warp-lang 0.9.0__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +15 -7
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +22 -443
- warp/build_dll.py +384 -0
- warp/builtins.py +998 -488
- warp/codegen.py +1307 -739
- warp/config.py +5 -3
- warp/constants.py +6 -0
- warp/context.py +1291 -548
- warp/dlpack.py +31 -31
- warp/fabric.py +326 -0
- warp/fem/__init__.py +27 -0
- warp/fem/cache.py +389 -0
- warp/fem/dirichlet.py +181 -0
- warp/fem/domain.py +263 -0
- warp/fem/field/__init__.py +101 -0
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +299 -0
- warp/fem/field/restriction.py +21 -0
- warp/fem/field/test.py +181 -0
- warp/fem/field/trial.py +183 -0
- warp/fem/geometry/__init__.py +19 -0
- warp/fem/geometry/closest_point.py +70 -0
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +744 -0
- warp/fem/geometry/geometry.py +186 -0
- warp/fem/geometry/grid_2d.py +373 -0
- warp/fem/geometry/grid_3d.py +435 -0
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +376 -0
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +840 -0
- warp/fem/geometry/trimesh_2d.py +577 -0
- warp/fem/integrate.py +1616 -0
- warp/fem/operator.py +191 -0
- warp/fem/polynomial.py +213 -0
- warp/fem/quadrature/__init__.py +2 -0
- warp/fem/quadrature/pic_quadrature.py +245 -0
- warp/fem/quadrature/quadrature.py +294 -0
- warp/fem/space/__init__.py +292 -0
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +236 -0
- warp/fem/space/function_space.py +145 -0
- warp/fem/space/grid_2d_function_space.py +267 -0
- warp/fem/space/grid_3d_function_space.py +306 -0
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +350 -0
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +160 -0
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +292 -0
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +221 -0
- warp/fem/types.py +77 -0
- warp/fem/utils.py +495 -0
- warp/native/array.h +164 -55
- warp/native/builtin.h +150 -174
- warp/native/bvh.cpp +75 -328
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +37 -45
- warp/native/clang/clang.cpp +136 -24
- warp/native/crt.cpp +1 -76
- warp/native/crt.h +111 -104
- warp/native/cuda_crt.h +1049 -0
- warp/native/cuda_util.cpp +15 -3
- warp/native/cuda_util.h +3 -1
- warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
- warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
- warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
- warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
- warp/native/cutlass/tools/library/scripts/library.py +799 -0
- warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
- warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
- warp/native/cutlass/tools/library/scripts/rt.py +796 -0
- warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
- warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
- warp/native/cutlass_gemm.cu +5 -3
- warp/native/exports.h +1240 -949
- warp/native/fabric.h +228 -0
- warp/native/hashgrid.cpp +4 -4
- warp/native/hashgrid.h +22 -2
- warp/native/initializer_array.h +2 -2
- warp/native/intersect.h +22 -7
- warp/native/intersect_adj.h +8 -8
- warp/native/intersect_tri.h +13 -16
- warp/native/marching.cu +157 -161
- warp/native/mat.h +119 -19
- warp/native/matnn.h +2 -2
- warp/native/mesh.cpp +108 -83
- warp/native/mesh.cu +243 -6
- warp/native/mesh.h +1547 -458
- warp/native/nanovdb/NanoVDB.h +1 -1
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +45 -35
- warp/native/range.h +6 -2
- warp/native/reduce.cpp +157 -0
- warp/native/reduce.cu +348 -0
- warp/native/runlength_encode.cpp +62 -0
- warp/native/runlength_encode.cu +46 -0
- warp/native/scan.cu +11 -13
- warp/native/scan.h +1 -0
- warp/native/solid_angle.h +442 -0
- warp/native/sort.cpp +13 -0
- warp/native/sort.cu +9 -1
- warp/native/sparse.cpp +338 -0
- warp/native/sparse.cu +545 -0
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +30 -0
- warp/native/vec.h +126 -24
- warp/native/volume.h +120 -0
- warp/native/warp.cpp +658 -53
- warp/native/warp.cu +660 -68
- warp/native/warp.h +112 -12
- warp/optim/__init__.py +1 -0
- warp/optim/linear.py +922 -0
- warp/optim/sgd.py +92 -0
- warp/render/render_opengl.py +392 -152
- warp/render/render_usd.py +11 -11
- warp/sim/__init__.py +2 -2
- warp/sim/articulation.py +385 -185
- warp/sim/collide.py +21 -8
- warp/sim/import_mjcf.py +297 -106
- warp/sim/import_urdf.py +389 -210
- warp/sim/import_usd.py +198 -97
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_euler.py +14 -8
- warp/sim/integrator_xpbd.py +161 -19
- warp/sim/model.py +795 -291
