
|
157
201
|
|
|
158
202
|
|
|
@@ -308,7 +352,7 @@ def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, m
|
|
|
308
352
|
logging.fatal('Unsupported batch type {}'.format(batch_type))
|
|
309
353
|
|
|
310
354
|
|
|
311
|
-
def padding(data, use_spk_embedding, mode='train'):
|
|
355
|
+
def padding(data, use_spk_embedding, mode='train', gan=False):
|
|
312
356
|
""" Padding the data into training data
|
|
313
357
|
|
|
314
358
|
Args:
|
|
@@ -324,6 +368,9 @@ def padding(data, use_spk_embedding, mode='train'):
|
|
|
324
368
|
order = torch.argsort(speech_feat_len, descending=True)
|
|
325
369
|
|
|
326
370
|
utts = [sample[i]['utt'] for i in order]
|
|
371
|
+
speech = [sample[i]['speech'].squeeze(dim=0) for i in order]
|
|
372
|
+
speech_len = torch.tensor([i.size(0) for i in speech], dtype=torch.int32)
|
|
373
|
+
speech = pad_sequence(speech, batch_first=True, padding_value=0)
|
|
327
374
|
speech_token = [torch.tensor(sample[i]['speech_token']) for i in order]
|
|
328
375
|
speech_token_len = torch.tensor([i.size(0) for i in speech_token], dtype=torch.int32)
|
|
329
376
|
speech_token = pad_sequence(speech_token,
|
|
@@ -342,6 +389,8 @@ def padding(data, use_spk_embedding, mode='train'):
|
|
|
342
389
|
spk_embedding = torch.stack([sample[i]['spk_embedding'] for i in order], dim=0)
|
|
343
390
|
batch = {
|
|
344
391
|
"utts": utts,
|
|
392
|
+
"speech": speech,
|
|
393
|
+
"speech_len": speech_len,
|
|
345
394
|
"speech_token": speech_token,
|
|
346
395
|
"speech_token_len": speech_token_len,
|
|
347
396
|
"speech_feat": speech_feat,
|
|
@@ -352,6 +401,19 @@ def padding(data, use_spk_embedding, mode='train'):
|
|
|
352
401
|
"utt_embedding": utt_embedding,
|
|
353
402
|
"spk_embedding": spk_embedding,
|
|
354
403
|
}
|
|
404
|
+
if gan is True:
|
|
405
|
+
# in gan train, we need pitch_feat
|
|
406
|
+
pitch_feat = [sample[i]['pitch_feat'] for i in order]
|
|
407
|
+
pitch_feat_len = torch.tensor([i.size(0) for i in pitch_feat], dtype=torch.int32)
|
|
408
|
+
pitch_feat = pad_sequence(pitch_feat,
|
|
409
|
+
batch_first=True,
|
|
410
|
+
padding_value=0)
|
|
411
|
+
batch["pitch_feat"] = pitch_feat
|
|
412
|
+
batch["pitch_feat_len"] = pitch_feat_len
|
|
413
|
+
else:
|
|
414
|
+
# only gan train needs speech, delete it to save memory
|
|
415
|
+
del batch["speech"]
|
|
416
|
+
del batch["speech_len"]
|
|
355
417
|
if mode == 'inference':
|
|
356
418
|
tts_text = [sample[i]['tts_text'] for i in order]
|
|
357
419
|
tts_index = [sample[i]['tts_index'] for i in order]
