warp-lang 0.9.0__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +15 -7
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +22 -443
- warp/build_dll.py +384 -0
- warp/builtins.py +998 -488
- warp/codegen.py +1307 -739
- warp/config.py +5 -3
- warp/constants.py +6 -0
- warp/context.py +1291 -548
- warp/dlpack.py +31 -31
- warp/fabric.py +326 -0
- warp/fem/__init__.py +27 -0
- warp/fem/cache.py +389 -0
- warp/fem/dirichlet.py +181 -0
- warp/fem/domain.py +263 -0
- warp/fem/field/__init__.py +101 -0
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +299 -0
- warp/fem/field/restriction.py +21 -0
- warp/fem/field/test.py +181 -0
- warp/fem/field/trial.py +183 -0
- warp/fem/geometry/__init__.py +19 -0
- warp/fem/geometry/closest_point.py +70 -0
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +744 -0
- warp/fem/geometry/geometry.py +186 -0
- warp/fem/geometry/grid_2d.py +373 -0
- warp/fem/geometry/grid_3d.py +435 -0
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +376 -0
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +840 -0
- warp/fem/geometry/trimesh_2d.py +577 -0
- warp/fem/integrate.py +1616 -0
- warp/fem/operator.py +191 -0
- warp/fem/polynomial.py +213 -0
- warp/fem/quadrature/__init__.py +2 -0
- warp/fem/quadrature/pic_quadrature.py +245 -0
- warp/fem/quadrature/quadrature.py +294 -0
- warp/fem/space/__init__.py +292 -0
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +236 -0
- warp/fem/space/function_space.py +145 -0
- warp/fem/space/grid_2d_function_space.py +267 -0
- warp/fem/space/grid_3d_function_space.py +306 -0
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +350 -0
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +160 -0
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +292 -0
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +221 -0
- warp/fem/types.py +77 -0
- warp/fem/utils.py +495 -0
- warp/native/array.h +164 -55
- warp/native/builtin.h +150 -174
- warp/native/bvh.cpp +75 -328
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +37 -45
- warp/native/clang/clang.cpp +136 -24
- warp/native/crt.cpp +1 -76
- warp/native/crt.h +111 -104
- warp/native/cuda_crt.h +1049 -0
- warp/native/cuda_util.cpp +15 -3
- warp/native/cuda_util.h +3 -1
- warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
- warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
- warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
- warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
- warp/native/cutlass/tools/library/scripts/library.py +799 -0
- warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
- warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
- warp/native/cutlass/tools/library/scripts/rt.py +796 -0
- warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
- warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
- warp/native/cutlass_gemm.cu +5 -3
- warp/native/exports.h +1240 -949
- warp/native/fabric.h +228 -0
- warp/native/hashgrid.cpp +4 -4
- warp/native/hashgrid.h +22 -2
- warp/native/initializer_array.h +2 -2
- warp/native/intersect.h +22 -7
- warp/native/intersect_adj.h +8 -8
- warp/native/intersect_tri.h +13 -16
- warp/native/marching.cu +157 -161
- warp/native/mat.h +119 -19
- warp/native/matnn.h +2 -2
- warp/native/mesh.cpp +108 -83
- warp/native/mesh.cu +243 -6
- warp/native/mesh.h +1547 -458
- warp/native/nanovdb/NanoVDB.h +1 -1
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +45 -35
- warp/native/range.h +6 -2
- warp/native/reduce.cpp +157 -0
- warp/native/reduce.cu +348 -0
- warp/native/runlength_encode.cpp +62 -0
- warp/native/runlength_encode.cu +46 -0
- warp/native/scan.cu +11 -13
- warp/native/scan.h +1 -0
- warp/native/solid_angle.h +442 -0
- warp/native/sort.cpp +13 -0
- warp/native/sort.cu +9 -1
- warp/native/sparse.cpp +338 -0
- warp/native/sparse.cu +545 -0
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +30 -0
- warp/native/vec.h +126 -24
- warp/native/volume.h +120 -0
- warp/native/warp.cpp +658 -53
- warp/native/warp.cu +660 -68
- warp/native/warp.h +112 -12
- warp/optim/__init__.py +1 -0
- warp/optim/linear.py +922 -0
- warp/optim/sgd.py +92 -0
- warp/render/render_opengl.py +392 -152
- warp/render/render_usd.py +11 -11
- warp/sim/__init__.py +2 -2
- warp/sim/articulation.py +385 -185
- warp/sim/collide.py +21 -8
- warp/sim/import_mjcf.py +297 -106
- warp/sim/import_urdf.py +389 -210
- warp/sim/import_usd.py +198 -97
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_euler.py +14 -8
- warp/sim/integrator_xpbd.py +161 -19
- warp/sim/model.py +795 -291
- warp/sim/optimizer.py +2 -6
- warp/sim/render.py +65 -3
- warp/sim/utils.py +3 -0
- warp/sparse.py +1227 -0
- warp/stubs.py +665 -223
- warp/tape.py +66 -15
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +128 -74
- warp/tests/test_array.py +1497 -211
- warp/tests/test_array_reduce.py +150 -0
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +99 -0
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +75 -43
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +233 -128
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +136 -108
- warp/tests/test_examples.py +277 -0
- warp/tests/test_fabricarray.py +955 -0
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1271 -0
- warp/tests/test_fp16.py +53 -19
- warp/tests/test_func.py +187 -74
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +180 -116
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +52 -37
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +577 -24
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +251 -15
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_linear_solvers.py +154 -0
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +508 -2778
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +305 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +71 -14
- warp/tests/test_mesh_query_aabb.py +41 -25
- warp/tests/test_mesh_query_point.py +325 -34
- warp/tests/test_mesh_query_ray.py +39 -22
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +190 -0
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +460 -0
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +331 -85
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +118 -89
- warp/tests/test_transient_module.py +12 -13
- warp/tests/test_types.py +614 -0
- warp/tests/test_utils.py +494 -0
- warp/tests/test_vec.py +354 -1987
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +457 -293
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +341 -0
- warp/tests/unittest_utils.py +568 -0
- warp/tests/unused_test_misc.py +71 -0
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +549 -0
- warp/torch.py +72 -30
- warp/types.py +1744 -713
- warp/utils.py +360 -350
- warp_lang-0.11.0.dist-info/LICENSE.md +36 -0
- warp_lang-0.11.0.dist-info/METADATA +238 -0
- warp_lang-0.11.0.dist-info/RECORD +332 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
- warp/bin/warp-clang.exp +0 -0
- warp/bin/warp-clang.lib +0 -0
- warp/bin/warp.exp +0 -0
- warp/bin/warp.lib +0 -0
- warp/tests/test_all.py +0 -215
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-0.9.0.dist-info/METADATA +0 -20
- warp_lang-0.9.0.dist-info/RECORD +0 -177
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,36 @@
|
|
|
1
|
+
# NVIDIA Source Code License for Warp
|
|
2
|
+
|
|
3
|
+
## 1. Definitions
|
|
4
|
+
|
|
5
|
+
“Licensor” means any person or entity that distributes its Work.
|
|
6
|
+
“Software” means the original work of authorship made available under this License.
|
|
7
|
+
“Work” means the Software and any additions to or derivative works of the Software that are made available under this License.
|
|
8
|
+
The terms “reproduce,” “reproduction,” “derivative works,” and “distribution” have the meaning as provided under U.S. copyright law; provided, however, that for the purposes of this License, derivative works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work.
|
|
9
|
+
Works, including the Software, are “made available” under this License by including in or with the Work either (a) a copyright notice referencing the applicability of this License to the Work, or (b) a copy of this License.
|
|
10
|
+
|
|
11
|
+
## 2. License Grant
|
|
12
|
+
|
|
13
|
+
2.1 Copyright Grant. Subject to the terms and conditions of this License, each Licensor grants to you a perpetual, worldwide, non-exclusive, royalty-free, copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, sublicense and distribute its Work and any resulting derivative works in any form.
|
|
14
|
+
|
|
15
|
+
## 3. Limitations
|
|
16
|
+
|
|
17
|
+
3.1 Redistribution. You may reproduce or distribute the Work only if (a) you do so under this License, (b) you include a complete copy of this License with your distribution, and (c) you retain without modification any copyright, patent, trademark, or attribution notices that are present in the Work.
|
|
18
|
+
|
|
19
|
+
3.2 Derivative Works. You may specify that additional or different terms apply to the use, reproduction, and distribution of your derivative works of the Work (“Your Terms”) only if (a) Your Terms provide that the use limitation in Section 3.3 applies to your derivative works, and (b) you identify the specific derivative works that are subject to Your Terms. Notwithstanding Your Terms, this License (including the redistribution requirements in Section 3.1) will continue to apply to the Work itself.
|
|
20
|
+
|
|
21
|
+
3.3 Use Limitation. The Work and any derivative works thereof only may be used or intended for use non-commercially. Notwithstanding the foregoing, NVIDIA and its affiliates may use the Work and any derivative works commercially. As used herein, “non-commercially” means for research or evaluation purposes only.
|
|
22
|
+
|
|
23
|
+
3.4 Patent Claims. If you bring or threaten to bring a patent claim against any Licensor (including any claim, cross-claim or counterclaim in a lawsuit) to enforce any patents that you allege are infringed by any Work, then your rights under this License from such Licensor (including the grant in Section 2.1) will terminate immediately.
|
|
24
|
+
|
|
25
|
+
3.5 Trademarks. This License does not grant any rights to use any Licensor’s or its affiliates’ names, logos, or trademarks, except as necessary to reproduce the notices described in this License.
|
|
26
|
+
|
|
27
|
+
3.6 Termination. If you violate any term of this License, then your rights under this License (including the grant in Section 2.1) will terminate immediately.
|
|
28
|
+
|
|
29
|
+
## 4. Disclaimer of Warranty.
|
|
30
|
+
|
|
31
|
+
THE WORK IS PROVIDED “AS IS” WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
|
|
32
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER THIS LICENSE.
