warp-lang 0.9.0__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +15 -7
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +22 -443
- warp/build_dll.py +384 -0
- warp/builtins.py +998 -488
- warp/codegen.py +1307 -739
- warp/config.py +5 -3
- warp/constants.py +6 -0
- warp/context.py +1291 -548
- warp/dlpack.py +31 -31
- warp/fabric.py +326 -0
- warp/fem/__init__.py +27 -0
- warp/fem/cache.py +389 -0
- warp/fem/dirichlet.py +181 -0
- warp/fem/domain.py +263 -0
- warp/fem/field/__init__.py +101 -0
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +299 -0
- warp/fem/field/restriction.py +21 -0
- warp/fem/field/test.py +181 -0
- warp/fem/field/trial.py +183 -0
- warp/fem/geometry/__init__.py +19 -0
- warp/fem/geometry/closest_point.py +70 -0
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +744 -0
- warp/fem/geometry/geometry.py +186 -0
- warp/fem/geometry/grid_2d.py +373 -0
- warp/fem/geometry/grid_3d.py +435 -0
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +376 -0
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +840 -0
- warp/fem/geometry/trimesh_2d.py +577 -0
- warp/fem/integrate.py +1616 -0
- warp/fem/operator.py +191 -0
- warp/fem/polynomial.py +213 -0
- warp/fem/quadrature/__init__.py +2 -0
- warp/fem/quadrature/pic_quadrature.py +245 -0
- warp/fem/quadrature/quadrature.py +294 -0
- warp/fem/space/__init__.py +292 -0
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +236 -0
- warp/fem/space/function_space.py +145 -0
- warp/fem/space/grid_2d_function_space.py +267 -0
- warp/fem/space/grid_3d_function_space.py +306 -0
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +350 -0
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +160 -0
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +292 -0
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +221 -0
- warp/fem/types.py +77 -0
- warp/fem/utils.py +495 -0
- warp/native/array.h +164 -55
- warp/native/builtin.h +150 -174
- warp/native/bvh.cpp +75 -328
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +37 -45
- warp/native/clang/clang.cpp +136 -24
- warp/native/crt.cpp +1 -76
- warp/native/crt.h +111 -104
- warp/native/cuda_crt.h +1049 -0
- warp/native/cuda_util.cpp +15 -3
- warp/native/cuda_util.h +3 -1
- warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
- warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
- warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
- warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
- warp/native/cutlass/tools/library/scripts/library.py +799 -0
- warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
- warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
- warp/native/cutlass/tools/library/scripts/rt.py +796 -0
- warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
- warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
- warp/native/cutlass_gemm.cu +5 -3
- warp/native/exports.h +1240 -949
- warp/native/fabric.h +228 -0
- warp/native/hashgrid.cpp +4 -4
- warp/native/hashgrid.h +22 -2
- warp/native/initializer_array.h +2 -2
- warp/native/intersect.h +22 -7
- warp/native/intersect_adj.h +8 -8
- warp/native/intersect_tri.h +13 -16
- warp/native/marching.cu +157 -161
- warp/native/mat.h +119 -19
- warp/native/matnn.h +2 -2
- warp/native/mesh.cpp +108 -83
- warp/native/mesh.cu +243 -6
- warp/native/mesh.h +1547 -458
- warp/native/nanovdb/NanoVDB.h +1 -1
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +45 -35
- warp/native/range.h +6 -2
- warp/native/reduce.cpp +157 -0
- warp/native/reduce.cu +348 -0
- warp/native/runlength_encode.cpp +62 -0
- warp/native/runlength_encode.cu +46 -0
- warp/native/scan.cu +11 -13
- warp/native/scan.h +1 -0
- warp/native/solid_angle.h +442 -0
- warp/native/sort.cpp +13 -0
- warp/native/sort.cu +9 -1
- warp/native/sparse.cpp +338 -0
- warp/native/sparse.cu +545 -0
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +30 -0
- warp/native/vec.h +126 -24
- warp/native/volume.h +120 -0
- warp/native/warp.cpp +658 -53
- warp/native/warp.cu +660 -68
- warp/native/warp.h +112 -12
- warp/optim/__init__.py +1 -0
- warp/optim/linear.py +922 -0
- warp/optim/sgd.py +92 -0
- warp/render/render_opengl.py +392 -152
- warp/render/render_usd.py +11 -11
- warp/sim/__init__.py +2 -2
- warp/sim/articulation.py +385 -185
- warp/sim/collide.py +21 -8
- warp/sim/import_mjcf.py +297 -106
- warp/sim/import_urdf.py +389 -210
- warp/sim/import_usd.py +198 -97
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_euler.py +14 -8
- warp/sim/integrator_xpbd.py +161 -19
- warp/sim/model.py +795 -291
- warp/sim/optimizer.py +2 -6
- warp/sim/render.py +65 -3
- warp/sim/utils.py +3 -0
- warp/sparse.py +1227 -0
- warp/stubs.py +665 -223
- warp/tape.py +66 -15
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +128 -74
- warp/tests/test_array.py +1497 -211
- warp/tests/test_array_reduce.py +150 -0
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +99 -0
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +75 -43
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +233 -128
