warp-lang 0.9.0__py3-none-win_amd64.whl → 0.11.0__py3-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of warp-lang might be problematic. Click here for more details.
- warp/__init__.py +15 -7
- warp/__init__.pyi +1 -0
- warp/bin/warp-clang.dll +0 -0
- warp/bin/warp.dll +0 -0
- warp/build.py +22 -443
- warp/build_dll.py +384 -0
- warp/builtins.py +998 -488
- warp/codegen.py +1307 -739
- warp/config.py +5 -3
- warp/constants.py +6 -0
- warp/context.py +1291 -548
- warp/dlpack.py +31 -31
- warp/fabric.py +326 -0
- warp/fem/__init__.py +27 -0
- warp/fem/cache.py +389 -0
- warp/fem/dirichlet.py +181 -0
- warp/fem/domain.py +263 -0
- warp/fem/field/__init__.py +101 -0
- warp/fem/field/field.py +149 -0
- warp/fem/field/nodal_field.py +299 -0
- warp/fem/field/restriction.py +21 -0
- warp/fem/field/test.py +181 -0
- warp/fem/field/trial.py +183 -0
- warp/fem/geometry/__init__.py +19 -0
- warp/fem/geometry/closest_point.py +70 -0
- warp/fem/geometry/deformed_geometry.py +271 -0
- warp/fem/geometry/element.py +744 -0
- warp/fem/geometry/geometry.py +186 -0
- warp/fem/geometry/grid_2d.py +373 -0
- warp/fem/geometry/grid_3d.py +435 -0
- warp/fem/geometry/hexmesh.py +953 -0
- warp/fem/geometry/partition.py +376 -0
- warp/fem/geometry/quadmesh_2d.py +532 -0
- warp/fem/geometry/tetmesh.py +840 -0
- warp/fem/geometry/trimesh_2d.py +577 -0
- warp/fem/integrate.py +1616 -0
- warp/fem/operator.py +191 -0
- warp/fem/polynomial.py +213 -0
- warp/fem/quadrature/__init__.py +2 -0
- warp/fem/quadrature/pic_quadrature.py +245 -0
- warp/fem/quadrature/quadrature.py +294 -0
- warp/fem/space/__init__.py +292 -0
- warp/fem/space/basis_space.py +489 -0
- warp/fem/space/collocated_function_space.py +105 -0
- warp/fem/space/dof_mapper.py +236 -0
- warp/fem/space/function_space.py +145 -0
- warp/fem/space/grid_2d_function_space.py +267 -0
- warp/fem/space/grid_3d_function_space.py +306 -0
- warp/fem/space/hexmesh_function_space.py +352 -0
- warp/fem/space/partition.py +350 -0
- warp/fem/space/quadmesh_2d_function_space.py +369 -0
- warp/fem/space/restriction.py +160 -0
- warp/fem/space/shape/__init__.py +15 -0
- warp/fem/space/shape/cube_shape_function.py +738 -0
- warp/fem/space/shape/shape_function.py +103 -0
- warp/fem/space/shape/square_shape_function.py +611 -0
- warp/fem/space/shape/tet_shape_function.py +567 -0
- warp/fem/space/shape/triangle_shape_function.py +429 -0
- warp/fem/space/tetmesh_function_space.py +292 -0
- warp/fem/space/topology.py +295 -0
- warp/fem/space/trimesh_2d_function_space.py +221 -0
- warp/fem/types.py +77 -0
- warp/fem/utils.py +495 -0
- warp/native/array.h +164 -55
- warp/native/builtin.h +150 -174
- warp/native/bvh.cpp +75 -328
- warp/native/bvh.cu +406 -23
- warp/native/bvh.h +37 -45
- warp/native/clang/clang.cpp +136 -24
- warp/native/crt.cpp +1 -76
- warp/native/crt.h +111 -104
- warp/native/cuda_crt.h +1049 -0
- warp/native/cuda_util.cpp +15 -3
- warp/native/cuda_util.h +3 -1
- warp/native/cutlass/tools/library/scripts/conv2d_operation.py +463 -0
- warp/native/cutlass/tools/library/scripts/conv3d_operation.py +321 -0
- warp/native/cutlass/tools/library/scripts/gemm_operation.py +988 -0
- warp/native/cutlass/tools/library/scripts/generator.py +4625 -0
- warp/native/cutlass/tools/library/scripts/library.py +799 -0
- warp/native/cutlass/tools/library/scripts/manifest.py +402 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/docs/source/conf.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/conv/conv2d_f16_sm80.py +106 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/profile/gemm/gemm_f32_sm80.py +91 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/setup.py +80 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/__init__.py +48 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/arguments.py +118 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/c_types.py +241 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/compiler.py +432 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/conv2d_operation.py +631 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/epilogue.py +1026 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/frontend.py +104 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/gemm_operation.py +1276 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/library.py +744 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/memory_manager.py +74 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/operation.py +110 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/parser.py +619 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/reduction_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/tensor_ref.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/__init__.py +4 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/conv2d_testbed.py +646 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_grouped_testbed.py +235 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/gemm_testbed.py +557 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/test/profiler.py +70 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/type_hint.py +39 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/__init__.py +1 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/device.py +76 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/src/pycutlass/utils/reference_model.py +255 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +201 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +177 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +98 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_dgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +95 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_few_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +163 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_fixed_channels_f16nhwc_f16nhwc_f16nhwc_tensor_op_f32_sm80.py +187 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +309 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +54 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_fprop_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_strided_dgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +253 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f16nhwc_tensor_op_f16_sm80.py +97 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f16nhwc_f16nhwc_f32nhwc_tensor_op_f32_sm80.py +242 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_f32nhwc_f32nhwc_f32nhwc_simt_f32_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/conv2d_wgrad_implicit_gemm_tf32nhwc_tf32nhwc_f32nhwc_tensor_op_f32_sm80.py +107 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/conv/run_all_tests.py +10 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/frontend/test_frontend.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/__init__.py +0 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_bf16_sm80.py +96 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f16_sm80.py +447 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f32_sm80.py +146 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_f64_sm80.py +102 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_grouped_sm80.py +203 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/gemm_s8_sm80.py +229 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/gemm/run_all_tests.py +9 -0
- warp/native/cutlass/tools/library/scripts/pycutlass/test/unit/test_sm80.py +453 -0
- warp/native/cutlass/tools/library/scripts/rank_2k_operation.py +398 -0
- warp/native/cutlass/tools/library/scripts/rank_k_operation.py +387 -0
- warp/native/cutlass/tools/library/scripts/rt.py +796 -0
- warp/native/cutlass/tools/library/scripts/symm_operation.py +400 -0
- warp/native/cutlass/tools/library/scripts/trmm_operation.py +407 -0
- warp/native/cutlass_gemm.cu +5 -3
- warp/native/exports.h +1240 -949
- warp/native/fabric.h +228 -0
- warp/native/hashgrid.cpp +4 -4
- warp/native/hashgrid.h +22 -2
- warp/native/initializer_array.h +2 -2
- warp/native/intersect.h +22 -7
- warp/native/intersect_adj.h +8 -8
- warp/native/intersect_tri.h +13 -16
- warp/native/marching.cu +157 -161
- warp/native/mat.h +119 -19
- warp/native/matnn.h +2 -2
- warp/native/mesh.cpp +108 -83
- warp/native/mesh.cu +243 -6
- warp/native/mesh.h +1547 -458
- warp/native/nanovdb/NanoVDB.h +1 -1
- warp/native/noise.h +272 -329
- warp/native/quat.h +51 -8
- warp/native/rand.h +45 -35
- warp/native/range.h +6 -2
- warp/native/reduce.cpp +157 -0
- warp/native/reduce.cu +348 -0
- warp/native/runlength_encode.cpp +62 -0
- warp/native/runlength_encode.cu +46 -0
- warp/native/scan.cu +11 -13
- warp/native/scan.h +1 -0
- warp/native/solid_angle.h +442 -0
- warp/native/sort.cpp +13 -0
- warp/native/sort.cu +9 -1
- warp/native/sparse.cpp +338 -0
- warp/native/sparse.cu +545 -0
- warp/native/spatial.h +2 -2
- warp/native/temp_buffer.h +30 -0
- warp/native/vec.h +126 -24
- warp/native/volume.h +120 -0
- warp/native/warp.cpp +658 -53
- warp/native/warp.cu +660 -68
- warp/native/warp.h +112 -12
- warp/optim/__init__.py +1 -0
- warp/optim/linear.py +922 -0
- warp/optim/sgd.py +92 -0
- warp/render/render_opengl.py +392 -152
- warp/render/render_usd.py +11 -11
- warp/sim/__init__.py +2 -2