|
|
33
|
+
|
|
34
|
+
## 5. Limitation of Liability.
|
|
35
|
+
|
|
36
|
+
EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER COMM ERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
|
@@ -0,0 +1,238 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: warp-lang
|
|
3
|
+
Version: 0.11.0
|
|
4
|
+
Summary: A Python framework for high-performance simulation and graphics programming
|
|
5
|
+
Author-email: NVIDIA <mmacklin@nvidia.com>
|
|
6
|
+
License: NVSCL
|
|
7
|
+
Project-URL: GitHub, https://github.com/NVIDIA/warp
|
|
8
|
+
Project-URL: Documentation, https://nvidia.github.io/warp
|
|
9
|
+
Project-URL: Changelog, https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md
|
|
10
|
+
Classifier: Programming Language :: Python :: 3.7
|
|
11
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
12
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
15
|
+
Classifier: License :: Other/Proprietary License
|
|
16
|
+
Classifier: Operating System :: OS Independent
|
|
17
|
+
Requires-Python: >=3.7
|
|
18
|
+
Description-Content-Type: text/markdown
|
|
19
|
+
License-File: LICENSE.md
|
|
20
|
+
Requires-Dist: numpy
|
|
21
|
+
Provides-Extra: dev
|
|
22
|
+
Requires-Dist: flake8 ; extra == 'dev'
|
|
23
|
+
Requires-Dist: black ; extra == 'dev'
|
|
24
|
+
Requires-Dist: isort ; extra == 'dev'
|
|
25
|
+
Requires-Dist: nvtx ; extra == 'dev'
|
|
26
|
+
Requires-Dist: furo ; extra == 'dev'
|
|
27
|
+
Requires-Dist: sphinx-copybutton ; extra == 'dev'
|
|
28
|
+
Requires-Dist: coverage[toml] ; extra == 'dev'
|
|
29
|
+
|
|
30
|
+
# NVIDIA Warp
|
|
31
|
+
|
|
32
|
+
Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes
|
|
33
|
+
regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU.
|
|
34
|
+
|
|
35
|
+
Warp is designed for spatial computing and comes with a rich set of primitives that make it easy to write
|
|
36
|
+
programs for physics simulation, perception, robotics, and geometry processing. In addition, Warp kernels
|
|
37
|
+
are differentiable and can be used as part of machine-learning pipelines with frameworks such as PyTorch and JAX.
|
|
38
|
+
|
|
39
|
+
Please refer to the project [Documentation](https://nvidia.github.io/warp/) for API and language reference and [CHANGELOG.md](./CHANGELOG.md) for release history.
|
|
40
|
+
|
|
41
|
+
 
|
|
42
|
+
 
|
|
43
|
+
|
|
44
|
+
_A selection of physical simulations computed with Warp_
|
|
45
|
+
|
|
46
|
+
## Installing
|
|
47
|
+
|
|
48
|
+
Warp supports Python versions 3.7.x onwards. The easiest way is to install from PyPi:
|
|
49
|
+
|
|
50
|
+
pip install warp-lang
|
|
51
|
+
|
|
52
|
+
Pre-built binary packages for Windows and Linux are also available on the [Releases](https://github.com/NVIDIA/warp/releases) page. To install in your local Python environment extract the archive and run the following command from the root directory:
|
|
53
|
+
|
|
54
|
+
pip install .
|
|
55
|
+
|
|
56
|
+
## Getting Started
|
|
57
|
+
|
|
58
|
+
An example first program that computes the lengths of random 3D vectors is given below:
|
|
59
|
+
|
|
60
|
+
```python
|
|
61
|
+
import warp as wp
|
|
62
|
+
import numpy as np
|
|
63
|
+
|
|
64
|
+
wp.init()
|
|
65
|
+
|
|
66
|
+
num_points = 1024
|
|
67
|
+
|
|
68
|
+
@wp.kernel
|
|
69
|
+
def length(points: wp.array(dtype=wp.vec3),
|
|
70
|
+
lengths: wp.array(dtype=float)):
|
|
71
|
+
|
|
72
|
+
# thread index
|
|
73
|
+
tid = wp.tid()
|
|
74
|
+
|
|
75
|
+
# compute distance of each point from origin
|
|
76
|
+
lengths[tid] = wp.length(points[tid])
|
|
77
|
+
|
|
78
|
+
|
|
79
|
+
# allocate an array of 3d points
|
|
80
|
+
points = wp.array(np.random.rand(num_points, 3), dtype=wp.vec3)
|
|
81
|
+
lengths = wp.zeros(num_points, dtype=float)
|
|
82
|
+
|
|
83
|
+
# launch kernel
|
|
84
|
+
wp.launch(kernel=length,
|
|
85
|
+
dim=len(points),
|
|
86
|
+
inputs=[points, lengths])
|
|
87
|
+
|
|
88
|
+
print(lengths)
|
|
89
|
+
```
|
|
90
|
+
|
|
91
|
+
## Running Examples
|
|
92
|
+
|
|
93
|
+
The `examples` directory contains a number of scripts that show how to implement different simulation methods using the Warp API. Most examples will generate USD files containing time-sampled animations in the ``examples/outputs`` directory. Before running examples, users should ensure that the ``usd-core`` package is installed using:
|
|
94
|
+
|
|
95
|
+
pip install usd-core
|
|
96
|
+
|
|
97
|
+
USD files can be viewed or rendered inside [NVIDIA Omniverse](https://developer.nvidia.com/omniverse), Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations.
|
|
98
|
+
|
|
99
|
+
Built-in unit tests can be run from the command-line as follows:
|
|
100
|
+
|
|
101
|
+
python -m warp.tests
|
|
102
|
+
|
|
103
|
+
## Building
|
|
104
|
+
|
|
105
|
+
For developers who want to build the library themselves, the following tools are required:
|
|
106
|
+
|
|
107
|
+
* Microsoft Visual Studio 2019 upwards (Windows)
|
|
108
|
+
* GCC 7.2 upwards (Linux)
|
|
109
|
+
* CUDA Toolkit 11.5 or higher
|
|
110
|
+
* [Git LFS](https://git-lfs.github.com/) installed
|
|
111
|
+
|
|
112
|
+
After cloning the repository, users should run:
|
|
113
|
+
|
|
114
|
+
python build_lib.py
|
|
115
|
+
|
|
116
|
+
This will generate the `warp.dll` / `warp.so` core library respectively. When building manually users should ensure that their `CUDA_PATH` environment variable is set, otherwise Warp will be built without CUDA support. Alternatively, the path to the CUDA toolkit can be passed to the build command as `--cuda_path="..."`. After building, the Warp package should be installed using:
|
|
117
|
+
|
|
118
|
+
pip install -e .
|
|
119
|
+
|
|
120
|
+
This ensures that subsequent modifications to the library will be reflected in the Python package.
|
|
121
|
+
|
|
122
|
+
If you are cloning from Windows, please first ensure that you have enabled "Developer Mode" in Windows settings and symlinks in git:
|
|
123
|
+
|
|
124
|
+
git config --global core.symlinks true
|
|
125
|
+
|
|
126
|
+
This will ensure symlinks inside ``exts/omni.warp.core`` work upon cloning.
|
|
127
|
+
|
|
128
|
+
## Omniverse
|
|
129
|
+
|
|
130
|
+
A Warp Omniverse extension is available in the extension registry inside Omniverse Kit or USD Composer:
|
|
131
|
+
|
|
132
|
+
<img src="https://github.com/NVIDIA/warp/raw/main/docs/img/omniverse.png" width=550px/>
|
|
133
|
+
|
|
134
|
+
Enabling the extension will automatically install and initialize the Warp Python module inside the Kit Python environment.
|
|
135
|
+
Please see the [Omniverse Warp Documentation](https://docs.omniverse.nvidia.com/extensions/latest/ext_warp.html) for more details on how to use Warp in Omniverse.
|
|
136
|
+
|
|
137
|
+
## Learn More
|
|
138
|
+
|
|
139
|
+
Please see the following resources for additional background on Warp:
|
|
140
|
+
|
|
141
|
+
* [GTC 2022 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599)
|
|
142
|
+
* [GTC 2021 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31838)
|
|
143
|
+
* [SIGGRAPH Asia 2021 Differentiable Simulation Course](https://dl.acm.org/doi/abs/10.1145/3476117.3483433)
|
|
144
|
+
|
|
145
|
+
The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications:
|
|
146
|
+
|
|
147
|
+
* Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. [(2022)](https://short-horizon-actor-critic.github.io)
|
|
148
|
+
* DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F [(2021)](https://github.com/NVlabs/DiSECt)
|
|
149
|
+
* gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. [(2021)](https://gradsim.github.io)
|
|
150
|
+
|
|
151
|
+
## Citing
|
|
152
|
+
|
|
153
|
+
If you use Warp in your research please use the following citation:
|
|
154
|
+
|
|
155
|
+
```bibtex
|
|
156
|
+
@misc{warp2022,
|
|
157
|
+
title= {Warp: A High-performance Python Framework for GPU Simulation and Graphics},
|
|
158
|
+
author = {Miles Macklin},
|
|
159
|
+
month = {March},
|
|
160
|
+
year = {2022},
|
|
161
|
+
note= {NVIDIA GPU Technology Conference (GTC)},
|
|
162
|
+
howpublished = {\url{https://github.com/nvidia/warp}}
|
|
163
|
+
}
|
|
164
|
+
```
|
|
165
|
+
|
|
166
|
+
## FAQ
|
|
167
|
+
|
|
168
|
+
### How does Warp relate to other Python projects for GPU programming, e.g.: Numba, Taichi, cuPy, PyTorch, etc?
|
|
169
|
+
-------
|
|
170
|
+
|
|
171
|
+
Warp is inspired by many of these projects and is closely related to Numba and Taichi, which both expose kernel programming to Python. These frameworks map to traditional GPU programming models, so many of the high-level concepts are similar, however there are some functionality and implementation differences.
|
|
172
|
+
|
|
173
|
+
Compared to Numba, Warp supports a smaller subset of Python, but offers auto-differentiation of kernel programs, which is useful for machine learning. Compared to Taichi, Warp uses C++/CUDA as an intermediate representation, which makes it convenient to implement and expose low-level routines. In addition, we are building in data structures to support geometry processing (meshes, sparse volumes, point clouds, USD data) as first-class citizens that are not exposed in other runtimes.
|
|
174
|
+
|
|
175
|
+
Warp does not offer a full tensor-based programming model like PyTorch and JAX, but is designed to work well with these frameworks through data sharing mechanisms like `__cuda_array_interface__`. For computations that map well to tensors (e.g.: neural-network inference) it makes sense to use these existing tools. For problems with a lot of e.g.: sparsity, conditional logic, heterogeneous workloads (like the ones we often find in simulation and graphics), then the kernel-based programming model like the one in Warp is often more convenient since users have control over individual threads.