- warp/sim/optimizer.py +2 -6
- warp/sim/render.py +65 -3
- warp/sim/utils.py +3 -0
- warp/sparse.py +1227 -0
- warp/stubs.py +665 -223
- warp/tape.py +66 -15
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +128 -74
- warp/tests/test_array.py +1497 -211
- warp/tests/test_array_reduce.py +150 -0
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +99 -0
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +75 -43
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +233 -128
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +136 -108
- warp/tests/test_examples.py +277 -0
- warp/tests/test_fabricarray.py +955 -0
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1271 -0
- warp/tests/test_fp16.py +53 -19
- warp/tests/test_func.py +187 -74
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +180 -116
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +52 -37
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +577 -24
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +251 -15
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_linear_solvers.py +154 -0
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +508 -2778
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +305 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +71 -14
- warp/tests/test_mesh_query_aabb.py +41 -25
- warp/tests/test_mesh_query_point.py +325 -34
- warp/tests/test_mesh_query_ray.py +39 -22
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +190 -0
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +460 -0
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +331 -85
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +118 -89
- warp/tests/test_transient_module.py +12 -13
- warp/tests/test_types.py +614 -0
- warp/tests/test_utils.py +494 -0
- warp/tests/test_vec.py +354 -1987
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +457 -293
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +341 -0
- warp/tests/unittest_utils.py +568 -0
- warp/tests/unused_test_misc.py +71 -0
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +549 -0
- warp/torch.py +72 -30
- warp/types.py +1744 -713
- warp/utils.py +360 -350
- warp_lang-0.11.0.dist-info/LICENSE.md +36 -0
- warp_lang-0.11.0.dist-info/METADATA +238 -0
- warp_lang-0.11.0.dist-info/RECORD +332 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
- warp/bin/warp-clang.exp +0 -0
- warp/bin/warp-clang.lib +0 -0
- warp/bin/warp.exp +0 -0
- warp/bin/warp.lib +0 -0
- warp/tests/test_all.py +0 -215
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-0.9.0.dist-info/METADATA +0 -20
- warp_lang-0.9.0.dist-info/RECORD +0 -177
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,738 @@
|
|
|
1
|
+
import math
|
|
2
|
+
|
|
3
|
+
import warp as wp
|
|
4
|
+
import numpy as np
|
|
5
|
+
|
|
6
|
+
from warp.fem.geometry import Grid3D
|
|
7
|
+
from warp.fem.polynomial import Polynomial, quadrature_1d, lagrange_scales, is_closed
|
|
8
|
+
from warp.fem.types import Coords
|
|
9
|
+
from warp.fem import cache
|
|
10
|
+
|
|
11
|
+
from .tet_shape_function import TetrahedronPolynomialShapeFunctions
|
|
12
|
+
|
|
13
|
+
_CUBE_EDGE_INDICES = wp.constant(
|
|
14
|
+
wp.mat(shape=(3, 4), dtype=int)(
|
|
15
|
+
[
|
|
16
|
+
[0, 4, 2, 6],
|
|
17
|
+
[3, 1, 7, 5],
|
|
18
|
+
[8, 11, 9, 10],
|
|
19
|
+
]
|
|
20
|
+
)
|
|
21
|
+
)
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
class CubeTripolynomialShapeFunctions:
|
|
25
|
+
VERTEX = 0
|
|
26
|
+
EDGE = 1
|
|
27
|
+
FACE = 2
|
|
28
|
+
INTERIOR = 3
|
|
29
|
+
|
|
30
|
+
def __init__(self, degree: int, family: Polynomial):
|
|
31
|
+
self.family = family
|
|
32
|
+
|
|
33
|
+
self.ORDER = wp.constant(degree)
|
|
34
|
+
self.NODES_PER_ELEMENT = wp.constant((degree + 1) ** 3)
|
|
35
|
+
self.NODES_PER_EDGE = wp.constant(degree + 1)
|
|
36
|
+
|
|
37
|
+
lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
|
|
38
|
+
lagrange_scale = lagrange_scales(lobatto_coords)
|
|
39
|
+
|
|
40
|
+
NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
|
|
41
|
+
self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
|
|
42
|
+
self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
|
|
43
|
+
self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
|
|
44
|
+
self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
|
|
45
|
+
|
|
46
|
+
self._node_ijk = self._make_node_ijk()
|
|
47
|
+
self.node_type_and_type_index = self._make_node_type_and_type_index()
|
|
48
|
+
|
|
49
|
+
@property
|
|
50
|
+
def name(self) -> str:
|
|
51
|
+
return f"Cube_Q{self.ORDER}_{self.family}"
|
|
52
|
+
|
|
53
