warp-lang 0.9.0__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +15 -7
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +22 -443
- warp/build_dll.py +384 -0
- warp/builtins.py +998 -488
- warp/codegen.py +1307 -739
- warp/config.py +5 -3
- warp/constants.py +6 -0
- warp/context.py +1291 -548
- warp/dlpack.py +31 -31
- warp/fabric.py +326 -0
- warp/fem/__init__.py +27 -0
- warp/fem/cache.py +389 -0
- warp/fem/dirichlet.py +181 -0
- warp/fem/domain.py +263 -0
- warp/fem/field/__init__.py +101 -0
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +299 -0
- warp/fem/field/restriction.py +21 -0
- warp/fem/field/test.py +181 -0
- warp/fem/field/trial.py +183 -0
- warp/fem/geometry/__init__.py +19 -0
- warp/fem/geometry/closest_point.py +70 -0
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +744 -0
- warp/fem/geometry/geometry.py +186 -0
- warp/fem/geometry/grid_2d.py +373 -0
- warp/fem/geometry/grid_3d.py +435 -0
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +376 -0
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +840 -0
- warp/fem/geometry/trimesh_2d.py +577 -0
- warp/fem/integrate.py +1616 -0
- warp/fem/operator.py +191 -0
- warp/fem/polynomial.py +213 -0
- warp/fem/quadrature/__init__.py +2 -0
- warp/fem/quadrature/pic_quadrature.py +245 -0
- warp/fem/quadrature/quadrature.py +294 -0
- warp/fem/space/__init__.py +292 -0
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +236 -0
- warp/fem/space/function_space.py +145 -0
- warp/fem/space/grid_2d_function_space.py +267 -0
- warp/fem/space/grid_3d_function_space.py +306 -0
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +350 -0
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +160 -0
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +292 -0
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +221 -0
- warp/fem/types.py +77 -0
- warp/fem/utils.py +495 -0
- warp/native/array.h +164 -55
- warp/native/builtin.h +150 -174
- warp/native/bvh.cpp +75 -328
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +37 -45
- warp/native/clang/clang.cpp +136 -24
- warp/native/crt.cpp +1 -76
- warp/native/crt.h +111 -104
- warp/native/cuda_crt.h +1049 -0
- warp/native/cuda_util.cpp +15 -3
- warp/native/cuda_util.h +3 -1
- warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
- warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
- warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
- warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
- warp/native/cutlass/tools/library/scripts/library.py +799 -0
- warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
- warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
- warp/native/cutlass/tools/library/scripts/rt.py +796 -0
- warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
- warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
- warp/native/cutlass_gemm.cu +5 -3
- warp/native/exports.h +1240 -949
- warp/native/fabric.h +228 -0
- warp/native/hashgrid.cpp +4 -4
- warp/native/hashgrid.h +22 -2
- warp/native/initializer_array.h +2 -2
- warp/native/intersect.h +22 -7
- warp/native/intersect_adj.h +8 -8
- warp/native/intersect_tri.h +13 -16
- warp/native/marching.cu +157 -161
- warp/native/mat.h +119 -19
- warp/native/matnn.h +2 -2
- warp/native/mesh.cpp +108 -83
- warp/native/mesh.cu +243 -6
- warp/native/mesh.h +1547 -458
- warp/native/nanovdb/NanoVDB.h +1 -1
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +45 -35
- warp/native/range.h +6 -2
- warp/native/reduce.cpp +157 -0
- warp/native/reduce.cu +348 -0
- warp/native/runlength_encode.cpp +62 -0
- warp/native/runlength_encode.cu +46 -0
- warp/native/scan.cu +11 -13
- warp/native/scan.h +1 -0
- warp/native/solid_angle.h +442 -0
- warp/native/sort.cpp +13 -0
- warp/native/sort.cu +9 -1
- warp/native/sparse.cpp +338 -0
- warp/native/sparse.cu +545 -0
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +30 -0
- warp/native/vec.h +126 -24
- warp/native/volume.h +120 -0
- warp/native/warp.cpp +658 -53
- warp/native/warp.cu +660 -68
- warp/native/warp.h +112 -12
- warp/optim/__init__.py +1 -0
- warp/optim/linear.py +922 -0
- warp/optim/sgd.py +92 -0
- warp/render/render_opengl.py +392 -152
- warp/render/render_usd.py +11 -11
- warp/sim/__init__.py +2 -2
- warp/sim/articulation.py +385 -185
- warp/sim/collide.py +21 -8
- warp/sim/import_mjcf.py +297 -106
- warp/sim/import_urdf.py +389 -210
- warp/sim/import_usd.py +198 -97
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_euler.py +14 -8
- warp/sim/integrator_xpbd.py +161 -19
- warp/sim/model.py +795 -291
- warp/sim/optimizer.py +2 -6
- warp/sim/render.py +65 -3
- warp/sim/utils.py +3 -0
- warp/sparse.py +1227 -0
- warp/stubs.py +665 -223
- warp/tape.py +66 -15
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +128 -74
- warp/tests/test_array.py +1497 -211
- warp/tests/test_array_reduce.py +150 -0
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +99 -0
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +75 -43
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +233 -128
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +136 -108
- warp/tests/test_examples.py +277 -0
- warp/tests/test_fabricarray.py +955 -0
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1271 -0
- warp/tests/test_fp16.py +53 -19
- warp/tests/test_func.py +187 -74
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +180 -116
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +52 -37
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +577 -24
