snowflake-ml-python 1.0.2__py3-none-any.whl → 1.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +2 -1
- snowflake/ml/_internal/file_utils.py +29 -7
- snowflake/ml/_internal/telemetry.py +5 -8
- snowflake/ml/_internal/utils/uri.py +7 -2
- snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
- snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
- snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
- snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +24 -6
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py +5 -2
- snowflake/ml/model/_deployer.py +14 -27
- snowflake/ml/model/_env.py +4 -4
- snowflake/ml/model/_handlers/custom.py +14 -2
- snowflake/ml/model/_handlers/pytorch.py +186 -0
- snowflake/ml/model/_handlers/sklearn.py +14 -9
- snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
- snowflake/ml/model/_handlers/torchscript.py +180 -0
- snowflake/ml/model/_handlers/xgboost.py +19 -9
- snowflake/ml/model/_model.py +3 -2
- snowflake/ml/model/_model_meta.py +12 -7
- snowflake/ml/model/model_signature.py +446 -66
- snowflake/ml/model/type_hints.py +23 -4
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -26
- snowflake/ml/modeling/cluster/affinity_propagation.py +51 -26
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -26
- snowflake/ml/modeling/cluster/birch.py +51 -26
- snowflake/ml/modeling/cluster/bisecting_k_means.py +51 -26
- snowflake/ml/modeling/cluster/dbscan.py +51 -26
- snowflake/ml/modeling/cluster/feature_agglomeration.py +51 -26
- snowflake/ml/modeling/cluster/k_means.py +51 -26
- snowflake/ml/modeling/cluster/mean_shift.py +51 -26
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +51 -26
- snowflake/ml/modeling/cluster/optics.py +51 -26
- snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_clustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -26
- snowflake/ml/modeling/compose/column_transformer.py +51 -26
- snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -26
- snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -26
- snowflake/ml/modeling/covariance/empirical_covariance.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -26
- snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -26
- snowflake/ml/modeling/covariance/min_cov_det.py +51 -26
- snowflake/ml/modeling/covariance/oas.py +51 -26
- snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -26
- snowflake/ml/modeling/decomposition/dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/factor_analysis.py +51 -26
- snowflake/ml/modeling/decomposition/fast_ica.py +51 -26
- snowflake/ml/modeling/decomposition/incremental_pca.py +51 -26
- snowflake/ml/modeling/decomposition/kernel_pca.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/pca.py +51 -26
- snowflake/ml/modeling/decomposition/sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/truncated_svd.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/isolation_forest.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/stacking_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/voting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/voting_regressor.py +51 -26
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fdr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fpr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fwe.py +51 -26
- snowflake/ml/modeling/feature_selection/select_k_best.py +51 -26
- snowflake/ml/modeling/feature_selection/select_percentile.py +51 -26
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +51 -26
- snowflake/ml/modeling/feature_selection/variance_threshold.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -26
- snowflake/ml/modeling/impute/iterative_imputer.py +51 -26
- snowflake/ml/modeling/impute/knn_imputer.py +51 -26
- snowflake/ml/modeling/impute/missing_indicator.py +51 -26
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/nystroem.py +51 -26
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +51 -26
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ard_regression.py +51 -26
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/huber_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/lars.py +51 -26
- snowflake/ml/modeling/linear_model/lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -26
- snowflake/ml/modeling/linear_model/linear_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/perceptron.py +51 -26
- snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ridge.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_cv.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -26
- snowflake/ml/modeling/manifold/isomap.py +51 -26
- snowflake/ml/modeling/manifold/mds.py +51 -26
- snowflake/ml/modeling/manifold/spectral_embedding.py +51 -26
- snowflake/ml/modeling/manifold/tsne.py +51 -26
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -26
- snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -26
- snowflake/ml/modeling/model_selection/grid_search_cv.py +51 -26
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -26
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neighbors/kernel_density.py +51 -26
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -26
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -26
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
- snowflake/ml/modeling/preprocessing/polynomial_features.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -26
- snowflake/ml/modeling/svm/linear_svc.py +51 -26
- snowflake/ml/modeling/svm/linear_svr.py +51 -26
- snowflake/ml/modeling/svm/nu_svc.py +51 -26
- snowflake/ml/modeling/svm/nu_svr.py +51 -26
- snowflake/ml/modeling/svm/svc.py +51 -26
- snowflake/ml/modeling/svm/svr.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +51 -26
- snowflake/ml/registry/model_registry.py +74 -56
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +27 -8
- snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
- snowflake_ml_python-1.0.2.dist-info/RECORD +0 -246
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -247,7 +249,6 @@ class LarsCV(BaseTransformer):
|
|
247
249
|
sample_weight_col: Optional[str] = None,
|
248
250
|
) -> None:
|
249
251
|
super().__init__()
|
250
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
251
252
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
252
253
|
|
253
254
|
self._deps = list(deps)
|
@@ -276,6 +277,15 @@ class LarsCV(BaseTransformer):
|
|
276
277
|
self.set_drop_input_cols(drop_input_cols)
|
277
278
|
self.set_sample_weight_col(sample_weight_col)
|
278
279
|
|
280
|
+
def _get_rand_id(self) -> str:
|
281
|
+
"""
|
282
|
+
Generate random id to be used in sproc and stage names.
