warp-lang 0.9.0__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +15 -7
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +22 -443
- warp/build_dll.py +384 -0
- warp/builtins.py +998 -488
- warp/codegen.py +1307 -739
- warp/config.py +5 -3
- warp/constants.py +6 -0
- warp/context.py +1291 -548
- warp/dlpack.py +31 -31
- warp/fabric.py +326 -0
- warp/fem/__init__.py +27 -0
- warp/fem/cache.py +389 -0
- warp/fem/dirichlet.py +181 -0
- warp/fem/domain.py +263 -0
- warp/fem/field/__init__.py +101 -0
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +299 -0
- warp/fem/field/restriction.py +21 -0
- warp/fem/field/test.py +181 -0
- warp/fem/field/trial.py +183 -0
- warp/fem/geometry/__init__.py +19 -0
- warp/fem/geometry/closest_point.py +70 -0
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +744 -0
- warp/fem/geometry/geometry.py +186 -0
- warp/fem/geometry/grid_2d.py +373 -0
- warp/fem/geometry/grid_3d.py +435 -0
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +376 -0
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +840 -0
- warp/fem/geometry/trimesh_2d.py +577 -0
- warp/fem/integrate.py +1616 -0
- warp/fem/operator.py +191 -0
- warp/fem/polynomial.py +213 -0
- warp/fem/quadrature/__init__.py +2 -0
- warp/fem/quadrature/pic_quadrature.py +245 -0
- warp/fem/quadrature/quadrature.py +294 -0
- warp/fem/space/__init__.py +292 -0
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +236 -0
- warp/fem/space/function_space.py +145 -0
- warp/fem/space/grid_2d_function_space.py +267 -0
- warp/fem/space/grid_3d_function_space.py +306 -0
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +350 -0
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +160 -0
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +292 -0
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +221 -0
- warp/fem/types.py +77 -0
- warp/fem/utils.py +495 -0
- warp/native/array.h +164 -55
- warp/native/builtin.h +150 -174
- warp/native/bvh.cpp +75 -328
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +37 -45
- warp/native/clang/clang.cpp +136 -24
- warp/native/crt.cpp +1 -76
- warp/native/crt.h +111 -104
- warp/native/cuda_crt.h +1049 -0
- warp/native/cuda_util.cpp +15 -3
- warp/native/cuda_util.h +3 -1
- warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
- warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
- warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
- warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
- warp/native/cutlass/tools/library/scripts/library.py +799 -0
- warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
- warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
- warp/native/cutlass/tools/library/scripts/rt.py +796 -0
- warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
- warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
- warp/native/cutlass_gemm.cu +5 -3
- warp/native/exports.h +1240 -949
- warp/native/fabric.h +228 -0
- warp/native/hashgrid.cpp +4 -4
- warp/native/hashgrid.h +22 -2
- warp/native/initializer_array.h +2 -2
- warp/native/intersect.h +22 -7
- warp/native/intersect_adj.h +8 -8
- warp/native/intersect_tri.h +13 -16
- warp/native/marching.cu +157 -161
- warp/native/mat.h +119 -19
- warp/native/matnn.h +2 -2
- warp/native/mesh.cpp +108 -83
- warp/native/mesh.cu +243 -6
- warp/native/mesh.h +1547 -458
- warp/native/nanovdb/NanoVDB.h +1 -1
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +45 -35
- warp/native/range.h +6 -2
- warp/native/reduce.cpp +157 -0
- warp/native/reduce.cu +348 -0
- warp/native/runlength_encode.cpp +62 -0
- warp/native/runlength_encode.cu +46 -0
- warp/native/scan.cu +11 -13
- warp/native/scan.h +1 -0
- warp/native/solid_angle.h +442 -0
- warp/native/sort.cpp +13 -0
- warp/native/sort.cu +9 -1
- warp/native/sparse.cpp +338 -0
- warp/native/sparse.cu +545 -0
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +30 -0
- warp/native/vec.h +126 -24
- warp/native/volume.h +120 -0
- warp/native/warp.cpp +658 -53
- warp/native/warp.cu +660 -68
- warp/native/warp.h +112 -12
- warp/optim/__init__.py +1 -0
- warp/optim/linear.py +922 -0
- warp/optim/sgd.py +92 -0
- warp/render/render_opengl.py +392 -152
- warp/render/render_usd.py +11 -11
- warp/sim/__init__.py +2 -2
- warp/sim/articulation.py +385 -185
- warp/sim/collide.py +21 -8
- warp/sim/import_mjcf.py +297 -106
- warp/sim/import_urdf.py +389 -210
- warp/sim/import_usd.py +198 -97
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_euler.py +14 -8
- warp/sim/integrator_xpbd.py +161 -19
- warp/sim/model.py +795 -291
- warp/sim/optimizer.py +2 -6
- warp/sim/render.py +65 -3
- warp/sim/utils.py +3 -0
- warp/sparse.py +1227 -0
- warp/stubs.py +665 -223
- warp/tape.py +66 -15
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +128 -74
- warp/tests/test_array.py +1497 -211
- warp/tests/test_array_reduce.py +150 -0
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +99 -0
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +75 -43
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +233 -128
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +136 -108
- warp/tests/test_examples.py +277 -0
- warp/tests/test_fabricarray.py +955 -0
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1271 -0
- warp/tests/test_fp16.py +53 -19
- warp/tests/test_func.py +187 -74
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +180 -116
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +52 -37
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +577 -24
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +251 -15
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_linear_solvers.py +154 -0
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +508 -2778
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +305 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +71 -14
- warp/tests/test_mesh_query_aabb.py +41 -25
- warp/tests/test_mesh_query_point.py +325 -34
- warp/tests/test_mesh_query_ray.py +39 -22
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +190 -0
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +460 -0
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +331 -85
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +118 -89
- warp/tests/test_transient_module.py +12 -13
- warp/tests/test_types.py +614 -0
- warp/tests/test_utils.py +494 -0
- warp/tests/test_vec.py +354 -1987
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +457 -293
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +341 -0
- warp/tests/unittest_utils.py +568 -0
- warp/tests/unused_test_misc.py +71 -0
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +549 -0
- warp/torch.py +72 -30
- warp/types.py +1744 -713
- warp/utils.py +360 -350
- warp_lang-0.11.0.dist-info/LICENSE.md +36 -0
- warp_lang-0.11.0.dist-info/METADATA +238 -0
- warp_lang-0.11.0.dist-info/RECORD +332 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
- warp/bin/warp-clang.exp +0 -0
- warp/bin/warp-clang.lib +0 -0
- warp/bin/warp.exp +0 -0
- warp/bin/warp.lib +0 -0
- warp/tests/test_all.py +0 -215
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-0.9.0.dist-info/METADATA +0 -20
- warp_lang-0.9.0.dist-info/RECORD +0 -177
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
warp/tests/test_array.py
CHANGED
|
@@ -5,14 +5,12 @@
|
|
|
5
5
|
# distribution of this software and related documentation without an express
|
|
6
6
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
7
|
|
|
8
|
-
|
|
8
|
+
import unittest
|
|
9
|
+
|
|
9
10
|
import numpy as np
|
|
10
|
-
import math
|
|
11
11
|
|
|
12
12
|
import warp as wp
|
|
13
|
-
from warp.tests.
|
|
14
|
-
|
|
15
|
-
import unittest
|
|
13
|
+
from warp.tests.unittest_utils import *
|
|
16
14
|
|
|
17
15
|
wp.init()
|
|
18
16
|
|
|
@@ -313,6 +311,12 @@ def test_reshape(test, device):
|
|
|
313
311
|
assert_array_equal(grad, ones)
|
|
314
312
|
test.assertEqual(loss.numpy()[0], 15)
|
|
315
313
|
|
|
314
|
+
np_arr = np.arange(6, dtype=float)
|
|
315
|
+
arr = wp.array(np_arr, dtype=float, device=device)
|
|
316
|
+
arr_infer = arr.reshape((-1, 3))
|
|
317
|
+
arr_comp = wp.array(np_arr.reshape((-1, 3)), dtype=float, device=device)
|
|
318
|
+
assert_array_equal(arr_infer, arr_comp)
|
|
319
|
+
|
|
316
320
|
|
|
317
321
|
@wp.kernel
|
|
318
322
|
def compare_stepped_window_a(x: wp.array2d(dtype=float)):
|
|
@@ -391,7 +395,7 @@ def test_slicing(test, device):
|
|
|
391
395
|
assert_array_equal(wp_arr[:5], wp.array(np_arr[:5], dtype=int, device=device))
|
|
392
396
|
assert_array_equal(wp_arr[1:5], wp.array(np_arr[1:5], dtype=int, device=device))
|
|
393
397
|
assert_array_equal(wp_arr[-9:-5:1], wp.array(np_arr[-9:-5:1], dtype=int, device=device))
|
|
394
|
-
assert_array_equal(wp_arr[:5,], wp.array(np_arr[:5], dtype=int, device=device))
|
|
398
|
+
assert_array_equal(wp_arr[:5,], wp.array(np_arr[:5], dtype=int, device=device)) # noqa: E231
|
|
395
399
|
|
|
396
400
|
|
|
397
401
|
def test_view(test, device):
|
|
@@ -469,205 +473,1280 @@ def test_transpose(test, device):
|
|
|
469
473
|
assert np.array_equal(np_arr.transpose(), arr.transpose().numpy())
|
|
470
474
|
|
|
471
475
|
|
|
472
|
-
def
|
|
476
|
+
def test_fill_scalar(test, device):
|
|
473
477
|
dim_x = 4
|
|
474
478
|
|
|
475
|
-
# test zeroing:
|
|
476
479
|
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
477
480
|
a1 = wp.zeros(dim_x, dtype=wptype, device=device)
|
|
478
481
|
a2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device)
|
|
479
482
|
a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
480
483
|
a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
481
484
|
|
|
482
|
-
a1.
|
|
483
|
-
a2.
|
|
484
|
-
a3.
|
|
485
|
-
a4.
|
|
485
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
486
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
487
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
488
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
489
|
+
|
|
490
|
+
# fill with int value
|
|
491
|
+
fill_value = 42
|
|
492
|
+
|
|
493
|
+
a1.fill_(fill_value)
|
|
494
|
+
a2.fill_(fill_value)
|
|
495
|
+
a3.fill_(fill_value)
|
|
496
|
+
a4.fill_(fill_value)
|
|
497
|
+
|
|
498
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
|
|
499
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
|
|
500
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
|
|
501
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
|
|
486
502
|
|
|
487
503
|
a1.zero_()
|
|
488
504
|
a2.zero_()
|
|
489
505
|
a3.zero_()
|
|
490
506
|
a4.zero_()
|
|
491
507
|
|
|
492
|
-
assert_np_equal(a1.numpy(), np.
|
|
493
|
-
assert_np_equal(a2.numpy(), np.
|
|
494
|
-
assert_np_equal(a3.numpy(), np.
|
|
495
|
-
assert_np_equal(a4.numpy(), np.