|
|
@@ -13,16 +13,83 @@
|
|
|
13
13
|
# limitations under the License.
|
|
14
14
|
import torch
|
|
15
15
|
import torch.nn as nn
|
|
16
|
+
import torch.nn.functional as F
|
|
16
17
|
from einops import pack, rearrange, repeat
|
|
18
|
+
from cosyvoice.utils.common import mask_to_bias
|
|
19
|
+
from cosyvoice.utils.mask import add_optional_chunk_mask
|
|
17
20
|
from matcha.models.components.decoder import SinusoidalPosEmb, Block1D, ResnetBlock1D, Downsample1D, TimestepEmbedding, Upsample1D
|
|
18
21
|
from matcha.models.components.transformer import BasicTransformerBlock
|
|
19
22
|
|
|
20
23
|
|
|
24
|
+
class Transpose(torch.nn.Module):
|
|
25
|
+
def __init__(self, dim0: int, dim1: int):
|
|
26
|
+
super().__init__()
|
|
27
|
+
self.dim0 = dim0
|
|
28
|
+
self.dim1 = dim1
|
|
29
|
+
|
|
30
|
+
def forward(self, x: torch.Tensor):
|
|
31
|
+
x = torch.transpose(x, self.dim0, self.dim1)
|
|
32
|
+
return x
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
class CausalBlock1D(Block1D):
|
|
36
|
+
def __init__(self, dim: int, dim_out: int):
|
|
37
|
+
super(CausalBlock1D, self).__init__(dim, dim_out)
|
|
38
|
+
self.block = torch.nn.Sequential(
|
|
39
|
+
CausalConv1d(dim, dim_out, 3),
|
|
40
|
+
Transpose(1, 2),
|
|
41
|
+
nn.LayerNorm(dim_out),
|
|
42
|
+
Transpose(1, 2),
|
|
43
|
+
nn.Mish(),
|
|
44
|
+
)
|
|
45
|
+
|
|
46
|
+
def forward(self, x: torch.Tensor, mask: torch.Tensor):
|
|
47
|
+
output = self.block(x * mask)
|
|
48
|
+
return output * mask
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
class CausalResnetBlock1D(ResnetBlock1D):
|
|
52
|
+
def __init__(self, dim: int, dim_out: int, time_emb_dim: int, groups: int = 8):
|
|
53
|
+
super(CausalResnetBlock1D, self).__init__(dim, dim_out, time_emb_dim, groups)
|
|
54
|
+
self.block1 = CausalBlock1D(dim, dim_out)
|
|
55
|
+
self.block2 = CausalBlock1D(dim_out, dim_out)
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
class CausalConv1d(torch.nn.Conv1d):
|
|
59
|
+
def __init__(
|
|
60
|
+
self,
|
|
61
|
+
in_channels: int,
|
|
62
|
+
out_channels: int,
|
|
63
|
+
kernel_size: int,
|
|
64
|
+
stride: int = 1,
|
|
65
|
+
dilation: int = 1,
|
|
66
|
+
groups: int = 1,
|
|
67
|
+
bias: bool = True,
|
|
68
|
+
padding_mode: str = 'zeros',
|
|
69
|
+
device=None,
|
|
70
|
+
dtype=None
|
|
71
|
+
) -> None:
|
|
72
|
+
super(CausalConv1d, self).__init__(in_channels, out_channels,
|
|
73
|
+
kernel_size, stride,
|
|
74
|
+
padding=0, dilation=dilation,
|
|
75
|
+
groups=groups, bias=bias,
|
|
76
|
+
padding_mode=padding_mode,
|
|
77
|
+
device=device, dtype=dtype)
|
|
78
|
+
assert stride == 1
|
|
79
|
+
self.causal_padding = (kernel_size - 1, 0)
|
|
80
|
+
|
|
81
|
+
def forward(self, x: torch.Tensor):
|
|
82
|
+
x = F.pad(x, self.causal_padding)
|
|
83
|
+
x = super(CausalConv1d, self).forward(x)
|
|
84
|
+
return x
|
|
85
|
+
|
|
86
|
+
|
|
21
87
|
class ConditionalDecoder(nn.Module):
|
|
22
88
|
def __init__(
|
|
23
89
|
self,
|
|
24
90
|
in_channels,
|
|
25
91
|
out_channels,
|
|
92
|
+
causal=False,
|
|
26
93
|
channels=(256, 256),
|
|
27
94
|
dropout=0.05,
|
|
28
95
|
attention_head_dim=64,
|
|
@@ -39,7 +106,7 @@ class ConditionalDecoder(nn.Module):
|
|
|
39
106
|
channels = tuple(channels)
|
|
40
107
|
self.in_channels = in_channels
|
|
41
108
|
self.out_channels = out_channels
|
|
42
|
-
|
|
109
|
+
self.causal = causal
|
|
43
110
|
self.time_embeddings = SinusoidalPosEmb(in_channels)
