snowflake-ml-python 1.0.2__py3-none-any.whl → 1.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +2 -1
- snowflake/ml/_internal/file_utils.py +29 -7
- snowflake/ml/_internal/telemetry.py +5 -8
- snowflake/ml/_internal/utils/uri.py +7 -2
- snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
- snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
- snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
- snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +24 -6
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py +5 -2
- snowflake/ml/model/_deployer.py +14 -27
- snowflake/ml/model/_env.py +4 -4
- snowflake/ml/model/_handlers/custom.py +14 -2
- snowflake/ml/model/_handlers/pytorch.py +186 -0
- snowflake/ml/model/_handlers/sklearn.py +14 -9
- snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
- snowflake/ml/model/_handlers/torchscript.py +180 -0
- snowflake/ml/model/_handlers/xgboost.py +19 -9
- snowflake/ml/model/_model.py +3 -2
- snowflake/ml/model/_model_meta.py +12 -7
- snowflake/ml/model/model_signature.py +446 -66
- snowflake/ml/model/type_hints.py +23 -4
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -26
- snowflake/ml/modeling/cluster/affinity_propagation.py +51 -26
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -26
- snowflake/ml/modeling/cluster/birch.py +51 -26
- snowflake/ml/modeling/cluster/bisecting_k_means.py +51 -26
- snowflake/ml/modeling/cluster/dbscan.py +51 -26
- snowflake/ml/modeling/cluster/feature_agglomeration.py +51 -26
- snowflake/ml/modeling/cluster/k_means.py +51 -26
- snowflake/ml/modeling/cluster/mean_shift.py +51 -26
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +51 -26
- snowflake/ml/modeling/cluster/optics.py +51 -26
- snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_clustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -26
- snowflake/ml/modeling/compose/column_transformer.py +51 -26
- snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -26
- snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -26
- snowflake/ml/modeling/covariance/empirical_covariance.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -26
- snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -26
- snowflake/ml/modeling/covariance/min_cov_det.py +51 -26
- snowflake/ml/modeling/covariance/oas.py +51 -26
- snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -26
- snowflake/ml/modeling/decomposition/dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/factor_analysis.py +51 -26
- snowflake/ml/modeling/decomposition/fast_ica.py +51 -26
- snowflake/ml/modeling/decomposition/incremental_pca.py +51 -26
- snowflake/ml/modeling/decomposition/kernel_pca.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/pca.py +51 -26
- snowflake/ml/modeling/decomposition/sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/truncated_svd.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/isolation_forest.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/stacking_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/voting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/voting_regressor.py +51 -26
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fdr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fpr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fwe.py +51 -26
- snowflake/ml/modeling/feature_selection/select_k_best.py +51 -26
- snowflake/ml/modeling/feature_selection/select_percentile.py +51 -26
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +51 -26
- snowflake/ml/modeling/feature_selection/variance_threshold.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -26
- snowflake/ml/modeling/impute/iterative_imputer.py +51 -26
- snowflake/ml/modeling/impute/knn_imputer.py +51 -26
- snowflake/ml/modeling/impute/missing_indicator.py +51 -26
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/nystroem.py +51 -26
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +51 -26
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ard_regression.py +51 -26
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/huber_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/lars.py +51 -26
- snowflake/ml/modeling/linear_model/lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -26
- snowflake/ml/modeling/linear_model/linear_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/perceptron.py +51 -26
- snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ridge.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_cv.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -26
- snowflake/ml/modeling/manifold/isomap.py +51 -26
- snowflake/ml/modeling/manifold/mds.py +51 -26
- snowflake/ml/modeling/manifold/spectral_embedding.py +51 -26
- snowflake/ml/modeling/manifold/tsne.py +51 -26
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -26
- snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -26
- snowflake/ml/modeling/model_selection/grid_search_cv.py +51 -26
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -26
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neighbors/kernel_density.py +51 -26
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -26
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -26
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
- snowflake/ml/modeling/preprocessing/polynomial_features.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -26
- snowflake/ml/modeling/svm/linear_svc.py +51 -26
- snowflake/ml/modeling/svm/linear_svr.py +51 -26
- snowflake/ml/modeling/svm/nu_svc.py +51 -26
- snowflake/ml/modeling/svm/nu_svr.py +51 -26
- snowflake/ml/modeling/svm/svc.py +51 -26
- snowflake/ml/modeling/svm/svr.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +51 -26
- snowflake/ml/registry/model_registry.py +74 -56
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +27 -8
- snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
- snowflake_ml_python-1.0.2.dist-info/RECORD +0 -246
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -255,7 +257,6 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
255
257
|
sample_weight_col: Optional[str] = None,
|
256
258
|
) -> None:
|
257
259
|
super().__init__()
|
258
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
259
260
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
260
261
|
|
261
262
|
self._deps = list(deps)
|
@@ -282,6 +283,15 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
282
283
|
self.set_drop_input_cols(drop_input_cols)
|
283
284
|
self.set_sample_weight_col(sample_weight_col)
|
284
285
|
|
286
|
+
def _get_rand_id(self) -> str:
|
287
|
+
"""
|
288
|
+
Generate random id to be used in sproc and stage names.