- warp/sim/articulation.py +385 -185
- warp/sim/collide.py +21 -8
- warp/sim/import_mjcf.py +297 -106
- warp/sim/import_urdf.py +389 -210
- warp/sim/import_usd.py +198 -97
- warp/sim/inertia.py +17 -18
- warp/sim/integrator_euler.py +14 -8
- warp/sim/integrator_xpbd.py +161 -19
- warp/sim/model.py +795 -291
- warp/sim/optimizer.py +2 -6
- warp/sim/render.py +65 -3
- warp/sim/utils.py +3 -0
- warp/sparse.py +1227 -0
- warp/stubs.py +665 -223
- warp/tape.py +66 -15
- warp/tests/__main__.py +3 -6
- warp/tests/assets/curlnoise_golden.npy +0 -0
- warp/tests/assets/pnoise_golden.npy +0 -0
- warp/tests/assets/torus.usda +105 -105
- warp/tests/{test_class_kernel.py → aux_test_class_kernel.py} +9 -1
- warp/tests/aux_test_conditional_unequal_types_kernels.py +21 -0
- warp/tests/{test_dependent.py → aux_test_dependent.py} +2 -2
- warp/tests/{test_reference.py → aux_test_reference.py} +1 -1
- warp/tests/aux_test_unresolved_func.py +14 -0
- warp/tests/aux_test_unresolved_symbol.py +14 -0
- warp/tests/disabled_kinematics.py +239 -0
- warp/tests/run_coverage_serial.py +31 -0
- warp/tests/test_adam.py +103 -106
- warp/tests/test_arithmetic.py +128 -74
- warp/tests/test_array.py +1497 -211
- warp/tests/test_array_reduce.py +150 -0
- warp/tests/test_atomic.py +64 -28
- warp/tests/test_bool.py +99 -0
- warp/tests/test_builtins_resolution.py +1292 -0
- warp/tests/test_bvh.py +75 -43
- warp/tests/test_closest_point_edge_edge.py +54 -57
- warp/tests/test_codegen.py +233 -128
- warp/tests/test_compile_consts.py +28 -20
- warp/tests/test_conditional.py +108 -24
- warp/tests/test_copy.py +10 -12
- warp/tests/test_ctypes.py +112 -88
- warp/tests/test_dense.py +21 -14
- warp/tests/test_devices.py +98 -0
- warp/tests/test_dlpack.py +136 -108
- warp/tests/test_examples.py +277 -0
- warp/tests/test_fabricarray.py +955 -0
- warp/tests/test_fast_math.py +15 -11
- warp/tests/test_fem.py +1271 -0
- warp/tests/test_fp16.py +53 -19
- warp/tests/test_func.py +187 -74
- warp/tests/test_generics.py +194 -49
- warp/tests/test_grad.py +180 -116
- warp/tests/test_grad_customs.py +176 -0
- warp/tests/test_hash_grid.py +52 -37
- warp/tests/test_import.py +10 -23
- warp/tests/test_indexedarray.py +577 -24
- warp/tests/test_intersect.py +18 -9
- warp/tests/test_large.py +141 -0
- warp/tests/test_launch.py +251 -15
- warp/tests/test_lerp.py +64 -65
- warp/tests/test_linear_solvers.py +154 -0
- warp/tests/test_lvalue.py +493 -0
- warp/tests/test_marching_cubes.py +12 -13
- warp/tests/test_mat.py +508 -2778
- warp/tests/test_mat_lite.py +115 -0
- warp/tests/test_mat_scalar_ops.py +2889 -0
- warp/tests/test_math.py +103 -9
- warp/tests/test_matmul.py +305 -69
- warp/tests/test_matmul_lite.py +410 -0
- warp/tests/test_mesh.py +71 -14
- warp/tests/test_mesh_query_aabb.py +41 -25
- warp/tests/test_mesh_query_point.py +325 -34
- warp/tests/test_mesh_query_ray.py +39 -22
- warp/tests/test_mlp.py +30 -22
- warp/tests/test_model.py +92 -89
- warp/tests/test_modules_lite.py +39 -0
- warp/tests/test_multigpu.py +88 -114
- warp/tests/test_noise.py +12 -11
- warp/tests/test_operators.py +16 -20
- warp/tests/test_options.py +11 -11
- warp/tests/test_pinned.py +17 -18
- warp/tests/test_print.py +32 -11
- warp/tests/test_quat.py +275 -129
- warp/tests/test_rand.py +18 -16
- warp/tests/test_reload.py +38 -34
- warp/tests/test_rounding.py +50 -43
- warp/tests/test_runlength_encode.py +190 -0
- warp/tests/test_smoothstep.py +9 -11
- warp/tests/test_snippet.py +143 -0
- warp/tests/test_sparse.py +460 -0
- warp/tests/test_spatial.py +276 -243
- warp/tests/test_streams.py +110 -85
- warp/tests/test_struct.py +331 -85
- warp/tests/test_tape.py +39 -21
- warp/tests/test_torch.py +118 -89
- warp/tests/test_transient_module.py +12 -13
- warp/tests/test_types.py +614 -0
- warp/tests/test_utils.py +494 -0
- warp/tests/test_vec.py +354 -1987
- warp/tests/test_vec_lite.py +73 -0
- warp/tests/test_vec_scalar_ops.py +2099 -0
- warp/tests/test_volume.py +457 -293
- warp/tests/test_volume_write.py +124 -134
- warp/tests/unittest_serial.py +35 -0
- warp/tests/unittest_suites.py +341 -0
- warp/tests/unittest_utils.py +568 -0
- warp/tests/unused_test_misc.py +71 -0
- warp/tests/{test_debug.py → walkthough_debug.py} +3 -17
- warp/thirdparty/appdirs.py +36 -45
- warp/thirdparty/unittest_parallel.py +549 -0
- warp/torch.py +72 -30
- warp/types.py +1744 -713
- warp/utils.py +360 -350
- warp_lang-0.11.0.dist-info/LICENSE.md +36 -0
- warp_lang-0.11.0.dist-info/METADATA +238 -0
- warp_lang-0.11.0.dist-info/RECORD +332 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/WHEEL +1 -1
- warp/bin/warp-clang.exp +0 -0
- warp/bin/warp-clang.lib +0 -0
- warp/bin/warp.exp +0 -0
- warp/bin/warp.lib +0 -0
- warp/tests/test_all.py +0 -215
- warp/tests/test_array_scan.py +0 -60
- warp/tests/test_base.py +0 -208
- warp/tests/test_unresolved_func.py +0 -7
- warp/tests/test_unresolved_symbol.py +0 -7
- warp_lang-0.9.0.dist-info/METADATA +0 -20
- warp_lang-0.9.0.dist-info/RECORD +0 -177
- /warp/tests/{test_compile_consts_dummy.py → aux_test_compile_consts_dummy.py} +0 -0
- /warp/tests/{test_reference_reference.py → aux_test_reference_reference.py} +0 -0
- /warp/tests/{test_square.py → aux_test_square.py} +0 -0
- {warp_lang-0.9.0.dist-info → warp_lang-0.11.0.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1276 @@
|
|
|
1
|
+
################################################################################
|
|
2
|
+
#
|
|
3
|
+
# Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
4
|
+
# SPDX-License-Identifier: BSD-3-Clause
|
|
5
|
+
#
|
|
6
|
+
# Redistribution and use in source and binary forms, with or without
|
|
7
|
+
# modification, are permitted provided that the following conditions are met:
|
|
8
|
+
#
|
|
9
|
+
# 1. Redistributions of source code must retain the above copyright notice, this
|
|
10
|
+
# list of conditions and the following disclaimer.
|
|
11
|
+
#
|
|
12
|
+
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
13
|
+
# this list of conditions and the following disclaimer in the documentation
|
|
14
|
+
# and/or other materials provided with the distribution.
|
|
15
|
+
#
|
|
16
|
+
# 3. Neither the name of the copyright holder nor the names of its
|
|
17
|
+
# contributors may be used to endorse or promote products derived from
|
|
18
|
+
# this software without specific prior written permission.
|
|
19
|
+
#
|
|
20
|
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
21
|
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
22
|
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
23
|
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
24
|
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
25
|
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
26
|
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
27
|
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
28
|
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
29
|
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
30
|
+
#
|
|
31
|
+
################################################################################
|
|
32
|
+
|
|
33
|
+
import enum
|
|
34
|
+
import copy
|
|
35
|
+
import numpy as np
|
|
36
|
+
from typeguard import typechecked
|
|
37
|
+
import cutlass
|
|
38
|
+
from pycutlass import *
|
|
39
|
+
from cuda import cuda
|
|
40
|
+
|
|
41
|
+
|
|
42
|
+
################################################################################
|
|
43
|
+
#
|
|
44
|
+
# Data structure modeling a GEMM operation
|
|
45
|
+
#
|
|
46
|
+
################################################################################
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
def transpose_layout(layout: cutlass.layout):
|
|
50
|
+
if layout == cutlass.ColumnMajor:
|
|
51
|
+
return cutlass.RowMajor
|
|
52
|
+
elif layout == cutlass.RowMajor:
|
|
53
|
+
return cutlass.ColumnMajor
|
|
54
|
+
else:
|
|
55
|
+
raise ValueError("unsupported Layout {}".format(layout))
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
# @typechecked
|
|
59
|
+
class GemmArguments(ArgumentBase):
|
|
60
|
+
"""
|
|
61
|
+
Argument wrapper for GEMM. It encodes problem information and
|
|
62
|
+
user-provide tensors into the kernel's argument
|
|
63
|
+
|
|
64
|
+
:param operation: the GEMM operation to take the argument
|
|
65
|
+
:type operation: :class:`pycutlass.GemmOperationUniversal` |
|
|
66
|
+
:class:`pycutlass.GemmOperationGrouped`
|
|
67
|
+
|
|
68
|
+
:param problem_size: GEMM problem size gemm(M, N, K)
|
|
69
|
+
:type operation: :class:`cutlass.gemm.GemmCoord`
|
|
70
|
+
|
|
71
|
+
:param A: tensor A
|
|
72
|
+
:type A: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray
|
|
73
|
+
|
|
74
|
+
:param B: tensor B
|
|
75
|
+
:type B: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray
|
|
76
|
+
|
|
77
|
+
:param C: tensor C
|
|
78
|
+
:type C: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray
|
|
79
|
+
|
|
80
|
+
:param D: tensor D
|
|
81
|
+
:type D: cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray
|
|
82
|
+
|
|
83
|
+
:param gemm_mode: GEMM mode
|
|
84
|
+
:type gemm_mode: :class:`cutlass.gemm.Mode`
|
|
85
|
+
|
|
86
|
+
:param output_op: output operator, optional