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
|
|
506
|
-
|
|
507
|
-
|
|
508
|
-
|
|
509
|
-
|
|
510
|
-
|
|
511
|
-
|
|
512
|
-
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
|
|
516
|
-
|
|
517
|
-
|
|
518
|
-
|
|
508
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
509
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
510
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
511
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
512
|
+
|
|
513
|
+
if wptype in wp.types.float_types:
|
|
514
|
+
# fill with float value
|
|
515
|
+
fill_value = 13.37
|
|
516
|
+
|
|
517
|
+
a1.fill_(fill_value)
|
|
518
|
+
a2.fill_(fill_value)
|
|
519
|
+
a3.fill_(fill_value)
|
|
520
|
+
a4.fill_(fill_value)
|
|
521
|
+
|
|
522
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
|
|
523
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
|
|
524
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
|
|
525
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
|
|
526
|
+
|
|
527
|
+
# fill with Warp scalar value
|
|
528
|
+
fill_value = wptype(17)
|
|
529
|
+
|
|
530
|
+
a1.fill_(fill_value)
|
|
531
|
+
a2.fill_(fill_value)
|
|
532
|
+
a3.fill_(fill_value)
|
|
533
|
+
a4.fill_(fill_value)
|
|
534
|
+
|
|
535
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value.value, dtype=nptype))
|
|
536
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value.value, dtype=nptype))
|
|
537
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value.value, dtype=nptype))
|
|
538
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value.value, dtype=nptype))
|
|
539
|
+
|
|
540
|
+
|
|
541
|
+
def test_fill_vector(test, device):
|
|
542
|
+
# test filling a vector array with scalar or vector values (vec_type, list, or numpy array)
|
|
543
|
+
|
|
544
|
+
dim_x = 4
|
|
545
|
+
|
|
546
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
547
|
+
# vector types
|
|
548
|
+
vector_types = [
|
|
549
|
+
wp.types.vector(2, wptype),
|
|
550
|
+
wp.types.vector(3, wptype),
|
|
551
|
+
wp.types.vector(4, wptype),
|
|
552
|
+
wp.types.vector(5, wptype),
|
|
553
|
+
]
|
|
554
|
+
|
|
555
|
+
for vec_type in vector_types:
|
|
556
|
+
vec_len = vec_type._length_
|
|
557
|
+
|
|
558
|
+
a1 = wp.zeros(dim_x, dtype=vec_type, device=device)
|
|
559
|
+
a2 = wp.zeros((dim_x, dim_x), dtype=vec_type, device=device)
|
|
560
|
+
a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=vec_type, device=device)
|
|
561
|
+
a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=vec_type, device=device)
|
|
562
|
+
|
|
563
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
|
|
564
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
|
|
565
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
|
|
566
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
|
|
567
|
+
|
|
568
|
+
# fill with int scalar
|
|
569
|
+
fill_value = 42
|
|
570
|
+
|
|
571
|
+
a1.fill_(fill_value)
|
|
572
|
+
a2.fill_(fill_value)
|
|
573
|
+
a3.fill_(fill_value)
|
|
574
|
+
a4.fill_(fill_value)
|
|
575
|
+
|
|
576
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
|
|
577
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
|
|
578
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
|
|
579
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
|
|
580
|
+
|
|
581
|
+
# test zeroing
|
|
582
|
+
a1.zero_()
|
|
583
|
+
a2.zero_()
|
|
584
|
+
a3.zero_()
|
|
585
|
+
a4.zero_()
|
|
586
|
+
|
|
587
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
|
|
588
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
|
|
589
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
|
|
590
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
|
|
591
|
+
|
|
592
|
+
# vector values can be passed as a list, numpy array, or Warp vector instance
|
|
593
|
+
fill_list = [17, 42, 99, 101, 127][:vec_len]
|
|
594
|
+
fill_arr = np.array(fill_list, dtype=nptype)
|
|
595
|
+
fill_vec = vec_type(fill_list)
|
|
596
|
+
|
|
597
|
+
expected1 = np.tile(fill_arr, a1.size).reshape((*a1.shape, vec_len))
|
|
598
|
+
expected2 = np.tile(fill_arr, a2.size).reshape((*a2.shape, vec_len))
|
|
599
|
+
expected3 = np.tile(fill_arr, a3.size).reshape((*a3.shape, vec_len))
|
|
600
|
+
expected4 = np.tile(fill_arr, a4.size).reshape((*a4.shape, vec_len))
|
|
601
|
+
|
|
602
|
+
# fill with list of vector length
|
|
603
|
+
a1.fill_(fill_list)
|
|
604
|
+
a2.fill_(fill_list)
|
|
605
|
+
a3.fill_(fill_list)
|
|
606
|
+
a4.fill_(fill_list)
|
|
607
|
+
|
|
608
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
609
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
610
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
611
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
612
|
+
|
|
613
|
+
# clear
|
|
614
|
+
a1.zero_()
|
|
615
|
+
a2.zero_()
|
|
616
|
+
a3.zero_()
|
|
617
|
+
a4.zero_()
|
|
618
|
+
|
|
619
|
+
# fill with numpy array of vector length
|
|
620
|
+
a1.fill_(fill_arr)
|
|
621
|
+
a2.fill_(fill_arr)
|
|
622
|
+
a3.fill_(fill_arr)
|
|
623
|
+
a4.fill_(fill_arr)
|
|
624
|
+
|
|
625
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
626
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
627
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
628
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
629
|
+
|
|
630
|
+
# clear
|
|
631
|
+
a1.zero_()
|
|
632
|
+
a2.zero_()
|
|
633
|
+
a3.zero_()
|
|
634
|
+
a4.zero_()
|
|
635
|
+
|
|
636
|
+
# fill with vec instance
|
|
637
|
+
a1.fill_(fill_vec)
|
|
638
|
+
a2.fill_(fill_vec)
|
|
639
|
+
a3.fill_(fill_vec)
|
|
640
|
+
a4.fill_(fill_vec)
|
|
641
|
+
|
|
642
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
643
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
644
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
645
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
646
|
+
|
|
647
|
+
if wptype in wp.types.float_types:
|
|
648
|
+
# fill with float scalar
|
|
649
|
+
fill_value = 13.37
|
|
650
|
+
|
|
651
|
+
a1.fill_(fill_value)
|
|
652
|
+
a2.fill_(fill_value)
|
|
653
|
+
a3.fill_(fill_value)
|
|
654
|
+
a4.fill_(fill_value)
|
|
655
|
+
|
|
656
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
|
|
657
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
|
|
658
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
|
|
659
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
|
|
660
|
+
|
|
661
|
+
# fill with float list of vector length
|
|
662
|
+
fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len]
|
|
663
|
+
|
|
664
|
+
a1.fill_(fill_list)
|
|
665
|
+
a2.fill_(fill_list)
|
|
666
|
+
a3.fill_(fill_list)
|
|
667
|
+
a4.fill_(fill_list)
|
|
668
|
+
|
|
669
|
+
expected1 = np.tile(np.array(fill_list, dtype=nptype), a1.size).reshape((*a1.shape, vec_len))
|
|
670
|
+
expected2 = np.tile(np.array(fill_list, dtype=nptype), a2.size).reshape((*a2.shape, vec_len))
|
|
671
|
+
expected3 = np.tile(np.array(fill_list, dtype=nptype), a3.size).reshape((*a3.shape, vec_len))
|
|
672
|
+
expected4 = np.tile(np.array(fill_list, dtype=nptype), a4.size).reshape((*a4.shape, vec_len))
|
|
673
|
+
|
|
674
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
675
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
676
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
677
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
678
|
+
|
|
679
|
+
|
|
680
|
+
def test_fill_matrix(test, device):
|
|
681
|
+
# test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array)
|
|
682
|
+
|
|
683
|
+
dim_x = 4
|
|
684
|
+
|
|
685
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
686
|
+
# matrix types
|
|
687
|
+
matrix_types = [
|
|
688
|
+
# square matrices
|
|
689
|
+
wp.types.matrix((2, 2), wptype),
|
|
690
|
+
wp.types.matrix((3, 3), wptype),
|
|
691
|
+
wp.types.matrix((4, 4), wptype),
|
|
692
|
+
wp.types.matrix((5, 5), wptype),
|
|
693
|
+
# non-square matrices
|
|
694
|
+
wp.types.matrix((2, 3), wptype),
|
|
695
|
+
wp.types.matrix((3, 2), wptype),
|
|
696
|
+
wp.types.matrix((3, 4), wptype),
|
|
697
|
+
wp.types.matrix((4, 3), wptype),
|
|
698
|
+
]
|
|
699
|
+
|
|
700
|
+
for mat_type in matrix_types:
|
|
701
|
+
mat_len = mat_type._length_
|
|
702
|
+
mat_shape = mat_type._shape_
|
|
703
|
+
|
|
704
|
+
a1 = wp.zeros(dim_x, dtype=mat_type, device=device)
|
|
705
|
+
a2 = wp.zeros((dim_x, dim_x), dtype=mat_type, device=device)
|
|
706
|
+
a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=mat_type, device=device)
|
|
707
|
+
a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=mat_type, device=device)
|
|
708
|
+
|
|
709
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
|
|
710
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
|
|
711
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
|
|
712
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
|
|
713
|
+
|
|
714
|
+
# fill with scalar
|
|
715
|
+
fill_value = 42
|
|
716
|
+
|
|
717
|
+
a1.fill_(fill_value)
|
|
718
|
+
a2.fill_(fill_value)
|
|
719
|
+
a3.fill_(fill_value)
|
|
720
|
+
a4.fill_(fill_value)
|
|
721
|
+
|
|
722
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, *mat_shape), fill_value, dtype=nptype))
|
|
723
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, *mat_shape), fill_value, dtype=nptype))
|
|
724
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, *mat_shape), fill_value, dtype=nptype))
|
|
725
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, *mat_shape), fill_value, dtype=nptype))
|
|
726
|
+
|
|
727
|
+
# test zeroing
|
|
728
|
+
a1.zero_()
|
|
729
|
+
a2.zero_()
|
|
730
|
+
a3.zero_()
|
|
731
|
+
a4.zero_()
|
|
732
|
+
|
|
733
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
|
|
734
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
|
|
735
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
|
|
736
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
|
|
737
|
+
|
|
738
|
+
# matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance
|
|
739
|
+
if wptype != wp.bool:
|
|
740
|
+
fill_arr1 = np.arange(mat_len, dtype=nptype)
|
|
741
|
+
else:
|
|
742
|
+
fill_arr1 = np.ones(mat_len, dtype=nptype)
|
|
743
|
+
fill_arr2 = fill_arr1.reshape(mat_shape)
|
|
744
|
+
fill_list1 = list(fill_arr1)