|
|
44
111
|
time_embed_dim = channels[0] * 4
|
|
45
112
|
self.time_mlp = TimestepEmbedding(
|
|
@@ -56,7 +123,8 @@ class ConditionalDecoder(nn.Module):
|
|
|
56
123
|
input_channel = output_channel
|
|
57
124
|
output_channel = channels[i]
|
|
58
125
|
is_last = i == len(channels) - 1
|
|
59
|
-
resnet =
|
|
126
|
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
|
127
|
+
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
60
128
|
transformer_blocks = nn.ModuleList(
|
|
61
129
|
[
|
|
62
130
|
BasicTransformerBlock(
|
|
@@ -70,14 +138,16 @@ class ConditionalDecoder(nn.Module):
|
|
|
70
138
|
]
|
|
71
139
|
)
|
|
72
140
|
downsample = (
|
|
73
|
-
Downsample1D(output_channel) if not is_last else
|
|
141
|
+
Downsample1D(output_channel) if not is_last else
|
|
142
|
+
CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
74
143
|
)
|
|
75
144
|
self.down_blocks.append(nn.ModuleList([resnet, transformer_blocks, downsample]))
|
|
76
145
|
|
|
77
|
-
for
|
|
146
|
+
for _ in range(num_mid_blocks):
|
|
78
147
|
input_channel = channels[-1]
|
|
79
148
|
out_channels = channels[-1]
|
|
80
|
-
resnet =
|
|
149
|
+
resnet = CausalResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim) if self.causal else \
|
|
150
|
+
ResnetBlock1D(dim=input_channel, dim_out=output_channel, time_emb_dim=time_embed_dim)
|
|
81
151
|
|
|
82
152
|
transformer_blocks = nn.ModuleList(
|
|
83
153
|
[
|
|
@@ -99,7 +169,11 @@ class ConditionalDecoder(nn.Module):
|
|
|
99
169
|
input_channel = channels[i] * 2
|
|
100
170
|
output_channel = channels[i + 1]
|
|
101
171
|
is_last = i == len(channels) - 2
|
|
102
|
-
resnet =
|
|
172
|
+
resnet = CausalResnetBlock1D(
|
|
173
|
+
dim=input_channel,
|
|
174
|
+
dim_out=output_channel,
|
|
175
|
+
time_emb_dim=time_embed_dim,
|
|
176
|
+
) if self.causal else ResnetBlock1D(
|
|
103
177
|
dim=input_channel,
|
|
104
178
|
dim_out=output_channel,
|
|
105
179
|
time_emb_dim=time_embed_dim,
|
|
@@ -119,14 +193,13 @@ class ConditionalDecoder(nn.Module):
|
|
|
119
193
|
upsample = (
|
|
120
194
|
Upsample1D(output_channel, use_conv_transpose=True)
|
|
121
195
|
if not is_last
|
|
122
|
-
else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
196
|
+
else CausalConv1d(output_channel, output_channel, 3) if self.causal else nn.Conv1d(output_channel, output_channel, 3, padding=1)
|
|
123
197
|
)
|
|
124
198
|
self.up_blocks.append(nn.ModuleList([resnet, transformer_blocks, upsample]))
|
|
125
|
-
self.final_block = Block1D(channels[-1], channels[-1])
|
|
199
|
+
self.final_block = CausalBlock1D(channels[-1], channels[-1]) if self.causal else Block1D(channels[-1], channels[-1])
|
|
126
200
|
self.final_proj = nn.Conv1d(channels[-1], self.out_channels, 1)
|
|
127
201
|
self.initialize_weights()
|
|
128
202
|
|
|
129
|
-
|
|
130
203
|
def initialize_weights(self):
|
|
131
204
|
for m in self.modules():
|
|
132
205
|
if isinstance(m, nn.Conv1d):
|
|
@@ -159,7 +232,7 @@ class ConditionalDecoder(nn.Module):
|
|
|
159
232
|
_type_: _description_
|
|
160
233
|
"""
|
|
161
234
|
|
|
162
|
-
t = self.time_embeddings(t)
|
|
235
|
+
t = self.time_embeddings(t).to(t.dtype)
|
|
163
236
|
t = self.time_mlp(t)
|
|
164
237
|
|
|
165
238
|
x = pack([x, mu], "b * t")[0]
|
|
@@ -176,7 +249,9 @@ class ConditionalDecoder(nn.Module):
|
|
|
176
249
|
mask_down = masks[-1]
|
|
177
250
|
x = resnet(x, mask_down, t)
|
|
178
251
