warp-lang 0.9.0__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of warp-lang might be problematic. Click here for more details.

Files changed (315) hide show
  1. warp/__init__.py +15 -7
  2. warp/__init__.pyi +1 -0
  3. warp/bin/warp-clang.dll +0 -0
  4. warp/bin/warp.dll +0 -0
  5. warp/build.py +22 -443
  6. warp/build_dll.py +384 -0
  7. warp/builtins.py +998 -488
  8. warp/codegen.py +1307 -739
  9. warp/config.py +5 -3
  10. warp/constants.py +6 -0
  11. warp/context.py +1291 -548
  12. warp/dlpack.py +31 -31
  13. warp/fabric.py +326 -0
  14. warp/fem/__init__.py +27 -0
  15. warp/fem/cache.py +389 -0
  16. warp/fem/dirichlet.py +181 -0
  17. warp/fem/domain.py +263 -0
  18. warp/fem/field/__init__.py +101 -0
  19. warp/fem/field/field.py +149 -0
  20. warp/fem/field/nodal_field.py +299 -0
  21. warp/fem/field/restriction.py +21 -0
  22. warp/fem/field/test.py +181 -0
  23. warp/fem/field/trial.py +183 -0
  24. warp/fem/geometry/__init__.py +19 -0
  25. warp/fem/geometry/closest_point.py +70 -0
  26. warp/fem/geometry/deformed_geometry.py +271 -0
  27. warp/fem/geometry/element.py +744 -0
  28. warp/fem/geometry/geometry.py +186 -0
  29. warp/fem/geometry/grid_2d.py +373 -0
  30. warp/fem/geometry/grid_3d.py +435 -0
  31. warp/fem/geometry/hexmesh.py +953 -0
  32. warp/fem/geometry/partition.py +376 -0
  33. warp/fem/geometry/quadmesh_2d.py +532 -0
  34. warp/fem/geometry/tetmesh.py +840 -0
  35. warp/fem/geometry/trimesh_2d.py +577 -0
  36. warp/fem/integrate.py +1616 -0
  37. warp/fem/operator.py +191 -0
  38. warp/fem/polynomial.py +213 -0
  39. warp/fem/quadrature/__init__.py +2 -0
  40. warp/fem/quadrature/pic_quadrature.py +245 -0
  41. warp/fem/quadrature/quadrature.py +294 -0
  42. warp/fem/space/__init__.py +292 -0
  43. warp/fem/space/basis_space.py +489 -0
  44. warp/fem/space/collocated_function_space.py +105 -0
  45. warp/fem/space/dof_mapper.py +236 -0
  46. warp/fem/space/function_space.py +145 -0
  47. warp/fem/space/grid_2d_function_space.py +267 -0
  48. warp/fem/space/grid_3d_function_space.py +306 -0
  49. warp/fem/space/hexmesh_function_space.py +352 -0
  50. warp/fem/space/partition.py +350 -0
  51. warp/fem/space/quadmesh_2d_function_space.py +369 -0
  52. warp/fem/space/restriction.py +160 -0
  53. warp/fem/space/shape/__init__.py +15 -0
  54. warp/fem/space/shape/cube_shape_function.py +738 -0
  55. warp/fem/space/shape/shape_function.py +103 -0
  56. warp/fem/space/shape/square_shape_function.py +611 -0
  57. warp/fem/space/shape/tet_shape_function.py +567 -0
  58. warp/fem/space/shape/triangle_shape_function.py +429 -0
  59. warp/fem/space/tetmesh_function_space.py +292 -0
  60. warp/fem/space/topology.py +295 -0
  61. warp/fem/space/trimesh_2d_function_space.py +221 -0
  62. warp/fem/types.py +77 -0
  63. warp/fem/utils.py +495 -0
  64. warp/native/array.h +164 -55
  65. warp/native/builtin.h +150 -174
  66. warp/native/bvh.cpp +75 -328
  67. warp/native/bvh.cu +406 -23
  68. warp/native/bvh.h +37 -45
  69. warp/native/clang/clang.cpp +136 -24
  70. warp/native/crt.cpp +1 -76
  71. warp/native/crt.h +111 -104
  72. warp/native/cuda_crt.h +1049 -0
  73. warp/native/cuda_util.cpp +15 -3
  74. warp/native/cuda_util.h +3 -1
  75. warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
  76. warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
  77. warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
  78. warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
  79. warp/native/cutlass/tools/library/scripts/library.py +799 -0
  80. warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
  81. warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
  82. warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
  83. warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
  84. warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
  85. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
  86. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
  87. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
  88. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
  89. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
  90. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
  91. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
  92. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
  93. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
  94. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
  95. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
  96. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
  97. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
  98. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
  99. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
  100. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
  101. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
  102. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
  103. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
  104. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
  105. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
  106. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
  107. warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
  108. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
  109. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
  110. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
  111. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
  112. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
  113. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
  114. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
  115. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
  116. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
  117. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
  118. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
  119. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
  120. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
  121. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
  122. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
  123. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
  124. warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
  125. warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
  126. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
  127. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
  128. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
  129. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
  130. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
  131. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
  132. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
  133. warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
  134. warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
  135. warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
  136. warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
  137. warp/native/cutlass/tools/library/scripts/rt.py +796 -0
  138. warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
  139. warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
  140. warp/native/cutlass_gemm.cu +5 -3
  141. warp/native/exports.h +1240 -949
  142. warp/native/fabric.h +228 -0
  143. warp/native/hashgrid.cpp +4 -4
  144. warp/native/hashgrid.h +22 -2
  145. warp/native/initializer_array.h +2 -2
  146. warp/native/intersect.h +22 -7
  147. warp/native/intersect_adj.h +8 -8
  148. warp/native/intersect_tri.h +13 -16
  149. warp/native/marching.cu +157 -161
  150. warp/native/mat.h +119 -19
  151. warp/native/matnn.h +2 -2
  152. warp/native/mesh.cpp +108 -83
  153. warp/native/mesh.cu +243 -6
  154. warp/native/mesh.h +1547 -458
  155. warp/native/nanovdb/NanoVDB.h +1 -1
  156. warp/native/noise.h +272 -329
  157. warp/native/quat.h +51 -8
  158. warp/native/rand.h +45 -35
  159. warp/native/range.h +6 -2
  160. warp/native/reduce.cpp +157 -0
  161. warp/native/reduce.cu +348 -0
  162. warp/native/runlength_encode.cpp +62 -0
  163. warp/native/runlength_encode.cu +46 -0
  164. warp/native/scan.cu +11 -13
  165. warp/native/scan.h +1 -0
  166. warp/native/solid_angle.h +442 -0
  167. warp/native/sort.cpp +13 -0
  168. warp/native/sort.cu +9 -1
  169. warp/native/sparse.cpp +338 -0
  170. warp/native/sparse.cu +545 -0
  171. warp/native/spatial.h +2 -2
  172. warp/native/temp_buffer.h +30 -0
  173. warp/native/vec.h +126 -24
  174. warp/native/volume.h +120 -0
  175. warp/native/warp.cpp +658 -53
  176. warp/native/warp.cu +660 -68
  177. warp/native/warp.h +112 -12
  178. warp/optim/__init__.py +1 -0
  179. warp/optim/linear.py +922 -0
  180. warp/optim/sgd.py +92 -0
  181. warp/render/render_opengl.py +392 -152
  182. warp/render/render_usd.py +11 -11
  183. warp/sim/__init__.py +2 -2
  184. warp/sim/articulation.py +385 -185
  185. warp/sim/collide.py +21 -8
  186. warp/sim/import_mjcf.py +297 -106
  187. warp/sim/import_urdf.py +389 -210
  188. warp/sim/import_usd.py +198 -97
  189. warp/sim/inertia.py +17 -18
  190. warp/sim/integrator_euler.py +14 -8
  191. warp/sim/integrator_xpbd.py +161 -19
  192. warp/sim/model.py +795 -291
  193. warp/sim/optimizer.py +2 -6
  194. warp/sim/render.py +65 -3
  195. warp/sim/utils.py +3 -0
  196. warp/sparse.py +1227 -0
  197. warp/stubs.py +665 -223
  198. warp/tape.py +66 -15
  199. warp/tests/__main__.py +3 -6
  200. warp/tests/assets/curlnoise_golden.npy +0 -0
  201. warp/tests/assets/pnoise_golden.npy +0 -0
  202. warp/tests/assets/torus.usda +105 -105
  203. warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
  204. warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
  205. warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
  206. warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
  207. warp/tests/aux_test_unresolved_func.py +14 -0
  208. warp/tests/aux_test_unresolved_symbol.py +14 -0
  209. warp/tests/disabled_kinematics.py +239 -0
  210. warp/tests/run_coverage_serial.py +31 -0
  211. warp/tests/test_adam.py +103 -106
  212. warp/tests/test_arithmetic.py +128 -74
  213. warp/tests/test_array.py +1497 -211
  214. warp/tests/test_array_reduce.py +150 -0
  215. warp/tests/test_atomic.py +64 -28
  216. warp/tests/test_bool.py +99 -0
  217. warp/tests/test_builtins_resolution.py +1292 -0
  218. warp/tests/test_bvh.py +75 -43
  219. warp/tests/test_closest_point_edge_edge.py +54 -57
  220. warp/tests/test_codegen.py +233 -128
  221. warp/tests/test_compile_consts.py +28 -20
  222. warp/tests/test_conditional.py +108 -24
  223. warp/tests/test_copy.py +10 -12
  224. warp/tests/test_ctypes.py +112 -88
  225. warp/tests/test_dense.py +21 -14
  226. warp/tests/test_devices.py +98 -0