|
|
87
|
+
:type output_op: :class:`pycutlass.LinearCombinationFunctorArguments`
|
|
88
|
+
"""
|
|
89
|
+
|
|
90
|
+
def __init__(
|
|
91
|
+
self, operation: 'GemmOperation', problem_size: 'cutlass.gemm.GemmCoord',
|
|
92
|
+
A: 'Tensor', B: 'Tensor', C: 'Tensor', D: 'Tensor',
|
|
93
|
+
gemm_mode: 'cutlass.gemm.Mode'=cutlass.gemm.Mode.Gemm, **kwargs):
|
|
94
|
+
|
|
95
|
+
self.operation = operation
|
|
96
|
+
|
|
97
|
+
self.layout_A: cutlass.layout = operation.A.layout
|
|
98
|
+
self.layout_B: cutlass.layout = operation.B.layout
|
|
99
|
+
self.layout_C: cutlass.layout = operation.C.layout
|
|
100
|
+
|
|
101
|
+
self.element_A = operation.A.element
|
|
102
|
+
self.element_B = operation.B.element
|
|
103
|
+
self.element_C = operation.C.element
|
|
104
|
+
|
|
105
|
+
if (operation.C.layout in
|
|
106
|
+
[cutlass.RowMajorInterleaved32, cutlass.ColumnMajorInterleaved32]):
|
|
107
|
+
# reorder tensor B for interleaved layout output
|
|
108
|
+
B = self.reorder_tensor_B(B, problem_size)
|
|
109
|
+
|
|
110
|
+
super().__init__(A, B, C, D, **kwargs)
|
|
111
|
+
|
|
112
|
+
if operation.switched:
|
|
113
|
+
self.problem_size = cutlass.gemm.GemmCoord(
|
|
114
|
+
problem_size.n(), problem_size.m(), problem_size.k())
|
|
115
|
+
self.ptr_A, self.ptr_B = self.ptr_B, self.ptr_A
|
|
116
|
+
else:
|
|
117
|
+
self.problem_size = cutlass.gemm.GemmCoord(
|
|
118
|
+
problem_size.m(), problem_size.n(), problem_size.k())
|
|
119
|
+
|
|
120
|
+
# if the number of elements in C = problem_size.n
|
|
121
|
+
# C is treated as the bias
|
|
122
|
+
if hasattr(self, "tensor_c_numel"):
|
|
123
|
+
if (self.tensor_c_numel == self.problem_size.n() and
|
|
124
|
+
self.problem_size.m() != 1): self.bias = True
|
|
125
|
+
|
|
126
|
+
# get the leading dimension
|
|
127
|
+
self.lda = operation.A.layout.packed(self.problem_size.mk()).stride()
|
|
128
|
+
self.ldb = operation.B.layout.packed(self.problem_size.kn()).stride()
|
|
129
|
+
self.ldc = operation.C.layout.packed(self.problem_size.mn()).stride()
|
|
130
|
+
self.ldd = self.ldc
|
|
131
|
+
|
|
132
|
+
# stride 0 trick
|
|
133
|
+
if self.bias:
|
|
134
|
+
self.ldc = 0
|
|
135
|
+
|
|
136
|
+
if 'output_op' in kwargs.keys() and \
|
|
137
|
+
gemm_mode != cutlass.gemm.Mode.GemmSplitKParallel:
|
|
138
|
+
self.output_op = kwargs['output_op']
|
|
139
|
+
else:
|
|
140
|
+
self.output_op = self.operation.epilogue_type(1.0, 0.0)
|
|
141
|
+
|
|
142
|
+
# get number of slices on k dimension
|
|
143
|
+
self.gemm_mode = gemm_mode
|
|
144
|
+
if gemm_mode in [cutlass.gemm.Mode.Gemm, cutlass.gemm.Mode.GemmSplitKParallel]:
|
|
145
|
+
if 'split_k_slices' in kwargs.keys():
|
|
146
|
+
self.batch_count = kwargs['split_k_slices']
|
|
147
|
+
else:
|
|
148
|
+
self.batch_count = 1
|
|
149
|
+
self.split_k_slices = self.batch_count
|
|
150
|
+
|
|
151
|
+
if gemm_mode in [cutlass.gemm.Mode.Batched, cutlass.gemm.Mode.Array]:
|
|
152
|
+
if 'batch' in kwargs.keys():
|
|
153
|
+
self.batch_count = kwargs['batch']
|
|
154
|
+
else:
|
|
155
|
+
self.batch_count = 1
|
|
156
|
+
|
|
157
|
+
self.batched_stride_A = self.problem_size.m() * self.problem_size.k()
|
|
158
|
+
self.batched_stride_B = self.problem_size.n() * self.problem_size.k()
|
|
159
|
+
self.batched_stride_C = self.problem_size.m() * self.problem_size.n()
|
|
160
|
+
self.batched_stride_D = self.problem_size.m() * self.problem_size.n()
|
|
161
|
+
if self.bias:
|
|
162
|
+
self.batched_stride_C = self.problem_size.n()
|
|
163
|
+
|
|
164
|
+
# support GEMM Mode Array
|
|
165
|
+
if gemm_mode == cutlass.gemm.Mode.Array:
|
|
166
|
+
self.ptr_A_array = []
|
|
167
|
+
self.ptr_B_array = []
|
|
168
|
+
self.ptr_C_array = []
|
|
169
|
+
self.ptr_D_array = []
|
|
170
|
+
|
|
171
|
+
ptr_A_addr = int(self.ptr_A)
|
|
172
|
+
ptr_B_addr = int(self.ptr_B)
|
|
173
|
+
ptr_C_addr = int(self.ptr_C)
|
|
174
|
+
ptr_D_addr = int(self.ptr_D)
|
|
175
|
+
|
|
176
|
+
stride_A = self.batched_stride_A * DataTypeSize[self.element_A] // 8
|
|
177
|
+
stride_B = self.batched_stride_B * DataTypeSize[self.element_B] // 8
|
|
178
|
+
stride_C = self.batched_stride_C * DataTypeSize[self.element_C] // 8
|
|
179
|
+
stride_D = self.batched_stride_D * DataTypeSize[self.element_C] // 8
|
|
180
|
+
for _ in range(self.batch_count):
|
|
181
|
+
self.ptr_A_array.append(ptr_A_addr)
|
|
182
|
+
self.ptr_B_array.append(ptr_B_addr)
|
|
183
|
+
self.ptr_C_array.append(ptr_C_addr)
|
|
184
|
+
self.ptr_D_array.append(ptr_D_addr)
|
|
185
|
+
|
|
186
|
+
ptr_A_addr += stride_A
|
|
187
|
+
ptr_B_addr += stride_B
|
|
188
|
+
ptr_C_addr += stride_C
|
|
189
|
+
ptr_D_addr += stride_D
|
|
190
|
+
|
|
191
|
+
self.ptr_A_array_buffer = todevice(self.ptr_A_array, dtype=np.int64)
|
|
192
|
+
self.ptr_B_array_buffer = todevice(self.ptr_B_array, dtype=np.int64)
|
|
193
|
+
self.ptr_C_array_buffer = todevice(self.ptr_C_array, dtype=np.int64)
|
|
194
|
+
self.ptr_D_array_buffer = todevice(self.ptr_D_array, dtype=np.int64)
|
|
195
|
+
|
|
196
|
+
if isinstance(self.operation, GemmOperationUniversal):
|
|
197
|
+
self.initialize()
|
|
198
|
+
|
|
199
|
+
def reorder_tensor_B(self, tensor_B: 'np.ndarray',
|
|
200
|
+
problem_size: 'cutlass.gemm.GemmCoord'):
|
|
201
|
+
"""
|
|
202
|
+
Reorder tensor_B for interleaved layout
|
|
203
|
+
|
|
204
|
+
:param tensor_B: input tensor B
|
|
205
|
+
:type tensor_B: numpy.ndarray
|
|
206
|
+
:param problem_size: GEMM problem size
|
|
207
|
+
:type problem_size: :class:`cutlass.gemm.GemmCoord`
|
|
208
|
+
|
|
209
|
+
:return: reordered tensor B
|
|
210
|
+
:rtype: numpy.ndarray
|
|
211
|
+
"""
|
|
212
|
+
reordered_tensor_B = np.empty_like(tensor_B)
|
|
213
|
+
tensor_ref_B = self.get_tensor_ref(
|
|
214
|
+
tensor_B, self.element_B, self.layout_B, problem_size, "b"
|
|
215
|
+
)
|
|
216
|
+
reordered_tensor_ref_B = self.get_tensor_ref(
|
|
217
|
+
reordered_tensor_B, self.element_B, self.layout_B, problem_size, "b"
|
|
218
|
+
)
|
|
219
|
+
cutlass.gemm.host.reorder_column(
|
|
220
|
+
tensor_ref_B, reordered_tensor_ref_B, problem_size)
|
|
221
|
+
return reordered_tensor_B
|
|
222
|
+
|
|
223
|
+
def get_tensor_ref(
|
|
224
|
+
self, tensor, dtype, tensor_layout, problem_size, operand):
|
|
225
|
+
if operand == "a":
|
|
226
|
+
tensor_coord = problem_size.mk()
|
|
227
|
+
elif operand == "b":
|
|
228
|
+
tensor_coord = problem_size.kn()
|
|
229
|
+
elif operand in ["c", "d"]:
|
|
230
|
+
tensor_coord = problem_size.mn()
|
|
231
|
+
else:
|
|
232
|
+
raise ValueError("unknown operand: " + operand)
|
|
233
|
+
|
|
234
|
+
layout = tensor_layout.packed(tensor_coord)
|
|
235
|
+
|
|
236
|
+
return TensorRef(tensor, dtype, layout).tensor_ref
|
|
237
|
+
|
|
238
|
+
def get_arguments(self):
|
|
239
|
+
problem_size_ = GemmCoord_(self.problem_size)
|
|
240
|
+
grid_tiled_shape_ = GemmCoord_(
|
|
241
|
+
cutlass.gemm.GemmCoord(
|
|
242
|
+
self.grid_tiled_shape.x, self.grid_tiled_shape.y,
|
|
243
|
+
self.grid_tiled_shape.z
|
|
244
|
+
)
|
|
245
|
+
)
|
|
246
|
+
if self.gemm_mode == cutlass.gemm.Mode.Array:
|
|
247
|
+
arguments = self.operation.argument_type(
|
|
248
|
+
# Arguments from UniversalArgumentsBase
|
|
249
|
+
self.gemm_mode, problem_size_, self.batch_count, 0,
|
|
250
|
+
# Remaining arguments
|
|
251
|
+
self.output_op,
|
|
252
|
+
int(self.ptr_A_array_buffer.ptr),
|
|
253
|
+
int(self.ptr_B_array_buffer.ptr),
|
|
254
|
+
int(self.ptr_C_array_buffer.ptr),
|
|
255
|
+
int(self.ptr_D_array_buffer.ptr),
|
|
256
|
+
0, 0, 0,
|
|
257
|
+
self.lda, self.ldb, self.ldc, self.ldd,
|
|
258
|
+
self.lda, self.ldb, self.ldc, self.ldd,
|
|
259
|
+
0, 0, 0
|
|
260
|
+
)
|
|
261
|
+
else:
|
|
262
|
+
arguments = self.operation.argument_type(
|
|
263
|
+
# Arguments from UniversalArgumentsBase
|
|
264
|
+
self.gemm_mode, problem_size_, self.batch_count, self.batched_stride_D,
|
|
265
|
+
# Remaining arguments
|
|
266
|
+
self.output_op,
|
|
267
|
+
int(self.ptr_A), int(self.ptr_B), int(self.ptr_C), int(self.ptr_D),
|
|
268
|
+
self.batched_stride_A, self.batched_stride_B, self.batched_stride_C,
|
|
269
|
+
self.lda, self.ldb, self.ldc, self.ldd,
|
|
270
|
+
self.lda, self.ldb, self.ldc, self.ldd,
|
|
271
|
+
0, 0, 0
|
|
272
|
+
)
|
|
273
|
+
|
|
274
|
+
self.arguments = arguments, grid_tiled_shape_, self.gemm_k_size
|
|
275
|
+
|
|
276
|
+
def initialize(self):
|
|
277
|
+
# get launch configuration
|
|
278
|
+
launch_config = self.operation.rt_module.plan(self)
|
|
279
|
+
|
|
280
|
+
# get the host and evice workspace
|
|
281
|
+
device_workspace_size = \
|
|
282
|
+
self.operation.rt_module.get_device_workspace_size(self)
|
|
283
|
+
|
|
284
|
+
if device_workspace_size > 0:
|
|
285
|
+
self.workspace_buffer = device_mem_alloc(device_workspace_size)
|
|
286
|
+
workspace_ptr = self.workspace_buffer.ptr
|
|
287
|
+
err, = cuda.cuMemsetD32(
|
|
288
|
+
workspace_ptr, 0, device_workspace_size // 4)
|
|
289
|
+
else:
|
|
290
|
+
workspace_ptr = None
|
|
291
|
+
|
|
292
|
+
device_workspace = 0
|
|
293
|
+
if (workspace_ptr is not None and
|
|
294
|
+
self.gemm_mode == cutlass.gemm.Mode.GemmSplitKParallel):
|
|
295
|
+
# in GEMM splik-K parallel, the D pointer is redirected
|
|
296
|
+
# to the workspace
|
|
297
