warp-lang 0.9.0__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +15 -7
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +22 -443
- warp/build_dll.py +384 -0
- warp/builtins.py +998 -488
- warp/codegen.py +1307 -739
- warp/config.py +5 -3
- warp/constants.py +6 -0
- warp/context.py +1291 -548
- warp/dlpack.py +31 -31
- warp/fabric.py +326 -0
- warp/fem/__init__.py +27 -0
- warp/fem/cache.py +389 -0
- warp/fem/dirichlet.py +181 -0
- warp/fem/domain.py +263 -0
- warp/fem/field/__init__.py +101 -0
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +299 -0
- warp/fem/field/restriction.py +21 -0
- warp/fem/field/test.py +181 -0
- warp/fem/field/trial.py +183 -0
- warp/fem/geometry/__init__.py +19 -0
- warp/fem/geometry/closest_point.py +70 -0
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +744 -0
- warp/fem/geometry/geometry.py +186 -0
- warp/fem/geometry/grid_2d.py +373 -0
- warp/fem/geometry/grid_3d.py +435 -0
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +376 -0
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +840 -0
- warp/fem/geometry/trimesh_2d.py +577 -0
- warp/fem/integrate.py +1616 -0
- warp/fem/operator.py +191 -0
- warp/fem/polynomial.py +213 -0
- warp/fem/quadrature/__init__.py +2 -0
- warp/fem/quadrature/pic_quadrature.py +245 -0
- warp/fem/quadrature/quadrature.py +294 -0
- warp/fem/space/__init__.py +292 -0
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +236 -0
- warp/fem/space/function_space.py +145 -0
- warp/fem/space/grid_2d_function_space.py +267 -0
- warp/fem/space/grid_3d_function_space.py +306 -0
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +350 -0
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +160 -0
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +292 -0
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +221 -0
- warp/fem/types.py +77 -0
- warp/fem/utils.py +495 -0
- warp/native/array.h +164 -55
- warp/native/builtin.h +150 -174
- warp/native/bvh.cpp +75 -328
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +37 -45
- warp/native/clang/clang.cpp +136 -24
- warp/native/crt.cpp +1 -76
- warp/native/crt.h +111 -104
- warp/native/cuda_crt.h +1049 -0
- warp/native/cuda_util.cpp +15 -3
- warp/native/cuda_util.h +3 -1
- warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
- warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
- warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
- warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
- warp/native/cutlass/tools/library/scripts/library.py +799 -0
- warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
- warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
- warp/native/cutlass/tools/library/scripts/rt.py +796 -0
- warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
- warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
- warp/native/cutlass_gemm.cu +5 -3
- warp/native/exports.h +1240 -949
- warp/native/fabric.h +228 -0
- warp/native/hashgrid.cpp +4 -4
- warp/native/hashgrid.h +22 -2
- warp/native/initializer_array.h +2 -2
- warp/native/intersect.h +22 -7
- warp/native/intersect_adj.h +8 -8
- warp/native/intersect_tri.h +13 -16
- warp/native/marching.cu +157 -161
- warp/native/mat.h +119 -19
- warp/native/matnn.h +2 -2
- warp/native/mesh.cpp +108 -83
- warp/native/mesh.cu +243 -6
- warp/native/mesh.h +1547 -458
- warp/native/nanovdb/NanoVDB.h +1 -1
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +45 -35
- warp/native/range.h +6 -2
- warp/native/reduce.cpp +157 -0
- warp/native/reduce.cu +348 -0
- warp/native/runlength_encode.cpp +62 -0
- warp/native/runlength_encode.cu +46 -0
- warp/native/scan.cu +11 -13
- warp/native/scan.h +1 -0
- warp/native/solid_angle.h +442 -0
- warp/native/sort.cpp +13 -0
- warp/native/sort.cu +9 -1
- warp/native/sparse.cpp +338 -0
- warp/native/sparse.cu +545 -0
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +30 -0
- warp/native/vec.h +126 -24
- warp/native/volume.h +120 -0
- warp/native/warp.cpp +658 -53
- warp/native/warp.cu +660 -68
- warp/native/warp.h +112 -12
- warp/optim/__init__.py +1 -0
- warp/optim/linear.py +922 -0
- warp/optim/sgd.py +92 -0
- warp/render/render_opengl.py +392 -152
- warp/render/render_usd.py +11 -11
- warp/sim/__init__.py +2 -2
- warp/sim/articulation.py +385 -185
- warp/sim/collide.py +21 -8
- warp/sim/import_mjcf.py +297 -106
- warp/sim/import_urdf.py +389 -210
- warp/sim/import_usd.py +198 -97
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_euler.py +14 -8
- warp/sim/integrator_xpbd.py +161 -19
- warp/sim/model.py +795 -291
- warp/sim/optimizer.py +2 -6
- warp/sim/render.py +65 -3
- warp/sim/utils.py +3 -0
- warp/sparse.py +1227 -0
- warp/stubs.py +665 -223
- warp/tape.py +66 -15
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +128 -74
- warp/tests/test_array.py +1497 -211
- warp/tests/test_array_reduce.py +150 -0