|
|
745
|
+
fill_list2 = [list(row) for row in fill_arr2]
|
|
746
|
+
fill_mat = mat_type(fill_arr1)
|
|
747
|
+
|
|
748
|
+
expected1 = np.tile(fill_arr1, a1.size).reshape((*a1.shape, *mat_shape))
|
|
749
|
+
expected2 = np.tile(fill_arr1, a2.size).reshape((*a2.shape, *mat_shape))
|
|
750
|
+
expected3 = np.tile(fill_arr1, a3.size).reshape((*a3.shape, *mat_shape))
|
|
751
|
+
expected4 = np.tile(fill_arr1, a4.size).reshape((*a4.shape, *mat_shape))
|
|
752
|
+
|
|
753
|
+
# fill with 1d numpy array
|
|
754
|
+
a1.fill_(fill_arr1)
|
|
755
|
+
a2.fill_(fill_arr1)
|
|
756
|
+
a3.fill_(fill_arr1)
|
|
757
|
+
a4.fill_(fill_arr1)
|
|
758
|
+
|
|
759
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
760
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
761
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
762
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
763
|
+
|
|
764
|
+
# clear
|
|
765
|
+
a1.zero_()
|
|
766
|
+
a2.zero_()
|
|
767
|
+
a3.zero_()
|
|
768
|
+
a4.zero_()
|
|
769
|
+
|
|
770
|
+
# fill with 2d numpy array
|
|
771
|
+
a1.fill_(fill_arr2)
|
|
772
|
+
a2.fill_(fill_arr2)
|
|
773
|
+
a3.fill_(fill_arr2)
|
|
774
|
+
a4.fill_(fill_arr2)
|
|
775
|
+
|
|
776
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
777
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
778
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
779
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
780
|
+
|
|
781
|
+
# clear
|
|
782
|
+
a1.zero_()
|
|
783
|
+
a2.zero_()
|
|
784
|
+
a3.zero_()
|
|
785
|
+
a4.zero_()
|
|
786
|
+
|
|
787
|
+
# fill with flat list
|
|
788
|
+
a1.fill_(fill_list1)
|
|
789
|
+
a2.fill_(fill_list1)
|
|
790
|
+
a3.fill_(fill_list1)
|
|
791
|
+
a4.fill_(fill_list1)
|
|
792
|
+
|
|
793
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
794
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
795
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
796
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
797
|
+
|
|
798
|
+
# clear
|
|
799
|
+
a1.zero_()
|
|
800
|
+
a2.zero_()
|
|
801
|
+
a3.zero_()
|
|
802
|
+
a4.zero_()
|
|
803
|
+
|
|
804
|
+
# fill with nested list
|
|
805
|
+
a1.fill_(fill_list2)
|
|
806
|
+
a2.fill_(fill_list2)
|
|
807
|
+
a3.fill_(fill_list2)
|
|
808
|
+
a4.fill_(fill_list2)
|
|
809
|
+
|
|
810
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
811
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
812
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
813
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
814
|
+
|
|
815
|
+
# clear
|
|
816
|
+
a1.zero_()
|
|
817
|
+
a2.zero_()
|
|
818
|
+
a3.zero_()
|
|
819
|
+
a4.zero_()
|
|
820
|
+
|
|
821
|
+
# fill with mat instance
|
|
822
|
+
a1.fill_(fill_mat)
|
|
823
|
+
a2.fill_(fill_mat)
|
|
824
|
+
a3.fill_(fill_mat)
|
|
825
|
+
a4.fill_(fill_mat)
|
|
826
|
+
|
|
827
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
828
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
829
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
830
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
831
|
+
|
|
832
|
+
|
|
833
|
+
@wp.struct
|
|
834
|
+
class FillStruct:
|
|
835
|
+
# scalar members (make sure to test float16)
|
|
836
|
+
i1: wp.int8
|
|
837
|
+
i2: wp.int16
|
|
838
|
+
i4: wp.int32
|
|
839
|
+
i8: wp.int64
|
|
840
|
+
f2: wp.float16
|
|
841
|
+
f4: wp.float32
|
|
842
|
+
f8: wp.float16
|
|
843
|
+
# vector members (make sure to test vectors of float16)
|
|
844
|
+
v2: wp.types.vector(2, wp.int64)
|
|
845
|
+
v3: wp.types.vector(3, wp.float32)
|
|
846
|
+
v4: wp.types.vector(4, wp.float16)
|
|
847
|
+
v5: wp.types.vector(5, wp.uint8)
|
|
848
|
+
# matrix members (make sure to test matrices of float16)
|
|
849
|
+
m2: wp.types.matrix((2, 2), wp.float64)
|
|
850
|
+
m3: wp.types.matrix((3, 3), wp.int32)
|
|
851
|
+
m4: wp.types.matrix((4, 4), wp.float16)
|
|
852
|
+
m5: wp.types.matrix((5, 5), wp.int8)
|
|
853
|
+
# arrays
|
|
854
|
+
a1: wp.array(dtype=float)
|
|
855
|
+
a2: wp.array2d(dtype=float)
|
|
856
|
+
a3: wp.array3d(dtype=float)
|
|
857
|
+
a4: wp.array4d(dtype=float)
|
|
858
|
+
|
|
859
|
+
|
|
860
|
+
def test_fill_struct(test, device):
|
|
861
|
+
dim_x = 4
|
|
862
|
+
|
|
863
|
+
nptype = FillStruct.numpy_dtype()
|
|
864
|
+
|
|
865
|
+
a1 = wp.zeros(dim_x, dtype=FillStruct, device=device)
|
|
866
|
+
a2 = wp.zeros((dim_x, dim_x), dtype=FillStruct, device=device)
|
|
867
|
+
a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
|
|
868
|
+
a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
|
|
869
|
+
|
|
870
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
871
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
872
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
873
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
874
|
+
|
|
875
|
+
s = FillStruct()
|
|
876
|
+
|
|
877
|
+
# fill with default struct value (should be all zeros)
|
|
878
|
+
a1.fill_(s)
|
|
879
|
+
a2.fill_(s)
|
|
880
|
+
a3.fill_(s)
|
|
881
|
+
a4.fill_(s)
|
|
882
|
+
|
|
883
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
884
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
885
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
886
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
887
|
+
|
|
888
|
+
# scalars
|
|
889
|
+
s.i1 = -17
|
|
890
|
+
s.i2 = 42
|
|
891
|
+
s.i4 = 99
|
|
892
|
+
s.i8 = 101
|
|
893
|
+
s.f2 = -1.25
|
|
894
|
+
s.f4 = 13.37
|
|
895
|
+
s.f8 = 0.125
|
|
896
|
+
# vectors
|
|
897
|
+
s.v2 = [21, 22]
|
|
898
|
+
s.v3 = [31, 32, 33]
|
|
899
|
+
s.v4 = [41, 42, 43, 44]
|
|
900
|
+
s.v5 = [51, 52, 53, 54, 55]
|
|
901
|
+
# matrices
|
|
902
|
+
s.m2 = [[61, 62]] * 2
|
|
903
|
+
s.m3 = [[71, 72, 73]] * 3
|
|
904
|
+
s.m4 = [[81, 82, 83, 84]] * 4
|
|
905
|
+
s.m5 = [[91, 92, 93, 94, 95]] * 5
|
|
906
|
+
# arrays
|
|
907
|
+
s.a1 = wp.zeros((2,) * 1, dtype=float, device=device)
|
|
908
|
+
s.a2 = wp.zeros((2,) * 2, dtype=float, device=device)
|
|
909
|
+
s.a3 = wp.zeros((2,) * 3, dtype=float, device=device)
|
|
910
|
+
s.a4 = wp.zeros((2,) * 4, dtype=float, device=device)
|
|
911
|
+
|
|
912
|
+
# fill with custom struct value
|
|
913
|
+
a1.fill_(s)
|
|
914
|
+
a2.fill_(s)
|
|
915
|
+
a3.fill_(s)
|
|
916
|
+
a4.fill_(s)
|
|
917
|
+
|
|
918
|
+
ns = s.numpy_value()
|
|
919
|
+
|
|
920
|
+
expected1 = np.empty(a1.shape, dtype=nptype)
|
|
921
|
+
expected2 = np.empty(a2.shape, dtype=nptype)
|
|
922
|
+
expected3 = np.empty(a3.shape, dtype=nptype)
|
|
923
|
+
expected4 = np.empty(a4.shape, dtype=nptype)
|
|
924
|
+
|
|
925
|
+
expected1.fill(ns)
|
|
926
|
+
expected2.fill(ns)
|
|
927
|
+
expected3.fill(ns)
|
|
928
|
+
expected4.fill(ns)
|
|
929
|
+
|
|
930
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
931
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
932
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
933
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
934
|
+
|
|
935
|
+
# test clearing
|
|
936
|
+
a1.zero_()
|
|
937
|
+
a2.zero_()
|
|
938
|
+
a3.zero_()
|
|
939
|
+
a4.zero_()
|
|
940
|
+
|
|
941
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
942
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
943
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
944
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
945
|
+
|
|
946
|
+
|
|
947
|
+
def test_fill_slices(test, device):
|
|
948
|
+
# test fill_ and zero_ for non-contiguous arrays
|
|
949
|
+
# Note: we don't need to test the whole range of dtypes (vectors, matrices, structs) here
|
|
950
|
+
|
|
951
|
+
dim_x = 8
|
|
952
|
+
|
|
519
953
|
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
520
954
|
a1 = wp.zeros(dim_x, dtype=wptype, device=device)
|
|
521
955
|
a2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device)
|
|
522
956
|
a3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
523
957
|
a4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
524
958
|
|
|
525
|
-
a1.
|
|
526
|
-
a2.
|
|
527
|
-
a3.
|
|
528
|
-
a4.
|
|
529
|
-
|
|
530
|
-
|
|
531
|
-
|
|
532
|
-
|
|
533
|
-
|
|
534
|
-
|
|
535
|
-
|
|
536
|
-
|
|
537
|
-
|
|
538
|
-
|
|
539
|
-
|
|
540
|
-
|
|
541
|
-
|
|
542
|
-
|
|
543
|
-
|
|
544
|
-
|
|
545
|
-
|
|
546
|
-
|
|
547
|
-
|
|
548
|
-
assert_np_equal(
|
|
549
|
-
assert_np_equal(
|
|
550
|
-
|
|
551
|
-
|
|
552
|
-
|
|
553
|
-
|
|
554
|
-
|
|
555
|
-
|
|
556
|
-
|
|
557
|
-
|
|
558
|
-
|
|
559
|
-
|
|
560
|
-
|
|
561
|
-
|
|
562
|
-
|
|
563
|
-
|
|
564
|
-
|
|
565
|
-
|
|
566
|
-
|
|
567
|
-
|
|
568
|
-
|
|
569
|
-
|
|
570
|
-
|
|
571
|
-
|
|
572
|
-
|
|
573
|
-
assert_np_equal(
|
|
574
|
-
assert_np_equal(
|
|
575
|
-
assert_np_equal(
|
|
576
|
-
assert_np_equal(
|
|
577
|
-
|
|
578
|
-
|
|
579
|
-
|
|
580
|
-
|
|
581
|
-
|
|
582
|
-
|
|
583
|
-
|
|
584
|
-
|
|
585
|
-
|
|
586
|
-
|
|
587
|
-
|
|
588
|
-
|
|
589
|
-
|
|
590
|
-
|
|
591
|
-
|
|
592
|
-
|
|
593
|
-
|
|
594
|
-
|
|
595
|
-
|
|
596
|
-
|
|
597
|
-
|
|
598
|
-
|
|
599
|
-
|
|
600
|
-
|
|
601
|
-
|
|
602
|
-
|
|
603
|
-
|
|
604
|
-
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
|
|
608
|
-
|
|
609
|
-
|
|
610
|
-
|
|
959
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
960
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
961
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
962
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
963
|
+
|
|
964
|
+
# partititon each array into even and odd slices
|
|
965
|
+
a1a = a1[::2]
|
|
966
|
+
a1b = a1[1::2]
|
|
967
|
+
a2a = a2[::2]
|
|
968
|
+
a2b = a2[1::2]
|
|
969
|
+
a3a = a3[::2]
|
|
970
|
+
a3b = a3[1::2]
|
|
971
|
+
a4a = a4[::2]
|
|
972
|
+
a4b = a4[1::2]
|
|
973
|
+
|
|
974
|
+
# fill even slices
|
|
975
|
+
fill_a = 17
|
|
976
|
+
a1a.fill_(fill_a)
|
|
977
|
+
a2a.fill_(fill_a)
|
|
978
|
+
a3a.fill_(fill_a)
|
|
979
|
+
a4a.fill_(fill_a)
|
|
980
|
+
|
|
981
|
+
# ensure filled slices are correct
|
|
982
|
+
assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype))
|
|
983
|
+
assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype))
|
|
984
|
+
assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype))
|
|
985
|
+
assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype))
|
|
986
|
+
|
|
987
|
+