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
179
|
-
attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
|
252
|
+
# attn_mask = torch.matmul(mask_down.transpose(1, 2).contiguous(), mask_down)
|
|
253
|
+
attn_mask = add_optional_chunk_mask(x, mask_down.bool(), False, False, 0, self.static_chunk_size, -1)
|
|
254
|
+
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
|
180
255
|
for transformer_block in transformer_blocks:
|
|
181
256
|
x = transformer_block(
|
|
182
257
|
hidden_states=x,
|
|
@@ -193,7 +268,9 @@ class ConditionalDecoder(nn.Module):
|
|
|
193
268
|
for resnet, transformer_blocks in self.mid_blocks:
|
|
194
269
|
x = resnet(x, mask_mid, t)
|
|
195
270
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
196
|
-
attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
|
271
|
+
# attn_mask = torch.matmul(mask_mid.transpose(1, 2).contiguous(), mask_mid)
|
|
272
|
+
attn_mask = add_optional_chunk_mask(x, mask_mid.bool(), False, False, 0, self.static_chunk_size, -1)
|
|
273
|
+
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
|
197
274
|
for transformer_block in transformer_blocks:
|
|
198
275
|
x = transformer_block(
|
|
199
276
|
hidden_states=x,
|
|
@@ -208,7 +285,9 @@ class ConditionalDecoder(nn.Module):
|
|
|
208
285
|
x = pack([x[:, :, :skip.shape[-1]], skip], "b * t")[0]
|
|
209
286
|
x = resnet(x, mask_up, t)
|
|
210
287
|
x = rearrange(x, "b c t -> b t c").contiguous()
|
|
211
|
-
attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
|
288
|
+
# attn_mask = torch.matmul(mask_up.transpose(1, 2).contiguous(), mask_up)
|
|
289
|
+
attn_mask = add_optional_chunk_mask(x, mask_up.bool(), False, False, 0, self.static_chunk_size, -1)
|
|
290
|
+
attn_mask = mask_to_bias(attn_mask == 1, x.dtype)
|
|
212
291
|
for transformer_block in transformer_blocks:
|
|
213
292
|
x = transformer_block(
|
|
214
293
|
hidden_states=x,
|
|
@@ -33,8 +33,13 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|
|
33
33
|
encoder: torch.nn.Module = None,
|
|
34
34
|
length_regulator: torch.nn.Module = None,
|
|
35
35
|
decoder: torch.nn.Module = None,
|
|
36
|
-
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
|
37
|
-
|
|
36
|
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
|
37
|
+
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
|
38
|
+
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
|
39
|
+
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
|
40
|
+
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
|
41
|
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
|
42
|
+
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
|
38
43
|
super().__init__()
|
|
39
44
|
self.input_size = input_size
|
|
40
45
|
self.output_size = output_size
|
|
@@ -104,7 +109,8 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|
|
104
109
|
prompt_token_len,
|
|
105
110
|
prompt_feat,
|
|
106
111
|
prompt_feat_len,
|
|
107
|
-
embedding
|
|
112
|
+
embedding,
|
|
113
|
+
flow_cache):
|
|
108
114
|
assert token.shape[0] == 1
|
|
109
115
|
# xvec projection
|
|
110
116
|
embedding = F.normalize(embedding, dim=1)
|
|
@@ -113,23 +119,107 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|
|
113
119
|
# concat text and prompt_text
|
|
114
120
|
token_len1, token_len2 = prompt_token.shape[1], token.shape[1]
|
|
115
121
|
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
|
116
|
-
mask = (~make_pad_mask(token_len)).