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +99 -0
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +75 -43
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +233 -128
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +136 -108
- warp/tests/test_examples.py +277 -0
- warp/tests/test_fabricarray.py +955 -0
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1271 -0
- warp/tests/test_fp16.py +53 -19
- warp/tests/test_func.py +187 -74
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +180 -116
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +52 -37
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +577 -24
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +251 -15
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_linear_solvers.py +154 -0
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +508 -2778
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +305 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +71 -14
- warp/tests/test_mesh_query_aabb.py +41 -25
- warp/tests/test_mesh_query_point.py +325 -34
- warp/tests/test_mesh_query_ray.py +39 -22
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +190 -0
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +460 -0
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +331 -85
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +118 -89
- warp/tests/test_transient_module.py +12 -13
- warp/tests/test_types.py +614 -0
- warp/tests/test_utils.py +494 -0
- warp/tests/test_vec.py +354 -1987
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +457 -293
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +341 -0
- warp/tests/unittest_utils.py +568 -0
- warp/tests/unused_test_misc.py +71 -0
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +549 -0
- warp/torch.py +72 -30
- warp/types.py +1744 -713
- warp/utils.py +360 -350
- warp_lang-0.11.0.dist-info/LICENSE.md +36 -0
- warp_lang-0.11.0.dist-info/METADATA +238 -0
- warp_lang-0.11.0.dist-info/RECORD +332 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
- warp/bin/warp-clang.exp +0 -0
- warp/bin/warp-clang.lib +0 -0
- warp/bin/warp.exp +0 -0
- warp/bin/warp.lib +0 -0
- warp/tests/test_all.py +0 -215
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-0.9.0.dist-info/METADATA +0 -20
- warp_lang-0.9.0.dist-info/RECORD +0 -177
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
warp/tests/test_indexedarray.py
CHANGED
|
@@ -5,14 +5,14 @@
|
|
|
5
5
|
# distribution of this software and related documentation without an express
|
|
6
6
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
7
|
|
|
8
|
-
|
|
9
|
-
import numpy as np
|
|
8
|
+
import unittest
|
|
10
9
|
from typing import Any
|
|
11
10
|
|
|
12
|
-
import
|
|
13
|
-
from warp.tests.test_base import *
|
|
11
|
+
import numpy as np
|
|
14
12
|
|
|
15
|
-
import
|
|
13
|
+
import warp as wp
|
|
14
|
+
from warp.tests.test_array import FillStruct
|
|
15
|
+
from warp.tests.unittest_utils import *
|
|
16
16
|
|
|
17
17
|
wp.init()
|
|
18
18
|
|
|
@@ -36,7 +36,7 @@ def test_indexedarray_1d(test, device):
|
|
|
36
36
|
|
|
37
37
|
indices = wp.array([1, 3, 5, 7, 9], dtype=int, device=device)
|
|
38
38
|
|
|
39
|
-
iarr = wp.
|
|
39
|
+
iarr = wp.indexedarray1d(arr, [indices])
|
|
40
40
|
|
|
41
41
|
test.assertEqual(iarr.dtype, arr.dtype)
|
|
42
42
|
test.assertEqual(iarr.ndim, 1)
|
|
@@ -72,7 +72,7 @@ def test_indexedarray_2d(test, device):
|
|
|
72
72
|
indices0 = wp.array([1, 3], dtype=int, device=device)
|
|
73
73
|
indices1 = wp.array([2, 4, 8], dtype=int, device=device)
|
|
74
74
|
|
|
75
|
-
iarr = wp.
|
|
75
|
+
iarr = wp.indexedarray2d(arr, [indices0, indices1])
|
|
76
76
|
|
|
77
77
|
test.assertEqual(iarr.dtype, arr.dtype)
|
|
78
78
|
test.assertEqual(iarr.ndim, 2)
|
|
@@ -112,7 +112,7 @@ def test_indexedarray_3d(test, device):
|
|
|
112
112
|
indices1 = wp.array([2, 4, 8], dtype=int, device=device)
|
|
113
113
|
indices2 = wp.array([0, 5], dtype=int, device=device)
|
|
114
114
|
|
|
115
|
-
iarr = wp.
|
|
115
|
+
iarr = wp.indexedarray3d(arr, [indices0, indices1, indices2])
|
|
116
116
|
|
|
117
117
|
test.assertEqual(iarr.dtype, arr.dtype)
|
|
118
118
|
test.assertEqual(iarr.ndim, 3)
|
|
@@ -157,7 +157,7 @@ def test_indexedarray_4d(test, device):
|
|
|
157
157
|
indices2 = wp.array([0, 5], dtype=int, device=device)
|
|
158
158
|
indices3 = wp.array([6, 7, 9], dtype=int, device=device)
|
|
159
159
|
|
|
160
|
-
iarr = wp.
|
|
160
|
+
iarr = wp.indexedarray4d(arr, [indices0, indices1, indices2, indices3])
|
|
161
161
|
|
|
162
162
|
test.assertEqual(iarr.dtype, arr.dtype)
|
|
163
163
|
test.assertEqual(iarr.ndim, 4)
|
|
@@ -557,25 +557,578 @@ def test_indexedarray_generics(test, device):
|
|
|
557
557
|
assert_np_equal(ia4.numpy(), np.full((2, 2, 2, 2), 2, dtype=np.int32))
|
|
558
558
|
|
|
559
559
|
|
|
560
|
-
def
|
|
561
|
-
|
|
560
|
+
def test_indexedarray_empty(test, device):