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +251 -15
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_linear_solvers.py +154 -0
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +508 -2778
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +305 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +71 -14
- warp/tests/test_mesh_query_aabb.py +41 -25
- warp/tests/test_mesh_query_point.py +325 -34
- warp/tests/test_mesh_query_ray.py +39 -22
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +190 -0
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +460 -0
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +331 -85
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +118 -89
- warp/tests/test_transient_module.py +12 -13
- warp/tests/test_types.py +614 -0
- warp/tests/test_utils.py +494 -0
- warp/tests/test_vec.py +354 -1987
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +457 -293
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +341 -0
- warp/tests/unittest_utils.py +568 -0
- warp/tests/unused_test_misc.py +71 -0
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +549 -0
- warp/torch.py +72 -30
- warp/types.py +1744 -713
- warp/utils.py +360 -350
- warp_lang-0.11.0.dist-info/LICENSE.md +36 -0
- warp_lang-0.11.0.dist-info/METADATA +238 -0
- warp_lang-0.11.0.dist-info/RECORD +332 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
- warp/bin/warp-clang.exp +0 -0
- warp/bin/warp-clang.lib +0 -0
- warp/bin/warp.exp +0 -0
- warp/bin/warp.lib +0 -0
- warp/tests/test_all.py +0 -215
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-0.9.0.dist-info/METADATA +0 -20
- warp_lang-0.9.0.dist-info/RECORD +0 -177
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,955 @@
|
|
|
1
|
+
# Copyright (c) 2023 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import math
|
|
9
|
+
import unittest
|
|
10
|
+
from typing import Any
|
|
11
|
+
|
|
12
|
+
import numpy as np
|
|
13
|
+
|
|
14
|
+
import warp as wp
|
|
15
|
+
from warp.tests.unittest_utils import *
|
|
16
|
+
|
|
17
|
+
wp.init()
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
# types to test fabric arrays
|
|
21
|
+
_fabric_types = [
|
|
22
|
+
*wp.types.scalar_types,
|
|
23
|
+
*[wp.types.vector(2, T) for T in wp.types.scalar_types],
|
|
24
|
+
*[wp.types.vector(3, T) for T in wp.types.scalar_types],
|
|
25
|
+
*[wp.types.vector(4, T) for T in wp.types.scalar_types],
|
|
26
|
+
*[wp.types.matrix((2, 2), T) for T in wp.types.scalar_types],
|
|
27
|
+
*[wp.types.matrix((3, 3), T) for T in wp.types.scalar_types],
|
|
28
|
+
*[wp.types.matrix((4, 4), T) for T in wp.types.scalar_types],
|
|
29
|
+
*[wp.types.quaternion(T) for T in wp.types.float_types],
|
|
30
|
+
]
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
def _warp_type_to_fabric(dtype, is_array=False):
|
|
34
|
+
scalar_map = {
|
|
35
|
+
wp.bool: "b",
|
|
36
|
+
wp.int8: "i1",
|
|
37
|
+
wp.int16: "i2",
|
|
38
|
+
wp.int32: "i4",
|
|
39
|
+
wp.int64: "i8",
|
|
40
|
+
wp.uint8: "u1",
|
|
41
|
+
wp.uint16: "u2",
|
|
42
|
+
wp.uint32: "u4",
|
|
43
|
+
wp.uint64: "u8",
|
|
44
|
+
wp.float16: "f2",
|
|
45
|
+
wp.float32: "f4",
|
|
46
|
+
wp.float64: "f8",
|
|
47
|
+
}
|
|
48
|
+
|
|
49
|
+
if hasattr(dtype, "_wp_scalar_type_"):
|
|
50
|
+
type_str = scalar_map[dtype._wp_scalar_type_]
|
|
51
|
+
if len(dtype._shape_) == 1:
|
|
52
|
+
role = "vector"
|
|
53
|
+
else:
|
|
54
|
+
role = "matrix"
|
|
55
|
+
else:
|
|
56
|
+
type_str = scalar_map[dtype]
|
|
57
|
+
role = ""
|
|
58
|
+
|
|
59
|
+
if is_array:
|
|
60
|
+
array_depth = 1
|
|
61
|
+
else:
|
|
62
|
+
array_depth = 0
|
|
63
|
+
|
|
64
|
+
return (True, type_str, dtype._length_, array_depth, role)
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
# returns a fabric array interface constructed from a regular array
|
|
68
|
+
def _create_fabric_array_interface(data: wp.array, attrib: str, bucket_sizes: list = None, copy=False):
|
|
69
|
+
assert isinstance(data, wp.array)
|
|
70
|
+
assert data.ndim == 1
|
|
71
|
+
|
|
72
|
+
assert isinstance(attrib, str)
|
|
73
|
+
|
|
74
|
+
if copy:
|
|
75
|
+
data = wp.clone(data)
|
|
76
|
+
|
|
77
|
+
if bucket_sizes is not None:
|
|
78
|
+
assert hasattr(bucket_sizes, "__len__")
|
|
79
|
+
|
|
80
|
+
# verify total size
|
|
81
|
+
total_size = 0
|
|
82
|
+
for bucket_size in bucket_sizes:
|
|
83
|
+
total_size += bucket_size
|
|
84
|
+
|
|
85
|
+
if total_size != data.size:
|
|
86
|
+
raise RuntimeError("Bucket sizes don't add up to the size of data array")
|
|
87
|
+
|
|
88
|
+
elif data.size > 0:
|
|
89
|
+
rng = np.random.default_rng(123)
|
|
90
|
+
|
|
91
|
+
# generate random bucket sizes
|
|
92
|
+
bucket_min = 1
|
|
93
|
+
bucket_max = math.ceil(0.5 * data.size)
|
|
94
|
+
total_size = data.size
|
|
95
|
+
size_remaining = total_size
|
|
96
|
+
|
|
97
|
+
bucket_sizes = []
|
|
98
|
+
while size_remaining >= bucket_max:
|
|
99
|
+
bucket_size = rng.integers(bucket_min, high=bucket_max, dtype=int)
|
|
100
|
+
bucket_sizes.append(bucket_size)
|
|
101
|
+
size_remaining -= bucket_size
|
|
102
|
+
|
|
103
|
+
if size_remaining > 0:
|
|
104
|
+
bucket_sizes.append(size_remaining)
|
|
105
|
+
|
|
106
|
+
else:
|
|
107
|
+
# empty data array
|
|
108
|
+
bucket_sizes = []
|
|
109
|
+
|
|
110
|
+
dtype_size = wp.types.type_size_in_bytes(data.dtype)
|
|
111
|
+
p = int(data.ptr) if data.ptr else 0
|
|
112
|
+
pointers = []
|
|
113
|
+
counts = []
|
|
114
|
+
for bucket_size in bucket_sizes:
|
|
115
|
+
pointers.append(p)
|
|
116
|
+