|
|
176
|
+
|
|
177
|
+
### Does Warp support all of the Python language?
|
|
178
|
+
-------
|
|
179
|
+
|
|
180
|
+
No, Warp supports a subset of Python that maps well to the GPU. Our goal is to not have any performance cliffs so that users can expect consistently good behavior from kernels that is close to native code. Examples of unsupported concepts that don't map well to the GPU are dynamic types, list comprehensions, exceptions, garbage collection, etc.
|
|
181
|
+
|
|
182
|
+
### When should I call `wp.synchronize()`?
|
|
183
|
+
-------
|
|
184
|
+
|
|
185
|
+
One of the common sources of confusion for new users is when calls to `wp.synchronize()` are necessary. The answer is "almost never"! Synchronization is quite expensive, and should generally be avoided unless necessary. Warp naturally takes care of synchronization between operations (e.g.: kernel launches, device memory copies).
|
|
186
|
+
|
|
187
|
+
For example, the following requires no manual synchronization, as the conversion to NumPy will automatically synchronize:
|
|
188
|
+
|
|
189
|
+
```python
|
|
190
|
+
# run some kernels
|
|
191
|
+
wp.launch(kernel_1, dim, [array_x, array_y], device="cuda")
|
|
192
|
+
wp.launch(kernel_2, dim, [array_y, array_z], device="cuda")
|
|
193
|
+
|
|
194
|
+
# bring data back to host (and implicitly synchronize)
|
|
195
|
+
x = array_z.numpy()
|
|
196
|
+
```
|
|
197
|
+
|
|
198
|
+
The _only_ case where manual synchronization is needed is when copies are being performed back to CPU asynchronously, e.g.:
|
|
199
|
+
|
|
200
|
+
```python
|
|
201
|
+
# copy data back to cpu from gpu, all copies will happen asynchronously to Python
|
|
202
|
+
wp.copy(cpu_array_1, gpu_array_1)
|
|
203
|
+
wp.copy(cpu_array_2, gpu_array_2)
|
|
204
|
+
wp.copy(cpu_array_3, gpu_array_3)
|
|
205
|
+
|
|
206
|
+
# ensure that the copies have finished
|
|
207
|
+
wp.synchronize()
|
|
208
|
+
|
|
209
|
+
# return a numpy wrapper around the cpu arrays, note there is no implicit synchronization here
|
|
210
|
+
a1 = cpu_array_1.numpy()
|
|
211
|
+
a2 = cpu_array_2.numpy()
|
|
212
|
+
a3 = cpu_array_3.numpy()
|
|
213
|
+
```
|
|
214
|
+
|
|
215
|
+
### What happens when you differentiate a function like `wp.abs(x)`?
|
|
216
|
+
-------
|
|
217
|
+
|
|
218
|
+
Non-smooth functions such as `y=|x|` do not have a single unique gradient at `x=0`, rather they have what is known as a `subgradient`, which is formally the convex hull of directional derivatives at that point. The way that Warp (and most auto-differentiation frameworks) handles these points is to pick an arbitrary gradient from this set, e.g.: for `wp.abs()`, it will arbitrarily choose the gradient to be 1.0 at the origin. You can find the implementation for these functions in `warp/native/builtin.h`.
|
|
219
|
+
|
|
220
|
+
Most optimizers (particularly ones that exploit stochasticity) are not sensitive to the choice of which gradient to use from the subgradient, although there are exceptions.
|
|
221
|
+
|
|
222
|
+
### Does Warp support multi-GPU programming?
|
|
223
|
+
-------
|
|
224
|
+
|
|
225
|
+
Yes! Since version `0.4.0` we support allocating, launching, and copying between multiple GPUs in a single process. We follow the naming conventions of PyTorch and use aliases such as `cuda:0`, `cuda:1`, `cpu` to identify individual devices.
|
|
226
|
+
|
|
227
|
+
### Should I switch to Warp over IsaacGym / PhysX?
|
|
228
|
+
-------
|
|
229
|
+
|
|
230
|
+
Warp is not a replacement for IsaacGym, IsaacSim, or PhysX - while Warp does offer some physical simulation capabilities this is primarily aimed at developers who need differentiable physics, rather than a fully featured physics engine. Warp is also integrated with IsaacGym and is great for performing auxiliary tasks such as reward and observation computations for reinforcement learning.
|
|
231
|
+
|
|
232
|
+
## Discord
|
|
233
|
+
|
|
234
|
+
We have a **#warp** channel on the public [Omniverse Discord](https://discord.com/invite/nvidiaomniverse) server, come chat to us!
|
|
235
|
+
|
|
236
|
+
## License
|
|
237
|
+
|
|
238
|
+
Warp is provided under the NVIDIA Source Code License (NVSCL), please see [LICENSE.md](./LICENSE.md) for full license text. Note that the license currently allows only non-commercial use of this code.
|
|
@@ -0,0 +1,332 @@
|
|
|
1
|
+
warp/__init__.py,sha256=l5CZa-wLvmFiXEmPcIb5BJ-D6hOq9iKBMAC2oHTdplM,3713
|
|
2
|
+
warp/__init__.pyi,sha256=xRyS7nyFH3H_hKLtF4HCHEHF31pXBjiQrWRyUgw9mpA,22
|
|
3
|
+
warp/build.py,sha256=P5i_8fqiwd8CImhfDbDeZ3I0CnWU9gCtQXwNnloAh9U,4294
|
|
4
|
+
warp/build_dll.py,sha256=K9m4Q9D3R2hFI2WQgpc0qr0YdkyP0jq_JsELAyGXBg8,16845
|
|
5
|
+
warp/builtins.py,sha256=loWrzpmD3B7g6Z1kvCI1ewE4ZDpQlqHodIKp2nWaM4I,116622
|
|
6
|
+
warp/codegen.py,sha256=j6__oF_NDw-AkhLBofkCwLuuXWGLV9ieOW3HqLYGycs,98324
|
|
7
|
+
warp/config.py,sha256=D8_ZIiWkR_WgKMkPO33vhKh9bL7e9TvYnmqlRal3ssw,1745
|
|
8
|
+
warp/constants.py,sha256=R0nHcEdy46MBCuX989tZrY_CtVdxjnoi_3vm4_Pa28g,1211
|
|
9
|
+
warp/context.py,sha256=Xx2-Yg0bLoiLnFxF414DT7rwap58D0qEVbUJ6mA9oxg,170850
|
|
10
|
+
warp/dlpack.py,sha256=axWuv7Pch-LZeoDrtabhwwq0WRMjNAZZdvjxt_wkjUg,13724
|
|
11
|
+
warp/fabric.py,sha256=eNj7KKOn10t_ukh2LpsWSazotzARDlHZluUxQc5vISY,11360
|
|
12
|
+
warp/jax.py,sha256=uBynTsn3qD7bXaLUw5yVQuS4KRJRPT26wQgAJedTfgE,1557
|
|
13
|
+
warp/sparse.py,sha256=TmWd0P2VUqWw4aTt2fypYy1-LPH1BHkjJscwpI2leuE,42999
|
|
14
|
+
warp/stubs.py,sha256=sT4X8hIBpfOopQMPRB516pHv-Bu3L7rshndzKvva0As,59636
|
|
15
|
+
warp/tape.py,sha256=HzU7F-7Ik3PY1rPYQod82u1sB4Ina0_xi-D88Klmx0Q,7689
|
|
16
|
+
warp/torch.py,sha256=fyQVQVkdqYLbS9ytlR7Ewb6A8j1g7YDIHPi2daebMyw,9870
|
|
17
|
+
warp/types.py,sha256=VcNU4ZsLZt52cAZm516fNaQNWzgrcb3gYjGXxXs1PgE,149532
|
|
18
|
+
warp/utils.py,sha256=bU_buwZAbd6jECzot3dke7wD0xeidoVyAMeLZif6yhA,23627
|
|
19
|
+
warp/bin/warp-clang.dll,sha256=PziG1C0cFqNYHQsLf-jXT1gwWWsR-2wfKg__pc-PuyE,47587328
|
|
20
|
+
warp/bin/warp.dll,sha256=asFmk9F4xdoVWZO-H41_TLXDockMNozRQ8x1nkgOMiQ,73155072
|
|
21
|
+
warp/fem/__init__.py,sha256=Ei9gXbYd83K-4dO5IzYXTE3Vs186gw0e25YCpAwYgck,1481
|
|
22
|
+
warp/fem/cache.py,sha256=FMQ45sJOJPzZALYjg7KUkIJunlCaksN3CXbg7VwWxOA,13349
|
|
23
|
+
warp/fem/dirichlet.py,sha256=SFvCq8fcdLxqIfZkR9uxQQniNF3B2rkVazNvvpm-Lls,6273