# ensure unfilled slices are unaffected
|
|
988
|
+
assert_np_equal(a1b.numpy(), np.zeros(a1b.shape, dtype=nptype))
|
|
989
|
+
assert_np_equal(a2b.numpy(), np.zeros(a2b.shape, dtype=nptype))
|
|
990
|
+
assert_np_equal(a3b.numpy(), np.zeros(a3b.shape, dtype=nptype))
|
|
991
|
+
assert_np_equal(a4b.numpy(), np.zeros(a4b.shape, dtype=nptype))
|
|
992
|
+
|
|
993
|
+
# fill odd slices
|
|
994
|
+
fill_b = 42
|
|
995
|
+
a1b.fill_(fill_b)
|
|
996
|
+
a2b.fill_(fill_b)
|
|
997
|
+
a3b.fill_(fill_b)
|
|
998
|
+
a4b.fill_(fill_b)
|
|
999
|
+
|
|
1000
|
+
# ensure filled slices are correct
|
|
1001
|
+
assert_np_equal(a1b.numpy(), np.full(a1b.shape, fill_b, dtype=nptype))
|
|
1002
|
+
assert_np_equal(a2b.numpy(), np.full(a2b.shape, fill_b, dtype=nptype))
|
|
1003
|
+
assert_np_equal(a3b.numpy(), np.full(a3b.shape, fill_b, dtype=nptype))
|
|
1004
|
+
assert_np_equal(a4b.numpy(), np.full(a4b.shape, fill_b, dtype=nptype))
|
|
1005
|
+
|
|
1006
|
+
# ensure unfilled slices are unaffected
|
|
1007
|
+
assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype))
|
|
1008
|
+
assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype))
|
|
1009
|
+
assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype))
|
|
1010
|
+
assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype))
|
|
1011
|
+
|
|
1012
|
+
# clear even slices
|
|
1013
|
+
a1a.zero_()
|
|
1014
|
+
a2a.zero_()
|
|
1015
|
+
a3a.zero_()
|
|
1016
|
+
a4a.zero_()
|
|
1017
|
+
|
|
1018
|
+
# ensure cleared slices are correct
|
|
1019
|
+
assert_np_equal(a1a.numpy(), np.zeros(a1a.shape, dtype=nptype))
|
|
1020
|
+
assert_np_equal(a2a.numpy(), np.zeros(a2a.shape, dtype=nptype))
|
|
1021
|
+
assert_np_equal(a3a.numpy(), np.zeros(a3a.shape, dtype=nptype))
|
|
1022
|
+
assert_np_equal(a4a.numpy(), np.zeros(a4a.shape, dtype=nptype))
|
|
1023
|
+
|
|
1024
|
+
# ensure uncleared slices are unaffected
|
|
1025
|
+
assert_np_equal(a1b.numpy(), np.full(a1b.shape, fill_b, dtype=nptype))
|
|
1026
|
+
assert_np_equal(a2b.numpy(), np.full(a2b.shape, fill_b, dtype=nptype))
|
|
1027
|
+
assert_np_equal(a3b.numpy(), np.full(a3b.shape, fill_b, dtype=nptype))
|
|
1028
|
+
assert_np_equal(a4b.numpy(), np.full(a4b.shape, fill_b, dtype=nptype))
|
|
1029
|
+
|
|
1030
|
+
# re-fill even slices
|
|
1031
|
+
a1a.fill_(fill_a)
|
|
1032
|
+
a2a.fill_(fill_a)
|
|
1033
|
+
a3a.fill_(fill_a)
|
|
1034
|
+
a4a.fill_(fill_a)
|
|
1035
|
+
|
|
1036
|
+
# clear odd slices
|
|
1037
|
+
a1b.zero_()
|
|
1038
|
+
a2b.zero_()
|
|
1039
|
+
a3b.zero_()
|
|
1040
|
+
a4b.zero_()
|
|
1041
|
+
|
|
1042
|
+
# ensure cleared slices are correct
|
|
1043
|
+
assert_np_equal(a1b.numpy(), np.zeros(a1b.shape, dtype=nptype))
|
|
1044
|
+
assert_np_equal(a2b.numpy(), np.zeros(a2b.shape, dtype=nptype))
|
|
1045
|
+
assert_np_equal(a3b.numpy(), np.zeros(a3b.shape, dtype=nptype))
|
|
1046
|
+
assert_np_equal(a4b.numpy(), np.zeros(a4b.shape, dtype=nptype))
|
|
1047
|
+
|
|
1048
|
+
# ensure uncleared slices are unaffected
|
|
1049
|
+
assert_np_equal(a1a.numpy(), np.full(a1a.shape, fill_a, dtype=nptype))
|
|
1050
|
+
assert_np_equal(a2a.numpy(), np.full(a2a.shape, fill_a, dtype=nptype))
|
|
1051
|
+
assert_np_equal(a3a.numpy(), np.full(a3a.shape, fill_a, dtype=nptype))
|
|
1052
|
+
assert_np_equal(a4a.numpy(), np.full(a4a.shape, fill_a, dtype=nptype))
|
|
1053
|
+
|
|
1054
|
+
|
|
1055
|
+
def test_full_scalar(test, device):
|
|
1056
|
+
dim = 4
|
|
1057
|
+
|
|
1058
|
+
for ndim in range(1, 5):
|
|
1059
|
+
shape = (dim,) * ndim
|
|
1060
|
+
|
|
1061
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1062
|
+
# fill with int value and specific dtype
|
|
1063
|
+
fill_value = 42
|
|
1064
|
+
a = wp.full(shape, fill_value, dtype=wptype, device=device)
|
|
1065
|
+
na = a.numpy()
|
|
1066
|
+
|
|
1067
|
+
test.assertEqual(a.shape, shape)
|
|
1068
|
+
test.assertEqual(a.dtype, wptype)
|
|
1069
|
+
test.assertEqual(na.shape, shape)
|
|
1070
|
+
test.assertEqual(na.dtype, nptype)
|
|
1071
|
+
assert_np_equal(na, np.full(shape, fill_value, dtype=nptype))
|
|
1072
|
+
|
|
1073
|
+
if wptype in wp.types.float_types:
|
|
1074
|
+
# fill with float value and specific dtype
|
|
1075
|
+
fill_value = 13.37
|
|
1076
|
+
a = wp.full(shape, fill_value, dtype=wptype, device=device)
|
|
1077
|
+
na = a.numpy()
|
|
1078
|
+
|
|
1079
|
+
test.assertEqual(a.shape, shape)
|
|
1080
|
+
test.assertEqual(a.dtype, wptype)
|
|
1081
|
+
test.assertEqual(na.shape, shape)
|
|
1082
|
+
test.assertEqual(na.dtype, nptype)
|
|
1083
|
+
assert_np_equal(na, np.full(shape, fill_value, dtype=nptype))
|
|
1084
|
+
|
|
1085
|
+
# fill with int value and automatically inferred dtype
|
|
1086
|
+
fill_value = 42
|
|
1087
|
+
a = wp.full(shape, fill_value, device=device)
|
|
1088
|
+
na = a.numpy()
|
|
1089
|
+
|
|
1090
|
+
test.assertEqual(a.shape, shape)
|
|
1091
|
+
test.assertEqual(a.dtype, wp.int32)
|
|
1092
|
+
test.assertEqual(na.shape, shape)
|
|
1093
|
+
test.assertEqual(na.dtype, np.int32)
|
|
1094
|
+
assert_np_equal(na, np.full(shape, fill_value, dtype=np.int32))
|
|
1095
|
+
|
|
1096
|
+
# fill with float value and automatically inferred dtype
|
|
1097
|
+
fill_value = 13.37
|
|
1098
|
+
a = wp.full(shape, fill_value, device=device)
|
|
1099
|
+
na = a.numpy()
|
|
1100
|
+
|
|
1101
|
+
test.assertEqual(a.shape, shape)
|
|
1102
|
+
test.assertEqual(a.dtype, wp.float32)
|
|
1103
|
+
test.assertEqual(na.shape, shape)
|
|
1104
|
+
test.assertEqual(na.dtype, np.float32)
|
|
1105
|
+
assert_np_equal(na, np.full(shape, fill_value, dtype=np.float32))
|
|
1106
|
+
|
|
1107
|
+
|
|
1108
|
+
def test_full_vector(test, device):
|
|
1109
|
+
dim = 4
|
|
1110
|
+
|
|
1111
|
+
for ndim in range(1, 5):
|
|
1112
|
+
shape = (dim,) * ndim
|
|
1113
|
+
|
|
1114
|
+
# full from scalar
|
|
1115
|
+
for veclen in [2, 3, 4, 5]:
|
|
1116
|
+
npshape = (*shape, veclen)
|
|
1117
|
+
|
|
1118
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1119
|
+
vectype = wp.types.vector(veclen, wptype)
|
|
1120
|
+
|
|
1121
|
+
# fill with scalar int value and specific dtype
|
|
1122
|
+
fill_value = 42
|
|
1123
|
+
a = wp.full(shape, fill_value, dtype=vectype, device=device)
|
|
1124
|
+
na = a.numpy()
|
|
1125
|
+
|
|
1126
|
+
test.assertEqual(a.shape, shape)
|
|
1127
|
+
test.assertEqual(a.dtype, vectype)
|
|
1128
|
+
test.assertEqual(na.shape, npshape)
|
|
1129
|
+
test.assertEqual(na.dtype, nptype)
|
|
1130
|
+
assert_np_equal(na, np.full(a.size * veclen, fill_value, dtype=nptype).reshape(npshape))
|
|
1131
|
+
|
|
1132
|
+
if wptype in wp.types.float_types:
|
|
1133
|
+
# fill with scalar float value and specific dtype
|
|
1134
|
+
fill_value = 13.37
|
|
1135
|
+
a = wp.full(shape, fill_value, dtype=vectype, device=device)
|
|
1136
|
+
na = a.numpy()
|
|
1137
|
+
|
|
1138
|
+
test.assertEqual(a.shape, shape)
|
|
1139
|
+
test.assertEqual(a.dtype, vectype)
|
|
1140
|
+
test.assertEqual(na.shape, npshape)
|
|
1141
|
+
test.assertEqual(na.dtype, nptype)
|
|
1142
|
+
assert_np_equal(na, np.full(a.size * veclen, fill_value, dtype=nptype).reshape(npshape))
|
|
1143
|
+
|
|
1144
|
+
# fill with vector value and specific dtype
|
|
1145
|
+
fill_vec = vectype(42)
|
|
1146
|
+
a = wp.full(shape, fill_vec, dtype=vectype, device=device)
|
|
1147
|
+
na = a.numpy()
|
|
1148
|
+
|
|
1149
|
+
test.assertEqual(a.shape, shape)
|
|
1150
|
+
test.assertEqual(a.dtype, vectype)
|
|
1151
|
+
test.assertEqual(na.shape, npshape)
|
|
1152
|
+
test.assertEqual(na.dtype, nptype)
|
|
1153
|
+
assert_np_equal(na, np.full(a.size * veclen, 42, dtype=nptype).reshape(npshape))
|
|
1154
|
+
|
|
1155
|
+
# fill with vector value and automatically inferred dtype
|
|
1156
|
+
a = wp.full(shape, fill_vec, device=device)
|
|
1157
|
+
na = a.numpy()
|
|
1158
|
+
|
|
1159
|
+
test.assertEqual(a.shape, shape)
|
|
1160
|
+
test.assertEqual(a.dtype, vectype)
|
|
1161
|
+
test.assertEqual(na.shape, npshape)
|
|
1162
|
+
test.assertEqual(na.dtype, nptype)
|
|
1163
|
+
assert_np_equal(na, np.full(a.size * veclen, 42, dtype=nptype).reshape(npshape))
|
|
1164
|
+
|
|
1165
|
+
fill_lists = [
|
|
1166
|
+
[17, 42],
|
|
1167
|
+
[17, 42, 99],
|
|
1168
|
+
[17, 42, 99, 101],
|
|
1169
|
+
[17, 42, 99, 101, 127],
|
|
1170
|
+
]
|
|
1171
|
+
|
|
1172
|
+
# full from list and numpy array
|
|
1173
|
+
for fill_list in fill_lists:
|
|
1174
|
+
veclen = len(fill_list)
|
|
1175
|
+
npshape = (*shape, veclen)
|
|
1176
|
+
|
|
1177
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1178
|
+
vectype = wp.types.vector(veclen, wptype)
|
|
1179
|
+
|
|
1180
|
+
# fill with list and specific dtype
|
|
1181
|
+
a = wp.full(shape, fill_list, dtype=vectype, device=device)
|
|
1182
|
+
na = a.numpy()
|
|
1183
|
+
|
|
1184
|
+
test.assertEqual(a.shape, shape)
|
|
1185
|
+
test.assertEqual(a.dtype, vectype)
|
|
1186
|
+
test.assertEqual(na.shape, npshape)
|
|
1187
|
+
test.assertEqual(na.dtype, nptype)
|
|
1188
|
+
|
|
1189
|
+
expected = np.tile(np.array(fill_list, dtype=nptype), a.size).reshape(npshape)
|
|
1190
|
+
assert_np_equal(na, expected)
|
|
1191
|
+
|
|
1192
|
+
fill_arr = np.array(fill_list, dtype=nptype)
|
|
1193
|
+
|
|
1194
|
+
# fill with numpy array and specific dtype
|
|
1195
|
+
a = wp.full(shape, fill_arr, dtype=vectype, device=device)
|
|
1196
|
+
na = a.numpy()
|
|
1197
|
+
|
|
1198
|
+
test.assertEqual(a.shape, shape)
|
|
1199
|
+
test.assertEqual(a.dtype, vectype)
|
|
1200
|
+
test.assertEqual(na.shape, npshape)
|
|
1201
|
+
test.assertEqual(na.dtype, nptype)
|
|
1202
|
+
assert_np_equal(na, expected)
|
|
1203
|
+
|
|
1204
|
+
# fill with numpy array and automatically infer dtype
|
|
1205
|
+
a = wp.full(shape, fill_arr, device=device)
|
|
1206
|
+
na = a.numpy()
|
|
1207
|
+
|
|
1208
|
+
test.assertEqual(a.shape, shape)
|
|
1209
|
+
test.assertTrue(wp.types.types_equal(a.dtype, vectype))
|
|
1210
|
+
test.assertEqual(na.shape, npshape)
|
|
1211
|
+
test.assertEqual(na.dtype, nptype)
|
|
1212
|
+
assert_np_equal(na, expected)
|
|
1213
|
+
|
|
1214
|
+
# fill with list and automatically infer dtype
|
|
1215
|
+
a = wp.full(shape, fill_list, device=device)
|
|
1216
|
+
na = a.numpy()
|
|
1217
|
+
|
|
1218
|
+
test.assertEqual(a.shape, shape)