counts.append(bucket_size)
|
|
117
|
+
p += bucket_size * dtype_size
|
|
118
|
+
|
|
119
|
+
attrib_info = {}
|
|
120
|
+
|
|
121
|
+
attrib_info["type"] = _warp_type_to_fabric(data.dtype)
|
|
122
|
+
attrib_info["access"] = 2 # ReadWrite
|
|
123
|
+
attrib_info["pointers"] = pointers
|
|
124
|
+
attrib_info["counts"] = counts
|
|
125
|
+
|
|
126
|
+
iface = {}
|
|
127
|
+
iface["version"] = 1
|
|
128
|
+
iface["device"] = str(data.device)
|
|
129
|
+
iface["attribs"] = {attrib: attrib_info}
|
|
130
|
+
iface["_ref"] = data # backref to keep the array alive
|
|
131
|
+
|
|
132
|
+
return iface
|
|
133
|
+
|
|
134
|
+
|
|
135
|
+
# returns a fabric array array interface constructed from a list of regular arrays
|
|
136
|
+
def _create_fabric_array_array_interface(data: list, attrib: str, bucket_sizes: list = None):
|
|
137
|
+
# data should be a list of arrays
|
|
138
|
+
assert isinstance(data, list)
|
|
139
|
+
|
|
140
|
+
num_arrays = len(data)
|
|
141
|
+
assert num_arrays > 0
|
|
142
|
+
|
|
143
|
+
device = data[0].device
|
|
144
|
+
dtype = data[0].dtype
|
|
145
|
+
|
|
146
|
+
assert isinstance(attrib, str)
|
|
147
|
+
|
|
148
|
+
if bucket_sizes is not None:
|
|
149
|
+
assert hasattr(bucket_sizes, "__len__")
|
|
150
|
+
|
|
151
|
+
# verify total size
|
|
152
|
+
total_size = 0
|
|
153
|
+
for bucket_size in bucket_sizes:
|
|
154
|
+
total_size += bucket_size
|
|
155
|
+
|
|
156
|
+
if total_size != num_arrays:
|
|
157
|
+
raise RuntimeError("Bucket sizes don't add up to the number of given arrays")
|
|
158
|
+
|
|
159
|
+
else:
|
|
160
|
+
rng = np.random.default_rng(123)
|
|
161
|
+
|
|
162
|
+
# generate random bucket sizes
|
|
163
|
+
bucket_min = 1
|
|
164
|
+
bucket_max = math.ceil(0.5 * num_arrays)
|
|
165
|
+
total_size = num_arrays
|
|
166
|
+
size_remaining = total_size
|
|
167
|
+
|
|
168
|
+
bucket_sizes = []
|
|
169
|
+
while size_remaining >= bucket_max:
|
|
170
|
+
bucket_size = rng.integers(bucket_min, high=bucket_max, dtype=int)
|
|
171
|
+
bucket_sizes.append(bucket_size)
|
|
172
|
+
size_remaining -= bucket_size
|
|
173
|
+
|
|
174
|
+
if size_remaining > 0:
|
|
175
|
+
bucket_sizes.append(size_remaining)
|
|
176
|
+
|
|
177
|
+
# initialize array of pointers to arrays and their lengths
|
|
178
|
+
_array_pointers = []
|
|
179
|
+
_array_lengths = []
|
|
180
|
+
for i in range(num_arrays):
|
|
181
|
+
_array_pointers.append(data[i].ptr)
|
|
182
|
+
_array_lengths.append(data[i].size)
|
|
183
|
+
|
|
184
|
+
array_pointers = wp.array(_array_pointers, dtype=wp.uint64, device=device)
|
|
185
|
+
pointer_size = wp.types.type_size_in_bytes(array_pointers.dtype)
|
|
186
|
+
|
|
187
|
+
lengths = wp.array(_array_lengths, dtype=wp.uint64, device=device)
|
|
188
|
+
length_size = wp.types.type_size_in_bytes(lengths.dtype)
|
|
189
|
+
|
|
190
|
+
p_pointers = int(array_pointers.ptr)
|
|
191
|
+
p_lengths = int(lengths.ptr)
|
|
192
|
+
pointers = []
|
|
193
|
+
counts = []
|
|
194
|
+
array_lengths = []
|
|
195
|
+
for bucket_size in bucket_sizes:
|
|
196
|
+
pointers.append(p_pointers)
|
|
197
|
+
counts.append(bucket_size)
|
|
198
|
+
array_lengths.append(p_lengths)
|
|
199
|
+
p_pointers += bucket_size * pointer_size
|
|
200
|
+
p_lengths += bucket_size * length_size
|
|
201
|
+
|
|
202
|
+
attrib_info = {}
|
|
203
|
+
|
|
204
|
+
attrib_info["type"] = _warp_type_to_fabric(dtype, is_array=True)
|
|
205
|
+
attrib_info["access"] = 2 # ReadWrite
|
|
206
|
+
attrib_info["pointers"] = pointers
|
|
207
|
+
attrib_info["counts"] = counts
|
|
208
|
+
attrib_info["array_lengths"] = array_lengths
|
|
209
|
+
|
|
210
|
+
iface = {}
|
|
211
|
+
iface["version"] = 1
|
|
212
|
+
iface["device"] = str(device)
|
|
213
|
+
iface["attribs"] = {attrib: attrib_info}
|
|
214
|
+
iface["_ref"] = data # backref to keep the data arrays alive
|
|
215
|
+
iface["_ref_pointers"] = array_pointers # backref to keep the array pointers alive
|
|
216
|
+
iface["_ref_lengths"] = lengths # backref to keep the lengths array alive
|
|
217
|
+
|
|
218
|
+
return iface
|
|
219
|
+
|
|
220
|
+
|
|
221
|
+
@wp.kernel
|
|
222
|
+
def fa_kernel(a: wp.fabricarray(dtype=float), expected: wp.array(dtype=float)):
|
|
223
|
+
i = wp.tid()
|
|
224
|
+
|
|
225
|
+
wp.expect_eq(a[i], expected[i])
|
|
226
|
+
|
|
227
|
+
a[i] = 2.0 * a[i]
|
|
228
|
+
|
|
229
|
+
wp.atomic_add(a, i, 1.0)
|
|
230
|
+
|
|
231
|
+
wp.expect_eq(a[i], 2.0 * expected[i] + 1.0)
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
@wp.kernel
|
|
235
|
+
def fa_kernel_indexed(a: wp.indexedfabricarray(dtype=float), expected: wp.indexedarray(dtype=float)):
|
|
236
|
+
i = wp.tid()
|
|
237
|
+
|
|
238
|
+
wp.expect_eq(a[i], expected[i])
|
|
239
|
+
|
|
240
|
+
a[i] = 2.0 * a[i]
|
|
241
|
+
|
|
242
|
+
wp.atomic_add(a, i, 1.0)
|
|
243
|
+
|
|
244
|
+
wp.expect_eq(a[i], 2.0 * expected[i] + 1.0)
|
|
245
|
+
|
|
246
|
+
|
|
247
|
+
def test_fabricarray_kernel(test, device):
|
|
248
|
+
data = wp.array(data=np.arange(100, dtype=np.float32), device=device)
|
|
249
|
+
iface = _create_fabric_array_interface(data, "foo", copy=True)
|
|
250
|
+
fa = wp.fabricarray(data=iface, attrib="foo")
|
|
251
|
+
|
|
252
|
+
test.assertEqual(fa.dtype, data.dtype)
|
|
253
|
+
test.assertEqual(fa.ndim, 1)
|
|
254
|
+
test.assertEqual(fa.shape, data.shape)
|
|
255
|
+
test.assertEqual(fa.size, data.size)
|
|
256
|
+
|
|
257
|
+
wp.launch(fa_kernel, dim=fa.size, inputs=[fa, data], device=device)
|
|
258
|
+
|
|
259
|
+
# reset data
|
|
260
|
+
wp.copy(fa, data)
|
|
261
|
+
|