  227. warp/tests/test_dlpack.py +136 -108
  228. warp/tests/test_examples.py +277 -0
  229. warp/tests/test_fabricarray.py +955 -0
  230. warp/tests/test_fast_math.py +15 -11
  231. warp/tests/test_fem.py +1271 -0
  232. warp/tests/test_fp16.py +53 -19
  233. warp/tests/test_func.py +187 -74
  234. warp/tests/test_generics.py +194 -49
  235. warp/tests/test_grad.py +180 -116
  236. warp/tests/test_grad_customs.py +176 -0
  237. warp/tests/test_hash_grid.py +52 -37
  238. warp/tests/test_import.py +10 -23
  239. warp/tests/test_indexedarray.py +577 -24
  240. warp/tests/test_intersect.py +18 -9
  241. warp/tests/test_large.py +141 -0
  242. warp/tests/test_launch.py +251 -15
  243. warp/tests/test_lerp.py +64 -65
  244. warp/tests/test_linear_solvers.py +154 -0
  245. warp/tests/test_lvalue.py +493 -0
  246. warp/tests/test_marching_cubes.py +12 -13
  247. warp/tests/test_mat.py +508 -2778
  248. warp/tests/test_mat_lite.py +115 -0
  249. warp/tests/test_mat_scalar_ops.py +2889 -0
  250. warp/tests/test_math.py +103 -9
  251. warp/tests/test_matmul.py +305 -69
  252. warp/tests/test_matmul_lite.py +410 -0
  253. warp/tests/test_mesh.py +71 -14
  254. warp/tests/test_mesh_query_aabb.py +41 -25
  255. warp/tests/test_mesh_query_point.py +325 -34
  256. warp/tests/test_mesh_query_ray.py +39 -22
  257. warp/tests/test_mlp.py +30 -22
  258. warp/tests/test_model.py +92 -89
  259. warp/tests/test_modules_lite.py +39 -0
  260. warp/tests/test_multigpu.py +88 -114
  261. warp/tests/test_noise.py +12 -11
  262. warp/tests/test_operators.py +16 -20
  263. warp/tests/test_options.py +11 -11
  264. warp/tests/test_pinned.py +17 -18
  265. warp/tests/test_print.py +32 -11
  266. warp/tests/test_quat.py +275 -129
  267. warp/tests/test_rand.py +18 -16
  268. warp/tests/test_reload.py +38 -34
  269. warp/tests/test_rounding.py +50 -43
  270. warp/tests/test_runlength_encode.py +190 -0
  271. warp/tests/test_smoothstep.py +9 -11
  272. warp/tests/test_snippet.py +143 -0
  273. warp/tests/test_sparse.py +460 -0
  274. warp/tests/test_spatial.py +276 -243
  275. warp/tests/test_streams.py +110 -85
  276. warp/tests/test_struct.py +331 -85
  277. warp/tests/test_tape.py +39 -21
  278. warp/tests/test_torch.py +118 -89
  279. warp/tests/test_transient_module.py +12 -13
  280. warp/tests/test_types.py +614 -0
  281. warp/tests/test_utils.py +494 -0
  282. warp/tests/test_vec.py +354 -1987
  283. warp/tests/test_vec_lite.py +73 -0
  284. warp/tests/test_vec_scalar_ops.py +2099 -0
  285. warp/tests/test_volume.py +457 -293
  286. warp/tests/test_volume_write.py +124 -134
  287. warp/tests/unittest_serial.py +35 -0
  288. warp/tests/unittest_suites.py +341 -0
  289. warp/tests/unittest_utils.py +568 -0
  290. warp/tests/unused_test_misc.py +71 -0
  291. warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
  292. warp/thirdparty/appdirs.py +36 -45
  293. warp/thirdparty/unittest_parallel.py +549 -0
  294. warp/torch.py +72 -30
  295. warp/types.py +1744 -713
  296. warp/utils.py +360 -350
  297. warp_lang-0.11.0.dist-info/LICENSE.md +36 -0
  298. warp_lang-0.11.0.dist-info/METADATA +238 -0
  299. warp_lang-0.11.0.dist-info/RECORD +332 -0
  300. {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
  301. warp/bin/warp-clang.exp +0 -0
  302. warp/bin/warp-clang.lib +0 -0
  303. warp/bin/warp.exp +0 -0
  304. warp/bin/warp.lib +0 -0
  305. warp/tests/test_all.py +0 -215
  306. warp/tests/test_array_scan.py +0 -60
  307. warp/tests/test_base.py +0 -208
  308. warp/tests/test_unresolved_func.py +0 -7
  309. warp/tests/test_unresolved_symbol.py +0 -7
  310. warp_lang-0.9.0.dist-info/METADATA +0 -20
  311. warp_lang-0.9.0.dist-info/RECORD +0 -177
  312. /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
  313. /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
  314. /warp/tests/{test_square.py → aux_test_square.py} +0 -0
  315. {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,36 @@
1
+ # NVIDIA Source Code License for Warp
2
+
3
+ ## 1. Definitions
4
+
5
+ “Licensor” means any person or entity that distributes its Work.
6
+ “Software” means the original work of authorship made available under this License.
7
+ “Work” means the Software and any additions to or derivative works of the Software that are made available under this License.
8
+ The terms “reproduce,” “reproduction,” “derivative works,” and “distribution” have the meaning as provided under U.S. copyright law; provided, however, that for the purposes of this License, derivative works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work.
9
+ Works, including the Software, are “made available” under this License by including in or with the Work either (a) a copyright notice referencing the applicability of this License to the Work, or (b) a copy of this License.
10
+
11
+ ## 2. License Grant
12
+
13
+ 2.1 Copyright Grant. Subject to the terms and conditions of this License, each Licensor grants to you a perpetual, worldwide, non-exclusive, royalty-free, copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, sublicense and distribute its Work and any resulting derivative works in any form.
14
+
15
+ ## 3. Limitations
16
+
17
+ 3.1 Redistribution. You may reproduce or distribute the Work only if (a) you do so under this License, (b) you include a complete copy of this License with your distribution, and (c) you retain without modification any copyright, patent, trademark, or attribution notices that are present in the Work.
18
+
19
+ 3.2 Derivative Works. You may specify that additional or different terms apply to the use, reproduction, and distribution of your derivative works of the Work (“Your Terms”) only if (a) Your Terms provide that the use limitation in Section 3.3 applies to your derivative works, and (b) you identify the specific derivative works that are subject to Your Terms. Notwithstanding Your Terms, this License (including the redistribution requirements in Section 3.1) will continue to apply to the Work itself.
20
+
21
+ 3.3 Use Limitation. The Work and any derivative works thereof only may be used or intended for use non-commercially. Notwithstanding the foregoing, NVIDIA and its affiliates may use the Work and any derivative works commercially. As used herein, “non-commercially” means for research or evaluation purposes only.
22
+
23
+ 3.4 Patent Claims. If you bring or threaten to bring a patent claim against any Licensor (including any claim, cross-claim or counterclaim in a lawsuit) to enforce any patents that you allege are infringed by any Work, then your rights under this License from such Licensor (including the grant in Section 2.1) will terminate immediately.
24
+
25
+ 3.5 Trademarks. This License does not grant any rights to use any Licensor’s or its affiliates’ names, logos, or trademarks, except as necessary to reproduce the notices described in this License.
26
+
27
+ 3.6 Termination. If you violate any term of this License, then your rights under this License (including the grant in Section 2.1) will terminate immediately.
28
+
29
+ ## 4. Disclaimer of Warranty.
30
+
31
+ THE WORK IS PROVIDED “AS IS” WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OR CONDITIONS OF
32
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE OR NON-INFRINGEMENT. YOU BEAR THE RISK OF UNDERTAKING ANY ACTIVITIES UNDER THIS LICENSE.
33
+
34
+ ## 5. Limitation of Liability.
35
+
36
+ EXCEPT AS PROHIBITED BY APPLICABLE LAW, IN NO EVENT AND UNDER NO LEGAL THEORY, WHETHER IN TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE SHALL ANY LICENSOR BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATED TO THIS LICENSE, THE USE OR INABILITY TO USE THE WORK (INCLUDING BUT NOT LIMITED TO LOSS OF GOODWILL, BUSINESS INTERRUPTION, LOST PROFITS OR DATA, COMPUTER FAILURE OR MALFUNCTION, OR ANY OTHER COMM ERCIAL DAMAGES OR LOSSES), EVEN IF THE LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
@@ -0,0 +1,238 @@
1
+ Metadata-Version: 2.1
2
+ Name: warp-lang
3
+ Version: 0.11.0
4
+ Summary: A Python framework for high-performance simulation and graphics programming
5
+ Author-email: NVIDIA <mmacklin@nvidia.com>
6
+ License: NVSCL
7
+ Project-URL: GitHub, https://github.com/NVIDIA/warp
8
+ Project-URL: Documentation, https://nvidia.github.io/warp
9
+ Project-URL: Changelog, https://github.com/NVIDIA/warp/blob/main/CHANGELOG.md
10
+ Classifier: Programming Language :: Python :: 3.7
11
+ Classifier: Programming Language :: Python :: 3.8
12
+ Classifier: Programming Language :: Python :: 3.9
13
+ Classifier: Programming Language :: Python :: 3.10
14
+ Classifier: Programming Language :: Python :: 3.11
15
+ Classifier: License :: Other/Proprietary License
16
+ Classifier: Operating System :: OS Independent
17
+ Requires-Python: >=3.7
18
+ Description-Content-Type: text/markdown
19
+ License-File: LICENSE.md
20
+ Requires-Dist: numpy
21
+ Provides-Extra: dev
22
+ Requires-Dist: flake8 ; extra == 'dev'
23
+ Requires-Dist: black ; extra == 'dev'
24
+ Requires-Dist: isort ; extra == 'dev'
25
+ Requires-Dist: nvtx ; extra == 'dev'
26
+ Requires-Dist: furo ; extra == 'dev'
27
+ Requires-Dist: sphinx-copybutton ; extra == 'dev'
28
+ Requires-Dist: coverage[toml] ; extra == 'dev'
29
+
30
+ # NVIDIA Warp
31
+
32
+ Warp is a Python framework for writing high-performance simulation and graphics code. Warp takes
33
+ regular Python functions and JIT compiles them to efficient kernel code that can run on the CPU or GPU.
34
+
35
+ Warp is designed for spatial computing and comes with a rich set of primitives that make it easy to write
36
+ programs for physics simulation, perception, robotics, and geometry processing. In addition, Warp kernels
37
+ are differentiable and can be used as part of machine-learning pipelines with frameworks such as PyTorch and JAX.
38
+
39
+ Please refer to the project [Documentation](https://nvidia.github.io/warp/) for API and language reference and [CHANGELOG.md](./CHANGELOG.md) for release history.
40
+
41
+ ![](https://github.com/NVIDIA/warp/raw/main/docs/img/gifs/aldina.gif) ![](https://github.com/NVIDIA/warp/raw/main/docs/img/gifs/nanovdb.gif)
42
+ ![](https://github.com/NVIDIA/warp/raw/main/docs/img/gifs/ocean.gif) ![](https://github.com/NVIDIA/warp/raw/main/docs/img/gifs/particles.gif)
43
+
44
+ _A selection of physical simulations computed with Warp_
45
+
46
+ ## Installing
47
+
48
+ Warp supports Python versions 3.7.x onwards. The easiest way is to install from PyPi:
49
+
50
+ pip install warp-lang
51
+
52
+ Pre-built binary packages for Windows and Linux are also available on the [Releases](https://github.com/NVIDIA/warp/releases) page. To install in your local Python environment extract the archive and run the following command from the root directory:
53
+
54
+ pip install .