|
289
|
+
|
290
|
+
Returns:
|
291
|
+
Random id string usable in sproc, table, and stage names.
|
292
|
+
"""
|
293
|
+
return str(uuid4()).replace("-", "_").upper()
|
294
|
+
|
285
295
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
286
296
|
"""
|
287
297
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -360,7 +370,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
360
370
|
cp.dump(self._sklearn_object, local_transform_file)
|
361
371
|
|
362
372
|
# Create temp stage to run fit.
|
363
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
373
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
364
374
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
365
375
|
SqlResultValidator(
|
366
376
|
session=session,
|
@@ -373,11 +383,12 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
373
383
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
374
384
|
).validate()
|
375
385
|
|
376
|
-
|
386
|
+
# Use posixpath to construct stage paths
|
387
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
388
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
377
389
|
local_result_file_name = get_temp_file_path()
|
378
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
379
390
|
|
380
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
391
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
381
392
|
statement_params = telemetry.get_function_usage_statement_params(
|
382
393
|
project=_PROJECT,
|
383
394
|
subproject=_SUBPROJECT,
|
@@ -403,6 +414,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
403
414
|
replace=True,
|
404
415
|
session=session,
|
405
416
|
statement_params=statement_params,
|
417
|
+
anonymous=True
|
406
418
|
)
|
407
419
|
def fit_wrapper_sproc(
|
408
420
|
session: Session,
|
@@ -411,7 +423,8 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
411
423
|
stage_result_file_name: str,
|
412
424
|
input_cols: List[str],
|
413
425
|
label_cols: List[str],
|
414
|
-
sample_weight_col: Optional[str]
|
426
|
+
sample_weight_col: Optional[str],
|
427
|
+
statement_params: Dict[str, str]
|
415
428
|
) -> str:
|
416
429
|
import cloudpickle as cp
|
417
430
|
import numpy as np
|
@@ -478,15 +491,15 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
478
491
|
api_calls=[Session.call],
|
479
492
|
custom_tags=dict([("autogen", True)]),
|
480
493
|
)
|
481
|
-
sproc_export_file_name =
|
482
|
-
|
494
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
495
|
+
session,
|
483
496
|
query,
|
484
497
|
stage_transform_file_name,
|
485
498
|
stage_result_file_name,
|
486
499
|
identifier.get_unescaped_names(self.input_cols),
|
487
500
|
identifier.get_unescaped_names(self.label_cols),
|
488
501
|
identifier.get_unescaped_names(self.sample_weight_col),
|
489
|
-
statement_params
|
502
|
+
statement_params,
|
490
503
|
)
|
491
504
|
|
492
505
|
if "|" in sproc_export_file_name:
|
@@ -496,7 +509,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
496
509
|
print("\n".join(fields[1:]))
|
497
510
|
|
498
511
|
session.file.get(
|
499
|
-
|
512
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
500
513
|
local_result_file_name,
|
501
514
|
statement_params=statement_params
|
502
515
|
)
|
@@ -542,7 +555,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
542
555
|
|
543
556
|
# Register vectorized UDF for batch inference
|
544
557
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
545
|
-
safe_id=self.
|
558
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
546
559
|
|
547
560
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
548
561
|
# will try to pickle all of self which fails.
|
@@ -634,7 +647,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
634
647
|
return transformed_pandas_df.to_dict("records")
|
635
648
|
|
636
649
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
637
|
-
safe_id=self.
|
650
|
+
safe_id=self._get_rand_id()
|
638
651
|
)
|
639
652
|
|
640
653
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -801,11 +814,18 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
801
814
|
Transformed dataset.