|
262
|
+
# test indexed
|
|
263
|
+
indices = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device)
|
|
264
|
+
ifa = fa[indices]
|
|
265
|
+
idata = data[indices]
|
|
266
|
+
|
|
267
|
+
test.assertEqual(ifa.dtype, idata.dtype)
|
|
268
|
+
test.assertEqual(ifa.ndim, 1)
|
|
269
|
+
test.assertEqual(ifa.shape, idata.shape)
|
|
270
|
+
test.assertEqual(ifa.size, idata.size)
|
|
271
|
+
|
|
272
|
+
wp.launch(fa_kernel_indexed, dim=ifa.size, inputs=[ifa, idata], device=device)
|
|
273
|
+
|
|
274
|
+
wp.synchronize_device(device)
|
|
275
|
+
|
|
276
|
+
|
|
277
|
+
@wp.kernel
|
|
278
|
+
def fa_generic_dtype_kernel(a: wp.fabricarray(dtype=Any), b: wp.fabricarray(dtype=Any)):
|
|
279
|
+
i = wp.tid()
|
|
280
|
+
b[i] = a[i] + a[i]
|
|
281
|
+
|
|
282
|
+
|
|
283
|
+
@wp.kernel
|
|
284
|
+
def fa_generic_dtype_kernel_indexed(a: wp.indexedfabricarray(dtype=Any), b: wp.indexedfabricarray(dtype=Any)):
|
|
285
|
+
i = wp.tid()
|
|
286
|
+
b[i] = a[i] + a[i]
|
|
287
|
+
|
|
288
|
+
|
|
289
|
+
def test_fabricarray_generic_dtype(test, device):
|
|
290
|
+
for T in _fabric_types:
|
|
291
|
+
if hasattr(T, "_wp_scalar_type_"):
|
|
292
|
+
nptype = wp.types.warp_type_to_np_dtype[T._wp_scalar_type_]
|
|
293
|
+
else:
|
|
294
|
+
nptype = wp.types.warp_type_to_np_dtype[T]
|
|
295
|
+
|
|
296
|
+
data = wp.array(data=np.arange(10, dtype=nptype), device=device)
|
|
297
|
+
data_iface = _create_fabric_array_interface(data, "foo", copy=True)
|
|
298
|
+
fa = wp.fabricarray(data=data_iface, attrib="foo")
|
|
299
|
+
|
|
300
|
+
result = wp.zeros_like(data)
|
|
301
|
+
result_iface = _create_fabric_array_interface(result, "foo", copy=True)
|
|
302
|
+
fb = wp.fabricarray(data=result_iface, attrib="foo")
|
|
303
|
+
|
|
304
|
+
test.assertEqual(fa.dtype, fb.dtype)
|
|
305
|
+
test.assertEqual(fa.ndim, fb.ndim)
|
|
306
|
+
test.assertEqual(fa.shape, fb.shape)
|
|
307
|
+
test.assertEqual(fa.size, fb.size)
|
|
308
|
+
|
|
309
|
+
wp.launch(fa_generic_dtype_kernel, dim=fa.size, inputs=[fa, fb], device=device)
|
|
310
|
+
|
|
311
|
+
assert_np_equal(fb.numpy(), 2 * fa.numpy())
|
|
312
|
+
|
|
313
|
+
# reset data
|
|
314
|
+
wp.copy(fa, data)
|
|
315
|
+
wp.copy(fb, result)
|
|
316
|
+
|
|
317
|
+
# test indexed
|
|
318
|
+
indices = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device)
|
|
319
|
+
ifa = fa[indices]
|
|
320
|
+
ifb = fb[indices]
|
|
321
|
+
|
|
322
|
+
test.assertEqual(ifa.dtype, ifb.dtype)
|
|
323
|
+
test.assertEqual(ifa.ndim, ifb.ndim)
|
|
324
|
+
test.assertEqual(ifa.shape, ifb.shape)
|
|
325
|
+
test.assertEqual(ifa.size, ifb.size)
|
|
326
|
+
|
|
327
|
+
wp.launch(fa_generic_dtype_kernel_indexed, dim=ifa.size, inputs=[ifa, ifb], device=device)
|
|
328
|
+
|
|
329
|
+
assert_np_equal(ifb.numpy(), 2 * ifa.numpy())
|
|
330
|
+
|
|
331
|
+
|
|
332
|
+
@wp.kernel
|
|
333
|
+
def fa_generic_array_kernel(a: Any, b: Any):
|
|
334
|
+
i = wp.tid()
|
|
335
|
+
b[i] = a[i] + a[i]
|
|
336
|
+
|
|
337
|
+
|
|
338
|
+
def test_fabricarray_generic_array(test, device):
|
|
339
|
+
for T in _fabric_types:
|
|
340
|
+
if hasattr(T, "_wp_scalar_type_"):
|
|
341
|
+
nptype = wp.types.warp_type_to_np_dtype[T._wp_scalar_type_]
|
|
342
|
+
else:
|
|
343
|
+
nptype = wp.types.warp_type_to_np_dtype[T]
|
|
344
|
+
|
|
345
|
+
data = wp.array(data=np.arange(100, dtype=nptype), device=device)
|
|
346
|
+
data_iface = _create_fabric_array_interface(data, "foo", copy=True)
|
|
347
|
+
fa = wp.fabricarray(data=data_iface, attrib="foo")
|
|
348
|
+
|
|
349
|
+
result = wp.zeros_like(data)
|
|
350
|
+
result_iface = _create_fabric_array_interface(result, "foo", copy=True)
|
|
351
|
+
fb = wp.fabricarray(data=result_iface, attrib="foo")
|
|
352
|
+
|
|
353
|
+
test.assertEqual(fa.dtype, fb.dtype)
|
|
354
|
+
test.assertEqual(fa.ndim, fb.ndim)
|
|
355
|
+
test.assertEqual(fa.shape, fb.shape)
|
|
356
|
+
test.assertEqual(fa.size, fb.size)
|
|
357
|
+
|
|
358
|
+
wp.launch(fa_generic_array_kernel, dim=fa.size, inputs=[fa, fb], device=device)
|
|
359
|
+
|
|
360
|
+
assert_np_equal(fb.numpy(), 2 * fa.numpy())
|
|
361
|
+
|
|
362
|
+
# reset data
|
|
363
|
+
wp.copy(fa, data)
|
|
364
|
+
wp.copy(fb, result)
|
|
365
|
+
|
|
366
|
+
# test indexed
|
|
367
|
+
indices = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device)
|
|
368
|
+
ifa = fa[indices]
|
|
369
|
+
ifb = fb[indices]
|
|
370
|
+
|
|
371
|
+
test.assertEqual(ifa.dtype, ifb.dtype)
|
|
372
|
+
test.assertEqual(ifa.ndim, ifb.ndim)
|
|
373
|
+
test.assertEqual(ifa.shape, ifb.shape)
|
|
374
|
+
test.assertEqual(ifa.size, ifb.size)
|
|
375
|
+
|
|
376
|
+
wp.launch(fa_generic_array_kernel, dim=ifa.size, inputs=[ifa, ifb], device=device)
|
|
377
|
+
|
|
378
|
+
assert_np_equal(ifb.numpy(), 2 * ifa.numpy())
|
|
379
|
+
|
|
380
|
+
|
|
381
|
+
def test_fabricarray_empty(test, device):
|
|
382
|
+
# Test whether common operations work with empty (zero-sized) indexed arrays
|
|
383
|
+
# without throwing exceptions.
|
|
384
|
+
|
|
385
|
+
def test_empty_ops(nrows, ncols, wptype, nptype):
|
|
386
|
+
# scalar, vector, or matrix
|
|
387
|
+
if ncols > 0:
|
|
388
|
+
if nrows > 0:
|
|
389
|
+
wptype = wp.types.matrix((nrows, ncols), wptype)
|
|
390
|
+
else:
|
|
391
|
+
wptype = wp.types.vector(ncols, wptype)
|
|
392
|
+
dtype_shape = wptype._shape_
|
|
393
|
+
else:
|
|
394
|
+
dtype_shape = ()
|
|
395
|
+
|
|
396
|
+
fill_value = wptype(42)
|
|
397
|
+
|
|
398
|
+
# create an empty data array
|
|
399
|
+
data = wp.empty(0, dtype=wptype, device=device)
|