|
|
122
|
+
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
|
117
123
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
|
118
124
|
|
|
119
125
|
# text encode
|
|
120
126
|
h, h_lengths = self.encoder(token, token_len)
|
|
121
127
|
h = self.encoder_proj(h)
|
|
122
|
-
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 /
|
|
123
|
-
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2)
|
|
128
|
+
mel_len1, mel_len2 = prompt_feat.shape[1], int(token_len2 / self.input_frame_rate * 22050 / 256)
|
|
129
|
+
h, h_lengths = self.length_regulator.inference(h[:, :token_len1], h[:, token_len1:], mel_len1, mel_len2, self.input_frame_rate)
|
|
124
130
|
|
|
125
131
|
# get conditions
|
|
126
132
|
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
|
|
127
133
|
conds[:, :mel_len1] = prompt_feat
|
|
128
134
|
conds = conds.transpose(1, 2)
|
|
129
135
|
|
|
130
|
-
# mask = (~make_pad_mask(feat_len)).to(h)
|
|
131
136
|
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
|
132
|
-
feat = self.decoder(
|
|
137
|
+
feat, flow_cache = self.decoder(
|
|
138
|
+
mu=h.transpose(1, 2).contiguous(),
|
|
139
|
+
mask=mask.unsqueeze(1),
|
|
140
|
+
spks=embedding,
|
|
141
|
+
cond=conds,
|
|
142
|
+
n_timesteps=10,
|
|
143
|
+
prompt_len=mel_len1,
|
|
144
|
+
flow_cache=flow_cache
|
|
145
|
+
)
|
|
146
|
+
feat = feat[:, :, mel_len1:]
|
|
147
|
+
assert feat.shape[2] == mel_len2
|
|
148
|
+
return feat, flow_cache
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
class CausalMaskedDiffWithXvec(torch.nn.Module):
|
|
152
|
+
def __init__(self,
|
|
153
|
+
input_size: int = 512,
|
|
154
|
+
output_size: int = 80,
|
|
155
|
+
spk_embed_dim: int = 192,
|
|
156
|
+
output_type: str = "mel",
|
|
157
|
+
vocab_size: int = 4096,
|
|
158
|
+
input_frame_rate: int = 50,
|
|
159
|
+
only_mask_loss: bool = True,
|
|
160
|
+
token_mel_ratio: int = 2,
|
|
161
|
+
pre_lookahead_len: int = 3,
|
|
162
|
+
encoder: torch.nn.Module = None,
|
|
163
|
+
decoder: torch.nn.Module = None,
|
|
164
|
+
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
|
165
|
+
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
|
166
|
+
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
|
167
|
+
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
|
168
|
+
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
|
169
|
+
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
|
170
|
+
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
|
171
|
+
super().__init__()
|
|
172
|
+
self.input_size = input_size
|
|
173
|
+
self.output_size = output_size
|
|
174
|
+
self.decoder_conf = decoder_conf
|
|
175
|
+
self.mel_feat_conf = mel_feat_conf
|
|
176
|
+
self.vocab_size = vocab_size
|
|
177
|
+
self.output_type = output_type
|
|
178
|
+
self.input_frame_rate = input_frame_rate
|
|
179
|
+
logging.info(f"input frame rate={self.input_frame_rate}")
|
|
180
|
+
self.input_embedding = nn.Embedding(vocab_size, input_size)
|
|
181
|
+
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size)
|
|
182
|
+
self.encoder = encoder
|
|
183
|
+
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size)
|
|
184
|
+
self.decoder = decoder
|
|
185
|
+
self.only_mask_loss = only_mask_loss