|
802
815
|
"""
|
803
816
|
if isinstance(dataset, DataFrame):
|
817
|
+
expected_type_inferred = "float"
|
818
|
+
# when it is classifier, infer the datatype from label columns
|
819
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
820
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
821
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
822
|
+
)
|
823
|
+
|
804
824
|
output_df = self._batch_inference(
|
805
825
|
dataset=dataset,
|
806
826
|
inference_method="predict",
|
807
827
|
expected_output_cols_list=self.output_cols,
|
808
|
-
expected_output_cols_type=
|
828
|
+
expected_output_cols_type=expected_type_inferred,
|
809
829
|
)
|
810
830
|
elif isinstance(dataset, pd.DataFrame):
|
811
831
|
output_df = self._sklearn_inference(
|
@@ -876,10 +896,10 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
876
896
|
|
877
897
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
878
898
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
879
|
-
Returns
|
899
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
880
900
|
"""
|
881
901
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
882
|
-
return []
|
902
|
+
return [output_cols_prefix]
|
883
903
|
|
884
904
|
classes = self._sklearn_object.classes_
|
885
905
|
if isinstance(classes, numpy.ndarray):
|
@@ -1104,7 +1124,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
1104
1124
|
cp.dump(self._sklearn_object, local_score_file)
|
1105
1125
|
|
1106
1126
|
# Create temp stage to run score.
|
1107
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1127
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1108
1128
|
session = dataset._session
|
1109
1129
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1110
1130
|
SqlResultValidator(
|
@@ -1118,8 +1138,9 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
1118
1138
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1119
1139
|
).validate()
|
1120
1140
|
|
1121
|
-
|
1122
|
-
|
1141
|
+
# Use posixpath to construct stage paths
|
1142
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1143
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1123
1144
|
statement_params = telemetry.get_function_usage_statement_params(
|
1124
1145
|
project=_PROJECT,
|
1125
1146
|
subproject=_SUBPROJECT,
|
@@ -1145,6 +1166,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
1145
1166
|
replace=True,
|
1146
1167
|
session=session,
|
1147
1168
|
statement_params=statement_params,
|
1169
|
+
anonymous=True
|
1148
1170
|
)
|
1149
1171
|
def score_wrapper_sproc(
|
1150
1172
|
session: Session,
|
@@ -1152,7 +1174,8 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
1152
1174
|
stage_score_file_name: str,
|
1153
1175
|
input_cols: List[str],
|
1154
1176
|
label_cols: List[str],
|
1155
|
-
sample_weight_col: Optional[str]
|
1177
|
+
sample_weight_col: Optional[str],
|
1178
|
+
statement_params: Dict[str, str]
|
1156
1179
|
) -> float:
|
1157
1180
|
import cloudpickle as cp
|
1158
1181
|
import numpy as np
|
@@ -1202,14 +1225,14 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
1202
1225
|
api_calls=[Session.call],
|
1203
1226
|
custom_tags=dict([("autogen", True)]),
|
1204
1227
|
)
|
1205
|
-
score =
|
1206
|
-
|
1228
|
+
score = score_wrapper_sproc(
|
1229
|
+
session,
|
1207
1230
|
query,
|
1208
1231
|
stage_score_file_name,
|
1209
1232
|
identifier.get_unescaped_names(self.input_cols),
|
1210
1233
|
identifier.get_unescaped_names(self.label_cols),
|
1211
1234
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1212
|
-
statement_params
|
1235
|
+
statement_params,
|
1213
1236
|
)
|
1214
1237
|
|
1215
1238
|
cleanup_temp_files([local_score_file_name])
|
@@ -1227,18 +1250,20 @@ class RadiusNeighborsRegressor(BaseTransformer):
|
|
1227
1250
|
if self._sklearn_object._estimator_type == 'classifier':
|
1228
1251
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1229
1252
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1230
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1253
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1254
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1231
1255
|
# For regressor, the type of predict is float64
|
1232
1256
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1233
1257
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1234
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1235
|
-
|
1258
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1259
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1236
1260
|
for prob_func in PROB_FUNCTIONS:
|
1237
1261
|
if hasattr(self, prob_func):
|
1238
1262
|
output_cols_prefix: str = f"{prob_func}_"
|
1239
1263
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1240
1264
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1241
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1265
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1266
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1242
1267
|
|
1243
1268
|
@property
|
1244
1269
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -216,7 +218,6 @@ class BernoulliRBM(BaseTransformer):
|
|
216
218
|
sample_weight_col: Optional[str] = None,
|
217
219
|
) -> None:
|
218
220
|
super().__init__()
|
219
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
220
221
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
221
222
|
|
222
223
|
self._deps = list(deps)
|
@@ -241,6 +242,15 @@ class BernoulliRBM(BaseTransformer):
|
|
241
242
|
self.set_drop_input_cols(drop_input_cols)
|
242
243
|
self.set_sample_weight_col(sample_weight_col)
|
243
244
|
|
245
|
+
def _get_rand_id(self) -> str:
|
246
|
+
"""
|
247
|
+
Generate random id to be used in sproc and stage names.