|
|
24
|
+
warp/fem/domain.py,sha256=jQFduQ10peDUh2gxONozABjmpgWR_Hvla5pzQjUT_z0,8630
|
|
25
|
+
warp/fem/integrate.py,sha256=abNT5CvTDEMO8jKDwyf3jzwspRhSMXstpJ06qX3RBz0,58544
|
|
26
|
+
warp/fem/operator.py,sha256=5AEF3HGbFePhWmVUxcwRkYuOf1n75F0FhZ4wJl9Qsc0,6399
|
|
27
|
+
warp/fem/polynomial.py,sha256=tzyTj4KOTD1G6wQScI9Hs-LXUetN2hT44pp0ZPqP-ws,6781
|
|
28
|
+
warp/fem/types.py,sha256=1PaM7122f7oPe_FgYvpqeRI3Qe3feOlyUXn2UY2Uy9E,2243
|
|
29
|
+
warp/fem/utils.py,sha256=tyVfiz-9yQ9KyZsFuFERMRCpxv6NlaZTj7WOaKxTkYQ,16125
|
|
30
|
+
warp/fem/field/__init__.py,sha256=dMI7miEjFG26FMXSw6wdw7M7zZasnyBSl8sUbdFJVeM,3693
|
|
31
|
+
warp/fem/field/field.py,sha256=GqxU2xT2xC4y4FjOsGGWwgrbDsbqvHoI2qYHRU7isTg,5190
|
|
32
|
+
warp/fem/field/nodal_field.py,sha256=E67TH1vLO3uBbdgDnYoBjnEL8a7HbiVhQ_lb5wvYE-U,12523
|
|
33
|
+
warp/fem/field/restriction.py,sha256=GoPqafMghPGSI9KJv7pSgpsgc8qa7gvD5kvBkNVSbWc,870
|
|
34
|
+
warp/fem/field/test.py,sha256=nMIUG-PNwrk3nn077ZNhBZbGjRtpFeWP3Bvtu1STeSs,7176
|
|
35
|
+
warp/fem/field/trial.py,sha256=J-CLG1WxdbQggN9olssa-tzyvgWpKHh__Ohg-iH4Dxc,7101
|
|
36
|
+
warp/fem/geometry/__init__.py,sha256=7oxiqxEXga_hvlOK8WkYplKGcQBgWc82b1oq5Uygu8g,453
|
|
37
|
+
warp/fem/geometry/closest_point.py,sha256=IP0QmrpLi3r6VMfxbnjfwAxzGv_3j83YMAtsAFPSYRA,2099
|
|
38
|
+
warp/fem/geometry/deformed_geometry.py,sha256=UTZZvIuqNrClaGwuSJ-FpVhAXwTczkJu9r4vzSz1CAg,11201
|
|
39
|
+
warp/fem/geometry/element.py,sha256=BdWRYsEB5dlZ0ZfcF43O43PNAV997x86k47RGh4-U8A,34790
|
|
40
|
+
warp/fem/geometry/geometry.py,sha256=jKdUMBGY__ws0XeQrQegQjotSbdIH3kvrSgIInxwedM,7474
|
|
41
|
+
warp/fem/geometry/grid_2d.py,sha256=b7g5e17ma25X_MiAiTbsVPnQ7enugCnceGiCBvLOABE,12155
|
|
42
|
+
warp/fem/geometry/grid_3d.py,sha256=1FXCva6xuzai0ip1aNP1ULcijATOeq150WSv7yYjW0c,14935
|
|
43
|
+
warp/fem/geometry/hexmesh.py,sha256=At9cSCHCKOGFv3hGjW0V0oyslT8je6tWmP_2YEnGECU,35781
|
|
44
|
+
warp/fem/geometry/partition.py,sha256=vr-OZJoz0tj92gydl8WOpq55CcRZpwwY1kao7JqLtRA,13083
|
|
45
|
+
warp/fem/geometry/quadmesh_2d.py,sha256=13IQcQkHPvKj7kJvXUzsapOIuCoYtZ1O_O2PcIblEh8,20085
|
|
46
|
+
warp/fem/geometry/tetmesh.py,sha256=91n6eGYXOQoWqsIy8TUrYUyItJoeV2URWAKBuiKh-gg,30646
|
|
47
|
+
warp/fem/geometry/trimesh_2d.py,sha256=wT9nScBRLNZ6dGJxq5mOjijVlYmRz-puP48MlFXEqpU,20686
|
|
48
|
+
warp/fem/quadrature/__init__.py,sha256=JG0TxooqkrUOrpiVMJi-oX0c99Pg_1-HEQdsb997t6s,135
|
|
49
|
+
warp/fem/quadrature/pic_quadrature.py,sha256=ji-NSfJhL5_DFMeeIMdykYn_O7IKZup-Nm-nkhJGZNA,9762
|
|
50
|
+
warp/fem/quadrature/quadrature.py,sha256=_X9X8YJnTpumpBIErR3dHchsA1IYEBethDMUgwvQvOc,10027
|
|
51
|
+
warp/fem/space/__init__.py,sha256=rCjlO823lx7CYxsE2I3G40a-p7lBBqe0a1qwioKvEyk,12398
|
|
52
|
+
warp/fem/space/basis_space.py,sha256=2zC9MNaFWcFoDBp6QJJ_tt3EDCjI58n6P5CyTvg1DzQ,18351
|
|
53
|
+
warp/fem/space/collocated_function_space.py,sha256=W1F2hisVHLmSmJeCSY1-xSGFmE7aMsWqhIMlZzXAFhQ,3888
|
|
54
|
+
warp/fem/space/dof_mapper.py,sha256=-cDQSp548-ptpXe8rh8i8FBs9BhWh7n7Sb-qjakeNu0,7095
|
|
55
|
+
warp/fem/space/function_space.py,sha256=IAm8rp3hHhyVbHNgGDMTgtwRkJZ1eRt0_W4Gebck3NM,4918
|
|
56
|
+
warp/fem/space/grid_2d_function_space.py,sha256=JbgzeWeQTdqGPDPfdN0Si6YBY7TtbGqvlAOtN66a9p4,8992
|
|
57
|
+
warp/fem/space/grid_3d_function_space.py,sha256=3PISOF0bY7geVlgQ4_3rZgxPPUI1r--tNgUMfyj2lDY,10791
|
|
58
|
+
warp/fem/space/hexmesh_function_space.py,sha256=6HNEPnan0giRnpRpDjznHHCLtjMdO7dB3LprSfSvtEk,12441
|
|
59
|
+
warp/fem/space/partition.py,sha256=21XzXIBWfrB4TQjqVGPfD1I9q1D8Kx6CVixhxqsBuCo,13841
|
|
60
|
+
warp/fem/space/quadmesh_2d_function_space.py,sha256=KURxqkC5ob6TwqWhOT5PmSrVZPs7iJb9VS1CwBJMbCo,13461
|
|
61
|
+
warp/fem/space/restriction.py,sha256=bHJAakDcUlTG35cJ188hyDQNDVff2x0DhypVKz5Oep4,6630
|
|
62
|
+
warp/fem/space/tetmesh_function_space.py,sha256=Yih_YdkPIIT7-gjBPpfVxSXazxcviERS85kEwVlFLRA,10718
|
|
63
|
+
warp/fem/space/topology.py,sha256=gtSnFtzmhul7RWhaFo7Gpx1cs-vUcKCesexQUwk2U-4,11159
|
|
64
|
+
warp/fem/space/trimesh_2d_function_space.py,sha256=ayp3L6O_TalY9HN5EmCACv223wrbCZvuPHtMg6539tg,7915
|
|
65
|
+
warp/fem/space/shape/__init__.py,sha256=7ioR6AZ54_cFqkDZwLE-c1j9IBp8HGsDyD4e9fIgol8,640
|
|
66
|
+
warp/fem/space/shape/cube_shape_function.py,sha256=1rhoyNTovguw6mhrni8EH5q0i6SMJqs-QZ4c7KNiSr4,27547
|
|
67
|
+
warp/fem/space/shape/shape_function.py,sha256=bXmbfV97XHerfWf-IQudl0-FVLQlFjYSb8je3A72oZw,3391
|
|
68
|
+
warp/fem/space/shape/square_shape_function.py,sha256=8wWn7y-zmM4xY5fvKVnyYF6HrVtH74A-MpU30Nn9ayg,22825
|
|
69
|
+
warp/fem/space/shape/tet_shape_function.py,sha256=obtxrl-6AWpFEgUClbiN6IJzYABKXARCcDmwmLqrX7Y,20979
|
|
70
|
+
warp/fem/space/shape/triangle_shape_function.py,sha256=VBjGqywBanuBKmT1I1FDzyJmIqHq3ritGEahv6fjxzs,15314
|
|
71
|
+
warp/native/array.h,sha256=EsnCc8oZfrDa9z7zlel6qOTOzMOA3UfZ10xoFh46_g0,37000
|
|
72
|
+
warp/native/builtin.h,sha256=iA-RE2TipD4-ElhI5PI1jL9r7HlwW3CKin_suWIDQb0,48874
|
|
73
|
+
warp/native/bvh.cpp,sha256=Pl2oR9rFPFXNqVXjpcqwIGv3zsedpMrwW2wvl5EUUHQ,10719
|
|
74
|
+
warp/native/bvh.cu,sha256=XrJj54Rexp2W0htMtXYXuQgVI1U91nV41Kg-L7dDQZo,19538
|
|
75
|
+
warp/native/bvh.h,sha256=j80DB3Lah1oLrm0WougITXG_RGovHj2ouFwxjQFDVuY,10535
|
|
76
|
+
warp/native/crt.cpp,sha256=Quh5ndL6jlIxYeE_DTc-6s0UWyBPCf57qJlOHZDvaDs,1051
|
|
77
|
+
warp/native/crt.h,sha256=14ZOVfMgWkKcMAgFPoc7VHCJjPhrqZ0JbDuLXxCEJRQ,10811
|
|
78
|
+
warp/native/cuda_crt.h,sha256=Yj02mjPPmeQaaGyGDNHG0BNYpqZo4tfTmIF_NSdKpuA,69706
|
|
79
|
+
warp/native/cuda_util.cpp,sha256=p5Lyz0Qxd8UAJFpxFJkKSxH2z8ucwjzGbVSuU7fV6I4,18284
|
|
80
|
+
warp/native/cuda_util.h,sha256=RIdTFpZ4SfGutbK_c_QMxqi-0pTppqDQiTqh-HzM-fo,7055
|
|
81
|
+
warp/native/cutlass_gemm.cpp,sha256=Z0NQs0Spnv5BpiE4DAOrha1w6N2dTFao8SnecWmHHT4,1142
|
|
82
|
+
warp/native/cutlass_gemm.cu,sha256=tTqo7kUpvCGN4VWKgcGRqbqBx4LOlOLXG-rdCDIreRE,21912
|
|
83
|
+
warp/native/exports.h,sha256=pz0Jo8X-IVeBvXUp6_fWVsEhbZ8_b1VHe7PjPVHXjZY,154504
|
|
84
|
+
warp/native/fabric.h,sha256=QknUFOKeXAXjH5nHsVmJkUgwTzzVjVN4dTnx0qvPKbE,5978
|
|
85
|
+
warp/native/hashgrid.cpp,sha256=mR1X4zuYqPrDDmQD4WbZ0WqzKDIOrq7gcZGWX0gfmyI,8051
|
|
86
|
+
warp/native/hashgrid.cu,sha256=g08ZawgQl7_b-DX2c-8pa5unzZAKabK1KeoUJPTHQ5k,2277
|
|
87
|
+
warp/native/hashgrid.h,sha256=B-zsl-w5FhA3Zv4E2u4xThHp_iIiPEvfugl2AHV99rA,6714
|
|
88