|
|
186
|
+
self.token_mel_ratio = token_mel_ratio
|
|
187
|
+
self.pre_lookahead_len = pre_lookahead_len
|
|
188
|
+
|
|
189
|
+
@torch.inference_mode()
|
|
190
|
+
def inference(self,
|
|
191
|
+
token,
|
|
192
|
+
token_len,
|
|
193
|
+
prompt_token,
|
|
194
|
+
prompt_token_len,
|
|
195
|
+
prompt_feat,
|
|
196
|
+
prompt_feat_len,
|
|
197
|
+
embedding,
|
|
198
|
+
finalize):
|
|
199
|
+
assert token.shape[0] == 1
|
|
200
|
+
# xvec projection
|
|
201
|
+
embedding = F.normalize(embedding, dim=1)
|
|
202
|
+
embedding = self.spk_embed_affine_layer(embedding)
|
|
203
|
+
|
|
204
|
+
# concat text and prompt_text
|
|
205
|
+
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
|
206
|
+
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
|
207
|
+
token = self.input_embedding(torch.clamp(token, min=0)) * mask
|
|
208
|
+
|
|
209
|
+
# text encode
|
|
210
|
+
h, h_lengths = self.encoder(token, token_len)
|
|
211
|
+
if finalize is False:
|
|
212
|
+
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
|
213
|
+
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
|
214
|
+
h = self.encoder_proj(h)
|
|
215
|
+
|
|
216
|
+
# get conditions
|
|
217
|
+
conds = torch.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device)
|
|
218
|
+
conds[:, :mel_len1] = prompt_feat
|
|
219
|
+
conds = conds.transpose(1, 2)
|
|
220
|
+
|
|
221
|
+
mask = (~make_pad_mask(torch.tensor([mel_len1 + mel_len2]))).to(h)
|
|
222
|
+
feat, _ = self.decoder(
|
|
133
223
|
mu=h.transpose(1, 2).contiguous(),
|
|
134
224
|
mask=mask.unsqueeze(1),
|
|
135
225
|
spks=embedding,
|
|
@@ -138,4 +228,4 @@ class MaskedDiffWithXvec(torch.nn.Module):
|
|
|
138
228
|
)
|
|
139
229
|
feat = feat[:, :, mel_len1:]
|
|
140
230
|
assert feat.shape[2] == mel_len2
|
|
141
|
-
return feat
|
|
231
|
+
return feat, None
|
|
@@ -11,10 +11,12 @@
|
|
|
11
11
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
12
|
# See the License for the specific language governing permissions and
|
|
13
13
|
# limitations under the License.
|
|
14
|
+
import onnxruntime
|
|
14
15
|
import torch
|
|
15
16
|
import torch.nn.functional as F
|
|
16
17
|
from matcha.models.components.flow_matching import BASECFM
|
|
17
18
|
|
|
19
|
+
|
|
18
20
|
class ConditionalCFM(BASECFM):
|
|
19
21
|
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
|
20
22
|
super().__init__(
|
|
@@ -31,7 +33,7 @@ class ConditionalCFM(BASECFM):
|
|
|
31
33
|
self.estimator = estimator
|
|
32
34
|
|
|
33
35
|
@torch.inference_mode()
|
|
34
|
-
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
|
36
|
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None, prompt_len=0, flow_cache=torch.zeros(1, 80, 0, 2)):
|
|
35
37
|
"""Forward diffusion
|
|
36
38
|
|
|
37
39
|
Args:
|
|
@@ -49,11 +51,21 @@ class ConditionalCFM(BASECFM):
|
|
|
49
51
|
sample: generated mel-spectrogram
|
|
50
52
|
shape: (batch_size, n_feats, mel_timesteps)
|
|
51
53
|
"""
|
|
54
|
+
|
|
52
55
|
z = torch.randn_like(mu) * temperature
|
|
53
|
-
|
|
56
|
+
cache_size = flow_cache.shape[2]
|
|
57
|
+
# fix prompt and overlap part mu and z
|
|
58
|
+
if cache_size != 0:
|
|
59
|
+
z[:, :, :cache_size] = flow_cache[:, :, :, 0]