|
|
561
|
+
# Test whether common operations work with empty (zero-sized) indexed arrays
|
|
562
|
+
# without throwing exceptions.
|
|
563
|
+
|
|
564
|
+
def test_empty_ops(ndim, nrows, ncols, wptype, nptype):
|
|
565
|
+
data_shape = (1,) * ndim
|
|
566
|
+
dtype_shape = ()
|
|
567
|
+
|
|
568
|
+
if wptype in wp.types.scalar_types:
|
|
569
|
+
# scalar, vector, or matrix
|
|
570
|
+
if ncols > 0:
|
|
571
|
+
if nrows > 0:
|
|
572
|
+
wptype = wp.types.matrix((nrows, ncols), wptype)
|
|
573
|
+
else:
|
|
574
|
+
wptype = wp.types.vector(ncols, wptype)
|
|
575
|
+
dtype_shape = wptype._shape_
|
|
576
|
+
fill_value = wptype(42)
|
|
577
|
+
else:
|
|
578
|
+
# struct
|
|
579
|
+
fill_value = wptype()
|
|
580
|
+
|
|
581
|
+
# create a data array
|
|
582
|
+
data = wp.empty(data_shape, dtype=wptype, device=device, requires_grad=True)
|
|
583
|
+
|
|
584
|
+
# create a zero-sized array of indices
|
|
585
|
+
indices = wp.empty(0, dtype=int, device=device)
|
|
586
|
+
|
|
587
|
+
a = data[indices]
|
|
588
|
+
|
|
589
|
+
# we expect dim to be zero for the empty indexed array, unchanged otherwise
|
|
590
|
+
expected_shape = (0, *data_shape[1:])
|
|
591
|
+
|
|
592
|
+
test.assertEqual(a.size, 0)
|
|
593
|
+
test.assertEqual(a.shape, expected_shape)
|
|
594
|
+
|
|
595
|
+
# all of these methods should succeed with zero-sized arrays
|
|
596
|
+
a.zero_()
|
|
597
|
+
a.fill_(fill_value)
|
|
598
|
+
b = a.contiguous()
|
|
599
|
+
|
|
600
|
+
b = wp.empty_like(a)
|
|
601
|
+
b = wp.zeros_like(a)
|
|
602
|
+
b = wp.full_like(a, fill_value)
|
|
603
|
+
b = wp.clone(a)
|
|
604
|
+
|
|
605
|
+
wp.copy(a, b)
|
|
606
|
+
a.assign(b)
|
|
607
|
+
|
|
608
|
+
na = a.numpy()
|
|
609
|
+
test.assertEqual(na.size, 0)
|
|
610
|
+
test.assertEqual(na.shape, (*expected_shape, *dtype_shape))
|
|
611
|
+
test.assertEqual(na.dtype, nptype)
|
|
562
612
|
|
|
563
|
-
|
|
564
|
-
pass
|
|
613
|
+
test.assertEqual(a.list(), [])
|
|
565
614
|
|
|
566
|
-
|
|
567
|
-
|
|
568
|
-
|
|
569
|
-
|
|
570
|
-
|
|
571
|
-
|
|
572
|
-
|
|
573
|
-
|
|
574
|
-
|
|
615
|
+
for ndim in range(1, 5):
|
|
616
|
+
# test with scalars, vectors, and matrices
|
|
617
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
618
|
+
# scalars
|
|
619
|
+
test_empty_ops(ndim, 0, 0, wptype, nptype)
|
|
620
|
+
|
|
621
|
+
for ncols in [2, 3, 4, 5]:
|
|
622
|
+
# vectors
|
|
623
|
+
test_empty_ops(ndim, 0, ncols, wptype, nptype)
|
|
624
|
+
# square matrices
|
|
625
|
+
test_empty_ops(ndim, ncols, ncols, wptype, nptype)
|
|
626
|
+
|
|
627
|
+
# non-square matrices
|
|
628
|
+
test_empty_ops(ndim, 2, 3, wptype, nptype)
|
|
629
|
+
test_empty_ops(ndim, 3, 2, wptype, nptype)
|
|
630
|
+
test_empty_ops(ndim, 3, 4, wptype, nptype)
|
|
631
|
+
test_empty_ops(ndim, 4, 3, wptype, nptype)
|
|
575
632
|
|
|
576
|
-
|
|
633
|
+
# test with structs
|
|
634
|
+
test_empty_ops(ndim, 0, 0, FillStruct, FillStruct.numpy_dtype())
|
|
635
|
+
|
|
636
|
+
|
|
637
|
+
def test_indexedarray_fill_scalar(test, device):
|
|
638
|
+
dim_x = 4
|
|
639
|
+
|
|
640
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
641
|
+
data1 = wp.zeros(dim_x, dtype=wptype, device=device)
|
|
642
|
+
data2 = wp.zeros((dim_x, dim_x), dtype=wptype, device=device)
|
|
643
|
+
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
644
|
+
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=wptype, device=device)
|
|
645
|
+
|
|
646
|
+
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
647
|
+
|
|
648
|
+
a1 = data1[indices]
|
|
649
|
+
a2 = data2[indices]
|
|
650
|
+
a3 = data3[indices]
|
|
651
|
+
a4 = data4[indices]
|
|
652
|
+
|
|
653
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
654
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
655
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
656
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
657
|
+
|
|
658
|
+
# fill with int value
|
|
659
|
+
fill_value = 42
|
|
660
|
+
|
|
661
|
+
a1.fill_(fill_value)
|
|
662
|
+
a2.fill_(fill_value)
|
|
663
|
+
a3.fill_(fill_value)
|
|
664
|
+
a4.fill_(fill_value)
|
|
665
|
+
|
|
666
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
|
|
667
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
|
|
668
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