|
+
warp/native/initializer_array.h,sha256=B0t-xFl6TZzTm7idY2Dhux3VcoRgFoDp6GpMHgZDXLQ,1028
|
|
89
|
+
warp/native/intersect.h,sha256=PbYJs8Fbgm9dQm-YAOs8OyqNOi56Fr9MN9j4u4L8VDA,35340
|
|
90
|
+
warp/native/intersect_adj.h,sha256=x_y03YFw7fT1hFMApqn5riJRnh1oR0rgZtTCP5gcX_8,11928
|
|
91
|
+
warp/native/intersect_tri.h,sha256=GT4jBKVykpsr6lDGgKIfmrwTvwRP6rxxNE7fvNlZlLk,10518
|
|
92
|
+
warp/native/marching.cpp,sha256=iFAhaALm4dWzYI_YD5H0tfU3FMmqvPWNd8vRTkYlMG4,26
|
|
93
|
+
warp/native/marching.cu,sha256=jSqvW9UD3j1O2TEdxrqPQnDxw_NnpqFN-ory81G3RBI,21823
|
|
94
|
+
warp/native/marching.h,sha256=ZwfOKCmc2RTkbmPtvb1TDFCu1ScRzcpglz2_6MRL16g,16
|
|
95
|
+
warp/native/mat.h,sha256=WCufS50aQoFA30QDBhaI7iezyqjXOhwOSUFT3QlaUJ8,48789
|
|
96
|
+
warp/native/matnn.h,sha256=DNY9ALYFSMsbGrB_5eV3tOjbbgrp9kJP0OH_VVO2Mts,9950
|
|
97
|
+
warp/native/mesh.cpp,sha256=rE5wuTzYovPsogcf363cw4chAFcyl0iqcu2dYDFjQgc,6013
|
|
98
|
+
warp/native/mesh.cu,sha256=u2cYvDNjfZhfH11lZYgoShKZq17o_fuxf8ffkWz8PVc,10834
|
|
99
|
+
warp/native/mesh.h,sha256=MnMSMxph4sjo9a9ZTAcTp0FJEg6NtEm5YrSsN-3aq-o,61462
|
|
100
|
+
warp/native/noise.h,sha256=9T_3rWydo8o8GnaAC1jGUnJOMPoQBePAJhQy4zMR7Dc,30612
|
|
101
|
+
warp/native/quat.h,sha256=FT7rm3zwy1qywGZqPW5HFCxsfmzNThEJul6_WAqK_5k,40312
|
|
102
|
+
warp/native/rand.h,sha256=nhw6eJHrfwc9a5ocLBiK3-lLvxO7by5zVCVSlOpIji8,10203
|
|
103
|
+
warp/native/range.h,sha256=Zj-sfXVwRAz2mITwvzNw1o2ilCr60eLUHbK_GmA14Dw,2423
|
|
104
|
+
warp/native/reduce.cpp,sha256=xIDRVi-mIyknDYcy39Nsm2D8DWYN9aWlh-21Pz8wf4c,4616
|
|
105
|
+
warp/native/reduce.cu,sha256=6s4Cps4c4G67s_vgcnf4LxNZCPCzY9amFaW1aNW6Wm0,11035
|
|
106
|
+
warp/native/runlength_encode.cpp,sha256=KrUu57VxZxYBQO5OUn2HYB7Ha-fTe4mfgpiPs4Tv9DQ,1386
|
|
107
|
+
warp/native/runlength_encode.cu,sha256=ATdNMPIn8XApli09HI3hGEWfhqIG3yPEebk2kLtSk2w,1390
|
|
108
|
+
warp/native/scan.cpp,sha256=lWZwg2ofQzF4srnr4LOno8iV2GKfSZG1aPXF2aQCwuo,853
|
|
109
|
+
warp/native/scan.cu,sha256=QeZ3mgd0u8_AXWZrnzbVsemmW890HS-EYH4z91AqE7s,1224
|
|
110
|
+
warp/native/scan.h,sha256=DUe5rYKyY-g1hscClEehkWaa9EvcJVgbhlAaADwmNyQ,228
|
|
111
|
+
warp/native/solid_angle.h,sha256=RWJW4W90AdjqHWKzzUldZs0Na0yEDITN5SI9BLrX-o0,16127
|
|
112
|
+
warp/native/sort.cpp,sha256=nyZollu6XOcsu15sdGMw2XTbaR3FlwgXvfy--vlG_N8,2273
|
|
113
|
+
warp/native/sort.cu,sha256=R4-VeqyzFS0500RzrNfogvLGqxgLdI049zl_-WpieJE,2700
|
|
114
|
+
warp/native/sort.h,sha256=sodoBbqubyb3ydYTdt-5nqw0LYQ1ScUMvvqFnlY7JX0,709
|
|
115
|
+
warp/native/sparse.cpp,sha256=STqwdjKHvCmwiVIDJYcpGzB4FnsZlQjgrIiLgqh8SVk,13291
|
|
116
|
+
warp/native/sparse.cu,sha256=Q5c9JOJAfrFSY1-MH_KVYf35ZuskQ1mSN5X6J5snZBk,20867
|
|
117
|
+
warp/native/spatial.h,sha256=DEGl45QflOLz9dRfTqXqC6aTTaMQsWs-8c3fEkCmjqc,20423
|
|
118
|
+
warp/native/svd.h,sha256=qqJqPPooYUC6U4fLdRECHAjfQnEfWESdBqeSgcIbntI,21123
|
|
119
|
+
warp/native/temp_buffer.h,sha256=CzHtMTH4713QvdWDchr9tOHf0f2crguln0njupiGc78,528
|
|
120
|
+
warp/native/vec.h,sha256=UpMlWDSbTf5GmErSt1krTvqLdvjPWxAJ8wRypt9WBEM,33386
|
|
121
|
+
warp/native/volume.cpp,sha256=VjzVzJ_T4vWPJK4clNTdqdrrfaEwezRBXNYKalRvlEA,9632
|
|
122
|
+
warp/native/volume.cu,sha256=NHnbJaaIE4xUQXwwSSQbnDQNTYavludxluhTnMicIgM,1387
|
|
123
|
+
warp/native/volume.h,sha256=gtG_a0HNxPe4noqsB9aNCsWe8Df-dETGYeIvaH6wuFA,23939
|
|
124
|
+
warp/native/volume_builder.cu,sha256=zWuNrQa39JnrnrQNv456XPz0y5gJ_4V_ZB7iq5wld3Y,20377
|
|
125
|
+
warp/native/volume_builder.h,sha256=GEITFoi0OJmPAWhWRaca_DQBfkvhiT3MsqFM2XAgb60,623
|
|
126
|
+
warp/native/warp.cpp,sha256=T62aZFPihtlITGGaT7ZgX299nmPFhoAahCYW-WwiE1Y,34084
|
|
127
|
+
warp/native/warp.cu,sha256=rJEt5itnIxlSgCsC_sy-99vn-SdBmGmzZAxG8kDOlEg,64024
|
|
128
|
+
warp/native/warp.h,sha256=vd2HH61eh4DbHlPl8YvxJ9Ng2LeS4_8JVn5XeAN6XYk,15157
|
|
129
|
+
warp/native/clang/clang.cpp,sha256=bsjabZFX6EZDgFJJa02KBIp4gpbpVUw-CatERgrqXEg,17699
|
|
130
|
+
warp/native/cutlass/tools/library/scripts/conv2d_operation.py,sha256=YWLhdjGXLoJB1Ck4e8wdSdIQyOaERcPr0G7WDOO_9o4,18229
|
|
131
|
+
warp/native/cutlass/tools/library/scripts/conv3d_operation.py,sha256=5HTuW477L6uUeVlWtDon9UWbEIRftCVQKNKRENPAB8I,12643
|
|
132
|
+
warp/native/cutlass/tools/library/scripts/gemm_operation.py,sha256=o_c-TYhJxtYTUvrQVghsBUtu3ek6A-VaafkDDf9SgJs,39700
|
|
133
|
+
warp/native/cutlass/tools/library/scripts/generator.py,sha256=zYnMGvX4oqXTmQJPgVM4AS8RR5xn2Srq1-YWSXqbcFo,185889
|
|
134
|
+
warp/native/cutlass/tools/library/scripts/library.py,sha256=m4jquIwbnLd_o4Yrpsg7DMqkyTr8FVeSN6__armsFb4,24859
|
|
135
|
+
warp/native/cutlass/tools/library/scripts/manifest.py,sha256=OAjOzACO9m6s7plTbTkw-GSqKXITyh08QTCob2oDSCg,12743
|
|
136
|
+
warp/native/cutlass/tools/library/scripts/rank_2k_operation.py,sha256=ranCvmmXwEADwobeBWhQFMfay7olWd62N62RBwrVLus,14524
|
|
137
|
+
warp/native/cutlass/tools/library/scripts/rank_k_operation.py,sha256=kD4SFJN3A9NnSg9t7FF-n5tFVyQe0XdIk_ZYN2KWYCk,14096
|
|
138
|
+
warp/native/cutlass/tools/library/scripts/rt.py,sha256=sU1jkiQneowoLX5jHZygfBSRSmr6EAnuJrRidWqb9dg,22416
|
|
139
|
+
warp/native/cutlass/tools/library/scripts/symm_operation.py,sha256=X5pCollHUslibceIRlNAVh7aIlZMjaXpt4mnlf5WUcw,14476
|
|
140
|
+
warp/native/cutlass/tools/library/scripts/trmm_operation.py,sha256=NMsHsLIDJHZPEGREe1UqVx74wuMifk_KpIZPSE8_fmQ,14967
|
|
141
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/setup.py,sha256=ow2zL1qHTt17cvYfJxpRy8MAl1EJxDVMWL5UxQ_ijnI,2545
|
|
142
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py,sha256=lz8fgW3wcBazFEvdk6caTe05i6eN7plFVV3l8kJHpFc,4110
|
|
143
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py,sha256=aH7aHmlC1FS-2sVES1IwMLCbNB8v4AmnT9HFEBMPvJM,4470
|
|
144
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py,sha256=IhROR2zzCPRfijoTGLtrXEOpYl8JdRIn81SA-NAOe2w,3747
|
|
145
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py,sha256=S9V0maaRmLdHclyqj_YAFSwnTorxw0PCT73r1KJqhJY,1358
|
|
146
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py,sha256=kuchtAuf51fD5CTa-eU_rZo9e0AtgvBpuAVachmXTMI,5112
|
|
147
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py,sha256=Psmcix6SuGhgNgWZmTFLGoxjJdfz6CW3aQNF90GpVAE,8650
|
|
148
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py,sha256=jj2UbhGvVG0a4u8H6PtRmTbb7UuZ1iE45cx-ed66zJk,17334
|
|
149