|
|
60
|
+
mu[:, :, :cache_size] = flow_cache[:, :, :, 1]
|
|
61
|
+
z_cache = torch.concat([z[:, :, :prompt_len], z[:, :, -34:]], dim=2)
|
|
62
|
+
mu_cache = torch.concat([mu[:, :, :prompt_len], mu[:, :, -34:]], dim=2)
|
|
63
|
+
flow_cache = torch.stack([z_cache, mu_cache], dim=-1)
|
|
64
|
+
|
|
65
|
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
|
54
66
|
if self.t_scheduler == 'cosine':
|
|
55
67
|
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
|
56
|
-
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
|
68
|
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), flow_cache
|
|
57
69
|
|
|
58
70
|
def solve_euler(self, x, t_span, mu, mask, spks, cond):
|
|
59
71
|
"""
|
|
@@ -71,30 +83,80 @@ class ConditionalCFM(BASECFM):
|
|
|
71
83
|
cond: Not used but kept for future purposes
|
|
72
84
|
"""
|
|
73
85
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
|
86
|
+
t = t.unsqueeze(dim=0)
|
|
74
87
|
|
|
75
88
|
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
|
76
89
|
# Or in future might add like a return_all_steps flag
|
|
77
90
|
sol = []
|
|
78
91
|
|
|
92
|
+
if self.inference_cfg_rate > 0:
|
|
93
|
+
# Do not use concat, it may cause memory format changed and trt infer with wrong results!
|
|
94
|
+
x_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
|
95
|
+
mask_in = torch.zeros([2, 1, x.size(2)], device=x.device, dtype=x.dtype)
|
|
96
|
+
mu_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
|
97
|
+
t_in = torch.zeros([2], device=x.device, dtype=x.dtype)
|
|
98
|
+
spks_in = torch.zeros([2, 80], device=x.device, dtype=x.dtype)
|
|
99
|
+
cond_in = torch.zeros([2, 80, x.size(2)], device=x.device, dtype=x.dtype)
|
|
100
|
+
else:
|
|
101
|
+
x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond
|
|
79
102
|
for step in range(1, len(t_span)):
|
|
80
|
-
dphi_dt = self.estimator(x, mask, mu, t, spks, cond)
|
|
81
103
|
# Classifier-Free Guidance inference introduced in VoiceBox
|
|
82
104
|
if self.inference_cfg_rate > 0:
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
105
|
+
x_in[:] = x
|
|
106
|
+
mask_in[:] = mask
|
|
107
|
+
mu_in[0] = mu
|
|
108
|
+
t_in[:] = t.unsqueeze(0)
|
|
109
|
+
spks_in[0] = spks
|
|
110
|
+
cond_in[0] = cond
|
|
111
|
+
else:
|
|
112
|
+
x_in, mask_in, mu_in, t_in, spks_in, cond_in = x, mask, mu, t, spks, cond
|
|
113
|
+
dphi_dt = self.forward_estimator(
|
|
114
|
+
x_in, mask_in,
|
|
115
|
+
mu_in, t_in,
|
|
116
|
+
spks_in,
|
|
117
|
+
cond_in
|
|
118
|
+
)
|
|
119
|
+
if self.inference_cfg_rate > 0:
|
|
120
|
+
dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0)
|
|
121
|
+
dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt)
|
|
91
122
|
x = x + dt * dphi_dt
|
|
92
123
|
t = t + dt
|
|
93
124
|
sol.append(x)
|
|
94
125
|
if step < len(t_span) - 1:
|
|
95
126
|
dt = t_span[step + 1] - t
|
|
96
127
|
|
|
97
|
-
return sol[-1]
|
|
128
|
+
return sol[-1].float()
|
|
129
|
+
|
|
130
|
+
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
|
131
|
+
if isinstance(self.estimator, torch.nn.Module):
|
|
132
|
+
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
|
133
|
+
elif isinstance(self.estimator, onnxruntime.InferenceSession):