|
|
669
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
|
|
670
|
+
|
|
671
|
+
a1.zero_()
|
|
672
|
+
a2.zero_()
|
|
673
|
+
a3.zero_()
|
|
674
|
+
a4.zero_()
|
|
675
|
+
|
|
676
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
677
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
678
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
679
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
680
|
+
|
|
681
|
+
if wptype in wp.types.float_types:
|
|
682
|
+
# fill with float value
|
|
683
|
+
fill_value = 13.37
|
|
684
|
+
|
|
685
|
+
a1.fill_(fill_value)
|
|
686
|
+
a2.fill_(fill_value)
|
|
687
|
+
a3.fill_(fill_value)
|
|
688
|
+
a4.fill_(fill_value)
|
|
689
|
+
|
|
690
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value, dtype=nptype))
|
|
691
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value, dtype=nptype))
|
|
692
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value, dtype=nptype))
|
|
693
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value, dtype=nptype))
|
|
694
|
+
|
|
695
|
+
# fill with Warp scalar value
|
|
696
|
+
fill_value = wptype(17)
|
|
697
|
+
|
|
698
|
+
a1.fill_(fill_value)
|
|
699
|
+
a2.fill_(fill_value)
|
|
700
|
+
a3.fill_(fill_value)
|
|
701
|
+
a4.fill_(fill_value)
|
|
702
|
+
|
|
703
|
+
assert_np_equal(a1.numpy(), np.full(a1.shape, fill_value.value, dtype=nptype))
|
|
704
|
+
assert_np_equal(a2.numpy(), np.full(a2.shape, fill_value.value, dtype=nptype))
|
|
705
|
+
assert_np_equal(a3.numpy(), np.full(a3.shape, fill_value.value, dtype=nptype))
|
|
706
|
+
assert_np_equal(a4.numpy(), np.full(a4.shape, fill_value.value, dtype=nptype))
|
|
707
|
+
|
|
708
|
+
|
|
709
|
+
def test_indexedarray_fill_vector(test, device):
|
|
710
|
+
# test filling a vector array with scalar or vector values (vec_type, list, or numpy array)
|
|
711
|
+
|
|
712
|
+
dim_x = 4
|
|
713
|
+
|
|
714
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
715
|
+
# vector types
|
|
716
|
+
vector_types = [
|
|
717
|
+
wp.types.vector(2, wptype),
|
|
718
|
+
wp.types.vector(3, wptype),
|
|
719
|
+
wp.types.vector(4, wptype),
|
|
720
|
+
wp.types.vector(5, wptype),
|
|
721
|
+
]
|
|
722
|
+
|
|
723
|
+
for vec_type in vector_types:
|
|
724
|
+
vec_len = vec_type._length_
|
|
725
|
+
|
|
726
|
+
data1 = wp.zeros(dim_x, dtype=vec_type, device=device)
|
|
727
|
+
data2 = wp.zeros((dim_x, dim_x), dtype=vec_type, device=device)
|
|
728
|
+
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=vec_type, device=device)
|
|
729
|
+
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=vec_type, device=device)
|
|
730
|
+
|
|
731
|
+
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
732
|
+
|
|
733
|
+
a1 = data1[indices]
|
|
734
|
+
a2 = data2[indices]
|
|
735
|
+
a3 = data3[indices]
|
|
736
|
+
a4 = data4[indices]
|
|
737
|
+
|
|
738
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
|
|
739
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
|
|
740
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
|
|
741
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
|
|
742
|
+
|
|
743
|
+
# fill with int scalar
|
|
744
|
+
fill_value = 42
|
|
745
|
+
|
|
746
|
+
a1.fill_(fill_value)
|
|
747
|
+
a2.fill_(fill_value)
|
|
748
|
+
a3.fill_(fill_value)
|
|
749
|
+
a4.fill_(fill_value)
|
|
750
|
+
|
|
751
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
|
|
752
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
|
|
753
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
|
|
754
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
|
|
755
|
+
|
|
756
|
+
# test zeroing
|
|
757
|
+
a1.zero_()
|
|
758
|
+
a2.zero_()
|
|
759
|
+
a3.zero_()
|
|
760
|
+
a4.zero_()
|
|
761
|
+
|
|
762
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, vec_len), dtype=nptype))
|
|
763
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, vec_len), dtype=nptype))
|
|
764
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, vec_len), dtype=nptype))
|
|
765
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, vec_len), dtype=nptype))
|
|
766
|
+
|
|
767
|
+
# vector values can be passed as a list, numpy array, or Warp vector instance
|
|
768
|
+
fill_list = [17, 42, 99, 101, 127][:vec_len]
|
|
769
|
+
fill_arr = np.array(fill_list, dtype=nptype)