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +136 -108
- warp/tests/test_examples.py +277 -0
- warp/tests/test_fabricarray.py +955 -0
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1271 -0
- warp/tests/test_fp16.py +53 -19
- warp/tests/test_func.py +187 -74
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +180 -116
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +52 -37
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +577 -24
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +251 -15
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_linear_solvers.py +154 -0
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +508 -2778
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +305 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +71 -14
- warp/tests/test_mesh_query_aabb.py +41 -25
- warp/tests/test_mesh_query_point.py +325 -34
- warp/tests/test_mesh_query_ray.py +39 -22
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +190 -0
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +460 -0
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +331 -85
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +118 -89
- warp/tests/test_transient_module.py +12 -13
- warp/tests/test_types.py +614 -0
- warp/tests/test_utils.py +494 -0
- warp/tests/test_vec.py +354 -1987
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +457 -293
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +341 -0
- warp/tests/unittest_utils.py +568 -0
- warp/tests/unused_test_misc.py +71 -0
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +549 -0
- warp/torch.py +72 -30
- warp/types.py +1744 -713
- warp/utils.py +360 -350
- warp_lang-0.11.0.dist-info/LICENSE.md +36 -0
- warp_lang-0.11.0.dist-info/METADATA +238 -0
- warp_lang-0.11.0.dist-info/RECORD +332 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
- warp/bin/warp-clang.exp +0 -0
- warp/bin/warp-clang.lib +0 -0
- warp/bin/warp.exp +0 -0
- warp/bin/warp.lib +0 -0
- warp/tests/test_all.py +0 -215
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-0.9.0.dist-info/METADATA +0 -20
- warp_lang-0.9.0.dist-info/RECORD +0 -177
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,76 @@
|
|
|
1
|
+
#################################################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
4
|
+
# SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
#
|
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
|
7
|
+
# modification, are permitted provided that the following conditions are met:
|
|
8
|
+
#
|
|
9
|
+
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
10
|
+
# list of conditions and the following disclaimer.
|
|
11
|
+
#
|
|
12
|
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
13
|
+
# this list of conditions and the following disclaimer in the documentation
|
|
14
|
+
# and/or other materials provided with the distribution.
|
|
15
|
+
#
|
|
16
|
+
# 3. Neither the name of the copyright holder nor the names of its
|
|
17
|
+
# contributors may be used to endorse or promote products derived from
|
|
18
|
+
# this software without specific prior written permission.
|
|
19
|
+
#
|
|
20
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
21
|
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
22
|
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
23
|
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
24
|
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
25
|
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
26
|
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
27
|
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
28
|
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
29
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
30
|
+
#
|
|
31
|
+
#################################################################################################
|
|
32
|
+
|
|
33
|
+
"""
|
|
34
|
+
Utility functions for interacting with the device
|
|
35
|
+
"""
|
|
36
|
+
|
|
37
|
+
from cuda import cudart
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
def check_cuda_errors(result: list):
|
|
41
|
+
"""
|
|
42
|
+
Checks whether `result` contains a CUDA error raises the error as an exception, if so. Otherwise,
|
|
43
|
+
returns the result contained in the remaining fields of `result`.
|
|
44
|
+
|
|
45
|
+
:param result: the results of the `cudart` method, consisting of an error code and any method results
|
|
46
|
+
:type result: list
|
|
47
|
+
|
|
48
|
+
:return: non-error-code results from the `results` parameter
|
|
49
|
+
"""
|
|
50
|
+
# `result` is of the format : (cudaError_t, result...)
|
|
51
|
+
err = result[0]
|
|
52
|
+
if err.value:
|
|
53
|
+
raise RuntimeError("CUDA error: {}".format(cudart.cudaGetErrorName(err)))
|
|
54
|
+
|
|
55
|
+
if len(result) == 1:
|
|
56
|
+
return None
|
|
57
|
+
elif len(result) == 2:
|
|
58
|
+
return result[1]
|
|
59
|
+
else:
|
|
60
|
+
return result[1:]
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def device_cc(device: int = 0) -> int:
|
|
64
|
+
"""
|
|
65
|
+
Returns the compute capability of the device with ID `device`.