|
400
|
+
iface = _create_fabric_array_interface(data, "foo", copy=True)
|
|
401
|
+
fa = wp.fabricarray(data=iface, attrib="foo")
|
|
402
|
+
|
|
403
|
+
test.assertEqual(fa.size, 0)
|
|
404
|
+
test.assertEqual(fa.shape, (0,))
|
|
405
|
+
|
|
406
|
+
# all of these methods should succeed with zero-sized arrays
|
|
407
|
+
fa.zero_()
|
|
408
|
+
fa.fill_(fill_value)
|
|
409
|
+
fb = fa.contiguous()
|
|
410
|
+
|
|
411
|
+
fb = wp.empty_like(fa)
|
|
412
|
+
fb = wp.zeros_like(fa)
|
|
413
|
+
fb = wp.full_like(fa, fill_value)
|
|
414
|
+
fb = wp.clone(fa)
|
|
415
|
+
|
|
416
|
+
wp.copy(fa, fb)
|
|
417
|
+
fa.assign(fb)
|
|
418
|
+
|
|
419
|
+
na = fa.numpy()
|
|
420
|
+
test.assertEqual(na.size, 0)
|
|
421
|
+
test.assertEqual(na.shape, (0, *dtype_shape))
|
|
422
|
+
test.assertEqual(na.dtype, nptype)
|
|
423
|
+
|
|
424
|
+
test.assertEqual(fa.list(), [])
|
|
425
|
+
|
|
426
|
+
# test indexed
|
|
427
|
+
|
|
428
|
+
# create a zero-sized array of indices
|
|
429
|
+
indices = wp.empty(0, dtype=int, device=device)
|
|
430
|
+
|
|
431
|
+
ifa = fa[indices]
|
|
432
|
+
|
|
433
|
+
test.assertEqual(ifa.size, 0)
|
|
434
|
+
test.assertEqual(ifa.shape, (0,))
|
|
435
|
+
|
|
436
|
+
# all of these methods should succeed with zero-sized arrays
|
|
437
|
+
ifa.zero_()
|
|
438
|
+
ifa.fill_(fill_value)
|
|
439
|
+
ifb = ifa.contiguous()
|
|
440
|
+
|
|
441
|
+
ifb = wp.empty_like(ifa)
|
|
442
|
+
ifb = wp.zeros_like(ifa)
|
|
443
|
+
ifb = wp.full_like(ifa, fill_value)
|
|
444
|
+
ifb = wp.clone(ifa)
|
|
445
|
+
|
|
446
|
+
wp.copy(ifa, ifb)
|
|
447
|
+
ifa.assign(ifb)
|
|
448
|
+
|
|
449
|
+
na = ifa.numpy()
|
|
450
|
+
test.assertEqual(na.size, 0)
|
|
451
|
+
test.assertEqual(na.shape, (0, *dtype_shape))
|
|
452
|
+
test.assertEqual(na.dtype, nptype)
|
|
453
|
+
|
|
454
|
+
test.assertEqual(ifa.list(), [])
|
|
455
|
+
|
|
456
|
+
# test with scalars, vectors, and matrices
|
|
457
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
458
|
+
# scalars
|
|
459
|
+
test_empty_ops(0, 0, wptype, nptype)
|
|
460
|
+
|
|
461
|
+
for ncols in [2, 3, 4, 5]:
|
|
462
|
+
# vectors
|
|
463
|
+
test_empty_ops(0, ncols, wptype, nptype)
|
|
464
|
+
# square matrices (the Fabric interface only supports square matrices right now)
|
|
465
|
+
test_empty_ops(ncols, ncols, wptype, nptype)
|
|
466
|
+
|
|
467
|
+
|
|
468
|
+
def test_fabricarray_fill_scalar(test, device):
|
|
469
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
470
|
+
# create a data array
|
|
471
|
+
data = wp.zeros(100, dtype=wptype, device=device)
|
|
472
|
+
iface = _create_fabric_array_interface(data, "foo", copy=True)
|
|
473
|
+
fa = wp.fabricarray(data=iface, attrib="foo")
|
|
474
|
+
|
|
475
|
+
assert_np_equal(fa.numpy(), np.zeros(fa.shape, dtype=nptype))
|
|
476
|
+
|
|
477
|
+
# fill with int value
|
|
478
|
+
fill_value = 42
|
|
479
|
+
fa.fill_(fill_value)
|
|
480
|
+
assert_np_equal(fa.numpy(), np.full(fa.shape, fill_value, dtype=nptype))
|
|
481
|
+
|
|
482
|
+
fa.zero_()
|
|
483
|
+
assert_np_equal(fa.numpy(), np.zeros(fa.shape, dtype=nptype))
|
|
484
|
+
|
|
485
|
+
if wptype in wp.types.float_types:
|
|
486
|
+
# fill with float value
|
|
487
|
+
fill_value = 13.37
|
|
488
|
+
fa.fill_(fill_value)
|
|
489
|
+
assert_np_equal(fa.numpy(), np.full(fa.shape, fill_value, dtype=nptype))
|
|
490
|
+
|
|
491
|
+
# fill with Warp scalar value
|
|
492
|
+
fill_value = wptype(17)
|
|
493
|
+
fa.fill_(fill_value)
|
|
494
|
+
assert_np_equal(fa.numpy(), np.full(fa.shape, fill_value.value, dtype=nptype))
|
|
495
|
+
|
|
496
|
+
# reset data
|
|
497
|
+
wp.copy(fa, data)
|
|
498
|
+
|
|
499
|
+
# test indexed
|
|
500
|
+
indices1 = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device)
|
|
501
|
+
ifa = fa[indices1]
|
|
502
|
+
|
|
503
|
+
# ensure that the other indices remain unchanged
|
|
504
|
+
indices2 = wp.array(data=np.arange(0, data.size, 2, dtype=np.int32), device=device)
|
|
505
|
+
ifb = fa[indices2]
|
|
506
|
+
|
|
507
|
+
assert_np_equal(ifa.numpy(), np.zeros(ifa.shape, dtype=nptype))
|
|
508
|
+
assert_np_equal(ifb.numpy(), np.zeros(ifb.shape, dtype=nptype))
|
|
509
|
+
|
|
510
|
+
# fill with int value
|
|
511
|
+
fill_value = 42
|
|
512
|
+
ifa.fill_(fill_value)
|
|
513
|
+
assert_np_equal(ifa.numpy(), np.full(ifa.shape, fill_value, dtype=nptype))
|
|
514
|
+
assert_np_equal(ifb.numpy(), np.zeros(ifb.shape, dtype=nptype))
|
|
515
|
+
|
|
516
|
+
ifa.zero_()
|
|
517
|
+
assert_np_equal(ifa.numpy(), np.zeros(ifa.shape, dtype=nptype))
|
|
518
|
+
assert_np_equal(ifb.numpy(), np.zeros(ifb.shape, dtype=nptype))
|
|
519
|
+
|
|
520
|
+
if wptype in wp.types.float_types:
|
|
521
|
+
# fill with float value
|
|
522
|
+
fill_value = 13.37
|
|
523
|
+
ifa.fill_(fill_value)
|
|
524
|
+
assert_np_equal(ifa.numpy(), np.full(ifa.shape, fill_value, dtype=nptype))
|
|
525
|
+
assert_np_equal(ifb.numpy(), np.zeros(ifb.shape, dtype=nptype))
|
|
526
|
+
|
|
527
|
+
# fill with Warp scalar value
|
|
528
|
+
fill_value = wptype(17)
|
|
529
|
+
ifa.fill_(fill_value)
|
|
530
|
+
assert_np_equal(ifa.numpy(), np.full(ifa.shape, fill_value.value, dtype=nptype))
|
|
531
|
+
assert_np_equal(ifb.numpy(), np.zeros(ifb.shape, dtype=nptype))
|
|
532
|
+
|
|
533
|
+
|
|
534
|
+
def test_fabricarray_fill_vector(test, device):
|
|
535
|
+
# test filling a vector array with scalar or vector values (vec_type, list, or numpy array)
|
|
536
|
+
|
|
537
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
538
|
+
# vector types
|
|
539
|
+