|
248
|
+
|
249
|
+
Returns:
|
250
|
+
Random id string usable in sproc, table, and stage names.
|
251
|
+
"""
|
252
|
+
return str(uuid4()).replace("-", "_").upper()
|
253
|
+
|
244
254
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
245
255
|
"""
|
246
256
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -319,7 +329,7 @@ class BernoulliRBM(BaseTransformer):
|
|
319
329
|
cp.dump(self._sklearn_object, local_transform_file)
|
320
330
|
|
321
331
|
# Create temp stage to run fit.
|
322
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
332
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
323
333
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
324
334
|
SqlResultValidator(
|
325
335
|
session=session,
|
@@ -332,11 +342,12 @@ class BernoulliRBM(BaseTransformer):
|
|
332
342
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
333
343
|
).validate()
|
334
344
|
|
335
|
-
|
345
|
+
# Use posixpath to construct stage paths
|
346
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
347
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
336
348
|
local_result_file_name = get_temp_file_path()
|
337
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
338
349
|
|
339
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
350
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
340
351
|
statement_params = telemetry.get_function_usage_statement_params(
|
341
352
|
project=_PROJECT,
|
342
353
|
subproject=_SUBPROJECT,
|
@@ -362,6 +373,7 @@ class BernoulliRBM(BaseTransformer):
|
|
362
373
|
replace=True,
|
363
374
|
session=session,
|
364
375
|
statement_params=statement_params,
|
376
|
+
anonymous=True
|
365
377
|
)
|
366
378
|
def fit_wrapper_sproc(
|
367
379
|
session: Session,
|
@@ -370,7 +382,8 @@ class BernoulliRBM(BaseTransformer):
|
|
370
382
|
stage_result_file_name: str,
|
371
383
|
input_cols: List[str],
|
372
384
|
label_cols: List[str],
|
373
|
-
sample_weight_col: Optional[str]
|
385
|
+
sample_weight_col: Optional[str],
|
386
|
+
statement_params: Dict[str, str]
|
374
387
|
) -> str:
|
375
388
|
import cloudpickle as cp
|
376
389
|
import numpy as np
|
@@ -437,15 +450,15 @@ class BernoulliRBM(BaseTransformer):
|
|
437
450
|
api_calls=[Session.call],
|
438
451
|
custom_tags=dict([("autogen", True)]),
|
439
452
|
)
|
440
|
-
sproc_export_file_name =
|
441
|
-
|
453
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
454
|
+
session,
|
442
455
|
query,
|
443
456
|
stage_transform_file_name,
|
444
457
|
stage_result_file_name,
|
445
458
|
identifier.get_unescaped_names(self.input_cols),
|
446
459
|
identifier.get_unescaped_names(self.label_cols),
|
447
460
|
identifier.get_unescaped_names(self.sample_weight_col),
|
448
|
-
statement_params
|
461
|
+
statement_params,
|
449
462
|
)
|
450
463
|
|
451
464
|
if "|" in sproc_export_file_name:
|
@@ -455,7 +468,7 @@ class BernoulliRBM(BaseTransformer):
|
|
455
468
|
print("\n".join(fields[1:]))
|
456
469
|
|
457
470
|
session.file.get(
|
458
|
-
|
471
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
459
472
|
local_result_file_name,
|
460
473
|
statement_params=statement_params
|
461
474
|
)
|
@@ -501,7 +514,7 @@ class BernoulliRBM(BaseTransformer):
|
|
501
514
|
|
502
515
|
# Register vectorized UDF for batch inference
|
503
516
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
504
|
-
safe_id=self.
|
517
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
505
518
|
|
506
519
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
507
520
|
# will try to pickle all of self which fails.
|
@@ -593,7 +606,7 @@ class BernoulliRBM(BaseTransformer):
|
|
593
606
|
return transformed_pandas_df.to_dict("records")
|
594
607
|
|
595
608
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
596
|
-
safe_id=self.
|
609
|
+
safe_id=self._get_rand_id()
|
597
610
|
)
|
598
611
|
|
599
612
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -758,11 +771,18 @@ class BernoulliRBM(BaseTransformer):
|
|
758
771
|
Transformed dataset.