|
+
@wp.func
|
|
54
|
+
def _vertex_coords_f(vidx_in_cell: int):
|
|
55
|
+
x = vidx_in_cell // 4
|
|
56
|
+
y = (vidx_in_cell - 4 * x) // 2
|
|
57
|
+
z = vidx_in_cell - 4 * x - 2 * y
|
|
58
|
+
return wp.vec3(float(x), float(y), float(z))
|
|
59
|
+
|
|
60
|
+
def _make_node_ijk(self):
|
|
61
|
+
ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
|
|
62
|
+
|
|
63
|
+
def node_ijk(
|
|
64
|
+
node_index_in_elt: int,
|
|
65
|
+
):
|
|
66
|
+
node_i = node_index_in_elt // (ORDER_PLUS_ONE * ORDER_PLUS_ONE)
|
|
67
|
+
node_jk = node_index_in_elt - ORDER_PLUS_ONE * ORDER_PLUS_ONE * node_i
|
|
68
|
+
node_j = node_jk // ORDER_PLUS_ONE
|
|
69
|
+
node_k = node_jk - ORDER_PLUS_ONE * node_j
|
|
70
|
+
return node_i, node_j, node_k
|
|
71
|
+
|
|
72
|
+
return cache.get_func(node_ijk, self.name)
|
|
73
|
+
|
|
74
|
+
def _make_node_type_and_type_index(self):
|
|
75
|
+
ORDER = self.ORDER
|
|
76
|
+
|
|
77
|
+
@cache.dynamic_func(suffix=self.name)
|
|
78
|
+
def node_type_and_type_index(
|
|
79
|
+
node_index_in_elt: int,
|
|
80
|
+
):
|
|
81
|
+
i, j, k = self._node_ijk(node_index_in_elt)
|
|
82
|
+
|
|
83
|
+
zi = wp.select(i == 0, 0, 1)
|
|
84
|
+
zj = wp.select(j == 0, 0, 1)
|
|
85
|
+
zk = wp.select(k == 0, 0, 1)
|
|
86
|
+
|
|
87
|
+
mi = wp.select(i == ORDER, 0, 1)
|
|
88
|
+
mj = wp.select(j == ORDER, 0, 1)
|
|
89
|
+
mk = wp.select(k == ORDER, 0, 1)
|
|
90
|
+
|
|
91
|
+
if zi + mi == 1:
|
|
92
|
+
if zj + mj == 1:
|
|
93
|
+
if zk + mk == 1:
|
|
94
|
+
# vertex
|
|
95
|
+
type_instance = mi * 4 + mj * 2 + mk
|
|
96
|
+
return CubeTripolynomialShapeFunctions.VERTEX, type_instance, 0
|
|
97
|
+
|
|
98
|
+
# z edge
|
|
99
|
+
type_instance = _CUBE_EDGE_INDICES[2, mi * 2 + mj]
|
|
100
|
+
type_index = k - 1
|
|
101
|
+
return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index
|
|
102
|
+
|
|
103
|
+
if zk + mk == 1:
|
|
104
|
+
# y edge
|
|
105
|
+
type_instance = _CUBE_EDGE_INDICES[1, mk * 2 + mi]
|
|
106
|
+
type_index = j - 1
|
|
107
|
+
return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index
|
|
108
|
+
|
|
109
|
+
# x face
|
|
110
|
+
type_instance = mi
|
|
111
|
+
type_index = wp.select(mi == 1, (j - 1) * (ORDER - 1) + k - 1, (k - 1) * (ORDER - 1) + j - 1)
|
|
112
|
+
return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index
|
|
113
|
+
|
|
114
|
+
if zj + mj == 1:
|
|
115
|
+
if zk + mk == 1:
|
|
116
|
+
# x edge
|
|
117
|
+
type_instance = _CUBE_EDGE_INDICES[0, mj * 2 + mk]
|
|
118
|
+
type_index = i - 1
|
|
119
|
+
return CubeTripolynomialShapeFunctions.EDGE, type_instance, type_index
|
|
120
|
+
|
|
121
|
+
# y face
|
|
122
|
+
type_instance = 2 + mj
|
|
123
|
+
type_index = wp.select(mj == 1, (i - 1) * (ORDER - 1) + k - 1, (k - 1) * (ORDER - 1) + i - 1)
|
|
124
|
+
return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index
|
|
125
|
+
|
|
126
|
+
if zk + mk == 1:
|
|
127
|
+
# z face
|
|
128
|
+
type_instance = 4 + mk
|
|
129
|
+
type_index = wp.select(mk == 1, (j - 1) * (ORDER - 1) + i - 1, (i - 1) * (ORDER - 1) + j - 1)
|
|
130
|
+
return CubeTripolynomialShapeFunctions.FACE, type_instance, type_index
|
|
131
|
+
|
|
132
|
+
type_index = ((i - 1) * (ORDER - 1) + (j - 1)) * (ORDER - 1) + k - 1
|
|
133
|
+
return CubeTripolynomialShapeFunctions.INTERIOR, 0, type_index
|
|
134
|
+
|
|
135
|
+
return node_type_and_type_index
|
|
136
|
+
|
|
137
|
+
def make_node_coords_in_element(self):
|
|
138
|
+
LOBATTO_COORDS = self.LOBATTO_COORDS
|
|
139
|
+
|
|
140
|
+
@cache.dynamic_func(suffix=self.name)
|
|
141
|
+
def node_coords_in_element(
|
|
142
|
+
node_index_in_elt: int,
|
|
143
|
+
):
|
|
144
|
+
node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
|
|
145
|
+
return Coords(LOBATTO_COORDS[node_i], LOBATTO_COORDS[node_j], LOBATTO_COORDS[node_k])
|
|
146
|
+
|
|
147
|
+
return node_coords_in_element
|
|
148
|
+
|
|
149
|
+
def make_node_quadrature_weight(self):
|
|
150
|
+
ORDER = self.ORDER
|
|
151
|
+
LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
|
|
152
|
+
|
|
153
|
+
def node_quadrature_weight(
|
|
154
|
+
node_index_in_elt: int,
|
|
155
|
+
):
|
|
156
|
+
node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
|
|
157
|
+
return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j] * LOBATTO_WEIGHT[node_k]
|
|
158
|
+
|
|
159
|
+
def node_quadrature_weight_linear(
|
|
160
|
+
node_index_in_elt: int,
|
|
161
|
+
):
|
|
162
|
+
return 0.125
|
|
163
|
+
|
|
164
|
+
if ORDER == 1:
|
|
165
|
+
return cache.get_func(node_quadrature_weight_linear, self.name)
|
|
166
|
+
|
|
167
|
+