55
+
56
+ ## Getting Started
57
+
58
+ An example first program that computes the lengths of random 3D vectors is given below:
59
+
60
+ ```python
61
+ import warp as wp
62
+ import numpy as np
63
+
64
+ wp.init()
65
+
66
+ num_points = 1024
67
+
68
+ @wp.kernel
69
+ def length(points: wp.array(dtype=wp.vec3),
70
+ lengths: wp.array(dtype=float)):
71
+
72
+ # thread index
73
+ tid = wp.tid()
74
+
75
+ # compute distance of each point from origin
76
+ lengths[tid] = wp.length(points[tid])
77
+
78
+
79
+ # allocate an array of 3d points
80
+ points = wp.array(np.random.rand(num_points, 3), dtype=wp.vec3)
81
+ lengths = wp.zeros(num_points, dtype=float)
82
+
83
+ # launch kernel
84
+ wp.launch(kernel=length,
85
+ dim=len(points),
86
+ inputs=[points, lengths])
87
+
88
+ print(lengths)
89
+ ```
90
+
91
+ ## Running Examples
92
+
93
+ The `examples` directory contains a number of scripts that show how to implement different simulation methods using the Warp API. Most examples will generate USD files containing time-sampled animations in the ``examples/outputs`` directory. Before running examples, users should ensure that the ``usd-core`` package is installed using:
94
+
95
+ pip install usd-core
96
+
97
+ USD files can be viewed or rendered inside [NVIDIA Omniverse](https://developer.nvidia.com/omniverse), Pixar's UsdView, and Blender. Note that Preview in macOS is not recommended as it has limited support for time-sampled animations.
98
+
99
+ Built-in unit tests can be run from the command-line as follows:
100
+
101
+ python -m warp.tests
102
+
103
+ ## Building
104
+
105
+ For developers who want to build the library themselves, the following tools are required:
106
+
107
+ * Microsoft Visual Studio 2019 upwards (Windows)
108
+ * GCC 7.2 upwards (Linux)
109
+ * CUDA Toolkit 11.5 or higher
110
+ * [Git LFS](https://git-lfs.github.com/) installed
111
+
112
+ After cloning the repository, users should run:
113
+
114
+ python build_lib.py
115
+
116
+ This will generate the `warp.dll` / `warp.so` core library respectively. When building manually users should ensure that their `CUDA_PATH` environment variable is set, otherwise Warp will be built without CUDA support. Alternatively, the path to the CUDA toolkit can be passed to the build command as `--cuda_path="..."`. After building, the Warp package should be installed using:
117
+
118
+ pip install -e .
119
+
120
+ This ensures that subsequent modifications to the library will be reflected in the Python package.
121
+
122
+ If you are cloning from Windows, please first ensure that you have enabled "Developer Mode" in Windows settings and symlinks in git:
123
+
124
+ git config --global core.symlinks true
125
+
126
+ This will ensure symlinks inside ``exts/omni.warp.core`` work upon cloning.
127
+
128
+ ## Omniverse
129
+
130
+ A Warp Omniverse extension is available in the extension registry inside Omniverse Kit or USD Composer:
131
+
132
+ <img src="https://github.com/NVIDIA/warp/raw/main/docs/img/omniverse.png" width=550px/>
133
+
134
+ Enabling the extension will automatically install and initialize the Warp Python module inside the Kit Python environment.
135
+ Please see the [Omniverse Warp Documentation](https://docs.omniverse.nvidia.com/extensions/latest/ext_warp.html) for more details on how to use Warp in Omniverse.
136
+
137
+ ## Learn More
138
+
139
+ Please see the following resources for additional background on Warp:
140
+
141
+ * [GTC 2022 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599)
142
+ * [GTC 2021 Presentation](https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31838)
143
+ * [SIGGRAPH Asia 2021 Differentiable Simulation Course](https://dl.acm.org/doi/abs/10.1145/3476117.3483433)
144
+
145
+ The underlying technology in Warp has been used in a number of research projects at NVIDIA including the following publications:
146
+
147
+ * Accelerated Policy Learning with Parallel Differentiable Simulation - Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik, W., Garg, A., & Macklin, M. [(2022)](https://short-horizon-actor-critic.github.io)
148
+ * DiSECt: Differentiable Simulator for Robotic Cutting - Heiden, E., Macklin, M., Narang, Y., Fox, D., Garg, A., & Ramos, F [(2021)](https://github.com/NVlabs/DiSECt)
149
+ * gradSim: Differentiable Simulation for System Identification and Visuomotor Control - Murthy, J. Krishna, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss, Breandan Considine et al. [(2021)](https://gradsim.github.io)
150
+
151
+ ## Citing
152
+
153
+ If you use Warp in your research please use the following citation:
154
+
155
+ ```bibtex
156
+ @misc{warp2022,
157
+ title= {Warp: A High-performance Python Framework for GPU Simulation and Graphics},
158
+ author = {Miles Macklin},
159
+ month = {March},
160
+ year = {2022},
161
+ note= {NVIDIA GPU Technology Conference (GTC)},
162
+ howpublished = {\url{https://github.com/nvidia/warp}}
163
+ }
164
+ ```
165
+
166
+ ## FAQ
167
+
168
+ ### How does Warp relate to other Python projects for GPU programming, e.g.: Numba, Taichi, cuPy, PyTorch, etc?
169
+ -------
170
+
171
+ Warp is inspired by many of these projects and is closely related to Numba and Taichi, which both expose kernel programming to Python. These frameworks map to traditional GPU programming models, so many of the high-level concepts are similar, however there are some functionality and implementation differences.
172
+
173
+ Compared to Numba, Warp supports a smaller subset of Python, but offers auto-differentiation of kernel programs, which is useful for machine learning. Compared to Taichi, Warp uses C++/CUDA as an intermediate representation, which makes it convenient to implement and expose low-level routines. In addition, we are building in data structures to support geometry processing (meshes, sparse volumes, point clouds, USD data) as first-class citizens that are not exposed in other runtimes.
174
+
175
+ Warp does not offer a full tensor-based programming model like PyTorch and JAX, but is designed to work well with these frameworks through data sharing mechanisms like `__cuda_array_interface__`. For computations that map well to tensors (e.g.: neural-network inference) it makes sense to use these existing tools. For problems with a lot of e.g.: sparsity, conditional logic, heterogeneous workloads (like the ones we often find in simulation and graphics), then the kernel-based programming model like the one in Warp is often more convenient since users have control over individual threads.
176
+
177
+ ### Does Warp support all of the Python language?
178
+ -------
179
+
180
+ No, Warp supports a subset of Python that maps well to the GPU. Our goal is to not have any performance cliffs so that users can expect consistently good behavior from kernels that is close to native code. Examples of unsupported concepts that don't map well to the GPU are dynamic types, list comprehensions, exceptions, garbage collection, etc.
181
+
182
+ ### When should I call `wp.synchronize()`?
183
+ -------
184
+
185
+ One of the common sources of confusion for new users is when calls to `wp.synchronize()` are necessary. The answer is "almost never"! Synchronization is quite expensive, and should generally be avoided unless necessary. Warp naturally takes care of synchronization between operations (e.g.: kernel launches, device memory copies).
186
+
187
+ For example, the following requires no manual synchronization, as the conversion to NumPy will automatically synchronize:
188
+
189
+ ```python
190
+ # run some kernels
191
+ wp.launch(kernel_1, dim, [array_x, array_y], device="cuda")
192
+ wp.launch(kernel_2, dim, [array_y, array_z], device="cuda")
193
+
194
+ # bring data back to host (and implicitly synchronize)
195
+ x = array_z.numpy()
196
+ ```
197
+
198
+ The _only_ case where manual synchronization is needed is when copies are being performed back to CPU asynchronously, e.g.:
199
+
200
+ ```python
201
+ # copy data back to cpu from gpu, all copies will happen asynchronously to Python
202
+ wp.copy(cpu_array_1, gpu_array_1)
203
+ wp.copy(cpu_array_2, gpu_array_2)
204
+ wp.copy(cpu_array_3, gpu_array_3)
205
+
206
+ # ensure that the copies have finished
207
+ wp.synchronize()
208
+
209
+ # return a numpy wrapper around the cpu arrays, note there is no implicit synchronization here
210
+ a1 = cpu_array_1.numpy()
211
+ a2 = cpu_array_2.numpy()
212
+ a3 = cpu_array_3.numpy()
213
+ ```
214
+
215
+ ### What happens when you differentiate a function like `wp.abs(x)`?
216
+ -------
217
+
218
+ Non-smooth functions such as `y=|x|` do not have a single unique gradient at `x=0`, rather they have what is known as a `subgradient`, which is formally the convex hull of directional derivatives at that point. The way that Warp (and most auto-differentiation frameworks) handles these points is to pick an arbitrary gradient from this set, e.g.: for `wp.abs()`, it will arbitrarily choose the gradient to be 1.0 at the origin. You can find the implementation for these functions in `warp/native/builtin.h`.
219
+
220
+ Most optimizers (particularly ones that exploit stochasticity) are not sensitive to the choice of which gradient to use from the subgradient, although there are exceptions.
221
+
222
+ ### Does Warp support multi-GPU programming?
223
+ -------
224
+
225
+ Yes! Since version `0.4.0` we support allocating, launching, and copying between multiple GPUs in a single process. We follow the naming conventions of PyTorch and use aliases such as `cuda:0`, `cuda:1`, `cpu` to identify individual devices.
226
+
227
+ ### Should I switch to Warp over IsaacGym / PhysX?
228
+ -------
229
+
230
+ Warp is not a replacement for IsaacGym, IsaacSim, or PhysX - while Warp does offer some physical simulation capabilities this is primarily aimed at developers who need differentiable physics, rather than a fully featured physics engine. Warp is also integrated with IsaacGym and is great for performing auxiliary tasks such as reward and observation computations for reinforcement learning.
231
+
232
+ ## Discord
233
+
234
+ We have a **#warp** channel on the public [Omniverse Discord](https://discord.com/invite/nvidiaomniverse) server, come chat to us!
235
+
236
+ ## License
237
+
238
+ Warp is provided under the NVIDIA Source Code License (NVSCL), please see [LICENSE.md](./LICENSE.md) for full license text. Note that the license currently allows only non-commercial use of this code.