|
+
self.ptr_D = cuda.CUdeviceptr(workspace_ptr)
|
|
298
|
+
elif (workspace_ptr is not None and
|
|
299
|
+
self.gemm_mode == cutlass.gemm.Mode.Gemm):
|
|
300
|
+
# in GEMM split-K serial
|
|
301
|
+
device_workspace = workspace_ptr
|
|
302
|
+
|
|
303
|
+
self.get_arguments()
|
|
304
|
+
|
|
305
|
+
arguments, grid_tiled_shape, gemm_k_size = self.arguments
|
|
306
|
+
res_arg = self.operation.rt_module.get_args(
|
|
307
|
+
ctypes.byref(arguments), ctypes.c_void_p(int(device_workspace)))
|
|
308
|
+
host_workspace = bytearray(res_arg.contents)
|
|
309
|
+
|
|
310
|
+
device_workspace = None
|
|
311
|
+
|
|
312
|
+
self.host_workspace = host_workspace
|
|
313
|
+
self.device_workspace = device_workspace
|
|
314
|
+
self.launch_config = launch_config
|
|
315
|
+
|
|
316
|
+
|
|
317
|
+
class GemmGroupedArguments:
|
|
318
|
+
"""
|
|
319
|
+
Argument wrapper for GEMM Grouped. It encodes problem information and
|
|
320
|
+
user-provide tensors into the kernel's argument
|
|
321
|
+
|
|
322
|
+
:param operation: the GEMM Grouped operation to take the argument
|
|
323
|
+
:type operation: :class:`pycutlass.GemmOperationGrouped`
|
|
324
|
+
|
|
325
|
+
:param problem_size: list of GEMM problem size gemm(M, N, K)
|
|
326
|
+
:type operation: list[:class:`cutlass.gemm.GemmCoord`]
|
|
327
|
+
|
|
328
|
+
:param A: list of tensor A
|
|
329
|
+
:type A: list[cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray]
|
|
330
|
+
|
|
331
|
+
:param B: list of tensor B
|
|
332
|
+
:type B: list[cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray]
|
|
333
|
+
|
|
334
|
+
:param C: list of tensor C
|
|
335
|
+
:type C: list[cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray]
|
|
336
|
+
|
|
337
|
+
:param D: list of tensor D
|
|
338
|
+
:type D: list[cuda.CUdeviceptr | numpy.ndarray | torch.Tensor | cupy.ndarray]
|
|
339
|
+
|
|
340
|
+
:param output_op: output operator, optional
|
|
341
|
+
:type output_op: :class:`pycutlass.LinearCombinationFunctorArguments`
|
|
342
|
+
"""
|
|
343
|
+
def __init__(
|
|
344
|
+
self, operation: 'GemmOperationGrouped',
|
|
345
|
+
problem_sizes: 'list[cutlass.gemm.GemmCoord]',
|
|
346
|
+
A: 'list[Tensor]', B: 'list[Tensor]', C: 'list[torch.Tensor]',
|
|
347
|
+
D: 'list[Tensor]', **kwargs):
|
|
348
|
+
|
|
349
|
+
# get number of problems in the group
|
|
350
|
+
self.problem_count = len(problem_sizes)
|
|
351
|
+
|
|
352
|
+
# check the input arguments
|
|
353
|
+
assert len(A) == self.problem_count
|
|
354
|
+
assert len(B) == self.problem_count
|
|
355
|
+
assert len(C) == self.problem_count
|
|
356
|
+
assert len(D) == self.problem_count
|
|
357
|
+
|
|
358
|
+
problem_size_host = []
|
|
359
|
+
self.ptr_A_host = []
|
|
360
|
+
self.ptr_B_host = []
|
|
361
|
+
self.ptr_C_host = []
|
|
362
|
+
self.ptr_D_host = []
|
|
363
|
+
|
|
364
|
+
lda_host = []
|
|
365
|
+
ldb_host = []
|
|
366
|
+
ldc_host = []
|
|
367
|
+
ldd_host = []
|
|
368
|
+
|
|
369
|
+
self.partitions = 1
|
|
370
|
+
|
|
371
|
+
self.operation = operation
|
|
372
|
+
|
|
373
|
+
# get the threadblock
|
|
374
|
+
threadblock_shape = operation.tile_description.threadblock_shape
|
|
375
|
+
self.threadblock_shape = cutlass.gemm.GemmCoord(
|
|
376
|
+
threadblock_shape[0], threadblock_shape[1], threadblock_shape[2])
|
|
377
|
+
self.threadblock_swizzle = operation.swizzling_functor
|
|
378
|
+
|
|
379
|
+
self.total_tiles = 0
|
|
380
|
+
|
|
381
|
+
self.gemm_arguments = []
|
|
382
|
+
|
|
383
|
+
# process the input arguments
|
|
384
|
+
for idx, problem_size in enumerate(problem_sizes):
|
|
385
|
+
M, N, K = problem_size.m(), problem_size.n(), problem_size.k()
|
|
386
|
+
temp_argument = GemmArguments(
|
|
387
|
+
operation=operation,
|
|
388
|
+
problem_size=cutlass.gemm.GemmCoord(M, N, K),
|
|
389
|
+
A=A[idx], B=B[idx], C=C[idx], D=D[idx],
|
|
390
|
+
)
|
|
391
|
+
self.gemm_arguments.append(temp_argument)
|
|
392
|
+
|
|
393
|
+
problem_size_host.append(
|
|
394
|
+
[temp_argument.problem_size.m(),
|
|
395
|
+
temp_argument.problem_size.n(),
|
|
396
|
+
temp_argument.problem_size.k()]
|
|
397
|
+
)
|
|
398
|
+
|
|
399
|
+
self.ptr_A_host.append(int(temp_argument.ptr_A))
|
|
400
|
+
lda_host.append(temp_argument.lda)
|
|
401
|
+
|
|
402
|
+
self.ptr_B_host.append(int(temp_argument.ptr_B))
|
|
403
|
+
ldb_host.append(temp_argument.ldb)
|
|
404
|
+
|
|
405
|
+
self.ptr_C_host.append(int(temp_argument.ptr_C))
|
|
406
|
+
ldc_host.append(temp_argument.ldc)
|
|
407
|
+
|
|
408
|
+
self.ptr_D_host.append(int(temp_argument.ptr_D))
|
|
409
|
+
ldd_host.append(temp_argument.ldd)
|
|
410
|
+
|
|
411
|
+
# get number of tiles
|
|
412
|
+
grid = self.threadblock_swizzle.get_grid_shape(
|
|
413
|
+
self.threadblock_swizzle.get_tiled_shape(
|
|
414
|
+
temp_argument.problem_size, self.threadblock_shape,
|
|
415
|
+
temp_argument.batch_count)
|
|
416
|
+
)
|
|
417
|
+
self.total_tiles += grid.x * grid.y * grid.z
|
|
418
|
+
|
|
419
|
+
self.problem_size_buffer = todevice(problem_size_host, np.int32)
|
|
420
|
+
self.ptr_A_buffer = todevice(self.ptr_A_host, np.int64)
|
|
421
|
+
self.ptr_B_buffer = todevice(self.ptr_B_host, np.int64)
|
|
422
|
+
self.ptr_C_buffer = todevice(self.ptr_C_host, np.int64)
|
|
423
|
+
self.ptr_D_buffer = todevice(self.ptr_D_host, np.int64)
|
|
424
|
+
|
|
425
|
+
self.lda_buffer = todevice(lda_host, np.int64)
|
|
426
|
+
self.ldb_buffer = todevice(ldb_host, np.int64)
|
|
427
|
+
self.ldc_buffer = todevice(ldc_host, np.int64)
|
|
428
|
+
self.ldd_buffer = todevice(ldd_host, np.int64)
|
|
429
|
+
|
|
430
|
+
if 'output_op' in kwargs.keys():
|
|
431
|
+
self.alpha = kwargs['output_op'].alpha
|
|
432
|
+
self.beta = kwargs['output_op'].beta
|
|
433
|
+
else:
|
|
434
|
+
self.alpha = 1.0
|
|
435
|
+
self.beta = 0.0
|
|
436
|
+
|
|
437
|
+
if 'output_op' in kwargs.keys():
|
|
438
|
+
self.output_op = kwargs['output_op']
|
|
439
|
+
else:
|
|
440
|
+
self.output_op = self.operation.epilogue_type(1.0, 0.0)
|
|
441
|
+
|
|
442
|
+
|
|
443
|
+
# get host problem size
|
|
444
|
+
self.host_problem_size_ptr = np.array(
|
|
445
|
+
problem_size_host, dtype=np.int32).__array_interface__['data'][0]
|
|
446
|
+
|
|
447
|
+
self.arguments = self.get_arguments()
|
|
448
|
+
|
|
449
|
+
self.initialize()
|
|
450
|
+
|
|
451
|
+
def get_arguments(self):
|
|
452
|
+
return self.operation.argument_type(
|
|
453
|
+
self.problem_size_buffer.ptr, self.problem_count, self.total_tiles,
|
|
454
|
+
self.output_op, self.ptr_A_buffer.ptr, self.ptr_B_buffer.ptr,
|
|
455
|
+
self.ptr_C_buffer.ptr, self.ptr_D_buffer.ptr, self.lda_buffer.ptr,
|
|
456
|
+
self.ldb_buffer.ptr, self.ldc_buffer.ptr, self.ldd_buffer.ptr,
|
|
457
|
+
ctypes.c_void_p(int(self.host_problem_size_ptr))
|
|
458
|
+
)
|
|
459
|
+
|
|
460
|
+
def initialize(self):
|
|
461
|
+
# get launch configuration
|
|
462
|
+
launch_config = self.operation.rt_module.plan(self)
|
|
463
|
+
|
|
464
|
+
# get the host and evice workspace
|
|
465
|
+
device_workspace_size = \
|
|
466
|
+
self.operation.rt_module.get_device_workspace_size(self)
|
|
467
|
+
|
|
468
|
+
if device_workspace_size > 0:
|
|
469
|
+
self.workspace_buffer = device_mem_alloc(device_workspace_size)
|
|
470
|
+
workspace_ptr = self.workspace_buffer.ptr
|
|
471
|
+
err, = cuda.cuMemsetD32(
|
|
472
|
+
workspace_ptr, 0, device_workspace_size // 4)
|
|
473
|
+
else:
|
|
474
|
+
workspace_ptr = None
|
|
475
|
+
|
|
476
|
+
if self.operation.precompute_mode == SchedulerMode.Host:
|
|
477
|
+
device_workspace_ptr = self.operation.rt_module.host_precompute(
|
|
478
|
+
self, self.operation.rt_module.get_workspace_size(self))
|
|
479
|
+
else:
|
|
480
|
+
device_workspace_ptr = 0
|
|
481
|
+
|
|
482
|
+
result = self.operation.rt_module.get_args(
|
|
483
|
+
ctypes.byref(self.arguments), self.total_tiles,
|
|
484
|
+
ctypes.c_void_p(int(device_workspace_ptr))
|
|
485
|
+
)
|
|
486
|
+
host_workspace = bytearray(result.contents)
|
|
487
|
+
|
|
488
|
+
device_workspace = None
|
|
489
|
+
|
|
490
|
+
self.host_workspace = host_workspace
|
|
491
|
+
self.device_workspace = device_workspace
|
|
492
|
+
self.launch_config = launch_config
|
|
493
|
+
|
|
494
|
+
def sync(self):
|
|
495
|
+
err, = cudart.cudaDeviceSynchronize()
|
|
496
|
+
if err != cuda.CUresult.CUDA_SUCCESS:
|
|
497
|
+
raise RuntimeError("CUDA Error %s" % str(err))
|
|
498
|
+
for arg in self.gemm_arguments:
|
|
499
|
+
arg.sync(stream_sync=False)
|
|
500
|
+
|
|
501
|
+
|
|
502
|
+
################################################################################
|
|
503
|
+
# Base class for GEMM runtime module
|
|
504
|
+
################################################################################
|
|
505
|
+
|
|
506
|
+
class GemmRTbase(ExecutableOperation):
|
|
507
|
+
"""
|
|
508
|
+
GemmRT manages the CUTLASS runtime components
|
|
509
|
+
"""
|
|
510
|
+
|
|
511
|
+
KernelTemplate = r'''
|
|
512
|
+
extern "C"
|
|
513
|
+
__global__ void
|
|
514
|
+
${operation_name}(${operation_name}${operation_suffix}::Params params) {
|
|
515
|
+
|
|
516
|
+
// Dynamic shared memory base pointer
|
|
517
|
+
extern __shared__ int SharedStorageBase[];
|
|
518
|
+
|
|
519
|
+
// Declare pointer to dynamic shared memory.