|
759
772
|
"""
|
760
773
|
if isinstance(dataset, DataFrame):
|
774
|
+
expected_type_inferred = ""
|
775
|
+
# when it is classifier, infer the datatype from label columns
|
776
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
777
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
778
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
779
|
+
)
|
780
|
+
|
761
781
|
output_df = self._batch_inference(
|
762
782
|
dataset=dataset,
|
763
783
|
inference_method="predict",
|
764
784
|
expected_output_cols_list=self.output_cols,
|
765
|
-
expected_output_cols_type=
|
785
|
+
expected_output_cols_type=expected_type_inferred,
|
766
786
|
)
|
767
787
|
elif isinstance(dataset, pd.DataFrame):
|
768
788
|
output_df = self._sklearn_inference(
|
@@ -835,10 +855,10 @@ class BernoulliRBM(BaseTransformer):
|
|
835
855
|
|
836
856
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
837
857
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
838
|
-
Returns
|
858
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
839
859
|
"""
|
840
860
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
841
|
-
return []
|
861
|
+
return [output_cols_prefix]
|
842
862
|
|
843
863
|
classes = self._sklearn_object.classes_
|
844
864
|
if isinstance(classes, numpy.ndarray):
|
@@ -1063,7 +1083,7 @@ class BernoulliRBM(BaseTransformer):
|
|
1063
1083
|
cp.dump(self._sklearn_object, local_score_file)
|
1064
1084
|
|
1065
1085
|
# Create temp stage to run score.
|
1066
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1086
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1067
1087
|
session = dataset._session
|
1068
1088
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1069
1089
|
SqlResultValidator(
|
@@ -1077,8 +1097,9 @@ class BernoulliRBM(BaseTransformer):
|
|
1077
1097
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1078
1098
|
).validate()
|
1079
1099
|
|
1080
|
-
|
1081
|
-
|
1100
|
+
# Use posixpath to construct stage paths
|
1101
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1102
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1082
1103
|
statement_params = telemetry.get_function_usage_statement_params(
|
1083
1104
|
project=_PROJECT,
|
1084
1105
|
subproject=_SUBPROJECT,
|
@@ -1104,6 +1125,7 @@ class BernoulliRBM(BaseTransformer):
|
|
1104
1125
|
replace=True,
|
1105
1126
|
session=session,
|
1106
1127
|
statement_params=statement_params,
|
1128
|
+
anonymous=True
|
1107
1129
|
)
|
1108
1130
|
def score_wrapper_sproc(
|
1109
1131
|
session: Session,
|
@@ -1111,7 +1133,8 @@ class BernoulliRBM(BaseTransformer):
|
|
1111
1133
|
stage_score_file_name: str,
|
1112
1134
|
input_cols: List[str],
|
1113
1135
|
label_cols: List[str],
|
1114
|
-
sample_weight_col: Optional[str]
|
1136
|
+
sample_weight_col: Optional[str],
|
1137
|
+
statement_params: Dict[str, str]
|
1115
1138
|
) -> float:
|
1116
1139
|
import cloudpickle as cp
|
1117
1140
|
import numpy as np
|
@@ -1161,14 +1184,14 @@ class BernoulliRBM(BaseTransformer):
|
|
1161
1184
|
api_calls=[Session.call],
|
1162
1185
|
custom_tags=dict([("autogen", True)]),
|
1163
1186
|
)
|
1164
|
-
score =
|
1165
|
-
|
1187
|
+
score = score_wrapper_sproc(
|
1188
|
+
session,
|
1166
1189
|
query,
|
1167
1190
|
stage_score_file_name,
|
1168
1191
|
identifier.get_unescaped_names(self.input_cols),
|
1169
1192
|
identifier.get_unescaped_names(self.label_cols),
|
1170
1193
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1171
|
-
statement_params
|
1194
|
+
statement_params,
|
1172
1195
|
)
|
1173
1196
|
|
1174
1197
|
cleanup_temp_files([local_score_file_name])
|
@@ -1186,18 +1209,20 @@ class BernoulliRBM(BaseTransformer):
|
|
1186
1209
|
if self._sklearn_object._estimator_type == 'classifier':
|
1187
1210
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1188
1211
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1189
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1212
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1213
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1190
1214
|
# For regressor, the type of predict is float64
|
1191
1215
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1192
1216
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1193
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1194
|
-
|
1217
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1218
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1195
1219
|
for prob_func in PROB_FUNCTIONS:
|
1196
1220
|
if hasattr(self, prob_func):
|
1197
1221
|
output_cols_prefix: str = f"{prob_func}_"
|
1198
1222
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1199
1223
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1200
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1224
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1225
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1201
1226
|
|
1202
1227
|
@property
|
1203
1228
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|