return cache.get_func(node_quadrature_weight, self.name)
|
|
168
|
+
|
|
169
|
+
def make_trace_node_quadrature_weight(self):
|
|
170
|
+
ORDER = self.ORDER
|
|
171
|
+
LOBATTO_WEIGHT = self.LOBATTO_WEIGHT
|
|
172
|
+
|
|
173
|
+
def trace_node_quadrature_weight(
|
|
174
|
+
node_index_in_elt: int,
|
|
175
|
+
):
|
|
176
|
+
# We're either on a side interior or at a vertex
|
|
177
|
+
# If we find one index at extremum, pick the two other
|
|
178
|
+
|
|
179
|
+
node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
|
|
180
|
+
|
|
181
|
+
if node_i == 0 or node_i == ORDER:
|
|
182
|
+
return LOBATTO_WEIGHT[node_j] * LOBATTO_WEIGHT[node_k]
|
|
183
|
+
|
|
184
|
+
if node_j == 0 or node_j == ORDER:
|
|
185
|
+
return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_k]
|
|
186
|
+
|
|
187
|
+
return LOBATTO_WEIGHT[node_i] * LOBATTO_WEIGHT[node_j]
|
|
188
|
+
|
|
189
|
+
def trace_node_quadrature_weight_linear(
|
|
190
|
+
node_index_in_elt: int,
|
|
191
|
+
):
|
|
192
|
+
return 0.25
|
|
193
|
+
|
|
194
|
+
def trace_node_quadrature_weight_open(
|
|
195
|
+
node_index_in_elt: int,
|
|
196
|
+
):
|
|
197
|
+
return 0.0
|
|
198
|
+
|
|
199
|
+
if not is_closed(self.family):
|
|
200
|
+
return cache.get_func(trace_node_quadrature_weight_open, self.name)
|
|
201
|
+
|
|
202
|
+
if ORDER == 1:
|
|
203
|
+
return cache.get_func(trace_node_quadrature_weight_linear, self.name)
|
|
204
|
+
|
|
205
|
+
return cache.get_func(trace_node_quadrature_weight, self.name)
|
|
206
|
+
|
|
207
|
+
def make_element_inner_weight(self):
|
|
208
|
+
ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
|
|
209
|
+
LOBATTO_COORDS = self.LOBATTO_COORDS
|
|
210
|
+
LAGRANGE_SCALE = self.LAGRANGE_SCALE
|
|
211
|
+
|
|
212
|
+
def element_inner_weight(
|
|
213
|
+
coords: Coords,
|
|
214
|
+
node_index_in_elt: int,
|
|
215
|
+
):
|
|
216
|
+
node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
|
|
217
|
+
|
|
218
|
+
w = float(1.0)
|
|
219
|
+
for k in range(ORDER_PLUS_ONE):
|
|
220
|
+
if k != node_i:
|
|
221
|
+
w *= coords[0] - LOBATTO_COORDS[k]
|
|
222
|
+
if k != node_j:
|
|
223
|
+
w *= coords[1] - LOBATTO_COORDS[k]
|
|
224
|
+
if k != node_k:
|
|
225
|
+
w *= coords[2] - LOBATTO_COORDS[k]
|
|
226
|
+
|
|
227
|
+
w *= LAGRANGE_SCALE[node_i] * LAGRANGE_SCALE[node_j] * LAGRANGE_SCALE[node_k]
|
|
228
|
+
|
|
229
|
+
return w
|
|
230
|
+
|
|
231
|
+
def element_inner_weight_linear(
|
|
232
|
+
coords: Coords,
|
|
233
|
+
node_index_in_elt: int,
|
|
234
|
+
):
|
|
235
|
+
v = CubeTripolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
|
|
236
|
+
|
|
237
|
+
wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
|
|
238
|
+
wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
|
|
239
|
+
wz = (1.0 - coords[2]) * (1.0 - v[2]) + v[2] * coords[2]
|
|
240
|
+
return wx * wy * wz
|
|
241
|
+
|
|
242
|
+
if self.ORDER == 1 and is_closed(self.family):
|
|
243
|
+
return cache.get_func(element_inner_weight_linear, self.name)
|
|
244
|
+
|
|
245
|
+
return cache.get_func(element_inner_weight, self.name)
|
|
246
|
+
|
|
247
|
+
def make_element_inner_weight_gradient(self):
|
|
248
|
+
ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
|
|
249
|
+
LOBATTO_COORDS = self.LOBATTO_COORDS
|
|
250
|
+
LAGRANGE_SCALE = self.LAGRANGE_SCALE
|
|
251
|
+
|
|
252
|
+
def element_inner_weight_gradient(
|
|
253
|
+
coords: Coords,
|
|
254
|
+
node_index_in_elt: int,
|
|
255
|
+
):
|
|
256
|
+
node_i, node_j, node_k = self._node_ijk(node_index_in_elt)
|
|
257
|
+
|
|
258
|
+
prefix_xy = float(1.0)
|
|
259
|
+
prefix_yz = float(1.0)
|
|
260
|
+
prefix_zx = float(1.0)
|
|
261
|
+
for k in range(ORDER_PLUS_ONE):
|
|
262
|
+
if k != node_i:
|
|
263
|
+
prefix_yz *= coords[0] - LOBATTO_COORDS[k]
|
|
264
|
+
if k != node_j:
|
|
265
|
+
prefix_zx *= coords[1] - LOBATTO_COORDS[k]
|
|
266
|
+
if k != node_k:
|
|
267
|
+
prefix_xy *= coords[2] - LOBATTO_COORDS[k]
|
|
268
|
+
|
|
269
|
+
prefix_x = prefix_zx * prefix_xy
|
|
270
|
+
prefix_y = prefix_yz * prefix_xy
|
|
271
|
+
prefix_z = prefix_zx * prefix_yz
|
|
272
|
+
|
|
273
|
+
grad_x = float(0.0)
|
|
274
|
+
grad_y = float(0.0)
|
|
275
|
+
grad_z = float(0.0)
|
|
276
|
+
|
|
277
|
+
for k in range(ORDER_PLUS_ONE):
|
|
278
|
+
if k != node_i:
|
|
279
|
+
delta_x = coords[0] - LOBATTO_COORDS[k]
|
|
280
|
+
grad_x = grad_x * delta_x + prefix_x
|
|
281
|
+
prefix_x *= delta_x
|
|
282
|
+
if k != node_j:
|
|
283
|
+
delta_y = coords[1] - LOBATTO_COORDS[k]
|
|
284
|
+
grad_y = grad_y * delta_y + prefix_y
|
|
285
|
+
prefix_y *= delta_y
|
|
286
|
+
if k != node_k:
|
|
287
|