|
|
520
|
+
${operation_name}${operation_suffix}::SharedStorage *shared_storage =
|
|
521
|
+
reinterpret_cast<${operation_name}${operation_suffix}::SharedStorage *>(SharedStorageBase);
|
|
522
|
+
|
|
523
|
+
${operation_name}${operation_suffix} op;
|
|
524
|
+
|
|
525
|
+
op(params, *shared_storage);
|
|
526
|
+
}
|
|
527
|
+
'''
|
|
528
|
+
|
|
529
|
+
def __init__(self, operation: 'GemmOperation'):
|
|
530
|
+
super().__init__(operation)
|
|
531
|
+
|
|
532
|
+
self.operation = operation
|
|
533
|
+
threadblock_shape = operation.tile_description.threadblock_shape
|
|
534
|
+
self.threadblock_shape = cutlass.gemm.GemmCoord(
|
|
535
|
+
threadblock_shape[0], threadblock_shape[1], threadblock_shape[2])
|
|
536
|
+
self.threadblock_swizzle = operation.swizzling_functor
|
|
537
|
+
|
|
538
|
+
#: number of threads per threadblock
|
|
539
|
+
self.threads: int = operation.tile_description.num_threads
|
|
540
|
+
|
|
541
|
+
#
|
|
542
|
+
def emit(self):
|
|
543
|
+
return self.emitter.emit(self.operation)
|
|
544
|
+
|
|
545
|
+
#
|
|
546
|
+
def can_implement(self, configuration, arguments):
|
|
547
|
+
raise NotImplementedError()
|
|
548
|
+
|
|
549
|
+
#
|
|
550
|
+
def get_host_workspace_size(self, arguments):
|
|
551
|
+
raise NotImplementedError()
|
|
552
|
+
|
|
553
|
+
#
|
|
554
|
+
def get_device_workspace_size(self, arguments):
|
|
555
|
+
return 0
|
|
556
|
+
|
|
557
|
+
#
|
|
558
|
+
def initialize(self):
|
|
559
|
+
err, = cuda.cuFuncSetAttribute(
|
|
560
|
+
self.kernel,
|
|
561
|
+
attrib=cuda.CUfunction_attribute.CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES,
|
|
562
|
+
value=self.shared_memory_capacity)
|
|
563
|
+
if err != cuda.CUresult.CUDA_SUCCESS:
|
|
564
|
+
raise RuntimeError('Cuda Error: {}'.format(err))
|
|
565
|
+
|
|
566
|
+
|
|
567
|
+
################################################################################
|
|
568
|
+
# Runtime module for GEMM Universal
|
|
569
|
+
################################################################################
|
|
570
|
+
|
|
571
|
+
|
|
572
|
+
class GemmRTUniversal(GemmRTbase):
|
|
573
|
+
"""
|
|
574
|
+
GemmRTUniversal manages the CUTLASS runtime components
|
|
575
|
+
"""
|
|
576
|
+
HostTemplate = r'''
|
|
577
|
+
extern "C" {
|
|
578
|
+
// Get the size of params in bytes
|
|
579
|
+
int ${operation_name}_get_param_size(){
|
|
580
|
+
return sizeof(${operation_name}${operation_suffix}::Params);
|
|
581
|
+
}
|
|
582
|
+
|
|
583
|
+
// Get the size of dynamic shared memory in bytes
|
|
584
|
+
int ${operation_name}_shared_memory_size() {
|
|
585
|
+
return int(sizeof(${operation_name}${operation_suffix}::SharedStorage));
|
|
586
|
+
}
|
|
587
|
+
|
|
588
|
+
// Get the params as byte array
|
|
589
|
+
char* ${operation_name}_get_params(${operation_name}_base::Arguments* argument, int* workspace){
|
|
590
|
+
${operation_name}_base::Params* params;
|
|
591
|
+
params = new ${operation_name}_base::Params(*argument,
|
|
592
|
+
-1, // SM count. Only used for stream-K
|
|
593
|
+
-1 // Occupancy. Only used for stream-K
|
|
594
|
+
);
|
|
595
|
+
|
|
596
|
+
// Semaphore holds the pointer to the workspace in the Params struct
|
|
597
|
+
params->semaphore = workspace;
|
|
598
|
+
|
|
599
|
+
char *bytes = ((char*)(params));
|
|
600
|
+
char *output = new char[sizeof(${operation_name}_base::Params)];
|
|
601
|
+
for (unsigned int i = 0; i < sizeof(${operation_name}_base::Params); i ++)
|
|
602
|
+
output[i] = bytes[i];
|
|
603
|
+
|
|
604
|
+
return output;
|
|
605
|
+
}
|
|
606
|
+
}
|
|
607
|
+
'''
|
|
608
|
+
|
|
609
|
+
def __init__(self, operation: 'GemmOperation'):
|
|
610
|
+
super(GemmRTUniversal, self).__init__(operation)
|
|
611
|
+
self.emitter = EmitGemmUniversalInstance(
|
|
612
|
+
'_type', operation.direct_store, operation.visitor)
|
|
613
|
+
|
|
614
|
+
self.argument_type, self.epilogue_type = get_gemm_arguments(operation.epilogue_functor)
|
|
615
|
+
self.argtype = [
|
|
616
|
+
ctypes.POINTER(self.argument_type),
|
|
617
|
+
ctypes.POINTER(GemmCoord_), ctypes.c_int, ctypes.c_void_p
|
|
618
|
+
]
|
|
619
|
+
|
|
620
|
+
def plan(self, arguments):
|
|
621
|
+
|
|
622
|
+
grid = self.threadblock_swizzle.get_tiled_shape(
|
|
623
|
+
arguments.problem_size, self.threadblock_shape, arguments.batch_count
|
|
624
|
+
)
|
|
625
|
+
|
|
626
|
+
gemm_k_size = arguments.problem_size.k()
|
|
627
|
+
if (arguments.gemm_mode in
|
|
628
|
+
[cutlass.gemm.Mode.Gemm, cutlass.gemm.Mode.GemmSplitKParallel]):
|
|
629
|
+
#
|
|
630
|
+
alignk = max(max(128 // DataTypeSize[self.operation.A.element],
|
|
631
|
+
128 // DataTypeSize[self.operation.B.element]), 1)
|
|
632
|
+
|
|
633
|
+
gemm_k_size = (((arguments.problem_size.k() + arguments.batch_count - 1) //
|
|
634
|
+
arguments.batch_count + alignk - 1) // alignk) * alignk
|
|
635
|
+
|
|
636
|
+
if gemm_k_size:
|
|
637
|
+
grid_z = (arguments.problem_size.k() +
|
|
638
|
+
gemm_k_size - 1) // gemm_k_size
|
|
639
|
+
grid = cutlass.gemm.GemmCoord(grid.m(), grid.n(), grid_z)
|
|
640
|
+
|
|
641
|
+
arguments.grid_tiled_shape = cutlass.dim3(grid.m(), grid.n(), grid.k())
|
|
642
|
+
grid = self.threadblock_swizzle.get_grid_shape(grid)
|
|
643
|
+
arguments.gemm_k_size = gemm_k_size
|
|
644
|
+
return LaunchConfiguration(
|
|
645
|
+
[grid.x, grid.y, grid.z],
|
|
646
|
+
[self.threads, 1, 1],
|
|
647
|
+
self.shared_memory_capacity)
|
|
648
|
+
|
|
649
|
+
#
|
|
650
|
+
def get_device_workspace_size(self, arguments: GemmArguments):
|
|
651
|
+
workspace_bytes = 0
|
|
652
|
+
if arguments.gemm_mode == cutlass.gemm.Mode.GemmSplitKParallel:
|
|
653
|
+
workspace_bytes = (DataTypeSize[arguments.operation.C.element]
|
|
654
|
+
* arguments.batched_stride_D * arguments.grid_tiled_shape.z // 8)
|
|
655
|
+
elif (arguments.gemm_mode == cutlass.gemm.Mode.Gemm and
|
|
656
|
+
arguments.split_k_slices > 1):
|
|
657
|
+
#
|
|
658
|
+
workspace_bytes = 4 * arguments.grid_tiled_shape.x * arguments.grid_tiled_shape.y
|
|
659
|
+
|
|
660
|
+
# TODO: get extra workspace size
|
|
661
|
+
# see https://github.com/NVIDIA/cutlass/blob/master/include/cutlass/gemm/device/gemm_universal_base.h
|
|
662
|
+
return workspace_bytes
|
|
663
|
+
|
|
664
|
+
|
|
665
|
+
###################################################################################################
|
|
666
|
+
# Runtime module for GEMM Grouped
|
|
667
|
+
###################################################################################################
|
|
668
|
+
|
|
669
|
+
|
|
670
|
+
class GemmRTGrouped(GemmRTbase):
|
|
671
|
+
"""
|
|
672
|
+
GemmRTGrouped manages the CUTLASS runtime components
|
|
673
|
+
"""
|
|
674
|
+
HostTemplate = r'''
|
|
675
|
+
extern "C" {
|
|
676
|
+
|
|
677
|
+
// precompute scheduling information
|
|
678
|
+
char * ${operation_name}_precompute(${operation_name}_base::Arguments const &args, int tile_count, size_t workspace_bytes) {
|
|
679
|
+
char* host_workspace = new char[workspace_bytes];
|
|
680
|
+
${operation_name}_base::ProblemVisitor::host_precompute(
|
|
681
|
+
args.host_problem_sizes,
|
|
682
|
+
args.problem_count,
|
|
683
|
+
args.threadblock_count,
|
|
684
|
+
(void*)host_workspace
|
|
685
|
+
);
|
|
686
|
+
return host_workspace;
|
|
687
|
+
}
|
|
688
|
+
|
|
689
|
+
// Get the size of params in bytes
|
|
690
|
+
int ${operation_name}_get_param_size(){
|
|
691
|
+
return sizeof(${operation_name}${operation_suffix}::Params);
|
|
692
|
+
}
|
|
693
|
+
|
|
694
|
+
// Get the size of dynamic shared memory in bytes
|
|
695
|
+
int ${operation_name}_shared_memory_size() {
|
|
696
|
+
return int(sizeof(${operation_name}${operation_suffix}::SharedStorage));
|
|
697
|
+
}
|
|
698
|
+
|
|
699
|
+
// Get the params as byte array
|
|
700
|
+
char* ${operation_name}_get_params(${operation_name}_base::Arguments* argument, int tile_count, void* workspace=nullptr){
|
|
701
|
+
${operation_name}_base::Params* params;
|
|
702
|
+
params = new ${operation_name}_base::Params(*argument, workspace, tile_count);
|
|
703
|
+
|
|
704
|
+
char *bytes = ((char*)(params));
|
|
705
|
+
char *output = new char[sizeof(${operation_name}_base::Params)];
|
|
706
|
+
for (unsigned int i = 0; i < sizeof(${operation_name}_base::Params); i ++)
|
|
707
|
+
output[i] = bytes[i];
|
|
708
|
+
|
|
709
|
+
return output;
|
|
710
|
+
}
|
|
711
|
+
}
|
|
712
|
+
'''
|
|
713
|
+
|
|
714
|
+
def __init__(self, operation: 'GemmOperation'):
|
|
715
|
+
super(GemmRTGrouped, self).__init__(operation)