vector_types = [
|
|
540
|
+
wp.types.vector(2, wptype),
|
|
541
|
+
wp.types.vector(3, wptype),
|
|
542
|
+
wp.types.vector(4, wptype),
|
|
543
|
+
wp.types.vector(5, wptype),
|
|
544
|
+
]
|
|
545
|
+
|
|
546
|
+
for vec_type in vector_types:
|
|
547
|
+
vec_len = vec_type._length_
|
|
548
|
+
|
|
549
|
+
data = wp.zeros(100, dtype=vec_type, device=device)
|
|
550
|
+
iface = _create_fabric_array_interface(data, "foo", copy=True)
|
|
551
|
+
fa = wp.fabricarray(data=iface, attrib="foo")
|
|
552
|
+
|
|
553
|
+
assert_np_equal(fa.numpy(), np.zeros((*fa.shape, vec_len), dtype=nptype))
|
|
554
|
+
|
|
555
|
+
# fill with int scalar
|
|
556
|
+
fill_value = 42
|
|
557
|
+
fa.fill_(fill_value)
|
|
558
|
+
assert_np_equal(fa.numpy(), np.full((*fa.shape, vec_len), fill_value, dtype=nptype))
|
|
559
|
+
|
|
560
|
+
# test zeroing
|
|
561
|
+
fa.zero_()
|
|
562
|
+
assert_np_equal(fa.numpy(), np.zeros((*fa.shape, vec_len), dtype=nptype))
|
|
563
|
+
|
|
564
|
+
# vector values can be passed as a list, numpy array, or Warp vector instance
|
|
565
|
+
fill_list = [17, 42, 99, 101, 127][:vec_len]
|
|
566
|
+
fill_arr = np.array(fill_list, dtype=nptype)
|
|
567
|
+
fill_vec = vec_type(fill_list)
|
|
568
|
+
|
|
569
|
+
expected = np.tile(fill_arr, fa.size).reshape((*fa.shape, vec_len))
|
|
570
|
+
|
|
571
|
+
# fill with list of vector length
|
|
572
|
+
fa.fill_(fill_list)
|
|
573
|
+
assert_np_equal(fa.numpy(), expected)
|
|
574
|
+
|
|
575
|
+
# clear
|
|
576
|
+
fa.zero_()
|
|
577
|
+
|
|
578
|
+
# fill with numpy array of vector length
|
|
579
|
+
fa.fill_(fill_arr)
|
|
580
|
+
assert_np_equal(fa.numpy(), expected)
|
|
581
|
+
|
|
582
|
+
# clear
|
|
583
|
+
fa.zero_()
|
|
584
|
+
|
|
585
|
+
# fill with vec instance
|
|
586
|
+
fa.fill_(fill_vec)
|
|
587
|
+
assert_np_equal(fa.numpy(), expected)
|
|
588
|
+
|
|
589
|
+
if wptype in wp.types.float_types:
|
|
590
|
+
# fill with float scalar
|
|
591
|
+
fill_value = 13.37
|
|
592
|
+
fa.fill_(fill_value)
|
|
593
|
+
assert_np_equal(fa.numpy(), np.full((*fa.shape, vec_len), fill_value, dtype=nptype))
|
|
594
|
+
|
|
595
|
+
# fill with float list of vector length
|
|
596
|
+
fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len]
|
|
597
|
+
|
|
598
|
+
fa.fill_(fill_list)
|
|
599
|
+
|
|
600
|
+
expected = np.tile(np.array(fill_list, dtype=nptype), fa.size).reshape((*fa.shape, vec_len))
|
|
601
|
+
|
|
602
|
+
assert_np_equal(fa.numpy(), expected)
|
|
603
|
+
|
|
604
|
+
# reset data
|
|
605
|
+
wp.copy(fa, data)
|
|
606
|
+
|
|
607
|
+
# test indexed
|
|
608
|
+
indices1 = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device)
|
|
609
|
+
ifa = fa[indices1]
|
|
610
|
+
|
|
611
|
+
# ensure that the other indices remain unchanged
|
|
612
|
+
indices2 = wp.array(data=np.arange(0, data.size, 2, dtype=np.int32), device=device)
|
|
613
|
+
ifb = fa[indices2]
|
|
614
|
+
|
|
615
|
+
assert_np_equal(ifa.numpy(), np.zeros((*ifa.shape, vec_len), dtype=nptype))
|
|
616
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype))
|
|
617
|
+
|
|
618
|
+
# fill with int scalar
|
|
619
|
+
fill_value = 42
|
|
620
|
+
ifa.fill_(fill_value)
|
|
621
|
+
assert_np_equal(ifa.numpy(), np.full((*ifa.shape, vec_len), fill_value, dtype=nptype))
|
|
622
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype))
|
|
623
|
+
|
|
624
|
+
# test zeroing
|
|
625
|
+
ifa.zero_()
|
|
626
|
+
assert_np_equal(ifa.numpy(), np.zeros((*ifa.shape, vec_len), dtype=nptype))
|
|
627
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype))
|
|
628
|
+
|
|
629
|
+
# vector values can be passed as a list, numpy array, or Warp vector instance
|
|
630
|
+
fill_list = [17, 42, 99, 101, 127][:vec_len]
|
|
631
|
+
fill_arr = np.array(fill_list, dtype=nptype)
|
|
632
|
+
fill_vec = vec_type(fill_list)
|
|
633
|
+
|
|
634
|
+
expected = np.tile(fill_arr, ifa.size).reshape((*ifa.shape, vec_len))
|
|
635
|
+
|
|
636
|
+
# fill with list of vector length
|
|
637
|
+
ifa.fill_(fill_list)
|
|
638
|
+
assert_np_equal(ifa.numpy(), expected)
|
|
639
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype))
|
|
640
|
+
|
|
641
|
+
# clear
|
|
642
|
+
ifa.zero_()
|
|
643
|
+
|
|
644
|
+
# fill with numpy array of vector length
|
|
645
|
+
ifa.fill_(fill_arr)
|
|
646
|
+
assert_np_equal(ifa.numpy(), expected)
|
|
647
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype))
|
|
648
|
+
|
|
649
|
+
# clear
|
|
650
|
+
ifa.zero_()
|
|
651
|
+
|
|
652
|
+
# fill with vec instance
|
|
653
|
+
ifa.fill_(fill_vec)
|
|
654
|
+
assert_np_equal(ifa.numpy(), expected)
|
|
655
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype))
|
|
656
|
+
|
|
657
|
+
if wptype in wp.types.float_types:
|
|
658
|
+
# fill with float scalar
|
|
659
|
+
fill_value = 13.37
|
|
660
|
+
ifa.fill_(fill_value)
|
|
661
|
+
assert_np_equal(ifa.numpy(), np.full((*ifa.shape, vec_len), fill_value, dtype=nptype))
|
|
662
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype))
|
|
663
|
+
|
|
664
|
+
# fill with float list of vector length
|
|
665
|
+
fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len]
|
|
666
|
+
|
|
667
|
+
ifa.fill_(fill_list)
|
|
668
|
+
|
|
669
|
+
expected = np.tile(np.array(fill_list, dtype=nptype), ifa.size).reshape((*ifa.shape, vec_len))
|
|
670
|
+
|
|
671
|
+
assert_np_equal(ifa.numpy(), expected)
|
|
672
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, vec_len), dtype=nptype))
|
|
673
|
+
|
|
674
|
+
|
|
675
|
+
def test_fabricarray_fill_matrix(test, device):
|
|
676
|
+