@@ -0,0 +1,332 @@
1
+ warp/__init__.py,sha256=l5CZa-wLvmFiXEmPcIb5BJ-D6hOq9iKBMAC2oHTdplM,3713
2
+ warp/__init__.pyi,sha256=xRyS7nyFH3H_hKLtF4HCHEHF31pXBjiQrWRyUgw9mpA,22
3
+ warp/build.py,sha256=P5i_8fqiwd8CImhfDbDeZ3I0CnWU9gCtQXwNnloAh9U,4294
4
+ warp/build_dll.py,sha256=K9m4Q9D3R2hFI2WQgpc0qr0YdkyP0jq_JsELAyGXBg8,16845
5
+ warp/builtins.py,sha256=loWrzpmD3B7g6Z1kvCI1ewE4ZDpQlqHodIKp2nWaM4I,116622
6
+ warp/codegen.py,sha256=j6__oF_NDw-AkhLBofkCwLuuXWGLV9ieOW3HqLYGycs,98324
7
+ warp/config.py,sha256=D8_ZIiWkR_WgKMkPO33vhKh9bL7e9TvYnmqlRal3ssw,1745
8
+ warp/constants.py,sha256=R0nHcEdy46MBCuX989tZrY_CtVdxjnoi_3vm4_Pa28g,1211
9
+ warp/context.py,sha256=Xx2-Yg0bLoiLnFxF414DT7rwap58D0qEVbUJ6mA9oxg,170850
10
+ warp/dlpack.py,sha256=axWuv7Pch-LZeoDrtabhwwq0WRMjNAZZdvjxt_wkjUg,13724
11
+ warp/fabric.py,sha256=eNj7KKOn10t_ukh2LpsWSazotzARDlHZluUxQc5vISY,11360
12
+ warp/jax.py,sha256=uBynTsn3qD7bXaLUw5yVQuS4KRJRPT26wQgAJedTfgE,1557
13
+ warp/sparse.py,sha256=TmWd0P2VUqWw4aTt2fypYy1-LPH1BHkjJscwpI2leuE,42999
14
+ warp/stubs.py,sha256=sT4X8hIBpfOopQMPRB516pHv-Bu3L7rshndzKvva0As,59636
15
+ warp/tape.py,sha256=HzU7F-7Ik3PY1rPYQod82u1sB4Ina0_xi-D88Klmx0Q,7689
16
+ warp/torch.py,sha256=fyQVQVkdqYLbS9ytlR7Ewb6A8j1g7YDIHPi2daebMyw,9870
17
+ warp/types.py,sha256=VcNU4ZsLZt52cAZm516fNaQNWzgrcb3gYjGXxXs1PgE,149532
18
+ warp/utils.py,sha256=bU_buwZAbd6jECzot3dke7wD0xeidoVyAMeLZif6yhA,23627
19
+ warp/bin/warp-clang.dll,sha256=PziG1C0cFqNYHQsLf-jXT1gwWWsR-2wfKg__pc-PuyE,47587328
20
+ warp/bin/warp.dll,sha256=asFmk9F4xdoVWZO-H41_TLXDockMNozRQ8x1nkgOMiQ,73155072
21
+ warp/fem/__init__.py,sha256=Ei9gXbYd83K-4dO5IzYXTE3Vs186gw0e25YCpAwYgck,1481
22
+ warp/fem/cache.py,sha256=FMQ45sJOJPzZALYjg7KUkIJunlCaksN3CXbg7VwWxOA,13349
23
+ warp/fem/dirichlet.py,sha256=SFvCq8fcdLxqIfZkR9uxQQniNF3B2rkVazNvvpm-Lls,6273
24
+ warp/fem/domain.py,sha256=jQFduQ10peDUh2gxONozABjmpgWR_Hvla5pzQjUT_z0,8630
25
+ warp/fem/integrate.py,sha256=abNT5CvTDEMO8jKDwyf3jzwspRhSMXstpJ06qX3RBz0,58544
26
+ warp/fem/operator.py,sha256=5AEF3HGbFePhWmVUxcwRkYuOf1n75F0FhZ4wJl9Qsc0,6399
27
+ warp/fem/polynomial.py,sha256=tzyTj4KOTD1G6wQScI9Hs-LXUetN2hT44pp0ZPqP-ws,6781
28
+ warp/fem/types.py,sha256=1PaM7122f7oPe_FgYvpqeRI3Qe3feOlyUXn2UY2Uy9E,2243
29
+ warp/fem/utils.py,sha256=tyVfiz-9yQ9KyZsFuFERMRCpxv6NlaZTj7WOaKxTkYQ,16125
30
+ warp/fem/field/__init__.py,sha256=dMI7miEjFG26FMXSw6wdw7M7zZasnyBSl8sUbdFJVeM,3693
31
+ warp/fem/field/field.py,sha256=GqxU2xT2xC4y4FjOsGGWwgrbDsbqvHoI2qYHRU7isTg,5190
32
+ warp/fem/field/nodal_field.py,sha256=E67TH1vLO3uBbdgDnYoBjnEL8a7HbiVhQ_lb5wvYE-U,12523
33
+ warp/fem/field/restriction.py,sha256=GoPqafMghPGSI9KJv7pSgpsgc8qa7gvD5kvBkNVSbWc,870
34
+ warp/fem/field/test.py,sha256=nMIUG-PNwrk3nn077ZNhBZbGjRtpFeWP3Bvtu1STeSs,7176
35
+ warp/fem/field/trial.py,sha256=J-CLG1WxdbQggN9olssa-tzyvgWpKHh__Ohg-iH4Dxc,7101
36
+ warp/fem/geometry/__init__.py,sha256=7oxiqxEXga_hvlOK8WkYplKGcQBgWc82b1oq5Uygu8g,453
37
+ warp/fem/geometry/closest_point.py,sha256=IP0QmrpLi3r6VMfxbnjfwAxzGv_3j83YMAtsAFPSYRA,2099
38
+ warp/fem/geometry/deformed_geometry.py,sha256=UTZZvIuqNrClaGwuSJ-FpVhAXwTczkJu9r4vzSz1CAg,11201
39
+ warp/fem/geometry/element.py,sha256=BdWRYsEB5dlZ0ZfcF43O43PNAV997x86k47RGh4-U8A,34790
40
+ warp/fem/geometry/geometry.py,sha256=jKdUMBGY__ws0XeQrQegQjotSbdIH3kvrSgIInxwedM,7474
41
+ warp/fem/geometry/grid_2d.py,sha256=b7g5e17ma25X_MiAiTbsVPnQ7enugCnceGiCBvLOABE,12155
42
+ warp/fem/geometry/grid_3d.py,sha256=1FXCva6xuzai0ip1aNP1ULcijATOeq150WSv7yYjW0c,14935
43
+ warp/fem/geometry/hexmesh.py,sha256=At9cSCHCKOGFv3hGjW0V0oyslT8je6tWmP_2YEnGECU,35781
44
+ warp/fem/geometry/partition.py,sha256=vr-OZJoz0tj92gydl8WOpq55CcRZpwwY1kao7JqLtRA,13083
45
+ warp/fem/geometry/quadmesh_2d.py,sha256=13IQcQkHPvKj7kJvXUzsapOIuCoYtZ1O_O2PcIblEh8,20085
46
+ warp/fem/geometry/tetmesh.py,sha256=91n6eGYXOQoWqsIy8TUrYUyItJoeV2URWAKBuiKh-gg,30646
47
+ warp/fem/geometry/trimesh_2d.py,sha256=wT9nScBRLNZ6dGJxq5mOjijVlYmRz-puP48MlFXEqpU,20686
48
+ warp/fem/quadrature/__init__.py,sha256=JG0TxooqkrUOrpiVMJi-oX0c99Pg_1-HEQdsb997t6s,135
49
+ warp/fem/quadrature/pic_quadrature.py,sha256=ji-NSfJhL5_DFMeeIMdykYn_O7IKZup-Nm-nkhJGZNA,9762
50
+ warp/fem/quadrature/quadrature.py,sha256=_X9X8YJnTpumpBIErR3dHchsA1IYEBethDMUgwvQvOc,10027
51
+ warp/fem/space/__init__.py,sha256=rCjlO823lx7CYxsE2I3G40a-p7lBBqe0a1qwioKvEyk,12398
52
+ warp/fem/space/basis_space.py,sha256=2zC9MNaFWcFoDBp6QJJ_tt3EDCjI58n6P5CyTvg1DzQ,18351
53
+ warp/fem/space/collocated_function_space.py,sha256=W1F2hisVHLmSmJeCSY1-xSGFmE7aMsWqhIMlZzXAFhQ,3888
54
+ warp/fem/space/dof_mapper.py,sha256=-cDQSp548-ptpXe8rh8i8FBs9BhWh7n7Sb-qjakeNu0,7095
55
+ warp/fem/space/function_space.py,sha256=IAm8rp3hHhyVbHNgGDMTgtwRkJZ1eRt0_W4Gebck3NM,4918
56
+ warp/fem/space/grid_2d_function_space.py,sha256=JbgzeWeQTdqGPDPfdN0Si6YBY7TtbGqvlAOtN66a9p4,8992
57
+ warp/fem/space/grid_3d_function_space.py,sha256=3PISOF0bY7geVlgQ4_3rZgxPPUI1r--tNgUMfyj2lDY,10791
58
+ warp/fem/space/hexmesh_function_space.py,sha256=6HNEPnan0giRnpRpDjznHHCLtjMdO7dB3LprSfSvtEk,12441
59
+ warp/fem/space/partition.py,sha256=21XzXIBWfrB4TQjqVGPfD1I9q1D8Kx6CVixhxqsBuCo,13841
60
+ warp/fem/space/quadmesh_2d_function_space.py,sha256=KURxqkC5ob6TwqWhOT5PmSrVZPs7iJb9VS1CwBJMbCo,13461
61
+ warp/fem/space/restriction.py,sha256=bHJAakDcUlTG35cJ188hyDQNDVff2x0DhypVKz5Oep4,6630
62
+ warp/fem/space/tetmesh_function_space.py,sha256=Yih_YdkPIIT7-gjBPpfVxSXazxcviERS85kEwVlFLRA,10718
63
+ warp/fem/space/topology.py,sha256=gtSnFtzmhul7RWhaFo7Gpx1cs-vUcKCesexQUwk2U-4,11159
64
+ warp/fem/space/trimesh_2d_function_space.py,sha256=ayp3L6O_TalY9HN5EmCACv223wrbCZvuPHtMg6539tg,7915
65
+ warp/fem/space/shape/__init__.py,sha256=7ioR6AZ54_cFqkDZwLE-c1j9IBp8HGsDyD4e9fIgol8,640
66
+ warp/fem/space/shape/cube_shape_function.py,sha256=1rhoyNTovguw6mhrni8EH5q0i6SMJqs-QZ4c7KNiSr4,27547
67
+ warp/fem/space/shape/shape_function.py,sha256=bXmbfV97XHerfWf-IQudl0-FVLQlFjYSb8je3A72oZw,3391
68
+ warp/fem/space/shape/square_shape_function.py,sha256=8wWn7y-zmM4xY5fvKVnyYF6HrVtH74A-MpU30Nn9ayg,22825
69
+ warp/fem/space/shape/tet_shape_function.py,sha256=obtxrl-6AWpFEgUClbiN6IJzYABKXARCcDmwmLqrX7Y,20979
70
+ warp/fem/space/shape/triangle_shape_function.py,sha256=VBjGqywBanuBKmT1I1FDzyJmIqHq3ritGEahv6fjxzs,15314
71
+ warp/native/array.h,sha256=EsnCc8oZfrDa9z7zlel6qOTOzMOA3UfZ10xoFh46_g0,37000