|
|
716
|
+
self.extra_funcs = ['precompute']
|
|
717
|
+
|
|
718
|
+
self.emitter = EmitGemmGroupedInstance('_type')
|
|
719
|
+
self.argument_type, self.epilogue_type = get_gemm_grouped_arguments(operation.epilogue_functor)
|
|
720
|
+
self.argtype = [ctypes.POINTER(self.argument_type), ctypes.c_int, ctypes.c_void_p]
|
|
721
|
+
|
|
722
|
+
def host_precompute(self, arguments, workspace_bytes):
|
|
723
|
+
self.precompute.argtype = [
|
|
724
|
+
self.argtype[0], ctypes.c_int, ctypes.c_longlong]
|
|
725
|
+
self.precompute.restype = ctypes.POINTER(
|
|
726
|
+
ctypes.c_byte * workspace_bytes)
|
|
727
|
+
|
|
728
|
+
problem_info = self.precompute(ctypes.byref(
|
|
729
|
+
arguments.arguments), arguments.total_tiles, workspace_bytes)
|
|
730
|
+
problem_info_array = bytearray(problem_info.contents)
|
|
731
|
+
|
|
732
|
+
# copy to device memory
|
|
733
|
+
return rmm.DeviceBuffer.to_device(problem_info_array).ptr
|
|
734
|
+
|
|
735
|
+
def plan(self, arguments):
|
|
736
|
+
return LaunchConfiguration(
|
|
737
|
+
[arguments.total_tiles, 1, 1],
|
|
738
|
+
[self.threads, 1, 1], self.shared_memory_capacity)
|
|
739
|
+
|
|
740
|
+
def get_workspace_size(self, arguments):
|
|
741
|
+
if self.operation.precompute_mode == SchedulerMode.Device:
|
|
742
|
+
return 0
|
|
743
|
+
elif self.operation.precompute_mode == SchedulerMode.Host:
|
|
744
|
+
total_tiles = arguments.total_tiles
|
|
745
|
+
entries_per_block = 1
|
|
746
|
+
return 8 * entries_per_block * total_tiles # three int32_t
|
|
747
|
+
|
|
748
|
+
|
|
749
|
+
################################################################################
|
|
750
|
+
# Runtime module for GEMM Grouped
|
|
751
|
+
################################################################################
|
|
752
|
+
|
|
753
|
+
#
|
|
754
|
+
class GemmOperationBase:
|
|
755
|
+
"""
|
|
756
|
+
CUTLASS GEMM operation
|
|
757
|
+
"""
|
|
758
|
+
#
|
|
759
|
+
|
|
760
|
+
def __init__(
|
|
761
|
+
self, gemm_kind, arch, tile_description: TileDescription,
|
|
762
|
+
A: TensorDescription, B: TensorDescription, C: TensorDescription,
|
|
763
|
+
epilogue_functor,
|
|
764
|
+
swizzling_functor=cutlass.IdentitySwizzle1, **kwargs):
|
|
765
|
+
|
|
766
|
+
#: operation kind
|
|
767
|
+
self.operation_kind: OperationKind = OperationKind.Gemm
|
|
768
|
+
#: compute capability
|
|
769
|
+
self.arch: int = arch
|
|
770
|
+
#: tile description object
|
|
771
|
+
self.tile_description: TileDescription = tile_description
|
|
772
|
+
#: gemm kind
|
|
773
|
+
self.gemm_kind: GemmKind = gemm_kind
|
|
774
|
+
|
|
775
|
+
# use deep copy to avoid overwritting the original TensorDescription
|
|
776
|
+
if C.layout == cutlass.ColumnMajor:
|
|
777
|
+
#: Operand A
|
|
778
|
+
self.A: TensorDescription = copy.deepcopy(B)
|
|
779
|
+
#: Operand B
|
|
780
|
+
self.B: TensorDescription = copy.deepcopy(A)
|
|
781
|
+
#: Operand C
|
|
782
|
+
self.C: TensorDescription = copy.deepcopy(C)
|
|
783
|
+
self.A.layout = transpose_layout(self.A.layout)
|
|
784
|
+
self.B.layout = transpose_layout(self.B.layout)
|
|
785
|
+
self.C.layout = transpose_layout(self.C.layout)
|
|
786
|
+
self.switched = True
|
|
787
|
+
else:
|
|
788
|
+
#: Operand A
|
|
789
|
+
self.A: TensorDescription = copy.deepcopy(A)
|
|
790
|
+
#: Operand B
|
|
791
|
+
self.B: TensorDescription = copy.deepcopy(B)
|
|
792
|
+
#: Operand C
|
|
793
|
+
self.C: TensorDescription = copy.deepcopy(C)
|
|
794
|
+
self.switched = False
|
|
795
|
+
|
|
796
|
+
self.epilogue_functor = epilogue_functor
|
|
797
|
+
self.swizzling_functor = swizzling_functor()
|
|
798
|
+
|
|
799
|
+
if "direct_store" in kwargs:
|
|
800
|
+
self.direct_store = kwargs["direct_store"]
|
|
801
|
+
else:
|
|
802
|
+
self.direct_store = False
|
|
803
|
+
|
|
804
|
+
if "visitor" in kwargs:
|
|
805
|
+
self.visitor = kwargs["visitor"]
|
|
806
|
+
else:
|
|
807
|
+
self.visitor = False
|
|
808
|
+
|
|
809
|
+
def run(self, arguments: GemmArguments) -> cuda.CUresult:
|
|
810
|
+
"""
|
|
811
|
+
Configure and launch the cuda kernel with input arguments
|
|
812
|
+
"""
|
|
813
|
+
err = self.rt_module.run(
|
|
814
|
+
arguments.host_workspace,
|
|
815
|
+
arguments.device_workspace,
|
|
816
|
+
arguments.launch_config)
|
|
817
|
+
|
|
818
|
+
if err != cuda.CUresult.CUDA_SUCCESS:
|
|
819
|
+
raise RuntimeError('CUDA Error %s' % str(err))
|
|
820
|
+
|
|
821
|
+
return err
|
|
822
|
+
|
|
823
|
+
def free(self):
|
|
824
|
+
if hasattr(self, "workspace_buffer"):
|
|
825
|
+
del self.workspace_buffer
|
|
826
|
+
|
|
827
|
+
#
|
|
828
|
+
def is_complex(self):
|
|
829
|
+
complex_operators = [
|
|
830
|
+
MathOperation.multiply_add_complex,
|
|
831
|
+
MathOperation.multiply_add_complex_gaussian,
|
|
832
|
+
MathOperation.multiply_add_complex_fast_f32
|
|
833
|
+
]
|
|
834
|
+
return self.tile_description.math_instruction.math_operation in complex_operators
|
|
835
|
+
|
|
836
|
+
#
|
|
837
|
+
def is_planar_complex(self):
|
|
838
|
+
return self.gemm_kind in (GemmKind.PlanarComplex, GemmKind.PlanarComplexArray)
|
|
839
|
+
|
|
840
|
+
#
|
|
841
|
+
def accumulator_type(self):
|
|
842
|
+
accum = self.tile_description.math_instruction.element_accumulator
|
|
843
|
+
|
|
844
|
+
if self.is_complex():
|
|
845
|
+
return get_complex_from_real(accum)
|
|
846
|
+
|
|
847
|
+
return accum
|
|
848
|
+
|
|
849
|
+
#
|
|
850
|
+
def short_math_name(self):
|
|
851
|
+
if self.tile_description.math_instruction.math_operation == MathOperation.multiply_add_complex_gaussian:
|
|
852
|
+
return "g%s" % ShortDataTypeNames[self.accumulator_type()]
|
|
853
|
+
return ShortDataTypeNames[self.accumulator_type()]
|
|
854
|
+
|
|
855
|
+
#
|
|
856
|
+
|
|
857
|
+
def core_name(self):
|
|
858
|
+
''' The basic operation kind is prefixed with a letter indicating the accumulation type. '''
|
|
859
|
+
|
|
860
|
+
inst_shape = ''
|
|
861
|
+
inst_operation = ''
|
|
862
|
+
intermediate_type = ''
|
|
863
|
+
|
|
864
|
+
math_operations_map = {
|
|
865
|
+
MathOperation.xor_popc: 'xor',
|
|
866
|
+
}
|
|
867
|
+
|
|
868
|
+
if self.tile_description.math_instruction.opcode_class == cutlass.OpClass.TensorOp or \
|
|
869
|
+
self.tile_description.math_instruction.opcode_class == cutlass.OpClass.WmmaTensorOp:
|
|
870
|
+
|
|
871
|
+
math_op = self.tile_description.math_instruction.math_operation
|
|
872
|
+
math_op_string = math_operations_map[math_op] if math_op in math_operations_map.keys(
|
|
873
|
+
) else ''
|
|
874
|
+
|
|
875
|
+
inst_shape = "%d%d%d" % tuple(
|
|
876
|
+
self.tile_description.math_instruction.instruction_shape)
|
|
877
|
+
inst_shape += math_op_string
|
|
878
|
+
|
|
879
|
+
if self.tile_description.math_instruction.element_a != self.A.element and \
|
|
880
|
+
self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator:
|
|
881
|
+
intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a]
|
|
882
|
+
|
|
883
|
+
return "%s%s%s%s" % (self.short_math_name(), inst_shape, intermediate_type, GemmKindNames[self.gemm_kind])
|
|
884
|
+
|
|
885
|
+
#
|
|
886
|
+
def extended_name(self):
|
|
887
|
+
''' Append data types if they differ from compute type. '''
|
|
888
|
+
if self.is_complex():
|
|
889
|
+
extended_name = "${core_name}"
|
|
890
|
+
else:
|
|
891
|
+
if self.C.element != self.tile_description.math_instruction.element_accumulator and \
|
|
892
|
+
self.A.element != self.tile_description.math_instruction.element_accumulator:
|
|
893
|
+
extended_name = "${element_c}_${core_name}_${element_a}"
|
|
894
|
+
elif self.C.element == self.tile_description.math_instruction.element_accumulator and \
|
|
895
|
+
self.A.element != self.tile_description.math_instruction.element_accumulator:
|
|
896
|
+
extended_name = "${core_name}_${element_a}"
|
|
897
|
+
else:
|
|
898
|
+
extended_name = "${core_name}"
|
|
899
|
+
|
|
900
|
+
extended_name = SubstituteTemplate(extended_name, {
|
|
901
|
+
'element_a': DataTypeNames[self.A.element],
|
|
902
|
+
'element_c': DataTypeNames[self.C.element],
|
|
903
|
+
'core_name': self.core_name()
|
|
904
|
+
})
|
|
905
|
+
|
|
906
|
+
return extended_name
|
|
907
|
+
|
|
908
|
+
#
|
|
909
|
+
def layout_name(self):
|
|
910
|
+
if self.is_complex() or self.is_planar_complex():
|
|
911
|
+
return "%s%s" % (
|
|
912
|
+
ShortComplexLayoutNames[(
|
|
913
|
+
self.A.layout, self.A.complex_transform)],
|
|
914
|
+
ShortComplexLayoutNames[(
|
|
915
|
+
self.B.layout, self.B.complex_transform)]
|
|
916