|
|
66
|
+
|
|
67
|
+
:param device: ID of the device to query
|
|
68
|
+
:type device: int
|
|
69
|
+
|
|
70
|
+
:return: compute capability of the queried device (e.g., 80 for SM80)
|
|
71
|
+
:rtype: int
|
|
72
|
+
"""
|
|
73
|
+
deviceProp = check_cuda_errors(cudart.cudaGetDeviceProperties(device))
|
|
74
|
+
major = str(deviceProp.major)
|
|
75
|
+
minor = str(deviceProp.minor)
|
|
76
|
+
return int(major + minor)
|
|
@@ -0,0 +1,255 @@
|
|
|
1
|
+
#################################################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
4
|
+
# SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
#
|
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
|
7
|
+
# modification, are permitted provided that the following conditions are met:
|
|
8
|
+
#
|
|
9
|
+
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
10
|
+
# list of conditions and the following disclaimer.
|
|
11
|
+
#
|
|
12
|
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
13
|
+
# this list of conditions and the following disclaimer in the documentation
|
|
14
|
+
# and/or other materials provided with the distribution.
|
|
15
|
+
#
|
|
16
|
+
# 3. Neither the name of the copyright holder nor the names of its
|
|
17
|
+
# contributors may be used to endorse or promote products derived from
|
|
18
|
+
# this software without specific prior written permission.
|
|
19
|
+
#
|
|
20
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
21
|
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
22
|
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
23
|
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
24
|
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
25
|
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
26
|
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
27
|
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
28
|
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
29
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
30
|
+
#
|
|
31
|
+
#################################################################################################
|
|
32
|
+
|
|
33
|
+
import numpy as np
|
|
34
|
+
import cutlass
|
|
35
|
+
from pycutlass.library import TensorDescription
|
|
36
|
+
from typing import Union
|
|
37
|
+
from bfloat16 import bfloat16
|
|
38
|
+
try:
|
|
39
|
+
import torch
|
|
40
|
+
torch_available = True
|
|
41
|
+
except ImportError:
|
|
42
|
+
torch_available = False
|
|
43
|
+
|
|
44
|
+
class ReferenceModule:
|
|
45
|
+
def __init__(self, A: TensorDescription, B: TensorDescription, C: TensorDescription) -> None:
|
|
46
|
+
self.layout_A = A.layout
|
|
47
|
+
self.layout_B = B.layout
|
|
48
|
+
self.layout_C = C.layout
|
|
49
|
+
|
|
50
|
+
def run(self, A: np.ndarray, B: np.ndarray, C: np.ndarray, problem_size: cutlass.gemm.GemmCoord, alpha: float=1.0, beta: float=0.0, bias=False, batch=1):
|
|
51
|
+
"""
|
|
52
|
+
Compute the reference result on CPU
|
|
53
|
+
Args:
|
|
54
|
+
A: dense operator with shape (M, K) in row-major and (K, M) in column-major
|
|
55
|
+
B: dense operator with shape (K, N) in row-major and (N, K) in column-major
|
|
56
|
+
C: dense operator with shape (M, N) in row-major and (N, M) in column-major
|
|
57
|
+
"""
|
|
58
|
+
M, N, K = problem_size.m(), problem_size.n(), problem_size.k()
|
|
59
|