72
+ warp/native/builtin.h,sha256=iA-RE2TipD4-ElhI5PI1jL9r7HlwW3CKin_suWIDQb0,48874
73
+ warp/native/bvh.cpp,sha256=Pl2oR9rFPFXNqVXjpcqwIGv3zsedpMrwW2wvl5EUUHQ,10719
74
+ warp/native/bvh.cu,sha256=XrJj54Rexp2W0htMtXYXuQgVI1U91nV41Kg-L7dDQZo,19538
75
+ warp/native/bvh.h,sha256=j80DB3Lah1oLrm0WougITXG_RGovHj2ouFwxjQFDVuY,10535
76
+ warp/native/crt.cpp,sha256=Quh5ndL6jlIxYeE_DTc-6s0UWyBPCf57qJlOHZDvaDs,1051
77
+ warp/native/crt.h,sha256=14ZOVfMgWkKcMAgFPoc7VHCJjPhrqZ0JbDuLXxCEJRQ,10811
78
+ warp/native/cuda_crt.h,sha256=Yj02mjPPmeQaaGyGDNHG0BNYpqZo4tfTmIF_NSdKpuA,69706
79
+ warp/native/cuda_util.cpp,sha256=p5Lyz0Qxd8UAJFpxFJkKSxH2z8ucwjzGbVSuU7fV6I4,18284
80
+ warp/native/cuda_util.h,sha256=RIdTFpZ4SfGutbK_c_QMxqi-0pTppqDQiTqh-HzM-fo,7055
81
+ warp/native/cutlass_gemm.cpp,sha256=Z0NQs0Spnv5BpiE4DAOrha1w6N2dTFao8SnecWmHHT4,1142
82
+ warp/native/cutlass_gemm.cu,sha256=tTqo7kUpvCGN4VWKgcGRqbqBx4LOlOLXG-rdCDIreRE,21912
83
+ warp/native/exports.h,sha256=pz0Jo8X-IVeBvXUp6_fWVsEhbZ8_b1VHe7PjPVHXjZY,154504
84
+ warp/native/fabric.h,sha256=QknUFOKeXAXjH5nHsVmJkUgwTzzVjVN4dTnx0qvPKbE,5978
85
+ warp/native/hashgrid.cpp,sha256=mR1X4zuYqPrDDmQD4WbZ0WqzKDIOrq7gcZGWX0gfmyI,8051
86
+ warp/native/hashgrid.cu,sha256=g08ZawgQl7_b-DX2c-8pa5unzZAKabK1KeoUJPTHQ5k,2277
87
+ warp/native/hashgrid.h,sha256=B-zsl-w5FhA3Zv4E2u4xThHp_iIiPEvfugl2AHV99rA,6714
88
+ warp/native/initializer_array.h,sha256=B0t-xFl6TZzTm7idY2Dhux3VcoRgFoDp6GpMHgZDXLQ,1028
89
+ warp/native/intersect.h,sha256=PbYJs8Fbgm9dQm-YAOs8OyqNOi56Fr9MN9j4u4L8VDA,35340
90
+ warp/native/intersect_adj.h,sha256=x_y03YFw7fT1hFMApqn5riJRnh1oR0rgZtTCP5gcX_8,11928
91
+ warp/native/intersect_tri.h,sha256=GT4jBKVykpsr6lDGgKIfmrwTvwRP6rxxNE7fvNlZlLk,10518
92
+ warp/native/marching.cpp,sha256=iFAhaALm4dWzYI_YD5H0tfU3FMmqvPWNd8vRTkYlMG4,26
93
+ warp/native/marching.cu,sha256=jSqvW9UD3j1O2TEdxrqPQnDxw_NnpqFN-ory81G3RBI,21823
94
+ warp/native/marching.h,sha256=ZwfOKCmc2RTkbmPtvb1TDFCu1ScRzcpglz2_6MRL16g,16
95
+ warp/native/mat.h,sha256=WCufS50aQoFA30QDBhaI7iezyqjXOhwOSUFT3QlaUJ8,48789
96
+ warp/native/matnn.h,sha256=DNY9ALYFSMsbGrB_5eV3tOjbbgrp9kJP0OH_VVO2Mts,9950
97
+ warp/native/mesh.cpp,sha256=rE5wuTzYovPsogcf363cw4chAFcyl0iqcu2dYDFjQgc,6013
98
+ warp/native/mesh.cu,sha256=u2cYvDNjfZhfH11lZYgoShKZq17o_fuxf8ffkWz8PVc,10834
99
+ warp/native/mesh.h,sha256=MnMSMxph4sjo9a9ZTAcTp0FJEg6NtEm5YrSsN-3aq-o,61462
100
+ warp/native/noise.h,sha256=9T_3rWydo8o8GnaAC1jGUnJOMPoQBePAJhQy4zMR7Dc,30612
101
+ warp/native/quat.h,sha256=FT7rm3zwy1qywGZqPW5HFCxsfmzNThEJul6_WAqK_5k,40312
102
+ warp/native/rand.h,sha256=nhw6eJHrfwc9a5ocLBiK3-lLvxO7by5zVCVSlOpIji8,10203
103
+ warp/native/range.h,sha256=Zj-sfXVwRAz2mITwvzNw1o2ilCr60eLUHbK_GmA14Dw,2423
104
+ warp/native/reduce.cpp,sha256=xIDRVi-mIyknDYcy39Nsm2D8DWYN9aWlh-21Pz8wf4c,4616
105
+ warp/native/reduce.cu,sha256=6s4Cps4c4G67s_vgcnf4LxNZCPCzY9amFaW1aNW6Wm0,11035
106
+ warp/native/runlength_encode.cpp,sha256=KrUu57VxZxYBQO5OUn2HYB7Ha-fTe4mfgpiPs4Tv9DQ,1386
107
+ warp/native/runlength_encode.cu,sha256=ATdNMPIn8XApli09HI3hGEWfhqIG3yPEebk2kLtSk2w,1390
108
+ warp/native/scan.cpp,sha256=lWZwg2ofQzF4srnr4LOno8iV2GKfSZG1aPXF2aQCwuo,853
109
+ warp/native/scan.cu,sha256=QeZ3mgd0u8_AXWZrnzbVsemmW890HS-EYH4z91AqE7s,1224
110
+ warp/native/scan.h,sha256=DUe5rYKyY-g1hscClEehkWaa9EvcJVgbhlAaADwmNyQ,228
111
+ warp/native/solid_angle.h,sha256=RWJW4W90AdjqHWKzzUldZs0Na0yEDITN5SI9BLrX-o0,16127
112
+ warp/native/sort.cpp,sha256=nyZollu6XOcsu15sdGMw2XTbaR3FlwgXvfy--vlG_N8,2273
113
+ warp/native/sort.cu,sha256=R4-VeqyzFS0500RzrNfogvLGqxgLdI049zl_-WpieJE,2700
114
+ warp/native/sort.h,sha256=sodoBbqubyb3ydYTdt-5nqw0LYQ1ScUMvvqFnlY7JX0,709
115
+ warp/native/sparse.cpp,sha256=STqwdjKHvCmwiVIDJYcpGzB4FnsZlQjgrIiLgqh8SVk,13291
116
+ warp/native/sparse.cu,sha256=Q5c9JOJAfrFSY1-MH_KVYf35ZuskQ1mSN5X6J5snZBk,20867
117
+ warp/native/spatial.h,sha256=DEGl45QflOLz9dRfTqXqC6aTTaMQsWs-8c3fEkCmjqc,20423
118
+ warp/native/svd.h,sha256=qqJqPPooYUC6U4fLdRECHAjfQnEfWESdBqeSgcIbntI,21123
119
+ warp/native/temp_buffer.h,sha256=CzHtMTH4713QvdWDchr9tOHf0f2crguln0njupiGc78,528
120
+ warp/native/vec.h,sha256=UpMlWDSbTf5GmErSt1krTvqLdvjPWxAJ8wRypt9WBEM,33386
121
+ warp/native/volume.cpp,sha256=VjzVzJ_T4vWPJK4clNTdqdrrfaEwezRBXNYKalRvlEA,9632
122
+ warp/native/volume.cu,sha256=NHnbJaaIE4xUQXwwSSQbnDQNTYavludxluhTnMicIgM,1387
123
+ warp/native/volume.h,sha256=gtG_a0HNxPe4noqsB9aNCsWe8Df-dETGYeIvaH6wuFA,23939
124
+ warp/native/volume_builder.cu,sha256=zWuNrQa39JnrnrQNv456XPz0y5gJ_4V_ZB7iq5wld3Y,20377
125
+ warp/native/volume_builder.h,sha256=GEITFoi0OJmPAWhWRaca_DQBfkvhiT3MsqFM2XAgb60,623
126
+ warp/native/warp.cpp,sha256=T62aZFPihtlITGGaT7ZgX299nmPFhoAahCYW-WwiE1Y,34084
127
+ warp/native/warp.cu,sha256=rJEt5itnIxlSgCsC_sy-99vn-SdBmGmzZAxG8kDOlEg,64024
128
+ warp/native/warp.h,sha256=vd2HH61eh4DbHlPl8YvxJ9Ng2LeS4_8JVn5XeAN6XYk,15157
129
+ warp/native/clang/clang.cpp,sha256=bsjabZFX6EZDgFJJa02KBIp4gpbpVUw-CatERgrqXEg,17699
130
+ warp/native/cutlass/tools/library/scripts/conv2d_operation.py,sha256=YWLhdjGXLoJB1Ck4e8wdSdIQyOaERcPr0G7WDOO_9o4,18229
131
+ warp/native/cutlass/tools/library/scripts/conv3d_operation.py,sha256=5HTuW477L6uUeVlWtDon9UWbEIRftCVQKNKRENPAB8I,12643
132
+ warp/native/cutlass/tools/library/scripts/gemm_operation.py,sha256=o_c-TYhJxtYTUvrQVghsBUtu3ek6A-VaafkDDf9SgJs,39700
133
+ warp/native/cutlass/tools/library/scripts/generator.py,sha256=zYnMGvX4oqXTmQJPgVM4AS8RR5xn2Srq1-YWSXqbcFo,185889
134
+ warp/native/cutlass/tools/library/scripts/library.py,sha256=m4jquIwbnLd_o4Yrpsg7DMqkyTr8FVeSN6__armsFb4,24859
135
+ warp/native/cutlass/tools/library/scripts/manifest.py,sha256=OAjOzACO9m6s7plTbTkw-GSqKXITyh08QTCob2oDSCg,12743
136
+ warp/native/cutlass/tools/library/scripts/rank_2k_operation.py,sha256=ranCvmmXwEADwobeBWhQFMfay7olWd62N62RBwrVLus,14524
137
+ warp/native/cutlass/tools/library/scripts/rank_k_operation.py,sha256=kD4SFJN3A9NnSg9t7FF-n5tFVyQe0XdIk_ZYN2KWYCk,14096
138
+ warp/native/cutlass/tools/library/scripts/rt.py,sha256=sU1jkiQneowoLX5jHZygfBSRSmr6EAnuJrRidWqb9dg,22416
139
+ warp/native/cutlass/tools/library/scripts/symm_operation.py,sha256=X5pCollHUslibceIRlNAVh7aIlZMjaXpt4mnlf5WUcw,14476
140
+ warp/native/cutlass/tools/library/scripts/trmm_operation.py,sha256=NMsHsLIDJHZPEGREe1UqVx74wuMifk_KpIZPSE8_fmQ,14967
141