+
delta_z = coords[2] - LOBATTO_COORDS[k]
|
|
288
|
+
grad_z = grad_z * delta_z + prefix_z
|
|
289
|
+
prefix_z *= delta_z
|
|
290
|
+
|
|
291
|
+
grad = (
|
|
292
|
+
LAGRANGE_SCALE[node_i]
|
|
293
|
+
* LAGRANGE_SCALE[node_j]
|
|
294
|
+
* LAGRANGE_SCALE[node_k]
|
|
295
|
+
* wp.vec3(
|
|
296
|
+
grad_x,
|
|
297
|
+
grad_y,
|
|
298
|
+
grad_z,
|
|
299
|
+
)
|
|
300
|
+
)
|
|
301
|
+
|
|
302
|
+
return grad
|
|
303
|
+
|
|
304
|
+
def element_inner_weight_gradient_linear(
|
|
305
|
+
coords: Coords,
|
|
306
|
+
node_index_in_elt: int,
|
|
307
|
+
):
|
|
308
|
+
v = CubeTripolynomialShapeFunctions._vertex_coords_f(node_index_in_elt)
|
|
309
|
+
|
|
310
|
+
wx = (1.0 - coords[0]) * (1.0 - v[0]) + v[0] * coords[0]
|
|
311
|
+
wy = (1.0 - coords[1]) * (1.0 - v[1]) + v[1] * coords[1]
|
|
312
|
+
wz = (1.0 - coords[2]) * (1.0 - v[2]) + v[2] * coords[2]
|
|
313
|
+
|
|
314
|
+
dx = 2.0 * v[0] - 1.0
|
|
315
|
+
dy = 2.0 * v[1] - 1.0
|
|
316
|
+
dz = 2.0 * v[2] - 1.0
|
|
317
|
+
|
|
318
|
+
return wp.vec3(dx * wy * wz, dy * wz * wx, dz * wx * wy)
|
|
319
|
+
|
|
320
|
+
if self.ORDER == 1 and is_closed(self.family):
|
|
321
|
+
return cache.get_func(element_inner_weight_gradient_linear, self.name)
|
|
322
|
+
|
|
323
|
+
return cache.get_func(element_inner_weight_gradient, self.name)
|
|
324
|
+
|
|
325
|
+
def element_node_hexes(self):
|
|
326
|
+
from warp.fem.utils import grid_to_hexes
|
|
327
|
+
|
|
328
|
+
return grid_to_hexes(self.ORDER, self.ORDER, self.ORDER)
|
|
329
|
+
|
|
330
|
+
def element_node_tets(self):
|
|
331
|
+
from warp.fem.utils import grid_to_tets
|
|
332
|
+
|
|
333
|
+
return grid_to_tets(self.ORDER, self.ORDER, self.ORDER)
|
|
334
|
+
|
|
335
|
+
|
|
336
|
+
class CubeSerendipityShapeFunctions:
|
|
337
|
+
"""
|
|
338
|
+
Serendipity element ~ tensor product space without interior nodes
|
|
339
|
+
Edge shape functions are usual Lagrange shape functions times a bilinear function in the normal directions
|
|
340
|
+
Corner shape functions are trilinear shape functions times a function of (x^{d-1} + y^{d-1})
|
|
341
|
+
"""
|
|
342
|
+
|
|
343
|
+
# Node categories
|
|
344
|
+
VERTEX = wp.constant(0)
|
|
345
|
+
EDGE_X = wp.constant(1)
|
|
346
|
+
EDGE_Y = wp.constant(2)
|
|
347
|
+
|
|
348
|
+
def __init__(self, degree: int, family: Polynomial):
|
|
349
|
+
if not is_closed(family):
|
|
350
|
+
raise ValueError("A closed polynomial family is required to define serendipity elements")
|
|
351
|
+
|
|
352
|
+
if degree not in [2, 3]:
|
|
353
|
+
raise NotImplementedError("Serendipity element only implemented for order 2 or 3")
|
|
354
|
+
|
|
355
|
+
self.family = family
|
|
356
|
+
|
|
357
|
+
self.ORDER = wp.constant(degree)
|
|
358
|
+
self.NODES_PER_ELEMENT = wp.constant(8 + 12 * (degree - 1))
|
|
359
|
+
self.NODES_PER_EDGE = wp.constant(degree + 1)
|
|
360
|
+
|
|
361
|
+
lobatto_coords, lobatto_weight = quadrature_1d(point_count=degree + 1, family=family)
|
|
362
|
+
lagrange_scale = lagrange_scales(lobatto_coords)
|
|
363
|
+
|
|
364
|
+
NodeVec = wp.types.vector(length=degree + 1, dtype=wp.float32)
|
|
365
|
+
self.LOBATTO_COORDS = wp.constant(NodeVec(lobatto_coords))
|
|
366
|
+
self.LOBATTO_WEIGHT = wp.constant(NodeVec(lobatto_weight))
|
|
367
|
+
self.LAGRANGE_SCALE = wp.constant(NodeVec(lagrange_scale))
|
|
368
|
+
self.ORDER_PLUS_ONE = wp.constant(self.ORDER + 1)
|
|
369
|
+
|
|
370
|
+
self.node_type_and_type_index = self._get_node_type_and_type_index()
|
|
371
|
+
self._node_lobatto_indices = self._get_node_lobatto_indices()
|
|
372
|
+
|
|
373
|
+
@property
|
|
374
|
+
def name(self) -> str:
|
|
375
|
+
return f"Cube_S{self.ORDER}_{self.family}"
|
|
376
|
+
|
|
377
|
+
def _get_node_type_and_type_index(self):
|
|
378
|
+
@cache.dynamic_func(suffix=self.name)
|
|
379
|
+
def node_type_and_index(
|
|
380
|
+
node_index_in_elt: int,
|
|
381
|
+
):
|
|
382
|
+
if node_index_in_elt < 8:
|
|
383
|
+
return CubeSerendipityShapeFunctions.VERTEX, node_index_in_elt
|
|
384
|
+
|
|
385
|
+
type_index = (node_index_in_elt - 8) // 3
|
|
386
|
+
side = node_index_in_elt - 8 - 3 * type_index
|
|
387
|
+
return CubeSerendipityShapeFunctions.EDGE_X + side, type_index
|
|
388
|
+
|
|
389
|
+
return node_type_and_index
|
|
390
|
+
|
|
391
|
+
@wp.func
|
|
392
|
+
def _vertex_coords(vidx_in_cell: int):
|
|
393
|
+
x = vidx_in_cell // 4
|
|
394
|
+
y = (vidx_in_cell - 4 * x) // 2
|
|
395
|
+
z = vidx_in_cell - 4 * x - 2 * y
|
|
396
|
+
return wp.vec3i(x, y, z)
|
|
397
|
+
|
|
398
|
+
@wp.func
|
|
399
|
+
def _edge_coords(type_index: int):
|
|
400