|
|
770
|
+
fill_vec = vec_type(fill_list)
|
|
771
|
+
|
|
772
|
+
expected1 = np.tile(fill_arr, a1.size).reshape((*a1.shape, vec_len))
|
|
773
|
+
expected2 = np.tile(fill_arr, a2.size).reshape((*a2.shape, vec_len))
|
|
774
|
+
expected3 = np.tile(fill_arr, a3.size).reshape((*a3.shape, vec_len))
|
|
775
|
+
expected4 = np.tile(fill_arr, a4.size).reshape((*a4.shape, vec_len))
|
|
776
|
+
|
|
777
|
+
# fill with list of vector length
|
|
778
|
+
a1.fill_(fill_list)
|
|
779
|
+
a2.fill_(fill_list)
|
|
780
|
+
a3.fill_(fill_list)
|
|
781
|
+
a4.fill_(fill_list)
|
|
782
|
+
|
|
783
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
784
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
785
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
786
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
787
|
+
|
|
788
|
+
# clear
|
|
789
|
+
a1.zero_()
|
|
790
|
+
a2.zero_()
|
|
791
|
+
a3.zero_()
|
|
792
|
+
a4.zero_()
|
|
793
|
+
|
|
794
|
+
# fill with numpy array of vector length
|
|
795
|
+
a1.fill_(fill_arr)
|
|
796
|
+
a2.fill_(fill_arr)
|
|
797
|
+
a3.fill_(fill_arr)
|
|
798
|
+
a4.fill_(fill_arr)
|
|
799
|
+
|
|
800
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
801
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
802
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
803
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
804
|
+
|
|
805
|
+
# clear
|
|
806
|
+
a1.zero_()
|
|
807
|
+
a2.zero_()
|
|
808
|
+
a3.zero_()
|
|
809
|
+
a4.zero_()
|
|
810
|
+
|
|
811
|
+
# fill with vec instance
|
|
812
|
+
a1.fill_(fill_vec)
|
|
813
|
+
a2.fill_(fill_vec)
|
|
814
|
+
a3.fill_(fill_vec)
|
|
815
|
+
a4.fill_(fill_vec)
|
|
816
|
+
|
|
817
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
818
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
819
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
820
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
821
|
+
|
|
822
|
+
if wptype in wp.types.float_types:
|
|
823
|
+
# fill with float scalar
|
|
824
|
+
fill_value = 13.37
|
|
825
|
+
|
|
826
|
+
a1.fill_(fill_value)
|
|
827
|
+
a2.fill_(fill_value)
|
|
828
|
+
a3.fill_(fill_value)
|
|
829
|
+
a4.fill_(fill_value)
|
|
830
|
+
|
|
831
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, vec_len), fill_value, dtype=nptype))
|
|
832
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, vec_len), fill_value, dtype=nptype))
|
|
833
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, vec_len), fill_value, dtype=nptype))
|
|
834
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, vec_len), fill_value, dtype=nptype))
|
|
835
|
+
|
|
836
|
+
# fill with float list of vector length
|
|
837
|
+
fill_list = [-2.5, -1.25, 1.25, 2.5, 5.0][:vec_len]
|
|
838
|
+
|
|
839
|
+
a1.fill_(fill_list)
|
|
840
|
+
a2.fill_(fill_list)
|
|
841
|
+
a3.fill_(fill_list)
|
|
842
|
+
a4.fill_(fill_list)
|
|
843
|
+
|
|
844
|
+
expected1 = np.tile(np.array(fill_list, dtype=nptype), a1.size).reshape((*a1.shape, vec_len))
|
|
845
|
+
expected2 = np.tile(np.array(fill_list, dtype=nptype), a2.size).reshape((*a2.shape, vec_len))
|
|
846
|
+
expected3 = np.tile(np.array(fill_list, dtype=nptype), a3.size).reshape((*a3.shape, vec_len))
|
|
847
|
+
expected4 = np.tile(np.array(fill_list, dtype=nptype), a4.size).reshape((*a4.shape, vec_len))
|
|
848
|
+
|
|
849
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
850
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
851
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
852
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
853
|
+
|
|
854
|
+
|
|
855
|
+
def test_indexedarray_fill_matrix(test, device):
|
|
856
|
+
# test filling a matrix array with scalar or matrix values (mat_type, nested list, or 2d numpy array)
|
|
857
|
+
|
|
858
|
+
dim_x = 4
|
|
859
|
+
|
|
860
|
+
for nptype, wptype in wp.types.np_dtype_to_warp_type.items():
|
|
861
|
+
# matrix types
|
|
862
|
+
matrix_types = [
|
|
863
|
+
# square matrices
|
|
864
|
+
wp.types.matrix((2, 2), wptype),
|
|
865
|
+
wp.types.matrix((3, 3), wptype),
|
|
866
|
+
wp.types.matrix((4, 4), wptype),
|
|
867
|
+
wp.types.matrix((5, 5), wptype),
|
|
868
|
+
# non-square matrices
|
|
869
|
+
wp.types.matrix((2, 3), wptype),
|
|
870
|
+
wp.types.matrix((3, 2), wptype),