|
|
134
|
+
ort_inputs = {
|
|
135
|
+
'x': x.cpu().numpy(),
|
|
136
|
+
'mask': mask.cpu().numpy(),
|
|
137
|
+
'mu': mu.cpu().numpy(),
|
|
138
|
+
't': t.cpu().numpy(),
|
|
139
|
+
'spks': spks.cpu().numpy(),
|
|
140
|
+
'cond': cond.cpu().numpy()
|
|
141
|
+
}
|
|
142
|
+
output = self.estimator.run(None, ort_inputs)[0]
|
|
143
|
+
return torch.tensor(output, dtype=x.dtype, device=x.device)
|
|
144
|
+
else:
|
|
145
|
+
self.estimator.set_input_shape('x', (2, 80, x.size(2)))
|
|
146
|
+
self.estimator.set_input_shape('mask', (2, 1, x.size(2)))
|
|
147
|
+
self.estimator.set_input_shape('mu', (2, 80, x.size(2)))
|
|
148
|
+
self.estimator.set_input_shape('t', (2,))
|
|
149
|
+
self.estimator.set_input_shape('spks', (2, 80))
|
|
150
|
+
self.estimator.set_input_shape('cond', (2, 80, x.size(2)))
|
|
151
|
+
# run trt engine
|
|
152
|
+
self.estimator.execute_v2([x.contiguous().data_ptr(),
|
|
153
|
+
mask.contiguous().data_ptr(),
|
|
154
|
+
mu.contiguous().data_ptr(),
|
|
155
|
+
t.contiguous().data_ptr(),
|
|
156
|
+
spks.contiguous().data_ptr(),
|
|
157
|
+
cond.contiguous().data_ptr(),
|
|
158
|
+
x.data_ptr()])
|
|
159
|
+
return x
|
|
98
160
|
|
|
99
161
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
|
100
162
|
"""Computes diffusion loss
|
|
@@ -136,3 +198,38 @@ class ConditionalCFM(BASECFM):
|
|
|
136
198
|
pred = self.estimator(y, mask, mu, t.squeeze(), spks, cond)
|
|
137
199
|
loss = F.mse_loss(pred * mask, u * mask, reduction="sum") / (torch.sum(mask) * u.shape[1])
|
|
138
200
|
return loss, y
|
|
201
|
+
|
|
202
|
+
|
|
203
|
+
class CausalConditionalCFM(ConditionalCFM):
|
|
204
|
+
def __init__(self, in_channels, cfm_params, n_spks=1, spk_emb_dim=64, estimator: torch.nn.Module = None):
|
|
205
|
+
super().__init__(in_channels, cfm_params, n_spks, spk_emb_dim, estimator)
|
|
206
|
+
self.rand_noise = torch.randn([1, 80, 50 * 300])
|
|
207
|
+
|
|
208
|
+
@torch.inference_mode()
|
|
209
|
+
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
|
210
|
+
"""Forward diffusion
|
|
211
|
+
|
|
212
|
+
Args:
|
|
213
|
+
mu (torch.Tensor): output of encoder
|
|
214
|
+
shape: (batch_size, n_feats, mel_timesteps)
|
|
215
|
+
mask (torch.Tensor): output_mask
|
|
216
|
+
shape: (batch_size, 1, mel_timesteps)
|
|
217
|
+
n_timesteps (int): number of diffusion steps
|
|
218
|
+
temperature (float, optional): temperature for scaling noise. Defaults to 1.0.
|
|
219
|
+
spks (torch.Tensor, optional): speaker ids. Defaults to None.
|
|
220
|
+
shape: (batch_size, spk_emb_dim)
|
|
221
|
+
cond: Not used but kept for future purposes
|
|
222
|
+
|
|
223
|
+
Returns:
|
|
224
|
+
sample: generated mel-spectrogram
|
|
225
|
+
shape: (batch_size, n_feats, mel_timesteps)
|
|
226
|
+
"""
|
|
227
|
+
|
|
228
|
+
z = self.rand_noise[:, :, :mu.size(2)].to(mu.device) * temperature
|
|
229
|
+
if self.fp16 is True:
|
|
230
|
+
z = z.half()
|
|
231
|
+
# fix prompt and overlap part mu and z
|
|
232
|
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
|
233
|
+
if self.t_scheduler == 'cosine':
|
|
234
|
+
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
|
235
|
+
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond), None
|