# test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array)
|
|
677
|
+
|
|
678
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
679
|
+
# matrix types
|
|
680
|
+
matrix_types = [
|
|
681
|
+
# square matrices only
|
|
682
|
+
wp.types.matrix((2, 2), wptype),
|
|
683
|
+
wp.types.matrix((3, 3), wptype),
|
|
684
|
+
wp.types.matrix((4, 4), wptype),
|
|
685
|
+
wp.types.matrix((5, 5), wptype),
|
|
686
|
+
]
|
|
687
|
+
|
|
688
|
+
for mat_type in matrix_types:
|
|
689
|
+
mat_len = mat_type._length_
|
|
690
|
+
mat_shape = mat_type._shape_
|
|
691
|
+
|
|
692
|
+
data = wp.zeros(100, dtype=mat_type, device=device)
|
|
693
|
+
iface = _create_fabric_array_interface(data, "foo", copy=True)
|
|
694
|
+
fa = wp.fabricarray(data=iface, attrib="foo")
|
|
695
|
+
|
|
696
|
+
assert_np_equal(fa.numpy(), np.zeros((*fa.shape, *mat_shape), dtype=nptype))
|
|
697
|
+
|
|
698
|
+
# fill with scalar
|
|
699
|
+
fill_value = 42
|
|
700
|
+
fa.fill_(fill_value)
|
|
701
|
+
assert_np_equal(fa.numpy(), np.full((*fa.shape, *mat_shape), fill_value, dtype=nptype))
|
|
702
|
+
|
|
703
|
+
# test zeroing
|
|
704
|
+
fa.zero_()
|
|
705
|
+
assert_np_equal(fa.numpy(), np.zeros((*fa.shape, *mat_shape), dtype=nptype))
|
|
706
|
+
|
|
707
|
+
# matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance
|
|
708
|
+
if wptype != wp.bool:
|
|
709
|
+
fill_arr1 = np.arange(mat_len, dtype=nptype)
|
|
710
|
+
else:
|
|
711
|
+
fill_arr1 = np.ones(mat_len, dtype=nptype)
|
|
712
|
+
|
|
713
|
+
fill_arr2 = fill_arr1.reshape(mat_shape)
|
|
714
|
+
fill_list1 = list(fill_arr1)
|
|
715
|
+
fill_list2 = [list(row) for row in fill_arr2]
|
|
716
|
+
fill_mat = mat_type(fill_arr1)
|
|
717
|
+
|
|
718
|
+
expected = np.tile(fill_arr1, fa.size).reshape((*fa.shape, *mat_shape))
|
|
719
|
+
|
|
720
|
+
# fill with 1d numpy array
|
|
721
|
+
fa.fill_(fill_arr1)
|
|
722
|
+
assert_np_equal(fa.numpy(), expected)
|
|
723
|
+
|
|
724
|
+
# clear
|
|
725
|
+
fa.zero_()
|
|
726
|
+
|
|
727
|
+
# fill with 2d numpy array
|
|
728
|
+
fa.fill_(fill_arr2)
|
|
729
|
+
assert_np_equal(fa.numpy(), expected)
|
|
730
|
+
|
|
731
|
+
# clear
|
|
732
|
+
fa.zero_()
|
|
733
|
+
|
|
734
|
+
# fill with flat list
|
|
735
|
+
fa.fill_(fill_list1)
|
|
736
|
+
assert_np_equal(fa.numpy(), expected)
|
|
737
|
+
|
|
738
|
+
# clear
|
|
739
|
+
fa.zero_()
|
|
740
|
+
|
|
741
|
+
# fill with nested list
|
|
742
|
+
fa.fill_(fill_list2)
|
|
743
|
+
assert_np_equal(fa.numpy(), expected)
|
|
744
|
+
|
|
745
|
+
# clear
|
|
746
|
+
fa.zero_()
|
|
747
|
+
|
|
748
|
+
# fill with mat instance
|
|
749
|
+
fa.fill_(fill_mat)
|
|
750
|
+
assert_np_equal(fa.numpy(), expected)
|
|
751
|
+
|
|
752
|
+
# reset data
|
|
753
|
+
wp.copy(fa, data)
|
|
754
|
+
|
|
755
|
+
# test indexed
|
|
756
|
+
indices1 = wp.array(data=np.arange(1, data.size, 2, dtype=np.int32), device=device)
|
|
757
|
+
ifa = fa[indices1]
|
|
758
|
+
|
|
759
|
+
# ensure that the other indices remain unchanged
|
|
760
|
+
indices2 = wp.array(data=np.arange(0, data.size, 2, dtype=np.int32), device=device)
|
|
761
|
+
ifb = fa[indices2]
|
|
762
|
+
|
|
763
|
+
assert_np_equal(ifa.numpy(), np.zeros((*ifa.shape, *mat_shape), dtype=nptype))
|
|
764
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype))
|
|
765
|
+
|
|
766
|
+
# fill with scalar
|
|
767
|
+
fill_value = 42
|
|
768
|
+
ifa.fill_(fill_value)
|
|
769
|
+
assert_np_equal(ifa.numpy(), np.full((*ifa.shape, *mat_shape), fill_value, dtype=nptype))
|
|
770
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype))
|
|
771
|
+
|
|
772
|
+
# test zeroing
|
|
773
|
+
ifa.zero_()
|
|
774
|
+
assert_np_equal(ifa.numpy(), np.zeros((*ifa.shape, *mat_shape), dtype=nptype))
|
|
775
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype))
|
|
776
|
+
|
|
777
|
+
# matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance
|
|
778
|
+
if wptype != wp.bool:
|
|
779
|
+
fill_arr1 = np.arange(mat_len, dtype=nptype)
|
|
780
|
+
else:
|
|
781
|
+
fill_arr1 = np.ones(mat_len, dtype=nptype)
|
|
782
|
+
fill_arr2 = fill_arr1.reshape(mat_shape)
|
|
783
|
+
fill_list1 = list(fill_arr1)
|
|
784
|
+
fill_list2 = [list(row) for row in fill_arr2]
|
|
785
|
+
fill_mat = mat_type(fill_arr1)
|
|
786
|
+
|
|
787
|
+
expected = np.tile(fill_arr1, ifa.size).reshape((*ifa.shape, *mat_shape))
|
|
788
|
+
|
|
789
|
+
# fill with 1d numpy array
|
|
790
|
+
ifa.fill_(fill_arr1)
|
|
791
|
+
assert_np_equal(ifa.numpy(), expected)
|
|
792
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype))
|
|
793
|
+
|
|
794
|
+
# clear
|
|
795
|
+
ifa.zero_()
|
|
796
|
+
|
|
797
|
+
# fill with 2d numpy array
|
|
798
|
+
ifa.fill_(fill_arr2)
|
|
799
|
+
assert_np_equal(ifa.numpy(), expected)
|
|
800
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype))
|
|
801
|
+
|
|
802
|
+
# clear
|
|
803
|
+
ifa.zero_()
|
|
804
|
+
|
|
805
|
+
# fill with flat list
|
|
806
|
+
ifa.fill_(fill_list1)
|
|
807
|
+
assert_np_equal(ifa.numpy(), expected)
|
|
808
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype))
|
|
809
|
+
|
|
810
|
+
# clear
|
|
811
|
+
ifa.zero_()
|
|
812
|
+
|
|
813
|
+
# fill with nested list
|
|
814
|
+
ifa.fill_(fill_list2)
|
|
815
|
+
assert_np_equal(ifa.numpy(), expected)
|
|
816
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype))
|
|
817
|
+
|
|
818
|
+
# clear
|
|
819
|
+
ifa.zero_()
|
|
820
|
+
|
|
821
|
+
# fill with mat instance
|
|
822
|
+
ifa.fill_(fill_mat)
|
|
823
|
+
assert_np_equal(ifa.numpy(), expected)
|
|
824
|
+