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py,sha256=fMWTL05hbz5VzSxVVQB4ZEzAyD_N0O3tked4FvgcGK4,25581
|
|
150
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py,sha256=DYOAMPv-A0ZF6t-18zKfm6-NhiqY4d8AhZnEGu1_yyg,40215
|
|
151
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py,sha256=OcNb0hYZUZG2Vve5ColgirVA5U8JKlZ_VFE4Qpg6VMs,3589
|
|
152
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py,sha256=oDbRrUkqk9yQ0UubwbbP21DtSlrl_zpY3vRWhMz4O1w,51704
|
|
153
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py,sha256=PQjKXofghJPFyD4YTqZYN4_vbwQwVxvVTSkJaW1q-0I,23749
|
|
154
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py,sha256=pWdqA44y3aDBGeoSM1V4QptsvzYdqRpVl9Eb-YAnTZo,3079
|
|
155
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py,sha256=0WpEvcHKzmUpmzIaytYCLzHK_q5wIW8pHErKK7q7vls,3934
|
|
156
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py,sha256=Mg282ZQpTaZ0RL4xCpzGpBWB1-QXW1D9OmXUu6XWm0s,26546
|
|
157
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py,sha256=w-LIlZYzUyziF8FJaczTYXfUKHjLZcdr9Zrg5Fc4-qg,15255
|
|
158
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py,sha256=GtYSDKvQeE3hwAP34FDIYs_0iAlGSZk9bSvy4QzLOzw,3032
|
|
159
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py,sha256=DGG60i3_BuWnUjN-EspOc9CWfTaVqYgybg3xhn36igA,2007
|
|
160
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py,sha256=f0jWPEtKTzzLvLDekFAk1CskQsYkEvonbes-fNnTATM,178
|
|
161
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py,sha256=i_v7rAEMdP40ffDKCOjK316VRNulIGxxyWqaMvnZKk0,27219
|
|
162
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py,sha256=2ympp_19qlUPzdiZ-a01i_8mh1lNL1V3Bvv3ou2HU5A,9292
|
|
163
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py,sha256=QmYUauUKvR1VJNrG4ZxbQVi1xq5HD7urXSsk2sBmPMQ,22467
|
|
164
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py,sha256=AYJX_YBuSxTMkNxF6KAIy0UZ41GdYtSun9EYJgvwGpg,3282
|
|
165
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py,sha256=HJK2eiB014c0tfXVDRU--A2B19KsCgbhbDhykqCX0L0,48
|
|
166
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py,sha256=QHCwsTqazOxwTfj51kpyAktq9zCadUqIL88m5IBYoYs,3146
|
|
167
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py,sha256=-9LdHYoEFHTAHvnJE8cRJo07vQf8GUDVKGxrrLGyqkc,11854
|
|
168
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
169
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py,sha256=RFeJsdYE9sbVadMPFvrT82HqLPkHbxxyHMknpOpREbY,7962
|
|
170
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=4qMWxgd1vOfgj5RTsgs4Sgut9hLRM1LpJr5Iacx2hEA,7119
|
|
171
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py,sha256=PfcPeq97IXTHn-aGlproDEb5o8xUVKv-cE2O4AUr4IQ,3787
|
|
172
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=tH1FT5salD3QicpQn0x-TlZY1JA-MGtkl1cGGUpj-vE,3783
|
|
173
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py,sha256=Bf_tEwvSzqyc6BksnzI9Tjh3ZGdSWUil3Bj7SAyMrM0,6504
|
|
174
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py,sha256=9PMlo_ksHOzm37CVNcebbiJts6f6JskOK673KbBhK9A,7493
|
|
175
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py,sha256=z9cQZg0_wMqdpd9YWwEu-QaOw2XCryxYLlq2lt6hyDc,12337
|
|
176
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=9Irz87iarmoZk44CgECGEqLLOjO-UaYvk-cD3_Wl2UM,2143
|
|
177
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py,sha256=w4QAY5l82jrcIBbd6mOE1hMu2-JYLzHfIWcw1tZ2IME,3781
|
|
178
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=QE8DtNDE3MCEzoPDvBlWRuFtC4PfRfpxDcrh0mygpHI,4239
|
|
179
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=417unadN8FwbOAyApGZyEgR0zOFJtuBK-PrlrNg39wk,10193
|
|
180
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py,sha256=skPi6ytOqiYZ1pLX5dShNvI5S5CV7Kfay4aRoW6ZtY8,3786
|
|
181
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=lP_tI0kirpTguWPsfvuEFTHi680UfmVlNSYDGjZbXP8,9580
|
|
182
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py,sha256=pzbqwuBCpDMcU_uSqIDXHOzfYus0-uEy0CQsykPTpRI,3781
|
|
183
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=FvYALi_Rz3mbqE0NnnI_Y6PdoDH9x3l0pWkqCGF4iDY,4240
|
|
184
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py,sha256=ywOq-KAG9tqmS6BBCw3fo_4-xSX1xezAeAfFAZTSGrw,314
|
|
185
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py,sha256=u8M45s5a-bjibnjLap5lpqQ9JGeEK9E2A4qpCt0zENo,5727
|
|
186
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
187
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py,sha256=pDRqHzvDnBRgc0K-2kQuE0PamhH6ROXKnGnJiVbDsvU,3421
|
|
188
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py,sha256=lSVbIhgQyD8Ef9n-CU8ymvH8kAKABIvHml61MYqbCDc,15900
|
|
189
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py,sha256=kX9DHVbewzLApUQrYWq3aGx97bkvuLI3BqeMa5LCQPs,5190
|
|
190
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py,sha256=MqUL4YPsx2vOG3hVxk0G0cPs-dXUyu-H9ICa_5FQgyo,3585
|
|
191
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py,sha256=DSNi-3csmkQrGtoxhvHxG7sltWsB0Z31W4lA0eUEE0Q,7094
|
|
192
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py,sha256=6bgSvCBLahgMu3W7cDUhcAgDYKIYghqU7g-joGdZLJ8,7927
|
|
193
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py,sha256=Oh9WnCi_cAhIW95Ic4TIGM4Sx-eCqgZ1BCUWquRSQh4,272
|
|
194
|
+
warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py,sha256=AYu9gDs0Y8cS1Q8JW5lf788c6j2bLmCID9JQxiKA2ps,19599
|
|
195
|
+
warp/native/nanovdb/NanoVDB.h,sha256=GEqu_o6INERGmevjXetLlCpGw_Ws9q-Dy2ddj__sfok,194604
|
|
196
|
+
warp/native/nanovdb/PNanoVDB.h,sha256=pwjV_boDULb8FTG_NSSWo_HKeD_s5Gw0RGhieVTbEIY,124169
|
|
197
|
+
warp/native/nanovdb/PNanoVDBWrite.h,sha256=hIL4G-ObW_GuuL9DuGX20CEB6U4GY5zk7Sd91RD9prY,18336
|
|
198
|
+
warp/optim/__init__.py,sha256=zbioJc8XHMnfMHg00a9G53UFY3th-dRkou48dpanCQQ,477
|
|
199
|
+
warp/optim/adam.py,sha256=dIiGnuFO-XhMk3egU6PU-QHYvY_pw5W3Qzbbyy6xnKA,4359
|
|
200
|
+
warp/optim/linear.py,sha256=tPIrS2h5jcyQupIcwY6gdQUNXOdPfqaoAzOzwxcUT-8,29986
|
|
201
|
+
warp/optim/sgd.py,sha256=XnP6tJ5sHc4zplrbHTjo0ynkKLdwQMAJlvRCHf_Sgd8,3119
|
|
202
|
+
warp/render/__init__.py,sha256=VGLibelbTuGcxGhzIiCbGZr6CF-o6z42cr04Pf_WMUk,548
|
|
203
|
+
warp/render/render_opengl.py,sha256=W9X7kJcRJz1vn03vZalwK1CBRHhYoLIGRsFQNlrpcHM,118747
|
|
204
|
+
warp/render/render_usd.py,sha256=XSvqHCFQRcRKz1fZyzg-RQsLX4RZt3s8IzaXGQFGLN8,25911
|
|