+
if isinstance(A, np.ndarray):
|
|
60
|
+
if self.layout_A == cutlass.RowMajor:
|
|
61
|
+
A_row = np.reshape(A, newshape=(batch, M, K))
|
|
62
|
+
else:
|
|
63
|
+
A_col = np.reshape(A, newshape=(batch, K, M))
|
|
64
|
+
A_row = np.transpose(A_col, axes=(0, 2, 1))
|
|
65
|
+
|
|
66
|
+
if self.layout_B == cutlass.RowMajor:
|
|
67
|
+
B_row = np.reshape(B, newshape=(batch, K, N))
|
|
68
|
+
else:
|
|
69
|
+
B_col = np.reshape(B, newshape=(batch, N, K))
|
|
70
|
+
B_row = np.transpose(B_col, axes=(0, 2, 1))
|
|
71
|
+
|
|
72
|
+
if self.layout_C == cutlass.RowMajor:
|
|
73
|
+
if bias:
|
|
74
|
+
C_row = np.reshape(C, newshape=(batch, 1, N))
|
|
75
|
+
else:
|
|
76
|
+
C_row = np.reshape(C, newshape=(batch, M, N))
|
|
77
|
+
else:
|
|
78
|
+
if bias:
|
|
79
|
+
C_row = np.reshape(C, newshape=(batch, M, 1))
|
|
80
|
+
else:
|
|
81
|
+
C_col = np.reshape(C, newshape=(batch, N, M))
|
|
82
|
+
C_row = np.transpose(C_col, axes=(0, 2, 1))
|
|
83
|
+
|
|
84
|
+
if A_row.dtype == bfloat16:
|
|
85
|
+
# numpy's einsum doesn't support bfloat16
|
|
86
|
+
out_row = np.einsum("bik,bkj->bij", A_row.astype(np.float32), B_row.astype(np.float32)) * alpha + C_row * beta
|
|
87
|
+
out_row = out_row.astype(C_row.dtype)
|
|
88
|
+
else:
|
|
89
|
+
out_row = np.einsum("bik,bkj->bij", A_row, B_row) * alpha + C_row * beta
|
|
90
|
+
|
|
91
|
+
if self.layout_C == cutlass.ColumnMajor:
|
|
92
|
+
out = np.transpose(out_row, axes=(0, 2, 1))
|
|
93
|
+
else:
|
|
94
|
+
out = out_row
|
|
95
|
+
|
|
96
|
+
return out.ravel()
|
|
97
|
+
|
|
98
|
+
elif isinstance(A, torch.Tensor):
|
|
99
|
+
if self.layout_A == cutlass.RowMajor:
|
|
100
|
+
A_row = A.view((M, K))
|
|
101
|
+
else:
|
|
102
|
+
A_col = A.view((K, M))
|
|
103
|
+
A_row = torch.permute(A_col, (1, 0))
|
|
104
|
+
|
|
105
|
+
if self.layout_B == cutlass.RowMajor:
|
|
106
|
+
B_row = B.view((K, N))
|
|
107
|
+
else:
|
|
108
|
+
B_col = B.view((N, K))
|
|
109
|
+
B_row = torch.permute(B_col, (1, 0))
|
|
110
|
+
|
|
111
|
+
if self.layout_C == cutlass.RowMajor:
|
|
112
|
+
C_row = C.view((M, N))
|
|
113
|
+
else:
|
|
114
|
+
C_col = C.view((N, M))
|
|
115
|
+
C_row = torch.permute(C_col, (1, 0))
|
|
116
|
+
|
|
117
|
+
out_row = torch.matmul(A_row, B_row) * alpha + C_row * beta
|
|
118
|
+
|
|
119
|
+
if self.layout_C == cutlass.ColumnMajor:
|
|
120
|
+
out = torch.permute(out_row, (1, 0))
|
|
121
|
+
else:
|
|
122
|
+
out = out_row
|
|
123
|
+
|
|
124
|
+
return torch.flatten(out)
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
|
|
128
|
+
#####################################################################################################
|
|
129
|
+
# Conv2d
|
|
130
|
+
#####################################################################################################
|
|
131
|
+
|
|
132
|
+
if torch_available:
|
|
133
|
+
class Conv2dReferenceModule:
|
|
134
|
+
def __init__(self, A: TensorDescription, B: TensorDescription, C: TensorDescription, kind: cutlass.conv.Operator.fprop) -> None:
|
|
135
|
+
self.layout_A = A.layout
|
|
136
|
+
self.layout_B = B.layout
|
|
137
|
+
self.layout_C = C.layout
|
|
138
|
+
self.kind = kind
|
|
139
|
+
|
|
140
|
+
def run(self,
|
|
141
|
+
A: Union[np.ndarray, torch.Tensor],
|
|
142
|
+
B: Union[np.ndarray, torch.Tensor],
|
|
143
|
+