|
|
1219
|
+
|
|
1220
|
+
# check that the inferred dtype is a vector
|
|
1221
|
+
# Note that we cannot guarantee the scalar type, because it depends on numpy and may vary by platform
|
|
1222
|
+
# (e.g. int64 on Linux and int32 on Windows).
|
|
1223
|
+
test.assertEqual(a.dtype._wp_generic_type_str_, "vec_t")
|
|
1224
|
+
test.assertEqual(a.dtype._length_, veclen)
|
|
1225
|
+
|
|
1226
|
+
expected = np.tile(np.array(fill_list), a.size).reshape(npshape)
|
|
1227
|
+
assert_np_equal(na, expected)
|
|
1228
|
+
|
|
1229
|
+
|
|
1230
|
+
def test_full_matrix(test, device):
|
|
1231
|
+
dim = 4
|
|
1232
|
+
|
|
1233
|
+
for ndim in range(1, 5):
|
|
1234
|
+
shape = (dim,) * ndim
|
|
1235
|
+
|
|
611
1236
|
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
612
|
-
|
|
613
|
-
|
|
614
|
-
|
|
1237
|
+
matrix_types = [
|
|
1238
|
+
# square matrices
|
|
1239
|
+
wp.types.matrix((2, 2), wptype),
|
|
1240
|
+
wp.types.matrix((3, 3), wptype),
|
|
1241
|
+
wp.types.matrix((4, 4), wptype),
|
|
1242
|
+
wp.types.matrix((5, 5), wptype),
|
|
1243
|
+
# non-square matrices
|
|
1244
|
+
wp.types.matrix((2, 3), wptype),
|
|
1245
|
+
wp.types.matrix((3, 2), wptype),
|
|
1246
|
+
wp.types.matrix((3, 4), wptype),
|
|
1247
|
+
wp.types.matrix((4, 3), wptype),
|
|
1248
|
+
]
|
|
1249
|
+
|
|
1250
|
+
for mattype in matrix_types:
|
|
1251
|
+
npshape = (*shape, *mattype._shape_)
|
|
1252
|
+
|
|
1253
|
+
# fill with scalar int value and specific dtype
|
|
1254
|
+
fill_value = 42
|
|
1255
|
+
a = wp.full(shape, fill_value, dtype=mattype, device=device)
|
|
1256
|
+
na = a.numpy()
|
|
1257
|
+
|
|
1258
|
+
test.assertEqual(a.shape, shape)
|
|
1259
|
+
test.assertEqual(a.dtype, mattype)
|
|
1260
|
+
test.assertEqual(na.shape, npshape)
|
|
1261
|
+
test.assertEqual(na.dtype, nptype)
|
|
1262
|
+
assert_np_equal(na, np.full(a.size * mattype._length_, fill_value, dtype=nptype).reshape(npshape))
|
|
1263
|
+
|
|
1264
|
+
if wptype in wp.types.float_types:
|
|
1265
|
+
# fill with scalar float value and specific dtype
|
|
1266
|
+
fill_value = 13.37
|
|
1267
|
+
a = wp.full(shape, fill_value, dtype=mattype, device=device)
|
|
1268
|
+
na = a.numpy()
|
|
1269
|
+
|
|
1270
|
+
test.assertEqual(a.shape, shape)
|
|
1271
|
+
test.assertEqual(a.dtype, mattype)
|
|
1272
|
+
test.assertEqual(na.shape, npshape)
|
|
1273
|
+
test.assertEqual(na.dtype, nptype)
|
|
1274
|
+
assert_np_equal(na, np.full(a.size * mattype._length_, fill_value, dtype=nptype).reshape(npshape))
|
|
1275
|
+
|
|
1276
|
+
# fill with matrix value and specific dtype
|
|
1277
|
+
fill_mat = mattype(42)
|
|
1278
|
+
a = wp.full(shape, fill_mat, dtype=mattype, device=device)
|
|
1279
|
+
na = a.numpy()
|
|
1280
|
+
|
|
1281
|
+
test.assertEqual(a.shape, shape)
|
|
1282
|
+
test.assertEqual(a.dtype, mattype)
|
|
1283
|
+
test.assertEqual(na.shape, npshape)
|
|
1284
|
+
test.assertEqual(na.dtype, nptype)
|
|
1285
|
+
assert_np_equal(na, np.full(a.size * mattype._length_, 42, dtype=nptype).reshape(npshape))
|
|
1286
|
+
|
|
1287
|
+
# fill with matrix value and automatically inferred dtype
|
|
1288
|
+
fill_mat = mattype(42)
|
|
1289
|
+
a = wp.full(shape, fill_mat, device=device)
|
|
1290
|
+
na = a.numpy()
|
|
1291
|
+
|
|
1292
|
+
test.assertEqual(a.shape, shape)
|
|
1293
|
+
test.assertEqual(a.dtype, mattype)
|
|
1294
|
+
test.assertEqual(na.shape, npshape)
|
|
1295
|
+
test.assertEqual(na.dtype, nptype)
|
|
1296
|
+
assert_np_equal(na, np.full(a.size * mattype._length_, 42, dtype=nptype).reshape(npshape))
|
|
1297
|
+
|
|
1298
|
+
# fill with 1d numpy array and specific dtype
|
|
1299
|
+
if wptype != wp.bool:
|
|
1300
|
+
fill_arr1d = np.arange(mattype._length_, dtype=nptype)
|
|
1301
|
+
else:
|
|
1302
|
+
fill_arr1d = np.ones(mattype._length_, dtype=nptype)
|
|
1303
|
+
a = wp.full(shape, fill_arr1d, dtype=mattype, device=device)
|
|
1304
|
+
na = a.numpy()
|
|
1305
|
+
|
|
1306
|
+
test.assertEqual(a.shape, shape)
|
|
1307
|
+
test.assertEqual(a.dtype, mattype)
|
|
1308
|
+
test.assertEqual(na.shape, npshape)
|
|
1309
|
+
test.assertEqual(na.dtype, nptype)
|
|
1310
|
+
|
|
1311
|
+
expected = np.tile(fill_arr1d, a.size).reshape(npshape)
|
|
1312
|
+
assert_np_equal(na, expected)
|
|
1313
|
+
|
|
1314
|
+
# fill with 2d numpy array and specific dtype
|
|
1315
|
+
fill_arr2d = fill_arr1d.reshape(mattype._shape_)
|
|
1316
|
+
a = wp.full(shape, fill_arr2d, dtype=mattype, device=device)
|
|
1317
|
+
na = a.numpy()
|
|
1318
|
+
|
|
1319
|
+
test.assertEqual(a.shape, shape)
|
|
1320
|
+
test.assertEqual(a.dtype, mattype)
|
|
1321
|
+
test.assertEqual(na.shape, npshape)
|
|
1322
|
+
test.assertEqual(na.dtype, nptype)
|
|
1323
|
+
assert_np_equal(na, expected)
|
|
1324
|
+
|
|
1325
|
+
# fill with 2d numpy array and automatically infer dtype
|
|
1326
|
+
a = wp.full(shape, fill_arr2d, device=device)
|
|
1327
|
+
na = a.numpy()
|
|
1328
|
+
|
|
1329
|
+
test.assertEqual(a.shape, shape)
|
|
1330
|
+
test.assertTrue(wp.types.types_equal(a.dtype, mattype))
|
|
1331
|
+
test.assertEqual(na.shape, npshape)
|
|
1332
|
+
test.assertEqual(na.dtype, nptype)
|
|
1333
|
+
assert_np_equal(na, expected)
|
|
1334
|
+
|
|
1335
|
+
# fill with flat list and specific dtype
|
|
1336
|
+
fill_list1d = list(fill_arr1d)
|
|
1337
|
+
a = wp.full(shape, fill_list1d, dtype=mattype, device=device)
|
|
1338
|
+
na = a.numpy()
|
|
1339
|
+
|
|
1340
|
+
test.assertEqual(a.shape, shape)
|
|
1341
|
+
test.assertEqual(a.dtype, mattype)
|
|
1342
|
+
test.assertEqual(na.shape, npshape)
|
|
1343
|
+
test.assertEqual(na.dtype, nptype)
|
|
1344
|
+
assert_np_equal(na, expected)
|
|
1345
|
+
|
|
1346
|
+
# fill with nested list and specific dtype
|
|
1347
|
+
fill_list2d = [list(row) for row in fill_arr2d]
|
|
1348
|
+
a = wp.full(shape, fill_list2d, dtype=mattype, device=device)
|
|
1349
|
+
na = a.numpy()
|
|
1350
|
+
|
|
1351
|
+
test.assertEqual(a.shape, shape)
|
|
1352
|
+
test.assertEqual(a.dtype, mattype)
|
|
1353
|
+
test.assertEqual(na.shape, npshape)
|
|
1354
|
+
test.assertEqual(na.dtype, nptype)
|
|
1355
|
+
assert_np_equal(na, expected)
|
|
1356
|
+
|
|
1357
|
+
mat_lists = [
|
|
1358
|
+
# square matrices
|
|
1359
|
+
[[1, 2], [3, 4]],
|
|
1360
|
+
[[1, 2, 3], [4, 5, 6], [7, 8, 9]],
|
|
1361
|
+
[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]],
|
|
1362
|
+
# non-square matrices
|
|
1363
|
+
[[1, 2, 3, 4], [5, 6, 7, 8]],
|
|
1364
|
+
[[1, 2], [3, 4], [5, 6], [7, 8]],
|
|
1365
|
+
]
|
|
1366
|
+
|
|
1367
|
+
# fill with nested lists and automatically infer dtype
|
|
1368
|
+
for fill_list in mat_lists:
|
|
1369
|
+
num_rows = len(fill_list)
|
|
1370
|
+
num_cols = len(fill_list[0])
|
|
1371
|
+
npshape = (*shape, num_rows, num_cols)
|
|
1372
|
+
|
|
1373
|
+
a = wp.full(shape, fill_list, device=device)
|
|
1374
|
+
na = a.numpy()
|
|
1375
|
+
|
|
1376
|
+
test.assertEqual(a.shape, shape)
|
|
1377
|
+
|
|
1378
|
+
# check that the inferred dtype is a correctly shaped matrix
|
|
1379
|
+
# Note that we cannot guarantee the scalar type, because it depends on numpy and may vary by platform
|
|
1380
|
+
# (e.g. int64 on Linux and int32 on Windows).
|
|
1381
|
+
test.assertEqual(a.dtype._wp_generic_type_str_, "mat_t")
|
|
1382
|
+
test.assertEqual(a.dtype._shape_, (num_rows, num_cols))
|
|
1383
|
+
|
|
1384
|
+
expected = np.tile(np.array(fill_list).flatten(), a.size).reshape(npshape)
|
|
1385
|
+
assert_np_equal(na, expected)
|
|
1386
|
+
|
|
1387
|
+
|
|
1388
|
+
def test_full_struct(test, device):
|
|
1389
|
+
dim = 4
|
|
1390
|
+
|
|
1391
|
+
for ndim in range(1, 5):
|
|
1392
|
+
shape = (dim,) * ndim
|
|
1393
|
+
|
|
1394
|
+
s = FillStruct()
|
|
1395
|
+
|
|
1396
|
+
# fill with default struct (should be zeros)
|
|
1397
|
+
a = wp.full(shape, s, dtype=FillStruct, device=device)
|
|
1398
|
+
na = a.numpy()
|
|
1399
|
+
|
|
1400
|
+
test.assertEqual(a.shape, shape)
|
|
1401
|
+
test.assertEqual(a.dtype, FillStruct)
|
|
1402
|
+
test.assertEqual(na.shape, shape)
|
|
1403
|
+
test.assertEqual(na.dtype, FillStruct.numpy_dtype())
|
|
1404
|
+
assert_np_equal(na, np.zeros(a.size, dtype=FillStruct.numpy_dtype()))
|
|
1405
|
+
|
|
1406
|
+
# scalars
|
|
1407
|
+
s.i1 = -17
|
|
1408
|
+
s.i2 = 42
|
|
1409
|
+
s.i4 = 99
|
|
1410
|
+
s.i8 = 101
|
|
1411
|
+
s.f2 = -1.25
|
|
1412
|
+
s.f4 = 13.37
|
|
1413
|
+
s.f8 = 0.125
|
|
1414
|
+
# vectors
|
|
1415
|
+
s.v2 = [21, 22]
|
|
1416
|
+
s.v3 = [31, 32, 33]
|
|
1417
|
+
s.v4 = [41, 42, 43, 44]
|
|
1418
|
+
s.v5 = [51, 52, 53, 54, 55]
|
|
1419
|
+
# matrices
|
|
1420
|
+
s.m2 = [[61, 62]] * 2
|
|
1421
|
+
s.m3 = [[71, 72, 73]] * 3
|
|
1422
|
+
s.m4 = [[81, 82, 83, 84]] * 4
|
|
1423
|
+
s.m5 = [[91, 92, 93, 94, 95]] * 5
|
|
1424
|
+
# arrays
|
|
1425
|
+
s.a1 = wp.zeros((2,) * 1, dtype=float, device=device)
|
|
1426
|
+
s.a2 = wp.zeros((2,) * 2, dtype=float, device=device)
|
|
1427
|
+
s.a3 = wp.zeros((2,) * 3, dtype=float, device=device)
|
|
1428
|
+
s.a4 = wp.zeros((2,) * 4, dtype=float, device=device)
|
|
1429
|
+
|
|
1430
|
+
# fill with initialized struct and explicit dtype
|
|
1431
|
+
a = wp.full(shape, s, dtype=FillStruct, device=device)
|
|
1432
|
+
na = a.numpy()
|
|
1433
|
+
|
|
1434
|
+
test.assertEqual(a.shape, shape)
|
|
1435
|
+
test.assertEqual(a.dtype, FillStruct)
|
|
1436
|
+
test.assertEqual(na.shape, shape)
|
|
1437
|
+
test.assertEqual(na.dtype, FillStruct.numpy_dtype())
|
|
1438
|
+
|
|
1439
|
+
expected = np.empty(shape, dtype=FillStruct.numpy_dtype())
|
|
1440
|
+
expected.fill(s.numpy_value())
|
|
1441
|
+
assert_np_equal(na, expected)
|
|
1442
|
+
|
|
1443
|
+
# fill with initialized struct and automatically inferred dtype
|
|
1444
|
+
a = wp.full(shape, s, device=device)
|
|
1445
|
+
na = a.numpy()
|
|
1446
|
+
|
|
1447
|
+
test.assertEqual(a.shape, shape)
|
|
1448
|
+
test.assertEqual(a.dtype, FillStruct)
|
|
1449
|
+
test.assertEqual(na.shape, shape)
|
|
1450
|
+
test.assertEqual(na.dtype, FillStruct.numpy_dtype())
|
|
1451
|
+
assert_np_equal(na, expected)
|
|
615
1452
|
|
|
616
1453
|
|
|
617
1454
|
def test_round_trip(test, device):
|
|
1455
|
+
rng = np.random.default_rng(123)
|
|
618
1456
|
dim_x = 4
|
|
619
1457
|
|
|
620
1458
|
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
621
|
-
a_np =
|
|
1459
|
+
a_np = rng.standard_normal(size=dim_x).astype(nptype)
|
|
622
1460
|
a = wp.array(a_np, device=device)
|
|
623
1461
|
test.assertEqual(a.dtype, wptype)
|
|
624
1462
|
|
|
625
1463
|
assert_np_equal(a.numpy(), a_np)
|
|
626
1464
|
|
|
627
|
-
v_np =
|
|
1465
|
+
v_np = rng.standard_normal(size=(dim_x, 3)).astype(nptype)
|
|
628
1466
|
v = wp.array(v_np, dtype=wp.types.vector(3, wptype), device=device)
|
|
629
1467
|
|
|
630
1468
|
assert_np_equal(v.numpy(), v_np)
|
|
631
1469
|
|
|
632
1470
|
|
|
633
|
-
def
|
|
634
|
-
#
|
|
635
|
-
#
|
|
636
|
-
|
|
637
|
-
|
|
638
|
-
|
|
1471
|
+
def test_empty_array(test, device):