205
|
+
warp/render/utils.py,sha256=Pu-DSAY5jFz7bmX1ZDUJM0TwLr6_lyjfTaW8M-5-mZ4,4446
|
|
206
|
+
warp/sim/__init__.py,sha256=9x3EJ46IeqId6VefBHeonExGf0NHU8WcOZj5XZcRfLY,1716
|
|
207
|
+
warp/sim/articulation.py,sha256=WJSL2-M51i7w1jdCLAr4VgkVKMsTF-11tX5C7G-YmNs,24228
|
|
208
|
+
warp/sim/collide.py,sha256=hTGWd1k0BYkevW0xRHwlAhjYhdqkOHq_5IaNBE_2_vc,57274
|
|
209
|
+
warp/sim/import_mjcf.py,sha256=43z2LfO09ylgAHisFhK8AKzM9PZuimcP0c5gZiAT7PM,20091
|
|
210
|
+
warp/sim/import_snu.py,sha256=lzKknSNbGs_0KaOPH4CctpMsjhXAbijs1zbtflwUKmM,8564
|
|
211
|
+
warp/sim/import_urdf.py,sha256=ci5eBZ2cqlQbkzji7X1efVt-YgWKwdCIS5lczLAYzNg,21089
|
|
212
|
+
warp/sim/import_usd.py,sha256=q8jRdpAcUIqFxL8mnny6p7k628DnJe0O_BZMeo9x-GE,40517
|
|
213
|
+
warp/sim/inertia.py,sha256=m9tagvIdR4uuKPTI4ZYdw-x0S_8PEQMHM7Eq5D_rCvM,9332
|
|
214
|
+
warp/sim/integrator_euler.py,sha256=RCDqit04bCpnJjETkNuH__MrOAavrSzC76nhy4egrgY,61057
|
|
215
|
+
warp/sim/integrator_xpbd.py,sha256=it2JjGkYoHgh5-x5d5t179i-9QCXU2taQyXjrRaXNvg,91871
|
|
216
|
+
warp/sim/model.py,sha256=Z_Y96xtAyGSFCkFvIyOo4-yZbwxsa7r9dU0WsoaEcg4,166392
|
|
217
|
+
warp/sim/optimizer.py,sha256=eGovWgWDCeONGZE_MfqLu-JGXmSACMfKGOfqJ25k2_M,4040
|
|
218
|
+
warp/sim/particles.py,sha256=e_kj6wjjXkj3KhsqepwWPmRc6NoWGqoJZthmnkKr_5A,3174
|
|
219
|
+
warp/sim/render.py,sha256=NbVxLsC0iUfRhzLpXEqEbOQyYBSiRaoHa0-Fip9ClEM,16796
|
|
220
|
+
warp/sim/utils.py,sha256=iDDh3Ug-eazYhzGnfIVtnulyxMZMWQoAQWY3UlH_IIU,5124
|
|
221
|
+
warp/tests/__init__.py,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
|
|
222
|
+
warp/tests/__main__.py,sha256=Dg7dxwx_tD2ORJK4ctN-nmXJ2ilcoba-iLN8fg-tLgE,94
|
|
223
|
+
warp/tests/aux_test_class_kernel.py,sha256=KPjFlrvuVObuGpH5xBf8WwGHP0xg1MM2-Zf0PYmHqHk,1053
|
|
224
|
+
warp/tests/aux_test_compile_consts_dummy.py,sha256=mF4jTs4zQQiycCjbPhTJtkfSj6oCFfodD9sTOKCUyEg,481
|
|
225
|
+
warp/tests/aux_test_conditional_unequal_types_kernels.py,sha256=qVx-16Dg-BDRP0ctHstOC4B_ck6SJcnHfNOKe59vZ2M,667
|
|
226
|
+
warp/tests/aux_test_dependent.py,sha256=_o0Jm-KzbqM0sifQgek6EqSI5yZFm7hVwNF0buRMPrc,743
|
|
227
|
+
warp/tests/aux_test_reference.py,sha256=cXskQIRy9FoH2HhHgfhRSSMfSlbjjbe-uSGx8Gndyeo,216
|
|
228
|
+
warp/tests/aux_test_reference_reference.py,sha256=1A9bHZyBBw3UO0rzAJ6er_utb0c4V6fx5AWR9AezrdQ,141
|
|
229
|
+
warp/tests/aux_test_square.py,sha256=Y4mBorrh7Pt0gHmfvOOvZMbes0NSsHRopca_Wvq7ONw,262
|
|
230
|
+
warp/tests/aux_test_unresolved_func.py,sha256=MqUZqB4xGPsFM4Phj0pPyAazwTx_IKksFhfD6aca-Bc,593
|
|
231
|
+
warp/tests/aux_test_unresolved_symbol.py,sha256=c_ghNYwxm1Ip6RjORSHqs_u8WiQfIyCAl3moczcJGQs,588
|
|
232
|
+
warp/tests/disabled_kinematics.py,sha256=If3joeveVqKIFF6z04BpnD3-TPlYIc4zuwcgrKz3jrI,7851
|
|
233
|
+
warp/tests/run_coverage_serial.py,sha256=14Vej3BouIo3FxAlvOmjAKTN7pjTzVadX3eYNwcvm8Q,1076
|
|
234
|
+
warp/tests/test_adam.py,sha256=cdghsff4zYAtDdXACnY4JoZNKSgiQ5ZSjhBXCDJNuR8,5535
|
|
235
|
+
warp/tests/test_arithmetic.py,sha256=rm1jTVuFinzeFdH8Ig4rVbQCYvF8qdQ1wTZVG5D7EHA,46127
|
|
236
|
+
warp/tests/test_array.py,sha256=m-RluT3pxOt3Ofg8_N4k_RHkCLcW6hbiEWPkk3Zmlo0,77043
|
|
237
|
+
warp/tests/test_array_reduce.py,sha256=rwR3wI0uWR58p2X7e3e__iEqbtiAqJKl7p4lumz36vw,4835
|
|
238
|
+
warp/tests/test_atomic.py,sha256=huop4ht73RAWxOU8vMeYDEqakiNw4IWhbiFwdol9UTE,5501
|
|
239
|
+
warp/tests/test_bool.py,sha256=7Wa1CBej7VE8b0XcQKRL_jYsYvM8NHo6gdJYRtuPmzA,2527
|
|
240
|
+
warp/tests/test_builtins_resolution.py,sha256=5ClWiJ5tTvfTSfVsPP4P0RE2h-8iE3B1D7PB0ricCGc,65298
|
|
241
|
+
warp/tests/test_bvh.py,sha256=RM26TXPAohZp6lss4i8KQsv1Wdu7HsEfwvWdVa4-kn8,5331
|
|
242
|
+
warp/tests/test_closest_point_edge_edge.py,sha256=0z6FaHz8Z9bVBqpJP1jSsxgH-YRPtHIVsoga1530tdk,7069
|
|
243
|
+
warp/tests/test_codegen.py,sha256=sf2flwmB8Zx_4SJaTMbOFY487VyzAWWNLuqWycXNQNA,13290
|
|
244
|
+
warp/tests/test_compile_consts.py,sha256=DqhwGYkMp0-NUWjdud03mUO6DinRcNGOuQsBCZdIGOc,2861
|
|
245
|
+
warp/tests/test_conditional.py,sha256=-yVPkiqLzkW3cFMUjO2JkD3YRAI1sPchKv5abnGQKlM,5758
|
|
246
|
+
warp/tests/test_copy.py,sha256=y2yNTQwawANWrm0gYnib18a-KMM9yuJRFKxQKoGG5b4,7261
|
|
247
|
+
warp/tests/test_ctypes.py,sha256=HnWUCfkSfEbCR0xaiDCiUSy03WJRrz1HD79I1KZjxEg,25284
|
|
248
|
+
warp/tests/test_dense.py,sha256=WjBUhrtLyKFCnp3AdBuVeVYZyC3B6AxbUqQhavP5k_I,1913
|
|
249
|
+
warp/tests/test_devices.py,sha256=6n5SAvWPIZTw7KMgQg8-9owUNEPvf9p_9oe6ulDZFO8,3291
|
|
250
|
+
warp/tests/test_dlpack.py,sha256=opQkgRCauWFoRho4qKN4XJQgL6pjEq2FukwHQBzoAvs,13361
|
|
251
|
+
warp/tests/test_examples.py,sha256=xYx45lXOEFASPLi6zv0zyjo0TmrkmhUR7EcgI0w5Tu4,10500
|
|
252
|
+
warp/tests/test_fabricarray.py,sha256=TSKjECqjwltsBkAAnTMhesh-6M47BnXxSphRtwm1WrE,33105
|
|
253
|
+
warp/tests/test_fast_math.py,sha256=vCRlv8XwtQZeZmRmiJlFILKFV64_kNKGUlbsXpJq9c4,1618
|
|
254
|
+
warp/tests/test_fem.py,sha256=xaC08R1KoJb6mKcE_IobZgdEB367c0_P-ohLiL5lD2U,52697
|
|
255
|
+
warp/tests/test_fp16.py,sha256=kIR0SP62vsVLQi1dSezCscn1n3R74l2fxSym6M3Trss,3963
|
|
256
|
+
warp/tests/test_func.py,sha256=c8QVFvetnw0vqi7aMh-vnIs7N99ZPMe3O-WpM5VM9Gg,11071
|
|
257
|
+
warp/tests/test_generics.py,sha256=1o6IrOMlpMkKOXnJz_Koe8aTHKTcW88WyGhe0GjfwJE,19490
|
|
258
|
+
warp/tests/test_grad.py,sha256=5lny5ha8fee6QvvmRlhZpA226knVG_xVk2h1qoxlRpw,21078
|
|
259
|
+
warp/tests/test_grad_customs.py,sha256=3haWrS0e_xw9zAJUmuzMq9TjCcft--y1nDYSvzDFQig,6106
|
|
260
|
+
warp/tests/test_hash_grid.py,sha256=B8n_iYaTfY08YuqKHm5_lq5zTbUnYGhOV9UzGzWVPCk,5073
|
|
261
|
+
warp/tests/test_import.py,sha256=2T8g-EU1xeEz70pGtKFvFvWGC7znaB2Yn_nvLIgfjTs,1077
|
|
262
|
+
warp/tests/test_indexedarray.py,sha256=5FEsvhOi92RPoq_14H01zmNWK1VcTTWBuuL_xwnoXtg,41945
|
|
263
|
+
warp/tests/test_intersect.py,sha256=CQMPJWi63gu9MkRHvdaWa81yBn2jtX5tqizlChbCeGU,1933
|
|
264
|
+
warp/tests/test_large.py,sha256=GWp1ssEZ9IQ3diSCT3Or1YGCRRLiFs_kFNRaPY8zFx4,4885
|
|
265
|
+
warp/tests/test_launch.py,sha256=grNw0pGfoFfV1_s-1PsMIfatrMMYUn6I-OGQNBmBFns,8642
|
|
266
|
+
warp/tests/test_lerp.py,sha256=vrezacbCx0u5sfMG9jWWxpwUexkh6oyF9Q7c0jeyy2I,7186
|
|
267
|
+
warp/tests/test_linear_solvers.py,sha256=IHSFGn16h-wnNS5UfCP4Tcx1bkXUqirT5ERlXI40thQ,5490
|
|
268
|
+
warp/tests/test_lvalue.py,sha256=Ncw4KSCykB4nFdA92VrBtVelGFrBAj7z2YmnFUXnNwo,12070
|
|
269
|
+
warp/tests/test_marching_cubes.py,sha256=VWhYA25wuvRPb7bAYa4VK1kN7O-g4G3qiW-smP450kw,1917