C: Union[np.ndarray, torch.Tensor], problem_size, alpha=1.0, beta=0.0, bias=False) -> np.ndarray:
|
|
144
|
+
"""
|
|
145
|
+
Compute the reference result on CPU
|
|
146
|
+
"""
|
|
147
|
+
n = problem_size.N
|
|
148
|
+
h = problem_size.H
|
|
149
|
+
w = problem_size.W
|
|
150
|
+
c = problem_size.C
|
|
151
|
+
|
|
152
|
+
k = problem_size.K
|
|
153
|
+
r = problem_size.R
|
|
154
|
+
s = problem_size.S
|
|
155
|
+
|
|
156
|
+
p = problem_size.P
|
|
157
|
+
q = problem_size.Q
|
|
158
|
+
|
|
159
|
+
stride_h = problem_size.stride_h
|
|
160
|
+
stride_w = problem_size.stride_w
|
|
161
|
+
|
|
162
|
+
pad_h = problem_size.pad_h
|
|
163
|
+
pad_w = problem_size.pad_w
|
|
164
|
+
|
|
165
|
+
dilation_h = problem_size.dilation_h
|
|
166
|
+
dilation_w = problem_size.dilation_w
|
|
167
|
+
|
|
168
|
+
groups = problem_size.groups
|
|
169
|
+
|
|
170
|
+
if isinstance(A, np.ndarray):
|
|
171
|
+
# the pytorch activation layout is NCHW
|
|
172
|
+
# weight layout is Cout Cin Kh Kw (also NCHW)
|
|
173
|
+
if self.layout_A == cutlass.TensorNHWC:
|
|
174
|
+
A_nhwc = np.reshape(A, newshape=(n, h, w, c))
|
|
175
|
+
A_torch_nhwc = torch.from_numpy(A_nhwc).to("cuda")
|
|
176
|
+
A_torch_nchw = torch.permute(A_torch_nhwc, (0, 3, 1, 2))
|
|
177
|
+
|
|
178
|
+
if self.layout_B == cutlass.TensorNHWC:
|
|
179
|
+
B_nhwc = np.reshape(B, newshape=(k, r, s, c))
|
|
180
|
+
B_torch_nhwc = torch.from_numpy(B_nhwc).to("cuda")
|
|
181
|
+
B_torch_nchw = torch.permute(B_torch_nhwc, (0, 3, 1, 2))
|
|
182
|
+
|
|
183
|
+
if self.layout_C == cutlass.TensorNHWC:
|
|
184
|
+
C_nhwc = np.reshape(C, newshape=(n, p, q, k))
|
|
185
|
+
C_torch_nhwc = torch.from_numpy(C_nhwc).to("cuda")
|
|
186
|
+
C_torch_nchw = torch.permute(C_torch_nhwc, (0, 3, 1, 2))
|
|
187
|
+
|
|
188
|
+
elif isinstance(A, torch.Tensor):
|
|
189
|
+
if self.kind == cutlass.conv.Operator.wgrad:
|
|
190
|
+
if self.layout_A == cutlass.TensorNHWC:
|
|
191
|
+
A_nhwc = A.view((n, p, q, k))
|
|
192
|
+
A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2))
|
|
193
|
+
|
|
194
|
+
if self.layout_B == cutlass.TensorNHWC:
|
|
195
|
+
B_nhwc = B.view((n, h, w, c))
|
|
196
|
+
B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2))
|
|
197
|
+
|
|
198
|
+
if self.layout_C == cutlass.TensorNHWC:
|
|
199
|
+
if bias:
|
|
200
|
+
C_nhwc = C.view((1, 1, 1, c))
|
|
201
|
+
else:
|
|
202
|
+
C_nhwc = C.view((k, r, s, c))
|
|
203
|
+
C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2))
|
|
204
|
+
elif self.kind == cutlass.conv.Operator.dgrad:
|
|
205
|
+
if self.layout_A == cutlass.TensorNHWC:
|
|
206
|
+
A_nhwc = A.view((n, p, q, k))
|
|
207
|
+
A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2))
|
|
208
|
+
|
|
209
|
+
if self.layout_B == cutlass.TensorNHWC:
|
|
210
|
+
B_nhwc = B.view((k, r, s, c))
|
|
211
|
+
B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2))
|
|
212
|
+
|
|
213
|
+
if self.layout_C == cutlass.TensorNHWC:
|
|
214
|
+
if bias:
|
|
215
|
+
C_nhwc = C.view((1, 1, 1, c))
|
|
216
|
+
else:
|
|
217
|
+
C_nhwc = C.view((n, h, w, c))
|
|
218
|
+
C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2))
|
|
219
|
+
else:
|
|
220
|
+
if self.layout_A == cutlass.TensorNHWC:
|
|
221
|
+
A_nhwc = A.view((n, h, w, c))
|
|
222
|
+
A_torch_nchw = torch.permute(A_nhwc, (0, 3, 1, 2))
|
|
223
|
+
|
|
224
|
+
if self.layout_B == cutlass.TensorNHWC:
|
|
225
|
+
B_nhwc = B.view((k, r, s, c))
|
|
226
|
+
B_torch_nchw = torch.permute(B_nhwc, (0, 3, 1, 2))
|
|
227
|
+
|
|
228
|
+
if self.layout_C == cutlass.TensorNHWC:
|
|
229
|
+
if bias:
|
|
230
|
+
C_nhwc = C.view((1, 1, 1, k))
|
|
231
|
+
else:
|
|
232
|
+
C_nhwc = C.view((n, p, q, k))
|
|
233
|
+
C_torch_nchw = torch.permute(C_nhwc, (0, 3, 1, 2))
|
|
234
|
+
|
|
235
|
+
if self.kind == cutlass.conv.Operator.fprop:
|
|
236
|
+
D_torch_nchw = alpha * torch.nn.functional.conv2d(
|
|
237
|
+
A_torch_nchw, B_torch_nchw, stride=(stride_h, stride_w),
|
|
238
|
+
padding=(pad_h, pad_w), dilation=(dilation_h, dilation_w), groups=groups) + beta * C_torch_nchw
|
|
239
|
+
elif self.kind == cutlass.conv.Operator.dgrad:
|
|
240
|
+
D_torch_nchw = alpha * torch.nn.grad.conv2d_input(
|
|
241
|
+
(n, c, h, w), B_torch_nchw, A_torch_nchw, padding=(pad_h, pad_w), stride=(stride_h, stride_w)
|
|
242
|
+
).to(torch.float32) + beta * C_torch_nchw
|
|
243
|
+
elif self.kind == cutlass.conv.Operator.wgrad:
|
|
244
|
+
D_torch_nchw = alpha * torch.nn.grad.conv2d_weight(
|
|
245
|
+
B_torch_nchw, (k, c, r, s), A_torch_nchw, padding=(pad_h, pad_w), stride=(stride_h, stride_w)
|
|
246
|
+
).to(torch.float32) + beta * C_torch_nchw
|
|
247
|
+
|
|
248
|
+
|
|
249
|
+
if self.layout_C == cutlass.TensorNHWC:
|
|
250
|
+
if isinstance(A, np.ndarray):
|
|
251
|
+
D_torch_out = torch.permute(D_torch_nchw, (0, 2, 3, 1)).detach().cpu().numpy()
|
|
252
|
+
elif isinstance(A, torch.Tensor):
|
|
253
|
+
D_torch_out = torch.permute(D_torch_nchw, (0, 2, 3, 1))
|
|
254
|
+
|
|
255
|
+
return D_torch_out.flatten()
|
|
File without changes
|
|
@@ -0,0 +1,201 @@
|
|
|
1
|
+
# test/unit/conv/device/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.cu
|
|
2
|
+
from pycutlass.conv2d_operation import *
|
|
3
|
+
from pycutlass import *
|
|
4
|
+
from pycutlass.test import *
|
|
5
|
+
from pycutlass.utils.device import device_cc
|
|
6
|
+
import unittest
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@unittest.skipIf(device_cc() < 80, "Device compute capability is insufficient for SM80 tests.")
|
|
10
|
+
class Conv2dDgradImplicitGemmF16nhwcF16nhwcF16nhwcTensorOpF16SM80(unittest.TestCase):
|
|
11
|
+
def test_SM80_Device_Conv2d_Dgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16(self):
|
|
12
|
+
math_inst = MathInstruction(
|
|
13
|
+
instruction_shape=[16, 8, 16],
|
|
14
|
+
element_a=cutlass.float16, element_b=cutlass.float16,
|
|
15
|
+
element_accumulator=cutlass.float16, opcode_class=cutlass.OpClass.TensorOp,
|
|
16
|
+
math_operation=MathOperation.multiply_add
|
|
17
|
+
)
|
|
18
|
+
|
|
19
|
+
A = TensorDescription(
|
|
20
|
+
element=math_inst.element_a,
|
|
21
|
+
layout=cutlass.TensorNHWC,
|
|
22
|
+
alignment=8)
|
|
23
|
+
B = TensorDescription(
|
|
24
|
+
element=math_inst.element_b,
|
|
25
|
+
layout=cutlass.TensorNHWC,
|
|
26
|
+
alignment=8)
|
|
27
|
+
C = TensorDescription(
|
|
28
|
+
element=cutlass.float16,
|
|
29
|
+
layout=cutlass.TensorNHWC,
|
|
30
|
+
alignment=8)
|
|
31
|
+
|
|
32
|
+
tile_description = TileDescription(
|
|
33
|
+
threadblock_shape=[128, 128, 64], stages=3,
|
|
34
|
+
warp_count=[2, 2, 1],
|
|
35
|
+
math_instruction=math_inst
|
|
36
|
+
)
|
|
37
|
+
|
|
38
|
+
epilogue_functor = LinearCombination(
|
|
39
|
+