|
|
871
|
+
wp.types.matrix((3, 4), wptype),
|
|
872
|
+
wp.types.matrix((4, 3), wptype),
|
|
873
|
+
]
|
|
874
|
+
|
|
875
|
+
for mat_type in matrix_types:
|
|
876
|
+
mat_len = mat_type._length_
|
|
877
|
+
mat_shape = mat_type._shape_
|
|
878
|
+
|
|
879
|
+
data1 = wp.zeros(dim_x, dtype=mat_type, device=device)
|
|
880
|
+
data2 = wp.zeros((dim_x, dim_x), dtype=mat_type, device=device)
|
|
881
|
+
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=mat_type, device=device)
|
|
882
|
+
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=mat_type, device=device)
|
|
883
|
+
|
|
884
|
+
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
885
|
+
|
|
886
|
+
a1 = data1[indices]
|
|
887
|
+
a2 = data2[indices]
|
|
888
|
+
a3 = data3[indices]
|
|
889
|
+
a4 = data4[indices]
|
|
890
|
+
|
|
891
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
|
|
892
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
|
|
893
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
|
|
894
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
|
|
895
|
+
|
|
896
|
+
# fill with scalar
|
|
897
|
+
fill_value = 42
|
|
898
|
+
|
|
899
|
+
a1.fill_(fill_value)
|
|
900
|
+
a2.fill_(fill_value)
|
|
901
|
+
a3.fill_(fill_value)
|
|
902
|
+
a4.fill_(fill_value)
|
|
903
|
+
|
|
904
|
+
assert_np_equal(a1.numpy(), np.full((*a1.shape, *mat_shape), fill_value, dtype=nptype))
|
|
905
|
+
assert_np_equal(a2.numpy(), np.full((*a2.shape, *mat_shape), fill_value, dtype=nptype))
|
|
906
|
+
assert_np_equal(a3.numpy(), np.full((*a3.shape, *mat_shape), fill_value, dtype=nptype))
|
|
907
|
+
assert_np_equal(a4.numpy(), np.full((*a4.shape, *mat_shape), fill_value, dtype=nptype))
|
|
908
|
+
|
|
909
|
+
# test zeroing
|
|
910
|
+
a1.zero_()
|
|
911
|
+
a2.zero_()
|
|
912
|
+
a3.zero_()
|
|
913
|
+
a4.zero_()
|
|
914
|
+
|
|
915
|
+
assert_np_equal(a1.numpy(), np.zeros((*a1.shape, *mat_shape), dtype=nptype))
|
|
916
|
+
assert_np_equal(a2.numpy(), np.zeros((*a2.shape, *mat_shape), dtype=nptype))
|
|
917
|
+
assert_np_equal(a3.numpy(), np.zeros((*a3.shape, *mat_shape), dtype=nptype))
|
|
918
|
+
assert_np_equal(a4.numpy(), np.zeros((*a4.shape, *mat_shape), dtype=nptype))
|
|
919
|
+
|
|
920
|
+
# matrix values can be passed as a 1d numpy array, 2d numpy array, flat list, nested list, or Warp matrix instance
|
|
921
|
+
if wptype != wp.bool:
|
|
922
|
+
fill_arr1 = np.arange(mat_len, dtype=nptype)
|
|
923
|
+
else:
|
|
924
|
+
fill_arr1 = np.ones(mat_len, dtype=nptype)
|
|
925
|
+
fill_arr2 = fill_arr1.reshape(mat_shape)
|
|
926
|
+
fill_list1 = list(fill_arr1)
|
|
927
|
+
fill_list2 = [list(row) for row in fill_arr2]
|
|
928
|
+
fill_mat = mat_type(fill_arr1)
|
|
929
|
+
|
|
930
|
+
expected1 = np.tile(fill_arr1, a1.size).reshape((*a1.shape, *mat_shape))
|
|
931
|
+
expected2 = np.tile(fill_arr1, a2.size).reshape((*a2.shape, *mat_shape))
|
|
932
|
+
expected3 = np.tile(fill_arr1, a3.size).reshape((*a3.shape, *mat_shape))
|
|
933
|
+
expected4 = np.tile(fill_arr1, a4.size).reshape((*a4.shape, *mat_shape))
|
|
934
|
+
|
|
935
|
+
# fill with 1d numpy array
|
|
936
|
+
a1.fill_(fill_arr1)
|
|
937
|
+
a2.fill_(fill_arr1)
|
|
938
|
+
a3.fill_(fill_arr1)
|
|
939
|
+
a4.fill_(fill_arr1)
|
|
940
|
+
|
|
941
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
942
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
943
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
944
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
945
|
+
|
|
946
|
+
# clear
|
|
947
|
+
a1.zero_()
|
|
948
|
+
a2.zero_()
|
|
949
|
+
a3.zero_()
|
|
950
|
+
a4.zero_()
|
|
951
|
+
|
|
952
|
+
# fill with 2d numpy array
|
|
953
|
+
a1.fill_(fill_arr2)
|
|
954
|
+
a2.fill_(fill_arr2)
|
|
955
|
+
a3.fill_(fill_arr2)
|
|
956
|
+
a4.fill_(fill_arr2)
|
|
957
|
+
|
|
958
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
959
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
960
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
961
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
962
|
+
|
|
963
|
+
# clear
|
|
964
|
+
a1.zero_()
|
|
965
|
+
a2.zero_()
|
|
966
|
+
a3.zero_()
|
|
967
|
+
a4.zero_()
|
|
968
|
+
|
|
969
|
+
# fill with flat list
|
|
970
|
+
a1.fill_(fill_list1)
|
|
971
|
+
a2.fill_(fill_list1)