+ warp/native/cutlass/tools/library/scripts/pycutlass/setup.py,sha256=ow2zL1qHTt17cvYfJxpRy8MAl1EJxDVMWL5UxQ_ijnI,2545
142
+ warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py,sha256=lz8fgW3wcBazFEvdk6caTe05i6eN7plFVV3l8kJHpFc,4110
143
+ warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py,sha256=aH7aHmlC1FS-2sVES1IwMLCbNB8v4AmnT9HFEBMPvJM,4470
144
+ warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py,sha256=IhROR2zzCPRfijoTGLtrXEOpYl8JdRIn81SA-NAOe2w,3747
145
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py,sha256=S9V0maaRmLdHclyqj_YAFSwnTorxw0PCT73r1KJqhJY,1358
146
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py,sha256=kuchtAuf51fD5CTa-eU_rZo9e0AtgvBpuAVachmXTMI,5112
147
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py,sha256=Psmcix6SuGhgNgWZmTFLGoxjJdfz6CW3aQNF90GpVAE,8650
148
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py,sha256=jj2UbhGvVG0a4u8H6PtRmTbb7UuZ1iE45cx-ed66zJk,17334
149
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py,sha256=fMWTL05hbz5VzSxVVQB4ZEzAyD_N0O3tked4FvgcGK4,25581
150
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py,sha256=DYOAMPv-A0ZF6t-18zKfm6-NhiqY4d8AhZnEGu1_yyg,40215
151
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py,sha256=OcNb0hYZUZG2Vve5ColgirVA5U8JKlZ_VFE4Qpg6VMs,3589
152
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py,sha256=oDbRrUkqk9yQ0UubwbbP21DtSlrl_zpY3vRWhMz4O1w,51704
153
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py,sha256=PQjKXofghJPFyD4YTqZYN4_vbwQwVxvVTSkJaW1q-0I,23749
154
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py,sha256=pWdqA44y3aDBGeoSM1V4QptsvzYdqRpVl9Eb-YAnTZo,3079
155
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py,sha256=0WpEvcHKzmUpmzIaytYCLzHK_q5wIW8pHErKK7q7vls,3934
156
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py,sha256=Mg282ZQpTaZ0RL4xCpzGpBWB1-QXW1D9OmXUu6XWm0s,26546
157
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py,sha256=w-LIlZYzUyziF8FJaczTYXfUKHjLZcdr9Zrg5Fc4-qg,15255
158
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py,sha256=GtYSDKvQeE3hwAP34FDIYs_0iAlGSZk9bSvy4QzLOzw,3032
159
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py,sha256=DGG60i3_BuWnUjN-EspOc9CWfTaVqYgybg3xhn36igA,2007
160
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py,sha256=f0jWPEtKTzzLvLDekFAk1CskQsYkEvonbes-fNnTATM,178
161
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py,sha256=i_v7rAEMdP40ffDKCOjK316VRNulIGxxyWqaMvnZKk0,27219
162
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py,sha256=2ympp_19qlUPzdiZ-a01i_8mh1lNL1V3Bvv3ou2HU5A,9292
163
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py,sha256=QmYUauUKvR1VJNrG4ZxbQVi1xq5HD7urXSsk2sBmPMQ,22467
164
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py,sha256=AYJX_YBuSxTMkNxF6KAIy0UZ41GdYtSun9EYJgvwGpg,3282
165
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py,sha256=HJK2eiB014c0tfXVDRU--A2B19KsCgbhbDhykqCX0L0,48
166
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py,sha256=QHCwsTqazOxwTfj51kpyAktq9zCadUqIL88m5IBYoYs,3146
167
+ warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py,sha256=-9LdHYoEFHTAHvnJE8cRJo07vQf8GUDVKGxrrLGyqkc,11854
168
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
169
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py,sha256=RFeJsdYE9sbVadMPFvrT82HqLPkHbxxyHMknpOpREbY,7962
170
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=4qMWxgd1vOfgj5RTsgs4Sgut9hLRM1LpJr5Iacx2hEA,7119
171
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py,sha256=PfcPeq97IXTHn-aGlproDEb5o8xUVKv-cE2O4AUr4IQ,3787
172
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=tH1FT5salD3QicpQn0x-TlZY1JA-MGtkl1cGGUpj-vE,3783
173
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py,sha256=Bf_tEwvSzqyc6BksnzI9Tjh3ZGdSWUil3Bj7SAyMrM0,6504
174
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py,sha256=9PMlo_ksHOzm37CVNcebbiJts6f6JskOK673KbBhK9A,7493
175
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py,sha256=z9cQZg0_wMqdpd9YWwEu-QaOw2XCryxYLlq2lt6hyDc,12337
176
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=9Irz87iarmoZk44CgECGEqLLOjO-UaYvk-cD3_Wl2UM,2143
177
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py,sha256=w4QAY5l82jrcIBbd6mOE1hMu2-JYLzHfIWcw1tZ2IME,3781
178
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=QE8DtNDE3MCEzoPDvBlWRuFtC4PfRfpxDcrh0mygpHI,4239
179
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=417unadN8FwbOAyApGZyEgR0zOFJtuBK-PrlrNg39wk,10193
180
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py,sha256=skPi6ytOqiYZ1pLX5dShNvI5S5CV7Kfay4aRoW6ZtY8,3786
181
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=lP_tI0kirpTguWPsfvuEFTHi680UfmVlNSYDGjZbXP8,9580
182
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py,sha256=pzbqwuBCpDMcU_uSqIDXHOzfYus0-uEy0CQsykPTpRI,3781
183
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py,sha256=FvYALi_Rz3mbqE0NnnI_Y6PdoDH9x3l0pWkqCGF4iDY,4240
184
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py,sha256=ywOq-KAG9tqmS6BBCw3fo_4-xSX1xezAeAfFAZTSGrw,314
185
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py,sha256=u8M45s5a-bjibnjLap5lpqQ9JGeEK9E2A4qpCt0zENo,5727
186
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
187
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py,sha256=pDRqHzvDnBRgc0K-2kQuE0PamhH6ROXKnGnJiVbDsvU,3421
188
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py,sha256=lSVbIhgQyD8Ef9n-CU8ymvH8kAKABIvHml61MYqbCDc,15900
189
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py,sha256=kX9DHVbewzLApUQrYWq3aGx97bkvuLI3BqeMa5LCQPs,5190
190
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py,sha256=MqUL4YPsx2vOG3hVxk0G0cPs-dXUyu-H9ICa_5FQgyo,3585
191
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py,sha256=DSNi-3csmkQrGtoxhvHxG7sltWsB0Z31W4lA0eUEE0Q,7094
192
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py,sha256=6bgSvCBLahgMu3W7cDUhcAgDYKIYghqU7g-joGdZLJ8,7927
193
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py,sha256=Oh9WnCi_cAhIW95Ic4TIGM4Sx-eCqgZ1BCUWquRSQh4,272
194
+ warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py,sha256=AYu9gDs0Y8cS1Q8JW5lf788c6j2bLmCID9JQxiKA2ps,19599
195
+ warp/native/nanovdb/NanoVDB.h,sha256=GEqu_o6INERGmevjXetLlCpGw_Ws9q-Dy2ddj__sfok,194604
196
+ warp/native/nanovdb/PNanoVDB.h,sha256=pwjV_boDULb8FTG_NSSWo_HKeD_s5Gw0RGhieVTbEIY,124169