C.element, C.alignment,
|
|
40
|
+
math_inst.element_accumulator, cutlass.float16)
|
|
41
|
+
|
|
42
|
+
operation = Conv2dOperation(
|
|
43
|
+
conv_kind=cutlass.conv.Operator.dgrad, iterator_algorithm=cutlass.conv.IteratorAlgorithm.analytic,
|
|
44
|
+
arch=80, tile_description=tile_description, A=A, B=B, C=C,
|
|
45
|
+
stride_support=StrideSupport.Unity,
|
|
46
|
+
epilogue_functor=epilogue_functor,
|
|
47
|
+
swizzling_functor=cutlass.IdentitySwizzle1
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
self.assertTrue(test_all_conv2d(operation))
|
|
51
|
+
|
|
52
|
+
def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16(self):
|
|
53
|
+
math_inst = MathInstruction(
|
|
54
|
+
instruction_shape=[16, 8, 16],
|
|
55
|
+
element_a=cutlass.float16, element_b=cutlass.float16,
|
|
56
|
+
element_accumulator=cutlass.float16, opcode_class=cutlass.OpClass.TensorOp,
|
|
57
|
+
math_operation=MathOperation.multiply_add
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
A = TensorDescription(
|
|
61
|
+
element=math_inst.element_a,
|
|
62
|
+
layout=cutlass.TensorNHWC,
|
|
63
|
+
alignment=8)
|
|
64
|
+
B = TensorDescription(
|
|
65
|
+
element=math_inst.element_b,
|
|
66
|
+
layout=cutlass.TensorNHWC,
|
|
67
|
+
alignment=8)
|
|
68
|
+
C = TensorDescription(
|
|
69
|
+
element=cutlass.float16,
|
|
70
|
+
layout=cutlass.TensorNHWC,
|
|
71
|
+
alignment=8)
|
|
72
|
+
|
|
73
|
+
tile_description = TileDescription(
|
|
74
|
+
threadblock_shape=[128, 128, 64], stages=3,
|
|
75
|
+
warp_count=[2, 2, 1],
|
|
76
|
+
math_instruction=math_inst
|
|
77
|
+
)
|
|
78
|
+
|
|
79
|
+
epilogue_functor = LinearCombination(
|
|
80
|
+
C.element, C.alignment,
|
|
81
|
+
math_inst.element_accumulator, cutlass.float16)
|
|
82
|
+
|
|
83
|
+
operation = Conv2dOperation(
|
|
84
|
+
conv_kind=cutlass.conv.Operator.dgrad, iterator_algorithm=cutlass.conv.IteratorAlgorithm.optimized,
|
|
85
|
+
arch=80, tile_description=tile_description, A=A, B=B, C=C,
|
|
86
|
+
stride_support=StrideSupport.Unity,
|
|
87
|
+
epilogue_functor=epilogue_functor,
|
|
88
|
+
swizzling_functor=cutlass.IdentitySwizzle1
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
self.assertTrue(test_all_conv2d(operation))
|
|
92
|
+
|
|
93
|
+
def test_SM80_Device_Conv2d_Dgrad_Analytic_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_align4(self):
|
|
94
|
+
math_inst = MathInstruction(
|
|
95
|
+
instruction_shape=[16, 8, 16],
|
|
96
|
+
element_a=cutlass.float16, element_b=cutlass.float16,
|
|
97
|
+
element_accumulator=cutlass.float16, opcode_class=cutlass.OpClass.TensorOp,
|
|
98
|
+
math_operation=MathOperation.multiply_add
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
A = TensorDescription(
|
|
102
|
+
element=math_inst.element_a,
|
|
103
|
+
layout=cutlass.TensorNHWC,
|
|
104
|
+
alignment=4)
|
|
105
|
+
B = TensorDescription(
|
|
106
|
+
element=math_inst.element_b,
|
|
107
|
+
layout=cutlass.TensorNHWC,
|
|
108
|
+
alignment=4)
|
|
109
|
+
C = TensorDescription(
|
|
110
|
+
element=cutlass.float16,
|
|
111
|
+
layout=cutlass.TensorNHWC,
|
|
112
|
+
alignment=4)
|
|
113
|
+
|
|
114
|
+
tile_description = TileDescription(
|
|
115
|
+
threadblock_shape=[128, 128, 64], stages=3,
|
|
116
|
+
warp_count=[2, 2, 1],
|
|
117
|
+
math_instruction=math_inst
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