|
|
1472
|
+
# Test whether common operations work with empty (zero-sized) arrays
|
|
1473
|
+
# without throwing exceptions.
|
|
1474
|
+
|
|
1475
|
+
def test_empty_ops(ndim, nrows, ncols, wptype, nptype):
|
|
1476
|
+
shape = (0,) * ndim
|
|
1477
|
+
dtype_shape = ()
|
|
1478
|
+
|
|
1479
|
+
if wptype in wp.types.scalar_types:
|
|
1480
|
+
# scalar, vector, or matrix
|
|
1481
|
+
if ncols > 0:
|
|
1482
|
+
if nrows > 0:
|
|
1483
|
+
wptype = wp.types.matrix((nrows, ncols), wptype)
|
|
1484
|
+
else:
|
|
1485
|
+
wptype = wp.types.vector(ncols, wptype)
|
|
1486
|
+
dtype_shape = wptype._shape_
|
|
1487
|
+
fill_value = wptype(42)
|
|
1488
|
+
else:
|
|
1489
|
+
# struct
|
|
1490
|
+
fill_value = wptype()
|
|
1491
|
+
|
|
1492
|
+
# create a zero-sized array
|
|
1493
|
+
a = wp.empty(shape, dtype=wptype, device=device, requires_grad=True)
|
|
1494
|
+
|
|
1495
|
+
test.assertEqual(a.ptr, None)
|
|
1496
|
+
test.assertEqual(a.size, 0)
|
|
1497
|
+
test.assertEqual(a.shape, shape)
|
|
1498
|
+
test.assertEqual(a.grad.ptr, None)
|
|
1499
|
+
test.assertEqual(a.grad.size, 0)
|
|
1500
|
+
test.assertEqual(a.grad.shape, shape)
|
|
1501
|
+
|
|
1502
|
+
# all of these methods should succeed with zero-sized arrays
|
|
1503
|
+
a.zero_()
|
|
1504
|
+
a.fill_(fill_value)
|
|
1505
|
+
b = a.flatten()
|
|
1506
|
+
b = a.reshape((0,))
|
|
1507
|
+
b = a.transpose()
|
|
1508
|
+
b = a.contiguous()
|
|
1509
|
+
|
|
1510
|
+
b = wp.empty_like(a)
|
|
1511
|
+
b = wp.zeros_like(a)
|
|
1512
|
+
b = wp.full_like(a, fill_value)
|
|
1513
|
+
b = wp.clone(a)
|
|
1514
|
+
|
|
1515
|
+
wp.copy(a, b)
|
|
1516
|
+
a.assign(b)
|
|
1517
|
+
|
|
1518
|
+
na = a.numpy()
|
|
1519
|
+
test.assertEqual(na.size, 0)
|
|
1520
|
+
test.assertEqual(na.shape, (*shape, *dtype_shape))
|
|
1521
|
+
test.assertEqual(na.dtype, nptype)
|
|
1522
|
+
|
|
1523
|
+
test.assertEqual(a.list(), [])
|
|
1524
|
+
|
|
1525
|
+
for ndim in range(1, 5):
|
|
1526
|
+
# test with scalars, vectors, and matrices
|
|
1527
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1528
|
+
# scalars
|
|
1529
|
+
test_empty_ops(ndim, 0, 0, wptype, nptype)
|
|
639
1530
|
|
|
640
|
-
|
|
641
|
-
|
|
642
|
-
|
|
643
|
-
|
|
1531
|
+
for ncols in [2, 3, 4, 5]:
|
|
1532
|
+
# vectors
|
|
1533
|
+
test_empty_ops(ndim, 0, ncols, wptype, nptype)
|
|
1534
|
+
# square matrices
|
|
1535
|
+
test_empty_ops(ndim, ncols, ncols, wptype, nptype)
|
|
644
1536
|
|
|
645
|
-
|
|
646
|
-
|
|
647
|
-
|
|
1537
|
+
# non-square matrices
|
|
1538
|
+
test_empty_ops(ndim, 2, 3, wptype, nptype)
|
|
1539
|
+
test_empty_ops(ndim, 3, 2, wptype, nptype)
|
|
1540
|
+
test_empty_ops(ndim, 3, 4, wptype, nptype)
|
|
1541
|
+
test_empty_ops(ndim, 4, 3, wptype, nptype)
|
|
648
1542
|
|
|
649
|
-
|
|
650
|
-
|
|
1543
|
+
# test with structs
|
|
1544
|
+
test_empty_ops(ndim, 0, 0, FillStruct, FillStruct.numpy_dtype())
|
|
651
1545
|
|
|
652
|
-
a1.zero_()
|
|
653
|
-
assert_np_equal(a1.numpy(), np.zeros_like(a1.numpy()))
|
|
654
1546
|
|
|
1547
|
+
def test_empty_from_numpy(test, device):
|
|
1548
|
+
# Test whether wrapping an empty (zero-sized) numpy array works correctly
|
|
655
1549
|
|
|
656
|
-
def
|
|
657
|
-
|
|
658
|
-
|
|
1550
|
+
def test_empty_from_data(ndim, nrows, ncols, wptype, nptype):
|
|
1551
|
+
shape = (0,) * ndim
|
|
1552
|
+
dtype_shape = ()
|
|
659
1553
|
|
|
660
|
-
|
|
661
|
-
|
|
1554
|
+
if ncols > 0:
|
|
1555
|
+
if nrows > 0:
|
|
1556
|
+
wptype = wp.types.matrix((nrows, ncols), wptype)
|
|
1557
|
+
else:
|
|
1558
|
+
wptype = wp.types.vector(ncols, wptype)
|
|
1559
|
+
dtype_shape = wptype._shape_
|
|
662
1560
|
|
|
663
|
-
|
|
664
|
-
assert_np_equal(a1.numpy(), np.zeros_like(a1.numpy()))
|
|
1561
|
+
npshape = (*shape, *dtype_shape)
|
|
665
1562
|
|
|
666
|
-
|
|
667
|
-
|
|
1563
|
+
na = np.empty(npshape, dtype=nptype)
|
|
1564
|
+
a = wp.array(na, dtype=wptype, device=device)
|
|
1565
|
+
test.assertEqual(a.size, 0)
|
|
1566
|
+
test.assertEqual(a.shape, shape)
|
|
1567
|
+
|
|
1568
|
+
for ndim in range(1, 5):
|
|
1569
|
+
# test with scalars, vectors, and matrices
|
|
1570
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
1571
|
+
# scalars
|
|
1572
|
+
test_empty_from_data(ndim, 0, 0, wptype, nptype)
|
|
1573
|
+
|
|
1574
|
+
for ncols in [2, 3, 4, 5]:
|
|
1575
|
+
# vectors
|
|
1576
|
+
test_empty_from_data(ndim, 0, ncols, wptype, nptype)
|
|
1577
|
+
# square matrices
|
|
1578
|
+
test_empty_from_data(ndim, ncols, ncols, wptype, nptype)
|
|
1579
|
+
|
|
1580
|
+
# non-square matrices
|
|
1581
|
+
test_empty_from_data(ndim, 2, 3, wptype, nptype)
|
|
1582
|
+
test_empty_from_data(ndim, 3, 2, wptype, nptype)
|
|
1583
|
+
test_empty_from_data(ndim, 3, 4, wptype, nptype)
|
|
1584
|
+
test_empty_from_data(ndim, 4, 3, wptype, nptype)
|
|
668
1585
|
|
|
669
|
-
|
|
670
|
-
|
|
1586
|
+
|
|
1587
|
+
def test_empty_from_list(test, device):
|
|
1588
|
+
# Test whether creating an array from an empty Python list works correctly
|
|
1589
|
+
|
|
1590
|
+
def test_empty_from_data(nrows, ncols, wptype):
|
|
1591
|
+
if ncols > 0:
|
|
1592
|
+
if nrows > 0:
|
|
1593
|
+
wptype = wp.types.matrix((nrows, ncols), wptype)
|
|
1594
|
+
else:
|
|
1595
|
+
wptype = wp.types.vector(ncols, wptype)
|
|
1596
|
+
|
|
1597
|
+
a = wp.array([], dtype=wptype, device=device)
|
|
1598
|
+
test.assertEqual(a.size, 0)
|
|
1599
|
+
test.assertEqual(a.shape, (0,))
|
|
1600
|
+
|
|
1601
|
+
# test with scalars, vectors, and matrices
|
|
1602
|
+
for wptype in wp.types.scalar_types:
|
|
1603
|
+
# scalars
|
|
1604
|
+
test_empty_from_data(0, 0, wptype)
|
|
1605
|
+
|
|
1606
|
+
for ncols in [2, 3, 4, 5]:
|
|
1607
|
+
# vectors
|
|
1608
|
+
test_empty_from_data(0, ncols, wptype)
|
|
1609
|
+
# square matrices
|
|
1610
|
+
test_empty_from_data(ncols, ncols, wptype)
|
|
1611
|
+
|
|
1612
|
+
# non-square matrices
|
|
1613
|
+
test_empty_from_data(2, 3, wptype)
|
|
1614
|
+
test_empty_from_data(3, 2, wptype)
|
|
1615
|
+
test_empty_from_data(3, 4, wptype)
|
|
1616
|
+
test_empty_from_data(4, 3, wptype)
|
|
1617
|
+
|
|
1618
|
+
|
|
1619
|
+
def test_to_list_scalar(test, device):
|
|
1620
|
+
dim = 3
|
|
1621
|
+
fill_value = 42
|
|
1622
|
+
|
|
1623
|
+
for ndim in range(1, 5):
|
|
1624
|
+
shape = (dim,) * ndim
|
|
1625
|
+
|
|
1626
|
+
for wptype in wp.types.scalar_types:
|
|
1627
|
+
a = wp.full(shape, fill_value, dtype=wptype, device=device)
|
|
1628
|
+
l = a.list()
|
|
1629
|
+
|
|
1630
|
+
test.assertEqual(len(l), a.size)
|
|
1631
|
+
test.assertTrue(all(x == fill_value for x in l))
|
|
1632
|
+
|
|
1633
|
+
|
|
1634
|
+
def test_to_list_vector(test, device):
|
|
1635
|
+
dim = 3
|
|
1636
|
+
|
|
1637
|
+
for ndim in range(1, 5):
|
|
1638
|
+
shape = (dim,) * ndim
|
|
1639
|
+
|
|
1640
|
+
for veclen in [2, 3, 4, 5]:
|
|
1641
|
+
for wptype in wp.types.scalar_types:
|
|
1642
|
+
vectype = wp.types.vector(veclen, wptype)
|
|
1643
|
+
fill_value = vectype(42)
|
|
1644
|
+
|
|
1645
|
+
a = wp.full(shape, fill_value, dtype=vectype, device=device)
|
|
1646
|
+
l = a.list()
|
|
1647
|
+
|
|
1648
|
+
test.assertEqual(len(l), a.size)
|
|
1649
|
+
test.assertTrue(all(x == fill_value for x in l))
|
|
1650
|
+
|
|
1651
|
+
|
|
1652
|
+
def test_to_list_matrix(test, device):
|
|
1653
|
+
dim = 3
|
|
1654
|
+
|
|
1655
|
+
for ndim in range(1, 5):
|
|
1656
|
+
shape = (dim,) * ndim
|
|
1657
|
+
|
|
1658
|
+
for wptype in wp.types.scalar_types:
|
|
1659
|
+
matrix_types = [
|
|
1660
|
+
# square matrices
|
|
1661
|
+
wp.types.matrix((2, 2), wptype),
|
|
1662
|
+
wp.types.matrix((3, 3), wptype),
|
|
1663
|
+
wp.types.matrix((4, 4), wptype),
|
|
1664
|
+
wp.types.matrix((5, 5), wptype),
|
|
1665
|
+
# non-square matrices
|
|
1666
|
+
wp.types.matrix((2, 3), wptype),
|
|
1667
|
+
wp.types.matrix((3, 2), wptype),
|
|
1668
|
+
wp.types.matrix((3, 4), wptype),
|
|
1669
|
+
wp.types.matrix((4, 3), wptype),
|
|
1670
|
+
]
|
|
1671
|
+
|
|
1672
|
+
for mattype in matrix_types:
|
|
1673
|
+
fill_value = mattype(42)
|
|
1674
|
+
|
|
1675
|
+