197
+ warp/native/nanovdb/PNanoVDBWrite.h,sha256=hIL4G-ObW_GuuL9DuGX20CEB6U4GY5zk7Sd91RD9prY,18336
198
+ warp/optim/__init__.py,sha256=zbioJc8XHMnfMHg00a9G53UFY3th-dRkou48dpanCQQ,477
199
+ warp/optim/adam.py,sha256=dIiGnuFO-XhMk3egU6PU-QHYvY_pw5W3Qzbbyy6xnKA,4359
200
+ warp/optim/linear.py,sha256=tPIrS2h5jcyQupIcwY6gdQUNXOdPfqaoAzOzwxcUT-8,29986
201
+ warp/optim/sgd.py,sha256=XnP6tJ5sHc4zplrbHTjo0ynkKLdwQMAJlvRCHf_Sgd8,3119
202
+ warp/render/__init__.py,sha256=VGLibelbTuGcxGhzIiCbGZr6CF-o6z42cr04Pf_WMUk,548
203
+ warp/render/render_opengl.py,sha256=W9X7kJcRJz1vn03vZalwK1CBRHhYoLIGRsFQNlrpcHM,118747
204
+ warp/render/render_usd.py,sha256=XSvqHCFQRcRKz1fZyzg-RQsLX4RZt3s8IzaXGQFGLN8,25911
205
+ warp/render/utils.py,sha256=Pu-DSAY5jFz7bmX1ZDUJM0TwLr6_lyjfTaW8M-5-mZ4,4446
206
+ warp/sim/__init__.py,sha256=9x3EJ46IeqId6VefBHeonExGf0NHU8WcOZj5XZcRfLY,1716
207
+ warp/sim/articulation.py,sha256=WJSL2-M51i7w1jdCLAr4VgkVKMsTF-11tX5C7G-YmNs,24228
208
+ warp/sim/collide.py,sha256=hTGWd1k0BYkevW0xRHwlAhjYhdqkOHq_5IaNBE_2_vc,57274
209
+ warp/sim/import_mjcf.py,sha256=43z2LfO09ylgAHisFhK8AKzM9PZuimcP0c5gZiAT7PM,20091
210
+ warp/sim/import_snu.py,sha256=lzKknSNbGs_0KaOPH4CctpMsjhXAbijs1zbtflwUKmM,8564
211
+ warp/sim/import_urdf.py,sha256=ci5eBZ2cqlQbkzji7X1efVt-YgWKwdCIS5lczLAYzNg,21089
212
+ warp/sim/import_usd.py,sha256=q8jRdpAcUIqFxL8mnny6p7k628DnJe0O_BZMeo9x-GE,40517
213
+ warp/sim/inertia.py,sha256=m9tagvIdR4uuKPTI4ZYdw-x0S_8PEQMHM7Eq5D_rCvM,9332
214
+ warp/sim/integrator_euler.py,sha256=RCDqit04bCpnJjETkNuH__MrOAavrSzC76nhy4egrgY,61057
215
+ warp/sim/integrator_xpbd.py,sha256=it2JjGkYoHgh5-x5d5t179i-9QCXU2taQyXjrRaXNvg,91871
216
+ warp/sim/model.py,sha256=Z_Y96xtAyGSFCkFvIyOo4-yZbwxsa7r9dU0WsoaEcg4,166392
217
+ warp/sim/optimizer.py,sha256=eGovWgWDCeONGZE_MfqLu-JGXmSACMfKGOfqJ25k2_M,4040
218
+ warp/sim/particles.py,sha256=e_kj6wjjXkj3KhsqepwWPmRc6NoWGqoJZthmnkKr_5A,3174
219
+ warp/sim/render.py,sha256=NbVxLsC0iUfRhzLpXEqEbOQyYBSiRaoHa0-Fip9ClEM,16796
220
+ warp/sim/utils.py,sha256=iDDh3Ug-eazYhzGnfIVtnulyxMZMWQoAQWY3UlH_IIU,5124
221
+ warp/tests/__init__.py,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
222
+ warp/tests/__main__.py,sha256=Dg7dxwx_tD2ORJK4ctN-nmXJ2ilcoba-iLN8fg-tLgE,94
223
+ warp/tests/aux_test_class_kernel.py,sha256=KPjFlrvuVObuGpH5xBf8WwGHP0xg1MM2-Zf0PYmHqHk,1053
224
+ warp/tests/aux_test_compile_consts_dummy.py,sha256=mF4jTs4zQQiycCjbPhTJtkfSj6oCFfodD9sTOKCUyEg,481
225
+ warp/tests/aux_test_conditional_unequal_types_kernels.py,sha256=qVx-16Dg-BDRP0ctHstOC4B_ck6SJcnHfNOKe59vZ2M,667
226
+ warp/tests/aux_test_dependent.py,sha256=_o0Jm-KzbqM0sifQgek6EqSI5yZFm7hVwNF0buRMPrc,743
227
+ warp/tests/aux_test_reference.py,sha256=cXskQIRy9FoH2HhHgfhRSSMfSlbjjbe-uSGx8Gndyeo,216
228
+ warp/tests/aux_test_reference_reference.py,sha256=1A9bHZyBBw3UO0rzAJ6er_utb0c4V6fx5AWR9AezrdQ,141
229
+ warp/tests/aux_test_square.py,sha256=Y4mBorrh7Pt0gHmfvOOvZMbes0NSsHRopca_Wvq7ONw,262
230
+ warp/tests/aux_test_unresolved_func.py,sha256=MqUZqB4xGPsFM4Phj0pPyAazwTx_IKksFhfD6aca-Bc,593
231
+ warp/tests/aux_test_unresolved_symbol.py,sha256=c_ghNYwxm1Ip6RjORSHqs_u8WiQfIyCAl3moczcJGQs,588
232
+ warp/tests/disabled_kinematics.py,sha256=If3joeveVqKIFF6z04BpnD3-TPlYIc4zuwcgrKz3jrI,7851
233
+ warp/tests/run_coverage_serial.py,sha256=14Vej3BouIo3FxAlvOmjAKTN7pjTzVadX3eYNwcvm8Q,1076
234
+ warp/tests/test_adam.py,sha256=cdghsff4zYAtDdXACnY4JoZNKSgiQ5ZSjhBXCDJNuR8,5535
235
+ warp/tests/test_arithmetic.py,sha256=rm1jTVuFinzeFdH8Ig4rVbQCYvF8qdQ1wTZVG5D7EHA,46127
236
+ warp/tests/test_array.py,sha256=m-RluT3pxOt3Ofg8_N4k_RHkCLcW6hbiEWPkk3Zmlo0,77043
237
+ warp/tests/test_array_reduce.py,sha256=rwR3wI0uWR58p2X7e3e__iEqbtiAqJKl7p4lumz36vw,4835
238
+ warp/tests/test_atomic.py,sha256=huop4ht73RAWxOU8vMeYDEqakiNw4IWhbiFwdol9UTE,5501
239
+ warp/tests/test_bool.py,sha256=7Wa1CBej7VE8b0XcQKRL_jYsYvM8NHo6gdJYRtuPmzA,2527
240
+ warp/tests/test_builtins_resolution.py,sha256=5ClWiJ5tTvfTSfVsPP4P0RE2h-8iE3B1D7PB0ricCGc,65298
241
+ warp/tests/test_bvh.py,sha256=RM26TXPAohZp6lss4i8KQsv1Wdu7HsEfwvWdVa4-kn8,5331
242
+ warp/tests/test_closest_point_edge_edge.py,sha256=0z6FaHz8Z9bVBqpJP1jSsxgH-YRPtHIVsoga1530tdk,7069
243
+ warp/tests/test_codegen.py,sha256=sf2flwmB8Zx_4SJaTMbOFY487VyzAWWNLuqWycXNQNA,13290
244
+ warp/tests/test_compile_consts.py,sha256=DqhwGYkMp0-NUWjdud03mUO6DinRcNGOuQsBCZdIGOc,2861
245
+ warp/tests/test_conditional.py,sha256=-yVPkiqLzkW3cFMUjO2JkD3YRAI1sPchKv5abnGQKlM,5758
246
+ warp/tests/test_copy.py,sha256=y2yNTQwawANWrm0gYnib18a-KMM9yuJRFKxQKoGG5b4,7261
247
+ warp/tests/test_ctypes.py,sha256=HnWUCfkSfEbCR0xaiDCiUSy03WJRrz1HD79I1KZjxEg,25284
248
+ warp/tests/test_dense.py,sha256=WjBUhrtLyKFCnp3AdBuVeVYZyC3B6AxbUqQhavP5k_I,1913
249
+ warp/tests/test_devices.py,sha256=6n5SAvWPIZTw7KMgQg8-9owUNEPvf9p_9oe6ulDZFO8,3291
250
+ warp/tests/test_dlpack.py,sha256=opQkgRCauWFoRho4qKN4XJQgL6pjEq2FukwHQBzoAvs,13361
251
+ warp/tests/test_examples.py,sha256=xYx45lXOEFASPLi6zv0zyjo0TmrkmhUR7EcgI0w5Tu4,10500
252
+ warp/tests/test_fabricarray.py,sha256=TSKjECqjwltsBkAAnTMhesh-6M47BnXxSphRtwm1WrE,33105
253
+ warp/tests/test_fast_math.py,sha256=vCRlv8XwtQZeZmRmiJlFILKFV64_kNKGUlbsXpJq9c4,1618
254
+ warp/tests/test_fem.py,sha256=xaC08R1KoJb6mKcE_IobZgdEB367c0_P-ohLiL5lD2U,52697
255
+ warp/tests/test_fp16.py,sha256=kIR0SP62vsVLQi1dSezCscn1n3R74l2fxSym6M3Trss,3963
256
+ warp/tests/test_func.py,sha256=c8QVFvetnw0vqi7aMh-vnIs7N99ZPMe3O-WpM5VM9Gg,11071
257
+ warp/tests/test_generics.py,sha256=1o6IrOMlpMkKOXnJz_Koe8aTHKTcW88WyGhe0GjfwJE,19490
258
+ warp/tests/test_grad.py,sha256=5lny5ha8fee6QvvmRlhZpA226knVG_xVk2h1qoxlRpw,21078
259
+ warp/tests/test_grad_customs.py,sha256=3haWrS0e_xw9zAJUmuzMq9TjCcft--y1nDYSvzDFQig,6106
260
+ warp/tests/test_hash_grid.py,sha256=B8n_iYaTfY08YuqKHm5_lq5zTbUnYGhOV9UzGzWVPCk,5073
261
+ warp/tests/test_import.py,sha256=2T8g-EU1xeEz70pGtKFvFvWGC7znaB2Yn_nvLIgfjTs,1077
262
+ warp/tests/test_indexedarray.py,sha256=5FEsvhOi92RPoq_14H01zmNWK1VcTTWBuuL_xwnoXtg,41945
263
+ warp/tests/test_intersect.py,sha256=CQMPJWi63gu9MkRHvdaWa81yBn2jtX5tqizlChbCeGU,1933
264
+ warp/tests/test_large.py,sha256=GWp1ssEZ9IQ3diSCT3Or1YGCRRLiFs_kFNRaPY8zFx4,4885
265
+ warp/tests/test_launch.py,sha256=grNw0pGfoFfV1_s-1PsMIfatrMMYUn6I-OGQNBmBFns,8642
266
+ warp/tests/test_lerp.py,sha256=vrezacbCx0u5sfMG9jWWxpwUexkh6oyF9Q7c0jeyy2I,7186