|
+
index_in_side = type_index // 4
|
|
401
|
+
side_offset = type_index - 4 * index_in_side
|
|
402
|
+
return (wp.vec3i(index_in_side + 1, side_offset // 2, side_offset % 2),)
|
|
403
|
+
|
|
404
|
+
@wp.func
|
|
405
|
+
def _edge_axis(node_type: int):
|
|
406
|
+
return node_type - CubeSerendipityShapeFunctions.EDGE_X
|
|
407
|
+
|
|
408
|
+
@wp.func
|
|
409
|
+
def _cube_edge_index(node_type: int, type_index: int):
|
|
410
|
+
index_in_side = type_index // 4
|
|
411
|
+
side_offset = type_index - 4 * index_in_side
|
|
412
|
+
|
|
413
|
+
return _CUBE_EDGE_INDICES[node_type - CubeSerendipityShapeFunctions.EDGE_X, side_offset], index_in_side
|
|
414
|
+
|
|
415
|
+
def _get_node_lobatto_indices(self):
|
|
416
|
+
ORDER = self.ORDER
|
|
417
|
+
|
|
418
|
+
@cache.dynamic_func(suffix=self.name)
|
|
419
|
+
def node_lobatto_indices(node_type: int, type_index: int):
|
|
420
|
+
if node_type == CubeSerendipityShapeFunctions.VERTEX:
|
|
421
|
+
return CubeSerendipityShapeFunctions._vertex_coords(type_index) * ORDER
|
|
422
|
+
|
|
423
|
+
axis = CubeSerendipityShapeFunctions._edge_axis(node_type)
|
|
424
|
+
local_coords = CubeSerendipityShapeFunctions._edge_coords(type_index)
|
|
425
|
+
|
|
426
|
+
local_indices = wp.vec3i(local_coords[0], local_coords[1] * ORDER, local_coords[2] * ORDER)
|
|
427
|
+
|
|
428
|
+
return Grid3D._local_to_world(axis, local_indices)
|
|
429
|
+
|
|
430
|
+
return node_lobatto_indices
|
|
431
|
+
|
|
432
|
+
def make_node_coords_in_element(self):
|
|
433
|
+
LOBATTO_COORDS = self.LOBATTO_COORDS
|
|
434
|
+
|
|
435
|
+
@cache.dynamic_func(suffix=self.name)
|
|
436
|
+
def node_coords_in_element(
|
|
437
|
+
node_index_in_elt: int,
|
|
438
|
+
):
|
|
439
|
+
node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
|
|
440
|
+
node_coords = self._node_lobatto_indices(node_type, type_index)
|
|
441
|
+
return Coords(
|
|
442
|
+
LOBATTO_COORDS[node_coords[0]], LOBATTO_COORDS[node_coords[1]], LOBATTO_COORDS[node_coords[2]]
|
|
443
|
+
)
|
|
444
|
+
|
|
445
|
+
return node_coords_in_element
|
|
446
|
+
|
|
447
|
+
def make_node_quadrature_weight(self):
|
|
448
|
+
ORDER = self.ORDER
|
|
449
|
+
|
|
450
|
+
@cache.dynamic_func(suffix=self.name)
|
|
451
|
+
def node_quadrature_weight(
|
|
452
|
+
node_index_in_elt: int,
|
|
453
|
+
):
|
|
454
|
+
node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
|
|
455
|
+
if node_type == CubeSerendipityShapeFunctions.VERTEX:
|
|
456
|
+
return 1.0 / float(8 * ORDER * ORDER * ORDER)
|
|
457
|
+
|
|
458
|
+
return (1.0 - 1.0 / float(ORDER * ORDER * ORDER)) / float(12 * (ORDER - 1))
|
|
459
|
+
|
|
460
|
+
return node_quadrature_weight
|
|
461
|
+
|
|
462
|
+
def make_trace_node_quadrature_weight(self):
|
|
463
|
+
ORDER = self.ORDER
|
|
464
|
+
|
|
465
|
+
@cache.dynamic_func(suffix=self.name)
|
|
466
|
+
def trace_node_quadrature_weight(
|
|
467
|
+
node_index_in_elt: int,
|
|
468
|
+
):
|
|
469
|
+
node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
|
|
470
|
+
if node_type == CubeSerendipityShapeFunctions.VERTEX:
|
|
471
|
+
return 0.25 / float(ORDER * ORDER)
|
|
472
|
+
|
|
473
|
+
return (0.25 - 0.25 / float(ORDER * ORDER)) / float(ORDER - 1)
|
|
474
|
+
|
|
475
|
+
return trace_node_quadrature_weight
|
|
476
|
+
|
|
477
|
+
def make_element_inner_weight(self):
|
|
478
|
+
ORDER = self.ORDER
|
|
479
|
+
ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
|
|
480
|
+
|
|
481
|
+
LOBATTO_COORDS = self.LOBATTO_COORDS
|
|
482
|
+
LAGRANGE_SCALE = self.LAGRANGE_SCALE
|
|
483
|
+
|
|
484
|
+
DEGREE_3_SPHERE_RAD = wp.constant(2 * 0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
|
|
485
|
+
DEGREE_3_SPHERE_SCALE = 1.0 / (0.75 - DEGREE_3_SPHERE_RAD)
|
|
486
|
+
|
|
487
|
+
@cache.dynamic_func(suffix=self.name)
|
|
488
|
+
def element_inner_weight(
|
|
489
|
+
coords: Coords,
|
|
490
|
+
node_index_in_elt: int,
|
|
491
|
+
):
|
|
492
|
+
node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
|
|
493
|
+
|
|
494
|
+
if node_type == CubeSerendipityShapeFunctions.VERTEX:
|
|
495
|
+
node_ijk = CubeSerendipityShapeFunctions._vertex_coords(type_index)
|
|
496
|
+
|
|
497
|
+
cx = wp.select(node_ijk[0] == 0, coords[0], 1.0 - coords[0])
|
|
498
|
+
cy = wp.select(node_ijk[1] == 0, coords[1], 1.0 - coords[1])
|
|
499
|
+
cz = wp.select(node_ijk[2] == 0, coords[2], 1.0 - coords[2])
|
|
500
|
+
|
|
501
|
+
w = cx * cy * cz
|
|
502
|
+
|
|
503
|
+
if ORDER == 2:
|
|
504
|
+
w *= cx + cy + cz - 3.0 + LOBATTO_COORDS[1]
|
|
505
|
+
return w * LAGRANGE_SCALE[0]
|
|
506
|
+
if ORDER == 3:
|
|
507
|