|
+
)
|
|
917
|
+
return "%s%s" % (ShortLayoutTypeNames[self.A.layout], ShortLayoutTypeNames[self.B.layout])
|
|
918
|
+
|
|
919
|
+
#
|
|
920
|
+
def procedural_name(self):
|
|
921
|
+
''' The full procedural name indicates architecture, extended name, tile size, and layout. '''
|
|
922
|
+
threadblock = self.tile_description.procedural_name()
|
|
923
|
+
|
|
924
|
+
opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class]
|
|
925
|
+
|
|
926
|
+
alignment = max([self.A.alignment, self.B.alignment, self.C.alignment])
|
|
927
|
+
|
|
928
|
+
return SubstituteTemplate(
|
|
929
|
+
"cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_align${alignment}",
|
|
930
|
+
{
|
|
931
|
+
'opcode_class': opcode_class_name,
|
|
932
|
+
'extended_name': self.extended_name(),
|
|
933
|
+
'threadblock': threadblock,
|
|
934
|
+
'layout': self.layout_name(),
|
|
935
|
+
'alignment': "%d" % self.A.alignment,
|
|
936
|
+
}
|
|
937
|
+
)
|
|
938
|
+
|
|
939
|
+
#
|
|
940
|
+
def configuration_name(self):
|
|
941
|
+
''' The full procedural name indicates architecture, extended name, tile size, and layout. '''
|
|
942
|
+
return self.procedural_name()
|
|
943
|
+
|
|
944
|
+
|
|
945
|
+
class GemmOperationUniversal(GemmOperationBase):
|
|
946
|
+
def __init__(self, arch, tile_description: TileDescription, A: TensorDescription, B, C,
|
|
947
|
+
epilogue_functor, swizzling_functor=cutlass.IdentitySwizzle1, **kwargs):
|
|
948
|
+
super(GemmOperationUniversal, self).__init__(GemmKind.Universal, arch, tile_description,
|
|
949
|
+
A, B, C, epilogue_functor, swizzling_functor, **kwargs)
|
|
950
|
+
self.rt_module = GemmRTUniversal(self)
|
|
951
|
+
self.argument_type = self.rt_module.argument_type
|
|
952
|
+
self.epilogue_type = self.rt_module.epilogue_type
|
|
953
|
+
|
|
954
|
+
|
|
955
|
+
class GemmOperationGrouped(GemmOperationBase):
|
|
956
|
+
def __init__(self, arch, tile_description: TileDescription, A: TensorDescription, B, C,
|
|
957
|
+
epilogue_functor, swizzling_functor=cutlass.IdentitySwizzle1, **kwargs):
|
|
958
|
+
super(GemmOperationGrouped, self).__init__(GemmKind.Grouped, arch, tile_description,
|
|
959
|
+
A, B, C, epilogue_functor, swizzling_functor, **kwargs)
|
|
960
|
+
assert "precompute_mode" in kwargs.keys(
|
|
961
|
+
), "missing keyword arguement 'precompute_mode'."
|
|
962
|
+
self.precompute_mode = kwargs["precompute_mode"]
|
|
963
|
+
self.rt_module = GemmRTGrouped(self)
|
|
964
|
+
self.argument_type = self.rt_module.argument_type
|
|
965
|
+
self.epilogue_type = self.rt_module.epilogue_type
|
|
966
|
+
|
|
967
|
+
###################################################################################################
|
|
968
|
+
#
|
|
969
|
+
# Emits single instances of a CUTLASS device-wide operator
|
|
970
|
+
#
|
|
971
|
+
###################################################################################################
|
|
972
|
+
|
|
973
|
+
#
|
|
974
|
+
class EmitGemmUniversalInstance:
|
|
975
|
+
''' Responsible for emitting a CUTLASS template definition'''
|
|
976
|
+
|
|
977
|
+
def __init__(self, operation_suffix='', direct_store=False, visitor=False):
|
|
978
|
+
self.operation_suffix = operation_suffix
|
|
979
|
+
self.direct_store = direct_store
|
|
980
|
+
self.visitor = visitor
|
|
981
|
+
self.includes = [
|
|
982
|
+
"cutlass/cutlass.h",
|
|
983
|
+
"cutlass/numeric_types.h",
|
|
984
|
+
"cutlass/arch/arch.h",
|
|
985
|
+
"cutlass/arch/mma.h",
|
|
986
|
+
"cutlass/layout/matrix.h",
|
|
987
|
+
"cutlass/gemm/device/gemm.h",
|
|
988
|
+
"cutlass/gemm/device/gemm_universal_adapter.h",
|
|
989
|
+
"cutlass/gemm/kernel/default_gemm_universal.h",
|
|
990
|
+
]
|
|
991
|
+
if self.visitor:
|
|
992
|
+
self.includes += [
|
|
993
|
+
"gemm/gemm_universal_with_visitor.h",
|
|
994
|
+
"epilogue/epilogue_visitor_with_layernorm.h",
|
|
995
|
+
"epilogue/epilogue_visitor_generic.h"
|
|
996
|
+
]
|
|
997
|
+
if self.direct_store:
|
|
998
|
+
self.includes.append(
|
|
999
|
+
"cutlass/epilogue/threadblock/default_epilogue_direct_store.h")
|
|
1000
|
+
self.gemm_template_interleaved = """
|
|
1001
|
+
// Gemm operator ${operation_name}
|
|
1002
|
+
using ${operation_name}_base =
|
|
1003
|
+
typename cutlass::gemm::kernel::DefaultGemmUniversal<
|
|
1004
|
+
${element_a}, ${layout_a}, ${transform_a}, ${align_a},
|
|
1005
|
+
${element_b}, ${layout_b}, ${transform_b}, ${align_b},
|
|
1006
|
+
${element_c}, ${layout_c},
|
|
1007
|
+
${element_accumulator},
|
|
1008
|
+
${opcode_class},
|
|
1009
|
+
${arch},
|
|
1010
|
+
cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>,
|
|
1011
|
+
cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>,
|
|
1012
|
+
cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>,
|
|
1013
|
+
${epilogue_functor},
|
|
1014
|
+
${swizzling_functor},
|
|
1015
|
+
${stages},
|
|
1016
|
+
${math_operation}
|
|
1017
|
+
>::GemmKernel;
|
|
1018
|
+
|
|
1019
|
+
// Define named type
|
|
1020
|
+
struct ${operation_name}${operation_suffix} :
|
|
1021
|
+
public ${operation_name}_base { };
|
|
1022
|
+
"""
|
|
1023
|
+
self.gemm_template_direct_store = """
|
|
1024
|
+
// Gemm operator ${operation_name}
|
|
1025
|
+
using ${operation_name}_default =
|
|
1026
|
+
typename cutlass::gemm::kernel::DefaultGemmUniversal<
|
|
1027
|
+
${element_a}, ${layout_a}, ${transform_a}, ${align_a},
|
|
1028
|
+
${element_b}, ${layout_b}, ${transform_b}, ${align_b},
|
|
1029
|
+
${element_c}, ${layout_c},
|
|
1030
|
+
${element_accumulator},
|
|
1031
|
+
${opcode_class},
|
|
1032
|
+
${arch},
|
|
1033
|
+
cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>,
|
|
1034
|
+
cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>,
|
|
1035
|
+
cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>,
|
|
1036
|
+
${epilogue_functor},
|
|
1037
|
+
${swizzling_functor},
|
|
1038
|
+
${stages},
|
|
1039
|
+
${math_operation}
|
|
1040
|
+
>::GemmKernel;
|
|
1041
|
+
|
|
1042
|
+
using ${operation_name}_base =
|
|
1043
|
+
cutlass::gemm::kernel::GemmUniversal<
|
|
1044
|
+
${operation_name}_default::Mma,
|
|
1045
|
+
cutlass::epilogue::threadblock::DefaultEpilogueDirectStore<
|
|
1046
|
+
${operation_name}_default::Epilogue
|
|
1047
|
+
>::Epilogue,
|
|
1048
|
+
${operation_name}_default::ThreadblockSwizzle
|
|
1049
|
+
>;
|
|
1050
|
+
|
|
1051
|
+
// Define named type
|
|
1052
|
+
struct ${operation_name}${operation_suffix} :
|
|
1053
|
+
public ${operation_name}_base { };
|
|
1054
|
+
"""
|
|
1055
|
+
self.gemm_template_visitor = """
|
|
1056
|
+
// Gemm operator ${operation_name}
|
|
1057
|
+
using ${operation_name}_default =
|
|
1058
|
+
typename cutlass::gemm::kernel::DefaultGemmUniversal<
|
|
1059
|
+
${element_a}, ${layout_a}, ${transform_a}, ${align_a},
|
|
1060
|
+
${element_b}, ${layout_b}, ${transform_b}, ${align_b},
|
|
1061
|
+
${element_c}, ${layout_c},
|
|
1062
|
+
${element_accumulator},
|
|
1063
|
+
${opcode_class},
|
|
1064
|
+
${arch},
|
|
1065
|
+
cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>,
|
|
1066
|
+
cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>,
|
|
1067
|
+
cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>,
|
|
1068
|
+
${elementwise_epilogue_functor},
|
|
1069
|
+
${swizzling_functor},
|
|
1070
|
+
${stages},
|
|
1071
|
+
${math_operation}
|
|
1072
|
+
>::GemmKernel;
|
|
1073
|
+
|
|
1074
|
+
${epilogue_visitor}
|
|
1075
|
+
|
|
1076
|
+
using ${operation_name}_Epilogue = typename cutlass::epilogue::threadblock::EpilogueWithVisitorFromExistingEpilogue<
|
|
1077
|
+
${operation_name}_EpilogueVisitor,
|
|
1078
|
+
typename ${operation_name}_default::Epilogue>::Epilogue;
|
|
1079
|
+
|
|
1080
|
+
using ${operation_name}_base =
|
|
1081
|
+
cutlass::gemm::kernel::GemmUniversalwithEpilogueVisitor<
|
|
1082
|
+
${operation_name}_default::Mma,
|
|
1083
|
+
${operation_name}_Epilogue,
|
|
1084
|
+
${operation_name}_default::ThreadblockSwizzle
|
|
1085
|
+
>;
|
|
1086
|
+
|
|
1087
|
+
// Define named type
|
|
1088
|
+
struct ${operation_name}${operation_suffix} :
|
|
1089
|
+
public ${operation_name}_base { };
|
|
1090
|
+
"""
|
|
1091
|
+
|
|
1092
|
+
#
|
|
1093
|
+
def instance_template(self):
|
|
1094
|
+
return """
|
|
1095
|
+
${compile_guard_start}
|
|
1096
|
+
manifest.append(new ${gemm_kind}<
|
|
1097
|
+
cutlass::gemm::device::GemmUniversalAdapter<${operation_name}>
|
|
1098
|
+
>("${operation_name}"));
|
|
1099
|
+
${compile_guard_end}
|
|
1100
|
+
"""
|
|
1101
|
+
|
|
1102
|
+
#
|