267
+ warp/tests/test_linear_solvers.py,sha256=IHSFGn16h-wnNS5UfCP4Tcx1bkXUqirT5ERlXI40thQ,5490
268
+ warp/tests/test_lvalue.py,sha256=Ncw4KSCykB4nFdA92VrBtVelGFrBAj7z2YmnFUXnNwo,12070
269
+ warp/tests/test_marching_cubes.py,sha256=VWhYA25wuvRPb7bAYa4VK1kN7O-g4G3qiW-smP450kw,1917
270
+ warp/tests/test_mat.py,sha256=1VYynwQ6sLNqSjZYjB0jdQJ6iFPO2xOiVE7AdiPtex8,67211
271
+ warp/tests/test_mat_lite.py,sha256=MBDLqy7mcqHli9z7qulIgVUghYlW0-vs8VNSsIFeSjs,3909
272
+ warp/tests/test_mat_scalar_ops.py,sha256=CXGE6FUjs2FVbd-ZRdN0M_ng4xh_VHBSUKawXpdK_r0,112805
273
+ warp/tests/test_math.py,sha256=Job9bBiV38FKgYt4vO7FI_OW8mFLjjGkSRqEQSzZDgM,4568
274
+ warp/tests/test_matmul.py,sha256=0ydO_li3IqazX-Z0DR6K5JmdgkzaCyqo0LEt_QWt3Rw,17233
275
+ warp/tests/test_matmul_lite.py,sha256=b2_BDot4pTDjEsNVKejd6carehpa8mkEvfR4AVTss0U,15211
276
+ warp/tests/test_mesh.py,sha256=Wv1U5z76VKJyMWg-10C9t1BR5EHpo_4COsymHugGBW8,8918
277
+ warp/tests/test_mesh_query_aabb.py,sha256=iMnSEnaKzO_ECu3tN2TeL2ZSrqSLXTcPH-vXEpFuJlA,6735
278
+ warp/tests/test_mesh_query_point.py,sha256=DUny1qu4NaMB9GYGl2SpHJBAb096UFw52jpvg6nA4-0,22588
279
+ warp/tests/test_mesh_query_ray.py,sha256=EVznM980792CLUpHDx7UyX5yUSCYoNk2B5YbWUB2NzE,9763
280
+ warp/tests/test_mlp.py,sha256=aOaGsnaHxQY1oZOyfYogSvnYuyeOebxiWhWu8YHW2TI,8299
281
+ warp/tests/test_model.py,sha256=m7zYsTaeXV_dnmZ6ZDLHvLob66QqVlhWTWJZhVYZOJ0,4530
282
+ warp/tests/test_modules_lite.py,sha256=T9pJlkumgu2d-ulLm6GpHJm4Box-3MYY12SC3mDlGok,1209
283
+ warp/tests/test_multigpu.py,sha256=xPtz9bLjZ_IDqCpbIcVwKtS4izmRWbyhtz3775bVX70,5257
284
+ warp/tests/test_noise.py,sha256=jURxSeFnDeTcvdc89PEe14cLb9RvIK9g4IuYwOftLKA,7120
285
+ warp/tests/test_operators.py,sha256=ZPM6dA0C9zdPxCqn6SSSCJ8yy0VkVu6Jj0e7QIBgN7Y,6233
286
+ warp/tests/test_options.py,sha256=AgMOsvaxMRxYOGL7SFUmCP6_WRntvL-2q2iob9h1BYY,2990
287
+ warp/tests/test_pinned.py,sha256=8rRaOtaMVcd7hosrarXYXziUSifhNNOtK6Rzs1UvJPI,2377
288
+ warp/tests/test_print.py,sha256=PCd1SPkG9RHGqxOIoIEiCajASpFeGTxGTcVOPE9KtOs,1559
289
+ warp/tests/test_quat.py,sha256=RDV7ntaVdEmph7aHQzhL5vPRrlt9LLRj9Hqq9dQKKNs,74407
290
+ warp/tests/test_rand.py,sha256=QDNVdr0l92DFHUIej4skt8fB7IwzB40IXAafPkAsjUc,10095
291
+ warp/tests/test_reload.py,sha256=IC8RpzNFx13pSDsZ4VpMIyAKK1Z79OMOCIWVtUwTgnk,5889
292
+ warp/tests/test_rounding.py,sha256=_TyimmIimTyKh5Alxw6utO5Dm9ttmN5DrJDqAbzsnrE,5974
293
+ warp/tests/test_runlength_encode.py,sha256=TVHyYgH1PuiYLJEDk8nCHJLyrR_4NYWI1t7ymDGfWMQ,7155
294
+ warp/tests/test_smoothstep.py,sha256=mL68QQMtV1BsGby4Mywg9tiSx-2vjobTI7spEu-_nUY,4564
295
+ warp/tests/test_snippet.py,sha256=m9DvTKlnehrGbKmO9hsauWeY6Ax9ts9-e8UkH2jHdfA,4220
296
+ warp/tests/test_sparse.py,sha256=Rp6hb6wuBi3TJedy_QZ8znJC_DLTJPEUIN_Agsu17Ew,18333
297
+ warp/tests/test_spatial.py,sha256=YJz7mHnycH8TYq8HTRIETS5jaFaBnOQTCepf6sw7UL4,78561
298
+ warp/tests/test_streams.py,sha256=Ny-n3grNLvHvOqojvHBXL5KukNrUhw1CdECGBzy3dE8,14488
299
+ warp/tests/test_struct.py,sha256=CwsPU4ORD92NpbvVy7dlnhsAimOND2G7FVUvQJWcIFU,16471
300
+ warp/tests/test_tape.py,sha256=NfLEzTkrXVOH1h_vAge-1byEkBZTS-qgTtX-eztUoA8,4717
301
+ warp/tests/test_torch.py,sha256=6eI1Al6S5R9V7bFFx8r39x7q22tMuIiFOlckoKnWwFA,23015
302
+ warp/tests/test_transient_module.py,sha256=z9B78a4B58PRc9b7GtTwSySvQe5IqpmmcZe_STWzCq8,2310
303
+ warp/tests/test_types.py,sha256=k-CqtOhq6SKsqKhfZbs1ts3TZYPFE6DoqFO2psWnlXc,22622
304
+ warp/tests/test_utils.py,sha256=ErROGfee2QebiuRdVVFc-VHFSQmL1N1lBeOk9E4NuA8,19442
305
+ warp/tests/test_vec.py,sha256=MQic0V_1hYoEz81p5uo_e0ajhp-2XYGV7S7uRbrusvs,43762
306
+ warp/tests/test_vec_lite.py,sha256=etjM5nRzFxpYCTKtdpr3Qp_HTv4mZRSDQ8JW6ZgxxkA,2427
307
+ warp/tests/test_vec_scalar_ops.py,sha256=z8EDboIPbfA55DoIOhiW4H_VZhXc21AL7xB-aRfP4eM,87005
308
+ warp/tests/test_volume.py,sha256=SYJR8j2Y_Pz4pSN3Ga8KmHUnNr7NJFJhS489Nh-uUqU,25706
309
+ warp/tests/test_volume_write.py,sha256=A7f8M_djIX5jXIr_57l3HCvmIziuqX42S8qyyXgTC4I,9074
310
+ warp/tests/unittest_serial.py,sha256=AJAZPuNwgMMJ_puCvZwgbFiQFN3ZNor95y27UyqkBI0,1145
311
+ warp/tests/unittest_suites.py,sha256=zhZotQn9CV2RL8JKd-JCXPhR5gHmBE-uFbiyFO_x_nE,12738
312
+ warp/tests/unittest_utils.py,sha256=jAVvX2_opz6-LyIjORtCFyDVE7MJbTyj8Z5TGhJksQ0,19846
313
+ warp/tests/unused_test_misc.py,sha256=fyfOY3VpF1hSdgu_6kTz2kRSukUBl7LQm-r3-4adJVE,1534
314
+ warp/tests/walkthough_debug.py,sha256=DsotsWkBvkK2hb-iWQRNbAOkK8KkgrdnmyofC5mPy8E,3136
315
+ warp/tests/assets/curlnoise_golden.npy,sha256=ueBhVunJH9If7vdb0fqfxfNaj1fe5pHlKBKHA1TBDRQ,262272
316
+ warp/tests/assets/mlp_golden.npy,sha256=-ynR9GhQN1HaGOYVdkAc-yVBouHN_2nBkW-4FawO8PE,29596
317
+ warp/tests/assets/pnoise_golden.npy,sha256=ZAOYoLXb3C8De8JXo1qwRyUWKjAKmffxegJtzbU4i-k,262272
318
+ warp/tests/assets/spiky.usd,sha256=VYbY7VEDLJxbxMyz8fp6scE4IaT6vvqvwJLnSr7W6h0,1577
319
+ warp/tests/assets/test_grid.nvdb,sha256=lEacSzmPaaMEOnErVZcCcjBzgGjhXbQw_s8MK10h4mQ,15581
320
+ warp/tests/assets/test_int32_grid.nvdb,sha256=WuXLwxwyPso12XVprzy8-JMs0yC-AszvahGmMMEpR9E,15726
321
+ warp/tests/assets/test_vec_grid.nvdb,sha256=c8XefsMg5gbJa3TDfyyD0ImQPkf39yd9CuQkpibXH7U,37620
322
+ warp/tests/assets/torus.nvdb,sha256=7ftuUfUVpR_KkTuBPsmUQUrEFG9BcDxeHK7kvPA3itk,14549
323
+ warp/tests/assets/torus.usda,sha256=rdJoYgz1fyw01sKDHeYIbuTMkq91UL2VlaHCtZ1cWtA,340830
324
+ warp/thirdparty/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
325
+ warp/thirdparty/appdirs.py,sha256=6msNAwCSJ0eRTVmRVF98Uvd3trshrw5RRsVUM_hPPLE,24852
326
+ warp/thirdparty/dlpack.py,sha256=Upx_8E-DR7TQTHUN0bNbfrilzFubRjxWvafV10ZXvqQ,4416
327
+ warp/thirdparty/unittest_parallel.py,sha256=a1-hEqo_RimsK5ppAoLEuZZSqyCd3RbNF-jAcImc3FU,20933
328
+ warp_lang-0.11.0.dist-info/LICENSE.md,sha256=-oj_azPLVWrkvvTDXjtMSiATqx18KpDmmwXsGmpPSEQ,4110
329
+ warp_lang-0.11.0.dist-info/METADATA,sha256=2OivaC3iQ17HlZepW0cerg6meSubljq59MApq9YPoe8,12412
330
+ warp_lang-0.11.0.dist-info/WHEEL,sha256=KTdQDMVZqs2eeRhOpF4kInPW2OgLgRWl7KhVZQueA2o,99
331
+ warp_lang-0.11.0.dist-info/top_level.txt,sha256=8pupHORyKoiN_BYWlTmv5OFBWdhqpppiBYQV5KxgEvg,5
332
+ warp_lang-0.11.0.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.40.0)
2
+ Generator: bdist_wheel (0.42.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: py3-none-win_amd64
5
5
 
warp/bin/warp-clang.exp DELETED
Binary file
warp/bin/warp-clang.lib DELETED
Binary file