|
|
270
|
+
warp/tests/test_mat.py,sha256=1VYynwQ6sLNqSjZYjB0jdQJ6iFPO2xOiVE7AdiPtex8,67211
|
|
271
|
+
warp/tests/test_mat_lite.py,sha256=MBDLqy7mcqHli9z7qulIgVUghYlW0-vs8VNSsIFeSjs,3909
|
|
272
|
+
warp/tests/test_mat_scalar_ops.py,sha256=CXGE6FUjs2FVbd-ZRdN0M_ng4xh_VHBSUKawXpdK_r0,112805
|
|
273
|
+
warp/tests/test_math.py,sha256=Job9bBiV38FKgYt4vO7FI_OW8mFLjjGkSRqEQSzZDgM,4568
|
|
274
|
+
warp/tests/test_matmul.py,sha256=0ydO_li3IqazX-Z0DR6K5JmdgkzaCyqo0LEt_QWt3Rw,17233
|
|
275
|
+
warp/tests/test_matmul_lite.py,sha256=b2_BDot4pTDjEsNVKejd6carehpa8mkEvfR4AVTss0U,15211
|
|
276
|
+
warp/tests/test_mesh.py,sha256=Wv1U5z76VKJyMWg-10C9t1BR5EHpo_4COsymHugGBW8,8918
|
|
277
|
+
warp/tests/test_mesh_query_aabb.py,sha256=iMnSEnaKzO_ECu3tN2TeL2ZSrqSLXTcPH-vXEpFuJlA,6735
|
|
278
|
+
warp/tests/test_mesh_query_point.py,sha256=DUny1qu4NaMB9GYGl2SpHJBAb096UFw52jpvg6nA4-0,22588
|
|
279
|
+
warp/tests/test_mesh_query_ray.py,sha256=EVznM980792CLUpHDx7UyX5yUSCYoNk2B5YbWUB2NzE,9763
|
|
280
|
+
warp/tests/test_mlp.py,sha256=aOaGsnaHxQY1oZOyfYogSvnYuyeOebxiWhWu8YHW2TI,8299
|
|
281
|
+
warp/tests/test_model.py,sha256=m7zYsTaeXV_dnmZ6ZDLHvLob66QqVlhWTWJZhVYZOJ0,4530
|
|
282
|
+
warp/tests/test_modules_lite.py,sha256=T9pJlkumgu2d-ulLm6GpHJm4Box-3MYY12SC3mDlGok,1209
|
|
283
|
+
warp/tests/test_multigpu.py,sha256=xPtz9bLjZ_IDqCpbIcVwKtS4izmRWbyhtz3775bVX70,5257
|
|
284
|
+
warp/tests/test_noise.py,sha256=jURxSeFnDeTcvdc89PEe14cLb9RvIK9g4IuYwOftLKA,7120
|
|
285
|
+
warp/tests/test_operators.py,sha256=ZPM6dA0C9zdPxCqn6SSSCJ8yy0VkVu6Jj0e7QIBgN7Y,6233
|
|
286
|
+
warp/tests/test_options.py,sha256=AgMOsvaxMRxYOGL7SFUmCP6_WRntvL-2q2iob9h1BYY,2990
|
|
287
|
+
warp/tests/test_pinned.py,sha256=8rRaOtaMVcd7hosrarXYXziUSifhNNOtK6Rzs1UvJPI,2377
|
|
288
|
+
warp/tests/test_print.py,sha256=PCd1SPkG9RHGqxOIoIEiCajASpFeGTxGTcVOPE9KtOs,1559
|
|
289
|
+
warp/tests/test_quat.py,sha256=RDV7ntaVdEmph7aHQzhL5vPRrlt9LLRj9Hqq9dQKKNs,74407
|
|
290
|
+
warp/tests/test_rand.py,sha256=QDNVdr0l92DFHUIej4skt8fB7IwzB40IXAafPkAsjUc,10095
|
|
291
|
+
warp/tests/test_reload.py,sha256=IC8RpzNFx13pSDsZ4VpMIyAKK1Z79OMOCIWVtUwTgnk,5889
|
|
292
|
+
warp/tests/test_rounding.py,sha256=_TyimmIimTyKh5Alxw6utO5Dm9ttmN5DrJDqAbzsnrE,5974
|
|
293
|
+
warp/tests/test_runlength_encode.py,sha256=TVHyYgH1PuiYLJEDk8nCHJLyrR_4NYWI1t7ymDGfWMQ,7155
|
|
294
|
+
warp/tests/test_smoothstep.py,sha256=mL68QQMtV1BsGby4Mywg9tiSx-2vjobTI7spEu-_nUY,4564
|
|
295
|
+
warp/tests/test_snippet.py,sha256=m9DvTKlnehrGbKmO9hsauWeY6Ax9ts9-e8UkH2jHdfA,4220
|
|
296
|
+
warp/tests/test_sparse.py,sha256=Rp6hb6wuBi3TJedy_QZ8znJC_DLTJPEUIN_Agsu17Ew,18333
|
|
297
|
+
warp/tests/test_spatial.py,sha256=YJz7mHnycH8TYq8HTRIETS5jaFaBnOQTCepf6sw7UL4,78561
|
|
298
|
+
warp/tests/test_streams.py,sha256=Ny-n3grNLvHvOqojvHBXL5KukNrUhw1CdECGBzy3dE8,14488
|
|
299
|
+
warp/tests/test_struct.py,sha256=CwsPU4ORD92NpbvVy7dlnhsAimOND2G7FVUvQJWcIFU,16471
|
|
300
|
+
warp/tests/test_tape.py,sha256=NfLEzTkrXVOH1h_vAge-1byEkBZTS-qgTtX-eztUoA8,4717
|
|
301
|
+
warp/tests/test_torch.py,sha256=6eI1Al6S5R9V7bFFx8r39x7q22tMuIiFOlckoKnWwFA,23015
|
|
302
|
+
warp/tests/test_transient_module.py,sha256=z9B78a4B58PRc9b7GtTwSySvQe5IqpmmcZe_STWzCq8,2310
|
|
303
|
+
warp/tests/test_types.py,sha256=k-CqtOhq6SKsqKhfZbs1ts3TZYPFE6DoqFO2psWnlXc,22622
|
|
304
|
+
warp/tests/test_utils.py,sha256=ErROGfee2QebiuRdVVFc-VHFSQmL1N1lBeOk9E4NuA8,19442
|
|
305
|
+
warp/tests/test_vec.py,sha256=MQic0V_1hYoEz81p5uo_e0ajhp-2XYGV7S7uRbrusvs,43762
|
|
306
|
+
warp/tests/test_vec_lite.py,sha256=etjM5nRzFxpYCTKtdpr3Qp_HTv4mZRSDQ8JW6ZgxxkA,2427
|
|
307
|
+
warp/tests/test_vec_scalar_ops.py,sha256=z8EDboIPbfA55DoIOhiW4H_VZhXc21AL7xB-aRfP4eM,87005
|
|
308
|
+
warp/tests/test_volume.py,sha256=SYJR8j2Y_Pz4pSN3Ga8KmHUnNr7NJFJhS489Nh-uUqU,25706
|
|
309
|
+
warp/tests/test_volume_write.py,sha256=A7f8M_djIX5jXIr_57l3HCvmIziuqX42S8qyyXgTC4I,9074
|
|
310
|
+
warp/tests/unittest_serial.py,sha256=AJAZPuNwgMMJ_puCvZwgbFiQFN3ZNor95y27UyqkBI0,1145
|
|
311
|
+
warp/tests/unittest_suites.py,sha256=zhZotQn9CV2RL8JKd-JCXPhR5gHmBE-uFbiyFO_x_nE,12738
|
|
312
|
+
warp/tests/unittest_utils.py,sha256=jAVvX2_opz6-LyIjORtCFyDVE7MJbTyj8Z5TGhJksQ0,19846
|
|
313
|
+
warp/tests/unused_test_misc.py,sha256=fyfOY3VpF1hSdgu_6kTz2kRSukUBl7LQm-r3-4adJVE,1534
|
|
314
|
+
warp/tests/walkthough_debug.py,sha256=DsotsWkBvkK2hb-iWQRNbAOkK8KkgrdnmyofC5mPy8E,3136
|
|
315
|
+
warp/tests/assets/curlnoise_golden.npy,sha256=ueBhVunJH9If7vdb0fqfxfNaj1fe5pHlKBKHA1TBDRQ,262272
|
|
316
|
+
warp/tests/assets/mlp_golden.npy,sha256=-ynR9GhQN1HaGOYVdkAc-yVBouHN_2nBkW-4FawO8PE,29596
|
|
317
|
+
warp/tests/assets/pnoise_golden.npy,sha256=ZAOYoLXb3C8De8JXo1qwRyUWKjAKmffxegJtzbU4i-k,262272
|
|
318
|
+
warp/tests/assets/spiky.usd,sha256=VYbY7VEDLJxbxMyz8fp6scE4IaT6vvqvwJLnSr7W6h0,1577
|
|
319
|
+
warp/tests/assets/test_grid.nvdb,sha256=lEacSzmPaaMEOnErVZcCcjBzgGjhXbQw_s8MK10h4mQ,15581
|
|
320
|
+
warp/tests/assets/test_int32_grid.nvdb,sha256=WuXLwxwyPso12XVprzy8-JMs0yC-AszvahGmMMEpR9E,15726
|
|
321
|
+
warp/tests/assets/test_vec_grid.nvdb,sha256=c8XefsMg5gbJa3TDfyyD0ImQPkf39yd9CuQkpibXH7U,37620
|
|
322
|
+
warp/tests/assets/torus.nvdb,sha256=7ftuUfUVpR_KkTuBPsmUQUrEFG9BcDxeHK7kvPA3itk,14549
|
|
323
|
+
warp/tests/assets/torus.usda,sha256=rdJoYgz1fyw01sKDHeYIbuTMkq91UL2VlaHCtZ1cWtA,340830
|
|
324
|
+
warp/thirdparty/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
325
|
+
warp/thirdparty/appdirs.py,sha256=6msNAwCSJ0eRTVmRVF98Uvd3trshrw5RRsVUM_hPPLE,24852
|
|
326
|
+
warp/thirdparty/dlpack.py,sha256=Upx_8E-DR7TQTHUN0bNbfrilzFubRjxWvafV10ZXvqQ,4416
|
|
327
|
+
warp/thirdparty/unittest_parallel.py,sha256=a1-hEqo_RimsK5ppAoLEuZZSqyCd3RbNF-jAcImc3FU,20933
|
|
328
|
+
warp_lang-0.11.0.dist-info/LICENSE.md,sha256=-oj_azPLVWrkvvTDXjtMSiATqx18KpDmmwXsGmpPSEQ,4110
|
|
329
|
+
warp_lang-0.11.0.dist-info/METADATA,sha256=2OivaC3iQ17HlZepW0cerg6meSubljq59MApq9YPoe8,12412
|
|
330
|
+
warp_lang-0.11.0.dist-info/WHEEL,sha256=KTdQDMVZqs2eeRhOpF4kInPW2OgLgRWl7KhVZQueA2o,99
|
|
331
|
+
warp_lang-0.11.0.dist-info/top_level.txt,sha256=8pupHORyKoiN_BYWlTmv5OFBWdhqpppiBYQV5KxgEvg,5
|
|
332
|
+
warp_lang-0.11.0.dist-info/RECORD,,
|
warp/bin/warp-clang.exp
DELETED
|
Binary file
|
warp/bin/warp-clang.lib
DELETED
|
Binary file
|