|
|
972
|
+
a3.fill_(fill_list1)
|
|
973
|
+
a4.fill_(fill_list1)
|
|
974
|
+
|
|
975
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
976
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
977
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
978
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
979
|
+
|
|
980
|
+
# clear
|
|
981
|
+
a1.zero_()
|
|
982
|
+
a2.zero_()
|
|
983
|
+
a3.zero_()
|
|
984
|
+
a4.zero_()
|
|
985
|
+
|
|
986
|
+
# fill with nested list
|
|
987
|
+
a1.fill_(fill_list2)
|
|
988
|
+
a2.fill_(fill_list2)
|
|
989
|
+
a3.fill_(fill_list2)
|
|
990
|
+
a4.fill_(fill_list2)
|
|
991
|
+
|
|
992
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
993
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
994
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
995
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
996
|
+
|
|
997
|
+
# clear
|
|
998
|
+
a1.zero_()
|
|
999
|
+
a2.zero_()
|
|
1000
|
+
a3.zero_()
|
|
1001
|
+
a4.zero_()
|
|
1002
|
+
|
|
1003
|
+
# fill with mat instance
|
|
1004
|
+
a1.fill_(fill_mat)
|
|
1005
|
+
a2.fill_(fill_mat)
|
|
1006
|
+
a3.fill_(fill_mat)
|
|
1007
|
+
a4.fill_(fill_mat)
|
|
1008
|
+
|
|
1009
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
1010
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
1011
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
1012
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
1013
|
+
|
|
1014
|
+
|
|
1015
|
+
def test_indexedarray_fill_struct(test, device):
|
|
1016
|
+
dim_x = 8
|
|
1017
|
+
|
|
1018
|
+
nptype = FillStruct.numpy_dtype()
|
|
1019
|
+
|
|
1020
|
+
data1 = wp.zeros(dim_x, dtype=FillStruct, device=device)
|
|
1021
|
+
data2 = wp.zeros((dim_x, dim_x), dtype=FillStruct, device=device)
|
|
1022
|
+
data3 = wp.zeros((dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
|
|
1023
|
+
data4 = wp.zeros((dim_x, dim_x, dim_x, dim_x), dtype=FillStruct, device=device)
|
|
1024
|
+
|
|
1025
|
+
indices = wp.array(np.arange(0, dim_x, 2, dtype=np.int32), device=device)
|
|
1026
|
+
|
|
1027
|
+
a1 = data1[indices]
|
|
1028
|
+
a2 = data2[indices]
|
|
1029
|
+
a3 = data3[indices]
|
|
1030
|
+
a4 = data4[indices]
|
|
1031
|
+
|
|
1032
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
1033
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
1034
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
1035
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
1036
|
+
|
|
1037
|
+
s = FillStruct()
|
|
1038
|
+
|
|
1039
|
+
# fill with default struct value (should be all zeros)
|
|
1040
|
+
a1.fill_(s)
|
|
1041
|
+
a2.fill_(s)
|
|
1042
|
+
a3.fill_(s)
|
|
1043
|
+
a4.fill_(s)
|
|
1044
|
+
|
|
1045
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
1046
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
1047
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
1048
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
1049
|
+
|
|
1050
|
+
# scalars
|
|
1051
|
+
s.i1 = -17
|
|
1052
|
+
s.i2 = 42
|
|
1053
|
+
s.i4 = 99
|
|
1054
|
+
s.i8 = 101
|
|
1055
|
+
s.f2 = -1.25
|
|
1056
|
+
s.f4 = 13.37
|
|
1057
|
+
s.f8 = 0.125
|
|
1058
|
+
# vectors
|
|
1059
|
+
s.v2 = [21, 22]
|
|
1060
|
+
s.v3 = [31, 32, 33]
|
|
1061
|
+
s.v4 = [41, 42, 43, 44]
|
|
1062
|
+
s.v5 = [51, 52, 53, 54, 55]
|
|
1063
|
+
# matrices
|
|
1064
|
+
s.m2 = [[61, 62]] * 2
|
|
1065
|
+
s.m3 = [[71, 72, 73]] * 3
|
|
1066
|
+
s.m4 = [[81, 82, 83, 84]] * 4
|
|
1067
|
+
s.m5 = [[91, 92, 93, 94, 95]] * 5
|
|
1068
|
+
# arrays
|
|
1069
|
+
s.a1 = wp.zeros((2,) * 1, dtype=float, device=device)
|
|
1070
|
+
s.a2 = wp.zeros((2,) * 2, dtype=float, device=device)
|
|
1071
|
+
s.a3 = wp.zeros((2,) * 3, dtype=float, device=device)
|
|
1072
|
+
s.a4 = wp.zeros((2,) * 4, dtype=float, device=device)
|
|
1073
|
+
|
|
1074
|
+
# fill with custom struct value
|
|
1075
|
+
a1.fill_(s)
|
|
1076
|
+
a2.fill_(s)
|
|
1077
|
+
a3.fill_(s)
|
|
1078
|
+
a4.fill_(s)
|
|
1079
|
+
|
|
1080
|
+
ns = s.numpy_value()
|
|
1081
|
+
|
|
1082
|
+
expected1 = np.empty(a1.shape, dtype=nptype)
|
|
1083
|
+
expected2 = np.empty(a2.shape, dtype=nptype)
|
|
1084
|
+
expected3 = np.empty(a3.shape, dtype=nptype)
|
|
1085
|
+
expected4 = np.empty(a4.shape, dtype=nptype)
|
|
1086
|
+
|
|
1087
|
+
expected1.fill(ns)
|
|