epilogue_functor = LinearCombination(
|
|
121
|
+
C.element, C.alignment,
|
|
122
|
+
math_inst.element_accumulator, cutlass.float16)
|
|
123
|
+
|
|
124
|
+
operation = Conv2dOperation(
|
|
125
|
+
conv_kind=cutlass.conv.Operator.dgrad, iterator_algorithm=cutlass.conv.IteratorAlgorithm.analytic,
|
|
126
|
+
arch=80, tile_description=tile_description, A=A, B=B, C=C,
|
|
127
|
+
stride_support=StrideSupport.Unity,
|
|
128
|
+
epilogue_functor=epilogue_functor,
|
|
129
|
+
swizzling_functor=cutlass.IdentitySwizzle1
|
|
130
|
+
)
|
|
131
|
+
|
|
132
|
+
problem_sizes = [
|
|
133
|
+
cutlass.conv.Conv2dProblemSize(
|
|
134
|
+
cutlass.Tensor4DCoord(1, 4, 4, 12),
|
|
135
|
+
cutlass.Tensor4DCoord(8, 3, 3, 12),
|
|
136
|
+
cutlass.Tensor4DCoord(0, 0, 0, 0),
|
|
137
|
+
cutlass.MatrixCoord(3, 3),
|
|
138
|
+
cutlass.MatrixCoord(1, 1),
|
|
139
|
+
cutlass.conv.Mode.cross_correlation,
|
|
140
|
+
1, 1
|
|
141
|
+
),
|
|
142
|
+
]
|
|
143
|
+
|
|
144
|
+
self.assertTrue(test_all_conv2d(operation, problem_sizes))
|
|
145
|
+
|
|
146
|
+
def test_SM80_Device_Conv2d_Dgrad_Optimized_ImplicitGemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_align4(self):
|
|
147
|
+
math_inst = MathInstruction(
|
|
148
|
+
instruction_shape=[16, 8, 16],
|
|
149
|
+
element_a=cutlass.float16, element_b=cutlass.float16,
|
|
150
|
+
element_accumulator=cutlass.float16, opcode_class=cutlass.OpClass.TensorOp,
|
|
151
|
+
math_operation=MathOperation.multiply_add
|
|
152
|
+
)
|
|
153
|
+
|
|
154
|
+
A = TensorDescription(
|
|
155
|
+
element=math_inst.element_a,
|
|
156
|
+
layout=cutlass.TensorNHWC,
|
|
157
|
+
alignment=4)
|
|
158
|
+
B = TensorDescription(
|
|
159
|
+
element=math_inst.element_b,
|
|
160
|
+
layout=cutlass.TensorNHWC,
|
|
161
|
+
alignment=4)
|
|
162
|
+
C = TensorDescription(
|
|
163
|
+
element=cutlass.float16,
|
|
164
|
+
layout=cutlass.TensorNHWC,
|
|
165
|
+
alignment=4)
|
|
166
|
+
|
|
167
|
+
tile_description = TileDescription(
|
|
168
|
+
threadblock_shape=[128, 128, 64], stages=3,
|
|
169
|
+
warp_count=[2, 2, 1],
|
|
170
|
+
math_instruction=math_inst
|
|
171
|
+
)
|
|
172
|
+
|
|
173
|
+
epilogue_functor = LinearCombination(
|
|
174
|
+
C.element, C.alignment,
|
|
175
|
+
math_inst.element_accumulator, cutlass.float16)
|
|
176
|
+
|
|
177
|
+
operation = Conv2dOperation(
|
|
178
|
+
conv_kind=cutlass.conv.Operator.dgrad, iterator_algorithm=cutlass.conv.IteratorAlgorithm.optimized,
|
|
179
|
+
arch=80, tile_description=tile_description, A=A, B=B, C=C,
|
|
180
|
+
stride_support=StrideSupport.Unity,
|
|
181
|
+
epilogue_functor=epilogue_functor,
|
|
182
|
+
swizzling_functor=cutlass.IdentitySwizzle1
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
problem_sizes = [
|
|
186
|
+
cutlass.conv.Conv2dProblemSize(
|
|
187
|
+
cutlass.Tensor4DCoord(1, 4, 4, 12),
|
|
188
|
+
cutlass.Tensor4DCoord(8, 3, 3, 12),
|
|
189
|
+
cutlass.Tensor4DCoord(0, 0, 0, 0),
|
|
190
|
+
cutlass.MatrixCoord(3, 3),
|
|
191
|
+
cutlass.MatrixCoord(1, 1),
|
|
192
|
+
cutlass.conv.Mode.cross_correlation,
|
|
193
|
+
1, 1
|
|
194
|
+
),
|
|
195
|
+
]
|
|
196
|
+
|
|
197
|
+
self.assertTrue(test_all_conv2d(operation, problem_sizes))
|
|
198
|
+
|
|
199
|
+
if __name__ == '__main__':
|
|
200
|
+
pycutlass.get_memory_pool(2**26, 2**26)
|
|
201
|
+
unittest.main()
|