|
1103
|
+
def emit(self, operation):
|
|
1104
|
+
|
|
1105
|
+
threadblock_shape = operation.tile_description.threadblock_shape
|
|
1106
|
+
warp_count = operation.tile_description.warp_count
|
|
1107
|
+
|
|
1108
|
+
warp_shape = [threadblock_shape[idx] // warp_count[idx]
|
|
1109
|
+
for idx in range(3)]
|
|
1110
|
+
|
|
1111
|
+
# transpose_layouts = {
|
|
1112
|
+
# cutlass.layout.ColumnMajorcutlass.layout.ColumnMajor,
|
|
1113
|
+
# cutlass.layout.RowMajorcutlass.layout.RowMajor
|
|
1114
|
+
# }
|
|
1115
|
+
|
|
1116
|
+
# if operation.A.layout in transpose_layouts.keys() and \
|
|
1117
|
+
# operation.B.layout in transpose_layouts.keys() and \
|
|
1118
|
+
# operation.C.layout in transpose_layouts.keys():
|
|
1119
|
+
|
|
1120
|
+
# instance_layout_A = transpose_layouts[operation.A.layout]
|
|
1121
|
+
# instance_layout_B = transpose_layouts[operation.B.layout]
|
|
1122
|
+
# instance_layout_C = transpose_layouts[operation.C.layout]
|
|
1123
|
+
|
|
1124
|
+
# gemm_template = self.gemm_template
|
|
1125
|
+
# else:
|
|
1126
|
+
instance_layout_A, instance_layout_B, instance_layout_C = \
|
|
1127
|
+
(operation.A.layout, operation.B.layout, operation.C.layout)
|
|
1128
|
+
if self.direct_store:
|
|
1129
|
+
gemm_template = self.gemm_template_direct_store
|
|
1130
|
+
elif self.visitor:
|
|
1131
|
+
gemm_template = self.gemm_template_visitor
|
|
1132
|
+
else:
|
|
1133
|
+
gemm_template = self.gemm_template_interleaved
|
|
1134
|
+
#
|
|
1135
|
+
|
|
1136
|
+
values = {
|
|
1137
|
+
'operation_name': operation.procedural_name(),
|
|
1138
|
+
'operation_suffix': self.operation_suffix,
|
|
1139
|
+
'element_a': DataTypeTag[operation.A.element],
|
|
1140
|
+
'layout_a': LayoutTag[instance_layout_A],
|
|
1141
|
+
'element_b': DataTypeTag[operation.B.element],
|
|
1142
|
+
'layout_b': LayoutTag[instance_layout_B],
|
|
1143
|
+
'element_c': DataTypeTag[operation.C.element],
|
|
1144
|
+
'layout_c': LayoutTag[instance_layout_C],
|
|
1145
|
+
'element_accumulator': DataTypeTag[operation.accumulator_type()],
|
|
1146
|
+
'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class],
|
|
1147
|
+
'arch': "cutlass::arch::Sm%d" % operation.arch,
|
|
1148
|
+
'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]),
|
|
1149
|
+
'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]),
|
|
1150
|
+
'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]),
|
|
1151
|
+
'warp_shape_m': str(warp_shape[0]),
|
|
1152
|
+
'warp_shape_n': str(warp_shape[1]),
|
|
1153
|
+
'warp_shape_k': str(warp_shape[2]),
|
|
1154
|
+
'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]),
|
|
1155
|
+
'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]),
|
|
1156
|
+
'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]),
|
|
1157
|
+
'swizzling_functor': operation.swizzling_functor.tag(),
|
|
1158
|
+
'stages': str(operation.tile_description.stages),
|
|
1159
|
+
'align_a': str(operation.A.alignment),
|
|
1160
|
+
'align_b': str(operation.B.alignment),
|
|
1161
|
+
'transform_a': ComplexTransformTag[operation.A.complex_transform],
|
|
1162
|
+
'transform_b': ComplexTransformTag[operation.B.complex_transform],
|
|
1163
|
+
'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation]
|
|
1164
|
+
}
|
|
1165
|
+
|
|
1166
|
+
if self.visitor:
|
|
1167
|
+
values['epilogue_visitor'] = operation.epilogue_functor.emit(operation)
|
|
1168
|
+
values['elementwise_epilogue_functor'] = operation.epilogue_functor.elementwise_functor.emit()
|
|
1169
|
+
else:
|
|
1170
|
+
values['epilogue_functor'] = operation.epilogue_functor.emit()
|
|
1171
|
+
|
|
1172
|
+
return SubstituteTemplate(gemm_template, values)
|
|
1173
|
+
|
|
1174
|
+
###################################################################################################
|
|
1175
|
+
|
|
1176
|
+
#
|
|
1177
|
+
|
|
1178
|
+
|
|
1179
|
+
class EmitGemmGroupedInstance:
|
|
1180
|
+
''' Responsible for emitting a CUTLASS template definition'''
|
|
1181
|
+
|
|
1182
|
+
def __init__(self, operation_suffix=''):
|
|
1183
|
+
self.operation_suffix = operation_suffix
|
|
1184
|
+
self.includes = [
|
|
1185
|
+
"cutlass/cutlass.h",
|
|
1186
|
+
"cutlass/numeric_types.h",
|
|
1187
|
+
"cutlass/arch/arch.h",
|
|
1188
|
+
"cutlass/arch/mma.h",
|
|
1189
|
+
"cutlass/layout/matrix.h",
|
|
1190
|
+
"cutlass/gemm/kernel/gemm_grouped.h",
|
|
1191
|
+
"cutlass/gemm/kernel/default_gemm_grouped.h"
|
|
1192
|
+
]
|
|
1193
|
+
self.gemm_template = """
|
|
1194
|
+
// Gemm operator ${operation_name}
|
|
1195
|
+
using ${operation_name}_base =
|
|
1196
|
+
typename cutlass::gemm::kernel::DefaultGemmGrouped<
|
|
1197
|
+
${element_a}, ${layout_a}, ${transform_a}, ${align_a},
|
|
1198
|
+
${element_b}, ${layout_b}, ${transform_b}, ${align_b},
|
|
1199
|
+
${element_c}, ${layout_c},
|
|
1200
|
+
${element_accumulator},
|
|
1201
|
+
${opcode_class},
|
|
1202
|
+
${arch},
|
|
1203
|
+
cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>,
|
|
1204
|
+
cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>,
|
|
1205
|
+
cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>,
|
|
1206
|
+
${epilogue_functor},
|
|
1207
|
+
${swizzling_functor},
|
|
1208
|
+
${stages},
|
|
1209
|
+
${precompute_mode},
|
|
1210
|
+
${math_operation}
|
|
1211
|
+
>::GemmKernel;
|
|
1212
|
+
|
|
1213
|
+
// Define named type
|
|
1214
|
+
struct ${operation_name}${operation_suffix} :
|
|
1215
|
+
public ${operation_name}_base { };
|
|
1216
|
+
"""
|
|
1217
|
+
|
|
1218
|
+
#
|
|
1219
|
+
def instance_template(self):
|
|
1220
|
+
return """
|
|
1221
|
+
${compile_guard_start}
|
|
1222
|
+
manifest.append(new ${gemm_kind}<
|
|
1223
|
+
cutlass::gemm::device::GemmGrouped<${operation_name}>
|
|
1224
|
+
>("${operation_name}"));
|
|
1225
|
+
${compile_guard_end}
|
|
1226
|
+
"""
|
|
1227
|
+
|
|
1228
|
+
#
|
|
1229
|
+
def emit(self, operation):
|
|
1230
|
+
|
|
1231
|
+
threadblock_shape = operation.tile_description.threadblock_shape
|
|
1232
|
+
warp_count = operation.tile_description.warp_count
|
|
1233
|
+
|
|
1234
|
+
warp_shape = [threadblock_shape[idx] // warp_count[idx]
|
|
1235
|
+
for idx in range(3)]
|
|
1236
|
+
|
|
1237
|
+
instance_layout_A, instance_layout_B, instance_layout_C = \
|
|
1238
|
+
(operation.A.layout, operation.B.layout, operation.C.layout)
|
|
1239
|
+
#
|
|
1240
|
+
|
|
1241
|
+
# Support built-in epilogue functors or user-defined functions
|
|
1242
|
+
epilogue_functor = operation.epilogue_functor.emit()
|
|
1243
|
+
|
|
1244
|
+
values = {
|
|
1245
|
+
'operation_name': operation.procedural_name(),
|
|
1246
|
+
'operation_suffix': self.operation_suffix,
|
|
1247
|
+
'element_a': DataTypeTag[operation.A.element],
|
|
1248
|
+
'layout_a': LayoutTag[instance_layout_A],
|
|
1249
|
+
'element_b': DataTypeTag[operation.B.element],
|
|
1250
|
+
'layout_b': LayoutTag[instance_layout_B],
|
|
1251
|
+
'element_c': DataTypeTag[operation.C.element],
|
|
1252
|
+
'layout_c': LayoutTag[instance_layout_C],
|
|
1253
|
+
'element_accumulator': DataTypeTag[operation.accumulator_type()],
|
|
1254
|
+
'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class],
|
|
1255
|
+
'arch': "cutlass::arch::Sm%d" % operation.arch,
|
|
1256
|
+
'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]),
|
|
1257
|
+
'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]),
|
|
1258
|
+
'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]),
|
|
1259
|
+
'warp_shape_m': str(warp_shape[0]),
|
|
1260
|
+
'warp_shape_n': str(warp_shape[1]),
|
|
1261
|
+
'warp_shape_k': str(warp_shape[2]),
|
|
1262
|
+
'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]),
|
|
1263
|
+
'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]),
|
|
1264
|
+
'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]),
|
|
1265
|
+
'epilogue_functor': epilogue_functor,
|
|
1266
|
+
'swizzling_functor': operation.swizzling_functor.tag(),
|
|
1267
|
+
'stages': str(operation.tile_description.stages),
|
|
1268
|
+
'align_a': str(operation.A.alignment),
|
|
1269
|
+
'align_b': str(operation.B.alignment),
|
|
1270
|
+
'transform_a': ComplexTransformTag[operation.A.complex_transform],
|
|
1271
|
+
'transform_b': ComplexTransformTag[operation.B.complex_transform],
|
|
1272
|
+
'precompute_mode': SchedulerModeTag[operation.precompute_mode],
|
|
1273
|
+
'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation]
|
|
1274
|
+
}
|
|
1275
|
+
|
|
1276
|
+
return SubstituteTemplate(self.gemm_template, values)
|