+
w *= (
|
|
508
|
+
(cx - 0.5) * (cx - 0.5)
|
|
509
|
+
+ (cy - 0.5) * (cy - 0.5)
|
|
510
|
+
+ (cz - 0.5) * (cz - 0.5)
|
|
511
|
+
- DEGREE_3_SPHERE_RAD
|
|
512
|
+
)
|
|
513
|
+
return w * DEGREE_3_SPHERE_SCALE
|
|
514
|
+
|
|
515
|
+
axis = CubeSerendipityShapeFunctions._edge_axis(node_type)
|
|
516
|
+
|
|
517
|
+
node_all = CubeSerendipityShapeFunctions._edge_coords(type_index)
|
|
518
|
+
|
|
519
|
+
local_coords = Grid3D._world_to_local(axis, coords)
|
|
520
|
+
|
|
521
|
+
w = float(1.0)
|
|
522
|
+
w *= wp.select(node_all[1] == 0, local_coords[1], 1.0 - local_coords[1])
|
|
523
|
+
w *= wp.select(node_all[2] == 0, local_coords[2], 1.0 - local_coords[2])
|
|
524
|
+
|
|
525
|
+
for k in range(ORDER_PLUS_ONE):
|
|
526
|
+
if k != node_all[0]:
|
|
527
|
+
w *= local_coords[0] - LOBATTO_COORDS[k]
|
|
528
|
+
w *= LAGRANGE_SCALE[node_all[0]]
|
|
529
|
+
|
|
530
|
+
return w
|
|
531
|
+
|
|
532
|
+
return element_inner_weight
|
|
533
|
+
|
|
534
|
+
def make_element_inner_weight_gradient(self):
|
|
535
|
+
ORDER = self.ORDER
|
|
536
|
+
ORDER_PLUS_ONE = self.ORDER_PLUS_ONE
|
|
537
|
+
LOBATTO_COORDS = self.LOBATTO_COORDS
|
|
538
|
+
LAGRANGE_SCALE = self.LAGRANGE_SCALE
|
|
539
|
+
|
|
540
|
+
DEGREE_3_SPHERE_RAD = wp.constant(2 * 0.5**2 + (0.5 - LOBATTO_COORDS[1]) ** 2)
|
|
541
|
+
DEGREE_3_SPHERE_SCALE = 1.0 / (0.75 - DEGREE_3_SPHERE_RAD)
|
|
542
|
+
|
|
543
|
+
@cache.dynamic_func(suffix=self.name)
|
|
544
|
+
def element_inner_weight_gradient(
|
|
545
|
+
coords: Coords,
|
|
546
|
+
node_index_in_elt: int,
|
|
547
|
+
):
|
|
548
|
+
node_type, type_index = self.node_type_and_type_index(node_index_in_elt)
|
|
549
|
+
|
|
550
|
+
if node_type == CubeSerendipityShapeFunctions.VERTEX:
|
|
551
|
+
node_ijk = CubeSerendipityShapeFunctions._vertex_coords(type_index)
|
|
552
|
+
|
|
553
|
+
cx = wp.select(node_ijk[0] == 0, coords[0], 1.0 - coords[0])
|
|
554
|
+
cy = wp.select(node_ijk[1] == 0, coords[1], 1.0 - coords[1])
|
|
555
|
+
cz = wp.select(node_ijk[2] == 0, coords[2], 1.0 - coords[2])
|
|
556
|
+
|
|
557
|
+
gx = wp.select(node_ijk[0] == 0, 1.0, -1.0)
|
|
558
|
+
gy = wp.select(node_ijk[1] == 0, 1.0, -1.0)
|
|
559
|
+
gz = wp.select(node_ijk[2] == 0, 1.0, -1.0)
|
|
560
|
+
|
|
561
|
+
if ORDER == 2:
|
|
562
|
+
w = cx + cy + cz - 3.0 + LOBATTO_COORDS[1]
|
|
563
|
+
grad_x = cy * cz * gx * (w + cx)
|
|
564
|
+
grad_y = cz * cx * gy * (w + cy)
|
|
565
|
+
grad_z = cx * cy * gz * (w + cz)
|
|
566
|
+
|
|
567
|
+
return wp.vec3(grad_x, grad_y, grad_z) * LAGRANGE_SCALE[0]
|
|
568
|
+
|
|
569
|
+
if ORDER == 3:
|
|
570
|
+
w = (
|
|
571
|
+
(cx - 0.5) * (cx - 0.5)
|
|
572
|
+
+ (cy - 0.5) * (cy - 0.5)
|
|
573
|
+
+ (cz - 0.5) * (cz - 0.5)
|
|
574
|
+
- DEGREE_3_SPHERE_RAD
|
|
575
|
+
)
|
|
576
|
+
|
|
577
|
+
dw_dcx = 2.0 * cx - 1.0
|
|
578
|
+
dw_dcy = 2.0 * cy - 1.0
|
|
579
|
+
dw_dcz = 2.0 * cz - 1.0
|
|
580
|
+
grad_x = cy * cz * gx * (w + dw_dcx * cx)
|
|
581
|
+
grad_y = cz * cx * gy * (w + dw_dcy * cy)
|
|
582
|
+
grad_z = cx * cy * gz * (w + dw_dcz * cz)
|
|
583
|
+
|
|
584
|
+
return wp.vec3(grad_x, grad_y, grad_z) * DEGREE_3_SPHERE_SCALE
|
|
585
|
+
|
|
586
|
+
axis = CubeSerendipityShapeFunctions._edge_axis(node_type)
|
|
587
|
+
node_all = CubeSerendipityShapeFunctions._edge_coords(type_index)
|
|
588
|
+
|
|
589
|
+
local_coords = Grid3D._world_to_local(axis, coords)
|
|
590
|
+
|
|
591
|
+
w_long = wp.select(node_all[1] == 0, local_coords[1], 1.0 - local_coords[1])
|
|
592
|
+
w_lat = wp.select(node_all[2] == 0, local_coords[2], 1.0 - local_coords[2])
|
|
593
|
+
|
|
594
|
+
g_long = wp.select(node_all[1] == 0, 1.0, -1.0)
|
|
595
|
+
g_lat = wp.select(node_all[2] == 0, 1.0, -1.0)
|
|
596
|
+
|
|
597
|
+
w_alt = LAGRANGE_SCALE[node_all[0]]
|
|
598
|
+
g_alt = float(0.0)
|
|
599
|
+
prefix_alt = LAGRANGE_SCALE[node_all[0]]
|
|
600
|
+
for k in range(ORDER_PLUS_ONE):
|
|
601
|
+
if k != node_all[0]:
|
|
602
|
+
delta_alt = local_coords[0] - LOBATTO_COORDS[k]
|
|
603
|
+
w_alt *= delta_alt
|
|
604
|
+
g_alt = g_alt * delta_alt + prefix_alt
|
|
605
|
+
prefix_alt *= delta_alt
|
|
606
|
+
|
|
607
|
+
local_grad = wp.vec3(g_alt * w_long * w_lat, w_alt * g_long * w_lat, w_alt * w_long * g_lat)
|
|
608
|
+
|
|
609
|
+
return Grid3D._local_to_world(axis, local_grad)
|
|
610
|
+
|
|
611
|
+
return element_inner_weight_gradient
|
|
612
|
+
|
|
613
|
+
def element_node_tets(self):
|
|
614
|
+
from warp.fem.utils import grid_to_tets
|
|
615
|
+
|
|
616
|
+
if self.ORDER == 2:
|
|
617
|
+
element_tets = np.array(
|
|
618
|
+
[
|
|
619
|
+
[0, 8, 9, 10],
|