a = wp.full(shape, fill_value, dtype=mattype, device=device)
|
|
1676
|
+
l = a.list()
|
|
1677
|
+
|
|
1678
|
+
test.assertEqual(len(l), a.size)
|
|
1679
|
+
test.assertTrue(all(x == fill_value for x in l))
|
|
1680
|
+
|
|
1681
|
+
|
|
1682
|
+
def test_to_list_struct(test, device):
|
|
1683
|
+
@wp.struct
|
|
1684
|
+
class Inner:
|
|
1685
|
+
h: wp.float16
|
|
1686
|
+
v: wp.vec3
|
|
1687
|
+
|
|
1688
|
+
@wp.struct
|
|
1689
|
+
class ListStruct:
|
|
1690
|
+
i: int
|
|
1691
|
+
f: float
|
|
1692
|
+
h: wp.float16
|
|
1693
|
+
vi: wp.vec2i
|
|
1694
|
+
vf: wp.vec3f
|
|
1695
|
+
vh: wp.vec4h
|
|
1696
|
+
mi: wp.types.matrix((2, 2), int)
|
|
1697
|
+
mf: wp.types.matrix((3, 3), float)
|
|
1698
|
+
mh: wp.types.matrix((4, 4), wp.float16)
|
|
1699
|
+
inner: Inner
|
|
1700
|
+
a1: wp.array(dtype=int)
|
|
1701
|
+
a2: wp.array2d(dtype=float)
|
|
1702
|
+
a3: wp.array3d(dtype=wp.float16)
|
|
1703
|
+
bool: wp.bool
|
|
1704
|
+
|
|
1705
|
+
dim = 3
|
|
1706
|
+
|
|
1707
|
+
s = ListStruct()
|
|
1708
|
+
s.i = 42
|
|
1709
|
+
s.f = 2.5
|
|
1710
|
+
s.h = -1.25
|
|
1711
|
+
s.vi = wp.vec2i(1, 2)
|
|
1712
|
+
s.vf = wp.vec3f(0.1, 0.2, 0.3)
|
|
1713
|
+
s.vh = wp.vec4h(1.0, 2.0, 3.0, 4.0)
|
|
1714
|
+
s.mi = [[1, 2], [3, 4]]
|
|
1715
|
+
s.mf = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
|
|
1716
|
+
s.mh = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]
|
|
1717
|
+
s.inner = Inner()
|
|
1718
|
+
s.inner.h = 1.5
|
|
1719
|
+
s.inner.v = [1, 2, 3]
|
|
1720
|
+
s.a1 = wp.empty(1, dtype=int, device=device)
|
|
1721
|
+
s.a2 = wp.empty((1, 1), dtype=float, device=device)
|
|
1722
|
+
s.a3 = wp.empty((1, 1, 1), dtype=wp.float16, device=device)
|
|
1723
|
+
s.bool = True
|
|
1724
|
+
|
|
1725
|
+
for ndim in range(1, 5):
|
|
1726
|
+
shape = (dim,) * ndim
|
|
1727
|
+
|
|
1728
|
+
a = wp.full(shape, s, dtype=ListStruct, device=device)
|
|
1729
|
+
l = a.list()
|
|
1730
|
+
|
|
1731
|
+
for i in range(a.size):
|
|
1732
|
+
test.assertEqual(l[i].i, s.i)
|
|
1733
|
+
test.assertEqual(l[i].f, s.f)
|
|
1734
|
+
test.assertEqual(l[i].h, s.h)
|
|
1735
|
+
test.assertEqual(l[i].vi, s.vi)
|
|
1736
|
+
test.assertEqual(l[i].vf, s.vf)
|
|
1737
|
+
test.assertEqual(l[i].vh, s.vh)
|
|
1738
|
+
test.assertEqual(l[i].mi, s.mi)
|
|
1739
|
+
test.assertEqual(l[i].mf, s.mf)
|
|
1740
|
+
test.assertEqual(l[i].mh, s.mh)
|
|
1741
|
+
test.assertEqual(l[i].bool, s.bool)
|
|
1742
|
+
test.assertEqual(l[i].inner.h, s.inner.h)
|
|
1743
|
+
test.assertEqual(l[i].inner.v, s.inner.v)
|
|
1744
|
+
test.assertEqual(l[i].a1.dtype, s.a1.dtype)
|
|
1745
|
+
test.assertEqual(l[i].a1.ndim, s.a1.ndim)
|
|
1746
|
+
test.assertEqual(l[i].a2.dtype, s.a2.dtype)
|
|
1747
|
+
test.assertEqual(l[i].a2.ndim, s.a2.ndim)
|
|
1748
|
+
test.assertEqual(l[i].a3.dtype, s.a3.dtype)
|
|
1749
|
+
test.assertEqual(l[i].a3.ndim, s.a3.ndim)
|
|
671
1750
|
|
|
672
1751
|
|
|
673
1752
|
@wp.kernel
|
|
@@ -692,30 +1771,28 @@ def test_array_to_bool(test, device):
|
|
|
692
1771
|
|
|
693
1772
|
wp.launch(kernel_array_to_bool, dim=1, inputs=[None, arr], device=device)
|
|
694
1773
|
|
|
1774
|
+
|
|
695
1775
|
@wp.struct
|
|
696
1776
|
class InputStruct:
|
|
697
|
-
|
|
698
1777
|
param1: int
|
|
699
1778
|
param2: float
|
|
700
1779
|
param3: wp.vec3
|
|
701
1780
|
param4: wp.array(dtype=float)
|
|
702
1781
|
|
|
1782
|
+
|
|
703
1783
|
@wp.struct
|
|
704
1784
|
class OutputStruct:
|
|
705
|
-
|
|
706
1785
|
param1: int
|
|
707
1786
|
param2: float
|
|
708
1787
|
param3: wp.vec3
|
|
709
1788
|
|
|
710
1789
|
|
|
711
1790
|
@wp.kernel
|
|
712
|
-
def struct_array_kernel(inputs: wp.array(dtype=InputStruct),
|
|
713
|
-
outputs: wp.array(dtype=OutputStruct)):
|
|
714
|
-
|
|
1791
|
+
def struct_array_kernel(inputs: wp.array(dtype=InputStruct), outputs: wp.array(dtype=OutputStruct)):
|
|
715
1792
|
tid = wp.tid()
|
|
716
1793
|
|
|
717
1794
|
wp.expect_eq(inputs[tid].param1, tid)
|
|
718
|
-
wp.expect_eq(inputs[tid].param2, float(tid*tid))
|
|
1795
|
+
wp.expect_eq(inputs[tid].param2, float(tid * tid))
|
|
719
1796
|
|
|
720
1797
|
wp.expect_eq(inputs[tid].param3[0], 1.0)
|
|
721
1798
|
wp.expect_eq(inputs[tid].param3[1], 2.0)
|
|
@@ -725,34 +1802,31 @@ def struct_array_kernel(inputs: wp.array(dtype=InputStruct),
|
|
|
725
1802
|
wp.expect_eq(inputs[tid].param4[1], 2.0)
|
|
726
1803
|
wp.expect_eq(inputs[tid].param4[2], 3.0)
|
|
727
1804
|
|
|
728
|
-
|
|
729
1805
|
o = OutputStruct()
|
|
730
1806
|
o.param1 = inputs[tid].param1
|
|
731
1807
|
o.param2 = inputs[tid].param2
|
|
732
1808
|
o.param3 = inputs[tid].param3
|
|
733
|
-
|
|
1809
|
+
|
|
734
1810
|
outputs[tid] = o
|
|
735
1811
|
|
|
736
1812
|
|
|
737
1813
|
def test_array_of_structs(test, device):
|
|
738
|
-
|
|
739
1814
|
num_items = 10
|
|
740
1815
|
|
|
741
1816
|
l = []
|
|
742
1817
|
for i in range(num_items):
|
|
743
|
-
|
|
744
1818
|
s = InputStruct()
|
|
745
1819
|
s.param1 = i
|
|
746
|
-
s.param2 = float(i*i)
|
|
1820
|
+
s.param2 = float(i * i)
|
|
747
1821
|
s.param3 = wp.vec3(1.0, 2.0, 3.0)
|
|
748
1822
|
s.param4 = wp.array([1.0, 2.0, 3.0], dtype=float, device=device)
|
|
749
|
-
|
|
1823
|
+
|
|
750
1824
|
l.append(s)
|
|
751
1825
|
|
|
752
1826
|
# initialize array from list of structs
|
|
753
1827
|
inputs = wp.array(l, dtype=InputStruct, device=device)
|
|
754
1828
|
outputs = wp.zeros(num_items, dtype=OutputStruct, device=device)
|
|
755
|
-
|
|
1829
|
+
|
|
756
1830
|
# pass to our compute kernel
|
|
757
1831
|
wp.launch(struct_array_kernel, dim=num_items, inputs=[inputs, outputs], device=device)
|
|
758
1832
|
|
|
@@ -761,11 +1835,15 @@ def test_array_of_structs(test, device):
|
|
|
761
1835
|
out_cptr = outputs.to("cpu").cptr()
|
|
762
1836
|
|
|
763
1837
|
for i in range(num_items):
|
|
764
|
-
|
|
765
1838
|
test.assertEqual(out_numpy[i][0], l[i].param1)
|
|
766
1839
|
test.assertEqual(out_numpy[i][1], l[i].param2)
|
|
767
1840
|
assert_np_equal(out_numpy[i][2], np.array(l[i].param3))
|
|
768
1841
|
|
|
1842
|
+
# test named slices of numpy structured array
|
|
1843
|
+
test.assertEqual(out_numpy["param1"][i], l[i].param1)
|
|
1844
|
+
test.assertEqual(out_numpy["param2"][i], l[i].param2)
|
|
1845
|
+
assert_np_equal(out_numpy["param3"][i], np.array(l[i].param3))
|
|
1846
|
+
|
|
769
1847
|
test.assertEqual(out_list[i].param1, l[i].param1)
|
|
770
1848
|
test.assertEqual(out_list[i].param2, l[i].param2)
|
|
771
1849
|
test.assertEqual(out_list[i].param3, l[i].param3)
|
|
@@ -777,75 +1855,283 @@ def test_array_of_structs(test, device):
|
|
|
777
1855
|
|
|
778
1856
|
@wp.struct
|
|
779
1857
|
class GradStruct:
|
|
780
|
-
|
|
781
1858
|
param1: int
|
|
782
1859
|
param2: float
|
|
783
1860
|
param3: wp.vec3
|
|
784
1861
|
|
|
1862
|
+
|
|
785
1863
|
@wp.kernel
|
|
786
|
-
def test_array_of_structs_grad_kernel(inputs: wp.array(dtype=GradStruct),
|
|
787
|
-
loss: wp.array(dtype=float)):
|
|
788
|
-
|
|
1864
|
+
def test_array_of_structs_grad_kernel(inputs: wp.array(dtype=GradStruct), loss: wp.array(dtype=float)):
|
|
789
1865
|
tid = wp.tid()
|
|
790
1866
|
|
|
791
|
-
wp.atomic_add(loss, 0, inputs[tid].param2*2.0)
|
|
1867
|
+
wp.atomic_add(loss, 0, inputs[tid].param2 * 2.0)
|
|
792
1868
|
|
|
793
|
-
def test_array_of_structs_grad(test, device):
|
|
794
1869
|
|
|
1870
|
+
def test_array_of_structs_grad(test, device):
|
|
795
1871
|
num_items = 10
|
|
796
1872
|
|
|
797
1873
|
l = []
|
|
798
1874
|
for i in range(num_items):
|
|
799
|
-
|
|
800
1875
|
g = GradStruct()
|
|
801
1876
|
g.param2 = float(i)
|
|
802
|
-
|
|
1877
|
+
|
|
803
1878
|
l.append(g)
|
|
804
1879
|
|
|
805
1880
|
a = wp.array(l, dtype=GradStruct, device=device, requires_grad=True)
|
|
806
1881
|
loss = wp.zeros(1, dtype=float, device=device, requires_grad=True)
|
|
807
|
-
|
|
1882
|
+
|
|
808
1883
|
with wp.Tape() as tape:
|
|
809
|
-
|
|
810
1884
|
wp.launch(test_array_of_structs_grad_kernel, dim=num_items, inputs=[a, loss], device=device)
|
|
811
|
-
|
|
1885
|
+
|
|
812
1886
|
tape.backward(loss)
|
|
813
1887
|
|
|
814
|
-
grads = a.grad.