1088
|
+
expected2.fill(ns)
|
|
1089
|
+
expected3.fill(ns)
|
|
1090
|
+
expected4.fill(ns)
|
|
1091
|
+
|
|
1092
|
+
assert_np_equal(a1.numpy(), expected1)
|
|
1093
|
+
assert_np_equal(a2.numpy(), expected2)
|
|
1094
|
+
assert_np_equal(a3.numpy(), expected3)
|
|
1095
|
+
assert_np_equal(a4.numpy(), expected4)
|
|
1096
|
+
|
|
1097
|
+
# test clearing
|
|
1098
|
+
a1.zero_()
|
|
1099
|
+
a2.zero_()
|
|
1100
|
+
a3.zero_()
|
|
1101
|
+
a4.zero_()
|
|
1102
|
+
|
|
1103
|
+
assert_np_equal(a1.numpy(), np.zeros(a1.shape, dtype=nptype))
|
|
1104
|
+
assert_np_equal(a2.numpy(), np.zeros(a2.shape, dtype=nptype))
|
|
1105
|
+
assert_np_equal(a3.numpy(), np.zeros(a3.shape, dtype=nptype))
|
|
1106
|
+
assert_np_equal(a4.numpy(), np.zeros(a4.shape, dtype=nptype))
|
|
1107
|
+
|
|
1108
|
+
|
|
1109
|
+
devices = get_test_devices()
|
|
1110
|
+
|
|
1111
|
+
|
|
1112
|
+
class TestIndexedArray(unittest.TestCase):
|
|
1113
|
+
pass
|
|
1114
|
+
|
|
1115
|
+
|
|
1116
|
+
add_function_test(TestIndexedArray, "test_indexedarray_1d", test_indexedarray_1d, devices=devices)
|
|
1117
|
+
add_function_test(TestIndexedArray, "test_indexedarray_2d", test_indexedarray_2d, devices=devices)
|
|
1118
|
+
add_function_test(TestIndexedArray, "test_indexedarray_3d", test_indexedarray_3d, devices=devices)
|
|
1119
|
+
add_function_test(TestIndexedArray, "test_indexedarray_4d", test_indexedarray_4d, devices=devices)
|
|
1120
|
+
add_function_test(TestIndexedArray, "test_indexedarray_mixed", test_indexedarray_mixed, devices=devices)
|
|
1121
|
+
add_function_test(TestIndexedArray, "test_indexedarray_shape", test_indexedarray_shape, devices=devices)
|
|
1122
|
+
add_function_test(TestIndexedArray, "test_indexedarray_getitem", test_indexedarray_getitem, devices=devices)
|
|
1123
|
+
add_function_test(TestIndexedArray, "test_indexedarray_slicing", test_indexedarray_slicing, devices=devices)
|
|
1124
|
+
add_function_test(TestIndexedArray, "test_indexedarray_generics", test_indexedarray_generics, devices=devices)
|
|
1125
|
+
add_function_test(TestIndexedArray, "test_indexedarray_empty", test_indexedarray_empty, devices=devices)
|
|
1126
|
+
add_function_test(TestIndexedArray, "test_indexedarray_fill_scalar", test_indexedarray_fill_scalar, devices=devices)
|
|
1127
|
+
add_function_test(TestIndexedArray, "test_indexedarray_fill_vector", test_indexedarray_fill_vector, devices=devices)
|
|
1128
|
+
add_function_test(TestIndexedArray, "test_indexedarray_fill_matrix", test_indexedarray_fill_matrix, devices=devices)
|
|
1129
|
+
add_function_test(TestIndexedArray, "test_indexedarray_fill_struct", test_indexedarray_fill_struct, devices=devices)
|
|
577
1130
|
|
|
578
1131
|
|
|
579
1132
|
if __name__ == "__main__":
|
|
580
|
-
|
|
1133
|
+
wp.build.clear_kernel_cache()
|
|
581
1134
|
unittest.main(verbosity=2)
|
warp/tests/test_intersect.py
CHANGED
|
@@ -1,6 +1,16 @@
|
|
|
1
|
-
|
|
1
|
+
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
|
|
2
|
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
3
|
+
# and proprietary rights in and to this software, related documentation
|
|
4
|
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
5
|
+
# distribution of this software and related documentation without an express
|
|
6
|
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
7
|
+
|
|
8
|
+
import unittest
|
|
9
|
+
|
|
2
10
|
import numpy as np
|
|
3
|
-
|
|
11
|
+
|
|
12
|
+
import warp as wp
|
|
13
|
+
from warp.tests.unittest_utils import *
|
|
4
14
|
|
|
5
15
|
wp.init()
|
|
6
16
|
|
|
@@ -42,17 +52,16 @@ def test_intersect_tri(test, device):
|
|
|
42
52
|
assert_np_equal(result.numpy(), np.array([0]))
|
|
43
53
|
|
|
44
54
|
|
|
45
|
-
|
|
46
|
-
|
|
55
|
+
devices = get_test_devices()
|
|
56
|
+
|
|
47
57
|
|
|
48
|
-
|
|
49
|
-
|
|
58
|
+
class TestIntersect(unittest.TestCase):
|
|
59
|
+
pass
|
|
50
60
|
|
|
51
|
-
add_function_test(TestIntersect, "test_intersect_tri", test_intersect_tri, devices=devices)
|
|
52
61
|
|
|
53
|
-
|
|
62
|
+
add_function_test(TestIntersect, "test_intersect_tri", test_intersect_tri, devices=devices)
|
|
54
63
|
|
|
55
64
|
|
|
56
65
|
if __name__ == "__main__":
|
|
57
|
-
|
|
66
|
+
wp.build.clear_kernel_cache()
|
|
58
67
|
unittest.main(verbosity=2, failfast=False)
|