|
620
|
+
[1, 11, 10, 15],
|
|
621
|
+
[2, 9, 14, 13],
|
|
622
|
+
[3, 15, 13, 17],
|
|
623
|
+
[4, 12, 8, 16],
|
|
624
|
+
[5, 18, 16, 11],
|
|
625
|
+
[6, 14, 12, 19],
|
|
626
|
+
[7, 19, 18, 17],
|
|
627
|
+
[16, 12, 18, 11],
|
|
628
|
+
[8, 16, 12, 11],
|
|
629
|
+
[12, 19, 18, 14],
|
|
630
|
+
[14, 19, 17, 18],
|
|
631
|
+
[10, 9, 15, 8],
|
|
632
|
+
[10, 8, 11, 15],
|
|
633
|
+
[9, 13, 15, 14],
|
|
634
|
+
[13, 14, 17, 15],
|
|
635
|
+
]
|
|
636
|
+
)
|
|
637
|
+
|
|
638
|
+
middle_hex = np.array([8, 11, 9, 15, 12, 18, 14, 17])
|
|
639
|
+
middle_tets = middle_hex[grid_to_tets(1, 1, 1)]
|
|
640
|
+
|
|
641
|
+
return np.concatenate((element_tets, middle_tets))
|
|
642
|
+
|
|
643
|
+
raise NotImplementedError()
|
|
644
|
+
|
|
645
|
+
|
|
646
|
+
class CubeNonConformingPolynomialShapeFunctions:
|
|
647
|
+
# embeds the largest regular tet centered at (0.5, 0.5, 0.5) into the reference cube
|
|
648
|
+
|
|
649
|
+
_tet_height = 2.0 / 3.0
|
|
650
|
+
_tet_side = math.sqrt(3.0 / 2.0) * _tet_height
|
|
651
|
+
_tet_face_height = math.sqrt(3.0) / 2.0 * _tet_side
|
|
652
|
+
|
|
653
|
+
_tet_to_cube = np.array(
|
|
654
|
+
[
|
|
655
|
+
[_tet_side, _tet_side / 2.0, _tet_side / 2.0],
|
|
656
|
+
[0.0, _tet_face_height, _tet_face_height / 3.0],
|
|
657
|
+
[0.0, 0.0, _tet_height],
|
|
658
|
+
]
|
|
659
|
+
)
|
|
660
|
+
|
|
661
|
+
_TET_OFFSET = wp.constant(wp.vec3(0.5 - 0.5 * _tet_side, 0.5 - _tet_face_height / 3.0, 0.5 - 0.25 * _tet_height))
|
|
662
|
+
|
|
663
|
+
def __init__(self, degree: int):
|
|
664
|
+
self._tet_shape = TetrahedronPolynomialShapeFunctions(degree=degree)
|
|
665
|
+
self.ORDER = self._tet_shape.ORDER
|
|
666
|
+
self.NODES_PER_ELEMENT = self._tet_shape.NODES_PER_ELEMENT
|
|
667
|
+
|
|
668
|
+
self.element_node_tets = self._tet_shape.element_node_tets
|
|
669
|
+
|
|
670
|
+
@property
|
|
671
|
+
def name(self) -> str:
|
|
672
|
+
return f"Cube_P{self.ORDER}d"
|
|
673
|
+
|
|
674
|
+
def make_node_coords_in_element(self):
|
|
675
|
+
node_coords_in_tet = self._tet_shape.make_node_coords_in_element()
|
|
676
|
+
|
|
677
|
+
TET_TO_CUBE = wp.constant(wp.mat33(self._tet_to_cube))
|
|
678
|
+
|
|
679
|
+
@cache.dynamic_func(suffix=self.name)
|
|
680
|
+
def node_coords_in_element(
|
|
681
|
+
node_index_in_elt: int,
|
|
682
|
+
):
|
|
683
|
+
tet_coords = node_coords_in_tet(node_index_in_elt)
|
|
684
|
+
return TET_TO_CUBE * tet_coords + CubeNonConformingPolynomialShapeFunctions._TET_OFFSET
|
|
685
|
+
|
|
686
|
+
return node_coords_in_element
|
|
687
|
+
|
|
688
|
+
def make_node_quadrature_weight(self):
|
|
689
|
+
NODES_PER_ELEMENT = self.NODES_PER_ELEMENT
|
|
690
|
+
|
|
691
|
+
@cache.dynamic_func(suffix=self.name)
|
|
692
|
+
def node_uniform_quadrature_weight(
|
|
693
|
+
node_index_in_elt: int,
|
|
694
|
+
):
|
|
695
|
+
return 1.0 / float(NODES_PER_ELEMENT)
|
|
696
|
+
|
|
697
|
+
return node_uniform_quadrature_weight
|
|
698
|
+
|
|
699
|
+
def make_trace_node_quadrature_weight(self):
|
|
700
|
+
# Non-conforming, zero measure on sides
|
|
701
|
+
|
|
702
|
+
@wp.func
|
|
703
|
+
def zero(node_index_in_elt: int):
|
|
704
|
+
return 0.0
|
|
705
|
+
|
|
706
|
+
return zero
|
|
707
|
+
|
|
708
|
+
def make_element_inner_weight(self):
|
|
709
|
+
tet_inner_weight = self._tet_shape.make_element_inner_weight()
|
|
710
|
+
|
|
711
|
+
CUBE_TO_TET = wp.constant(wp.mat33(np.linalg.inv(self._tet_to_cube)))
|
|
712
|
+
|
|
713
|
+
@cache.dynamic_func(suffix=self.name)
|
|
714
|
+
def element_inner_weight(
|
|
715
|
+
coords: Coords,
|
|
716
|
+
node_index_in_elt: int,
|
|
717
|
+
):
|
|
718
|
+
tet_coords = CUBE_TO_TET * (coords - CubeNonConformingPolynomialShapeFunctions._TET_OFFSET)
|
|
719
|
+
|
|
720
|
+
return tet_inner_weight(tet_coords, node_index_in_elt)
|
|
721
|
+
|
|
722
|
+
return element_inner_weight
|
|
723
|
+
|
|
724
|
+
def make_element_inner_weight_gradient(self):
|
|
725
|
+
tet_inner_weight_gradient = self._tet_shape.make_element_inner_weight_gradient()
|
|
726
|
+
|
|
727
|
+
CUBE_TO_TET = wp.constant(wp.mat33(np.linalg.inv(self._tet_to_cube)))
|
|
728
|
+
|
|
729
|
+
@cache.dynamic_func(suffix=self.name)
|
|
730
|
+
def element_inner_weight_gradient(
|
|
731
|
+
coords: Coords,
|
|
732
|
+
node_index_in_elt: int,
|
|
733
|
+
):
|
|
734
|
+
tet_coords = CUBE_TO_TET * (coords - CubeNonConformingPolynomialShapeFunctions._TET_OFFSET)
|
|
735
|
+
grad = tet_inner_weight_gradient(tet_coords, node_index_in_elt)
|
|
736
|
+
return wp.transpose(CUBE_TO_TET) * grad
|
|
737
|
+
|
|
738
|
+
return element_inner_weight_gradient
|