|
|
815
|
-
|
|
816
|
-
|
|
1888
|
+
grads = a.grad.numpy()
|
|
1889
|
+
assert_np_equal(grads["param2"], np.full(num_items, 2.0, dtype=np.float32))
|
|
1890
|
+
|
|
1891
|
+
|
|
1892
|
+
@wp.struct
|
|
1893
|
+
class NumpyStruct:
|
|
1894
|
+
x: int
|
|
1895
|
+
v: wp.vec3
|
|
1896
|
+
|
|
1897
|
+
|
|
1898
|
+
def test_array_of_structs_from_numpy(test, device):
|
|
1899
|
+
num_items = 10
|
|
1900
|
+
|
|
1901
|
+
na = np.zeros(num_items, dtype=NumpyStruct.numpy_dtype())
|
|
1902
|
+
na["x"] = 17
|
|
1903
|
+
na["v"] = (1, 2, 3)
|
|
1904
|
+
|
|
1905
|
+
a = wp.array(data=na, dtype=NumpyStruct, device=device)
|
|
1906
|
+
|
|
1907
|
+
assert_np_equal(a.numpy(), na)
|
|
1908
|
+
|
|
1909
|
+
|
|
1910
|
+
def test_array_of_structs_roundtrip(test, device):
|
|
1911
|
+
num_items = 10
|
|
1912
|
+
|
|
1913
|
+
value = NumpyStruct()
|
|
1914
|
+
value.x = 17
|
|
1915
|
+
value.v = wp.vec3(1.0, 2.0, 3.0)
|
|
1916
|
+
|
|
1917
|
+
# create Warp structured array
|
|
1918
|
+
a = wp.full(num_items, value, device=device)
|
|
1919
|
+
|
|
1920
|
+
# convert to NumPy structured array
|
|
1921
|
+
na = a.numpy()
|
|
1922
|
+
|
|
1923
|
+
expected = np.zeros(num_items, dtype=NumpyStruct.numpy_dtype())
|
|
1924
|
+
expected["x"] = value.x
|
|
1925
|
+
expected["v"] = value.v
|
|
1926
|
+
|
|
1927
|
+
assert_np_equal(na, expected)
|
|
1928
|
+
|
|
1929
|
+
# modify a field
|
|
1930
|
+
na["x"] = 42
|
|
1931
|
+
|
|
1932
|
+
# convert back to Warp array
|
|
1933
|
+
a = wp.from_numpy(na, NumpyStruct, device=device)
|
|
1934
|
+
|
|
1935
|
+
expected["x"] = 42
|
|
1936
|
+
|
|
1937
|
+
assert_np_equal(a.numpy(), expected)
|
|
1938
|
+
|
|
817
1939
|
|
|
1940
|
+
def test_array_from_numpy(test, device):
|
|
1941
|
+
arr = np.array((1.0, 2.0, 3.0), dtype=float)
|
|
818
1942
|
|
|
1943
|
+
result = wp.from_numpy(arr)
|
|
1944
|
+
expected = wp.array((1.0, 2.0, 3.0), dtype=wp.float32, shape=(3,))
|
|
1945
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
819
1946
|
|
|
820
|
-
|
|
821
|
-
|
|
1947
|
+
result = wp.from_numpy(arr, dtype=wp.vec3)
|
|
1948
|
+
expected = wp.array(((1.0, 2.0, 3.0),), dtype=wp.vec3, shape=(1,))
|
|
1949
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
822
1950
|
|
|
823
|
-
|
|
824
|
-
pass
|
|
825
|
-
|
|
826
|
-
add_function_test(TestArray, "test_shape", test_shape, devices=devices)
|
|
827
|
-
add_function_test(TestArray, "test_flatten", test_flatten, devices=devices)
|
|
828
|
-
add_function_test(TestArray, "test_reshape", test_reshape, devices=devices)
|
|
829
|
-
add_function_test(TestArray, "test_slicing", test_slicing, devices=devices)
|
|
830
|
-
add_function_test(TestArray, "test_transpose", test_transpose, devices=devices)
|
|
831
|
-
add_function_test(TestArray, "test_view", test_view, devices=devices)
|
|
1951
|
+
# --------------------------------------------------------------------------
|
|
832
1952
|
|
|
833
|
-
|
|
834
|
-
add_function_test(TestArray, "test_2d_array", test_2d, devices=devices)
|
|
835
|
-
add_function_test(TestArray, "test_3d_array", test_3d, devices=devices)
|
|
836
|
-
add_function_test(TestArray, "test_4d_array", test_4d, devices=devices)
|
|
837
|
-
add_function_test(TestArray, "test_4d_array_transposed", test_4d_transposed, devices=devices)
|
|
838
|
-
add_function_test(TestArray, "test_lower_bound", test_lower_bound, devices=devices)
|
|
839
|
-
add_function_test(TestArray, "test_fill_zero", test_fill_zero, devices=devices)
|
|
840
|
-
add_function_test(TestArray, "test_round_trip", test_round_trip, devices=devices)
|
|
841
|
-
add_function_test(TestArray, "test_large_arrays_fast", test_large_arrays_fast, devices=devices)
|
|
842
|
-
add_function_test(TestArray, "test_array_to_bool", test_array_to_bool, devices=devices)
|
|
843
|
-
add_function_test(TestArray, "test_array_of_structs", test_array_of_structs, devices=devices)
|
|
844
|
-
add_function_test(TestArray, "test_array_of_structs_grad", test_array_of_structs_grad, devices=devices)
|
|
1953
|
+
arr = np.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=float)
|
|
845
1954
|
|
|
846
|
-
|
|
1955
|
+
result = wp.from_numpy(arr)
|
|
1956
|
+
expected = wp.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=wp.vec3, shape=(2,))
|
|
1957
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
1958
|
+
|
|
1959
|
+
result = wp.from_numpy(arr, dtype=wp.float32)
|
|
1960
|
+
expected = wp.array(((1.0, 2.0, 3.0), (4.0, 5.0, 6.0)), dtype=wp.float32, shape=(2, 3))
|
|
1961
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
1962
|
+
|
|
1963
|
+
result = wp.from_numpy(arr, dtype=wp.float32, shape=(6,))
|
|
1964
|
+
expected = wp.array((1.0, 2.0, 3.0, 4.0, 5.0, 6.0), dtype=wp.float32, shape=(6,))
|
|
1965
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
1966
|
+
|
|
1967
|
+
# --------------------------------------------------------------------------
|
|
1968
|
+
|
|
1969
|
+
arr = np.array(
|
|
1970
|
+
(
|
|
1971
|
+
(
|
|
1972
|
+
(1.0, 2.0, 3.0, 4.0),
|
|
1973
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
1974
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
1975
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
1976
|
+
),
|
|
1977
|
+
(
|
|
1978
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
1979
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
1980
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
1981
|
+
(5.0, 6.0, 7.0, 8.0),
|
|
1982
|
+
),
|
|
1983
|
+
),
|
|
1984
|
+
dtype=float,
|
|
1985
|
+
)
|
|
1986
|
+
|
|
1987
|
+
result = wp.from_numpy(arr)
|
|
1988
|
+
expected = wp.array(
|
|
1989
|
+
(
|
|
1990
|
+
(
|
|
1991
|
+
(1.0, 2.0, 3.0, 4.0),
|
|
1992
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
1993
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
1994
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
1995
|
+
),
|
|
1996
|
+
(
|
|
1997
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
1998
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
1999
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2000
|
+
(5.0, 6.0, 7.0, 8.0),
|
|
2001
|
+
),
|
|
2002
|
+
),
|
|
2003
|
+
dtype=wp.mat44,
|
|
2004
|
+
shape=(2,),
|
|
2005
|
+
)
|
|
2006
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2007
|
+
|
|
2008
|
+
result = wp.from_numpy(arr, dtype=wp.float32)
|
|
2009
|
+
expected = wp.array(
|
|
2010
|
+
(
|
|
2011
|
+
(
|
|
2012
|
+
(1.0, 2.0, 3.0, 4.0),
|
|
2013
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2014
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2015
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2016
|
+
),
|
|
2017
|
+
(
|
|
2018
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2019
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2020
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2021
|
+
(5.0, 6.0, 7.0, 8.0),
|
|
2022
|
+
),
|
|
2023
|
+
),
|
|
2024
|
+
dtype=wp.float32,
|
|
2025
|
+
shape=(2, 4, 4),
|
|
2026
|
+
)
|
|
2027
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2028
|
+
|
|
2029
|
+
result = wp.from_numpy(arr, dtype=wp.vec4)
|
|
2030
|
+
expected = wp.array(
|
|
2031
|
+
(
|
|
2032
|
+
(1.0, 2.0, 3.0, 4.0),
|
|
2033
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2034
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2035
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2036
|
+
(2.0, 3.0, 4.0, 5.0),
|
|
2037
|
+
(3.0, 4.0, 5.0, 6.0),
|
|
2038
|
+
(4.0, 5.0, 6.0, 7.0),
|
|
2039
|
+
(5.0, 6.0, 7.0, 8.0),
|
|
2040
|
+
),
|
|
2041
|
+
dtype=wp.vec4,
|
|
2042
|
+
shape=(8,),
|
|
2043
|
+
)
|
|
2044
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2045
|
+
|
|
2046
|
+
result = wp.from_numpy(arr, dtype=wp.float32, shape=(32,))
|
|
2047
|
+
expected = wp.array(
|
|
2048
|
+
(
|
|
2049
|
+
1.0,
|
|
2050
|
+
2.0,
|
|
2051
|
+
3.0,
|
|
2052
|
+
4.0,
|
|
2053
|
+
2.0,
|
|
2054
|
+
3.0,
|
|
2055
|
+
4.0,
|
|
2056
|
+
5.0,
|
|
2057
|
+
3.0,
|
|
2058
|
+
4.0,
|
|
2059
|
+
5.0,
|
|
2060
|
+
6.0,
|
|
2061
|
+
4.0,
|
|
2062
|
+
5.0,
|
|
2063
|
+
6.0,
|
|
2064
|
+
7.0,
|
|
2065
|
+
2.0,
|
|
2066
|
+
3.0,
|
|
2067
|
+
4.0,
|
|
2068
|
+
5.0,
|
|
2069
|
+
3.0,
|
|
2070
|
+
4.0,
|
|
2071
|
+
5.0,
|
|
2072
|
+
6.0,
|
|
2073
|
+
4.0,
|
|
2074
|
+
5.0,
|
|
2075
|
+
6.0,
|
|
2076
|
+
7.0,
|
|
2077
|
+
5.0,
|
|
2078
|
+
6.0,
|
|
2079
|
+
7.0,
|
|
2080
|
+
8.0,
|
|
2081
|
+
),
|
|
2082
|
+
dtype=wp.float32,
|
|
2083
|
+
shape=(32,),
|
|
2084
|
+
)
|
|
2085
|
+
assert_np_equal(result.numpy(), expected.numpy())
|
|
2086
|
+
|
|
2087
|
+
|
|
2088
|
+
devices = get_test_devices()
|
|
2089
|
+
|
|
2090
|
+
|
|
2091
|
+
class TestArray(unittest.TestCase):
|
|
2092
|
+
pass
|
|
2093
|
+
|
|
2094
|
+
|
|
2095
|
+
add_function_test(TestArray, "test_shape", test_shape, devices=devices)
|
|
2096
|
+
add_function_test(TestArray, "test_flatten", test_flatten, devices=devices)
|
|
2097
|
+
add_function_test(TestArray, "test_reshape", test_reshape, devices=devices)
|
|
2098
|
+
add_function_test(TestArray, "test_slicing", test_slicing, devices=devices)
|
|
2099
|
+
add_function_test(TestArray, "test_transpose", test_transpose, devices=devices)
|
|
2100
|
+
add_function_test(TestArray, "test_view", test_view, devices=devices)
|
|
2101
|
+
|
|
2102
|
+
add_function_test(TestArray, "test_1d_array", test_1d, devices=devices)
|
|
2103
|
+
add_function_test(TestArray, "test_2d_array", test_2d, devices=devices)
|
|
2104
|
+
add_function_test(TestArray, "test_3d_array", test_3d, devices=devices)
|
|
2105
|
+
add_function_test(TestArray, "test_4d_array", test_4d, devices=devices)
|
|
2106
|
+
add_function_test(TestArray, "test_4d_array_transposed", test_4d_transposed, devices=devices)
|
|
2107
|
+
|
|
2108
|
+
add_function_test(TestArray, "test_fill_scalar", test_fill_scalar, devices=devices)
|
|
2109
|
+
add_function_test(TestArray, "test_fill_vector", test_fill_vector, devices=devices)
|
|
2110
|
+
add_function_test(TestArray, "test_fill_matrix", test_fill_matrix, devices=devices)
|
|
2111
|
+
add_function_test(TestArray, "test_fill_struct", test_fill_struct, devices=devices)
|
|
2112
|
+
add_function_test(TestArray, "test_fill_slices", test_fill_slices, devices=devices)
|
|
2113
|
+
add_function_test(TestArray, "test_full_scalar", test_full_scalar, devices=devices)
|
|
2114
|
+
add_function_test(TestArray, "test_full_vector", test_full_vector, devices=devices)
|
|
2115
|
+
add_function_test(TestArray, "test_full_matrix", test_full_matrix, devices=devices)
|
|
2116
|
+
add_function_test(TestArray, "test_full_struct", test_full_struct, devices=devices)
|
|
2117
|
+
add_function_test(TestArray, "test_empty_array", test_empty_array, devices=devices)
|
|
2118
|
+
add_function_test(TestArray, "test_empty_from_numpy", test_empty_from_numpy, devices=devices)
|
|
2119
|
+
add_function_test(TestArray, "test_empty_from_list", test_empty_from_list, devices=devices)
|
|
2120
|
+
add_function_test(TestArray, "test_to_list_scalar", test_to_list_scalar, devices=devices)
|
|
2121
|
+
add_function_test(TestArray, "test_to_list_vector", test_to_list_vector, devices=devices)
|
|
2122
|
+
add_function_test(TestArray, "test_to_list_matrix", test_to_list_matrix, devices=devices)
|
|
2123
|
+
add_function_test(TestArray, "test_to_list_struct", test_to_list_struct, devices=devices)
|
|
2124
|
+
|
|
2125
|
+
add_function_test(TestArray, "test_lower_bound", test_lower_bound, devices=devices)
|
|
2126
|
+
add_function_test(TestArray, "test_round_trip", test_round_trip, devices=devices)
|
|
2127
|
+
add_function_test(TestArray, "test_array_to_bool", test_array_to_bool, devices=devices)
|
|
2128
|
+
add_function_test(TestArray, "test_array_of_structs", test_array_of_structs, devices=devices)
|
|
2129
|
+
add_function_test(TestArray, "test_array_of_structs_grad", test_array_of_structs_grad, devices=devices)
|
|
2130
|
+
add_function_test(TestArray, "test_array_of_structs_from_numpy", test_array_of_structs_from_numpy, devices=devices)
|
|
2131
|
+
add_function_test(TestArray, "test_array_of_structs_roundtrip", test_array_of_structs_roundtrip, devices=devices)
|
|
2132
|
+
add_function_test(TestArray, "test_array_from_numpy", test_array_from_numpy, devices=devices)
|
|
847
2133
|
|
|
848
2134
|
|
|
849
2135
|
if __name__ == "__main__":
|
|
850
|
-
|
|
2136
|
+
wp.build.clear_kernel_cache()
|
|
851
2137
|
unittest.main(verbosity=2)
|