assert_np_equal(ifb.numpy(), np.zeros((*ifb.shape, *mat_shape), dtype=nptype))
|
|
825
|
+
|
|
826
|
+
|
|
827
|
+
@wp.kernel
|
|
828
|
+
def fa_generic_sums_kernel(a: wp.fabricarrayarray(dtype=Any), sums: wp.array(dtype=Any)):
|
|
829
|
+
i = wp.tid()
|
|
830
|
+
|
|
831
|
+
# get sub-array using wp::view()
|
|
832
|
+
row = a[i]
|
|
833
|
+
|
|
834
|
+
# get sub-array length
|
|
835
|
+
count = row.shape[0]
|
|
836
|
+
|
|
837
|
+
# compute sub-array sum
|
|
838
|
+
for j in range(count):
|
|
839
|
+
sums[i] = sums[i] + row[j]
|
|
840
|
+
|
|
841
|
+
|
|
842
|
+
@wp.kernel
|
|
843
|
+
def fa_generic_sums_kernel_indexed(a: wp.indexedfabricarrayarray(dtype=Any), sums: wp.array(dtype=Any)):
|
|
844
|
+
i = wp.tid()
|
|
845
|
+
|
|
846
|
+
# get sub-array using wp::view()
|
|
847
|
+
row = a[i]
|
|
848
|
+
|
|
849
|
+
# get sub-array length
|
|
850
|
+
count = row.shape[0]
|
|
851
|
+
|
|
852
|
+
# compute sub-array sum
|
|
853
|
+
for j in range(count):
|
|
854
|
+
sums[i] = sums[i] + row[j]
|
|
855
|
+
|
|
856
|
+
|
|
857
|
+
def test_fabricarrayarray(test, device):
|
|
858
|
+
for T in _fabric_types:
|
|
859
|
+
if hasattr(T, "_wp_scalar_type_"):
|
|
860
|
+
nptype = wp.types.warp_type_to_np_dtype[T._wp_scalar_type_]
|
|
861
|
+
else:
|
|
862
|
+
nptype = wp.types.warp_type_to_np_dtype[T]
|
|
863
|
+
|
|
864
|
+
n = 100
|
|
865
|
+
|
|
866
|
+
min_length = 1
|
|
867
|
+
max_length = 10
|
|
868
|
+
arrays = []
|
|
869
|
+
expected_sums = []
|
|
870
|
+
expected_sums_indexed = []
|
|
871
|
+
|
|
872
|
+
# generate data arrays
|
|
873
|
+
length = min_length
|
|
874
|
+
for i in range(n):
|
|
875
|
+
if length > max_length:
|
|
876
|
+
length = min_length
|
|
877
|
+
|
|
878
|
+
na = np.arange(1, length + 1, dtype=nptype)
|
|
879
|
+
|
|
880
|
+
arrays.append(wp.array(data=na, device=device))
|
|
881
|
+
expected_sums.append(na.sum())
|
|
882
|
+
|
|
883
|
+
# every second index
|
|
884
|
+
if i % 2 == 0:
|
|
885
|
+
expected_sums_indexed.append(na.sum())
|
|
886
|
+
|
|
887
|
+
length += 1
|
|
888
|
+
|
|
889
|
+
data_iface = _create_fabric_array_array_interface(arrays, "foo")
|
|
890
|
+
fa = wp.fabricarrayarray(data=data_iface, attrib="foo")
|
|
891
|
+
|
|
892
|
+
sums = wp.zeros_like(fa)
|
|
893
|
+
|
|
894
|
+
test.assertEqual(fa.dtype, sums.dtype)
|
|
895
|
+
test.assertEqual(fa.ndim, 2)
|
|
896
|
+
test.assertEqual(sums.ndim, 1)
|
|
897
|
+
test.assertEqual(fa.shape, sums.shape)
|
|
898
|
+
test.assertEqual(fa.size, sums.size)
|
|
899
|
+
|
|
900
|
+
wp.launch(fa_generic_sums_kernel, dim=fa.size, inputs=[fa, sums], device=device)
|
|
901
|
+
|
|
902
|
+
assert_np_equal(sums.numpy(), np.array(expected_sums, dtype=nptype))
|
|
903
|
+
|
|
904
|
+
# test indexed
|
|
905
|
+
indices = wp.array(data=np.arange(0, n, 2, dtype=np.int32), device=device)
|
|
906
|
+
ifa = fa[indices]
|
|
907
|
+
|
|
908
|
+
sums = wp.zeros_like(ifa)
|
|
909
|
+
|
|
910
|
+
test.assertEqual(ifa.dtype, sums.dtype)
|
|
911
|
+
test.assertEqual(ifa.ndim, 2)
|
|
912
|
+
test.assertEqual(sums.ndim, 1)
|
|
913
|
+
test.assertEqual(ifa.shape, sums.shape)
|
|
914
|
+
test.assertEqual(ifa.size, sums.size)
|
|
915
|
+
|
|
916
|
+
wp.launch(fa_generic_sums_kernel_indexed, dim=ifa.size, inputs=[ifa, sums], device=device)
|
|
917
|
+
|
|
918
|
+
assert_np_equal(sums.numpy(), np.array(expected_sums_indexed, dtype=nptype))
|
|
919
|
+
|
|
920
|
+
|
|
921
|
+
# explicit kernel overloads
|
|
922
|
+
for T in _fabric_types:
|
|
923
|
+
wp.overload(fa_generic_dtype_kernel, [wp.fabricarray(dtype=T), wp.fabricarray(dtype=T)])
|
|
924
|
+
wp.overload(fa_generic_dtype_kernel_indexed, [wp.indexedfabricarray(dtype=T), wp.indexedfabricarray(dtype=T)])
|
|
925
|
+
|
|
926
|
+
wp.overload(fa_generic_array_kernel, [wp.fabricarray(dtype=T), wp.fabricarray(dtype=T)])
|
|
927
|
+
wp.overload(fa_generic_array_kernel, [wp.indexedfabricarray(dtype=T), wp.indexedfabricarray(dtype=T)])
|
|
928
|
+
|
|
929
|
+
wp.overload(fa_generic_sums_kernel, [wp.fabricarrayarray(dtype=T), wp.array(dtype=T)])
|
|
930
|
+
wp.overload(fa_generic_sums_kernel_indexed, [wp.indexedfabricarrayarray(dtype=T), wp.array(dtype=T)])
|
|
931
|
+
|
|
932
|
+
|
|
933
|
+
devices = get_test_devices()
|
|
934
|
+
|
|
935
|
+
|
|
936
|
+
class TestFabricArray(unittest.TestCase):
|
|
937
|
+
pass
|
|
938
|
+
|
|
939
|
+
|
|
940
|
+
# fabric arrays
|
|
941
|
+
add_function_test(TestFabricArray, "test_fabricarray_kernel", test_fabricarray_kernel, devices=devices)
|
|
942
|
+
add_function_test(TestFabricArray, "test_fabricarray_empty", test_fabricarray_empty, devices=devices)
|
|
943
|
+
add_function_test(TestFabricArray, "test_fabricarray_generic_dtype", test_fabricarray_generic_dtype, devices=devices)
|
|
944
|
+
add_function_test(TestFabricArray, "test_fabricarray_generic_array", test_fabricarray_generic_array, devices=devices)
|
|
945
|
+
add_function_test(TestFabricArray, "test_fabricarray_fill_scalar", test_fabricarray_fill_scalar, devices=devices)
|
|
946
|
+
add_function_test(TestFabricArray, "test_fabricarray_fill_vector", test_fabricarray_fill_vector, devices=devices)
|
|
947
|
+
add_function_test(TestFabricArray, "test_fabricarray_fill_matrix", test_fabricarray_fill_matrix, devices=devices)
|
|
948
|
+
|
|
949
|
+
# fabric arrays of arrays
|
|
950
|
+
add_function_test(TestFabricArray, "test_fabricarrayarray", test_fabricarrayarray, devices=devices)
|
|
951
|
+
|
|
952
|
+
|
|
953
|
+
if __name__ == "__main__":
|
|
954
|
+
wp.build.clear_kernel_cache()
|
|
955
|
+
unittest.main(verbosity=2)
|