|
283
|
+
|
284
|
+
Returns:
|
285
|
+
Random id string usable in sproc, table, and stage names.
|
286
|
+
"""
|
287
|
+
return str(uuid4()).replace("-", "_").upper()
|
288
|
+
|
279
289
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
280
290
|
"""
|
281
291
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -354,7 +364,7 @@ class LarsCV(BaseTransformer):
|
|
354
364
|
cp.dump(self._sklearn_object, local_transform_file)
|
355
365
|
|
356
366
|
# Create temp stage to run fit.
|
357
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
367
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
358
368
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
359
369
|
SqlResultValidator(
|
360
370
|
session=session,
|
@@ -367,11 +377,12 @@ class LarsCV(BaseTransformer):
|
|
367
377
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
368
378
|
).validate()
|
369
379
|
|
370
|
-
|
380
|
+
# Use posixpath to construct stage paths
|
381
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
382
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
371
383
|
local_result_file_name = get_temp_file_path()
|
372
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
373
384
|
|
374
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
385
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
375
386
|
statement_params = telemetry.get_function_usage_statement_params(
|
376
387
|
project=_PROJECT,
|
377
388
|
subproject=_SUBPROJECT,
|
@@ -397,6 +408,7 @@ class LarsCV(BaseTransformer):
|
|
397
408
|
replace=True,
|
398
409
|
session=session,
|
399
410
|
statement_params=statement_params,
|
411
|
+
anonymous=True
|
400
412
|
)
|
401
413
|
def fit_wrapper_sproc(
|
402
414
|
session: Session,
|
@@ -405,7 +417,8 @@ class LarsCV(BaseTransformer):
|
|
405
417
|
stage_result_file_name: str,
|
406
418
|
input_cols: List[str],
|
407
419
|
label_cols: List[str],
|
408
|
-
sample_weight_col: Optional[str]
|
420
|
+
sample_weight_col: Optional[str],
|
421
|
+
statement_params: Dict[str, str]
|
409
422
|
) -> str:
|
410
423
|
import cloudpickle as cp
|
411
424
|
import numpy as np
|
@@ -472,15 +485,15 @@ class LarsCV(BaseTransformer):
|
|
472
485
|
api_calls=[Session.call],
|
473
486
|
custom_tags=dict([("autogen", True)]),
|
474
487
|
)
|
475
|
-
sproc_export_file_name =
|
476
|
-
|
488
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
489
|
+
session,
|
477
490
|
query,
|
478
491
|
stage_transform_file_name,
|
479
492
|
stage_result_file_name,
|
480
493
|
identifier.get_unescaped_names(self.input_cols),
|
481
494
|
identifier.get_unescaped_names(self.label_cols),
|
482
495
|
identifier.get_unescaped_names(self.sample_weight_col),
|
483
|
-
statement_params
|
496
|
+
statement_params,
|
484
497
|
)
|
485
498
|
|
486
499
|
if "|" in sproc_export_file_name:
|
@@ -490,7 +503,7 @@ class LarsCV(BaseTransformer):
|
|
490
503
|
print("\n".join(fields[1:]))
|
491
504
|
|
492
505
|
session.file.get(
|
493
|
-
|
506
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
494
507
|
local_result_file_name,
|
495
508
|
statement_params=statement_params
|
496
509
|
)
|
@@ -536,7 +549,7 @@ class LarsCV(BaseTransformer):
|
|
536
549
|
|
537
550
|
# Register vectorized UDF for batch inference
|
538
551
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
539
|
-
safe_id=self.
|
552
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
540
553
|
|
541
554
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
542
555
|
# will try to pickle all of self which fails.
|
@@ -628,7 +641,7 @@ class LarsCV(BaseTransformer):
|
|
628
641
|
return transformed_pandas_df.to_dict("records")
|
629
642
|
|
630
643
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
631
|
-
safe_id=self.
|
644
|
+
safe_id=self._get_rand_id()
|
632
645
|
)
|
633
646
|
|
634
647
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -795,11 +808,18 @@ class LarsCV(BaseTransformer):
|
|
795
808
|
Transformed dataset.
|
796
809
|
"""
|
797
810
|
if isinstance(dataset, DataFrame):
|
811
|
+
expected_type_inferred = "float"
|
812
|
+
# when it is classifier, infer the datatype from label columns
|
813
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
814
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
815
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
816
|
+
)
|
817
|
+
|
798
818
|
output_df = self._batch_inference(
|
799
819
|
dataset=dataset,
|
800
820
|
inference_method="predict",
|
801
821
|
expected_output_cols_list=self.output_cols,
|
802
|
-
expected_output_cols_type=
|
822
|
+
expected_output_cols_type=expected_type_inferred,
|
803
823
|
)
|
804
824
|
elif isinstance(dataset, pd.DataFrame):
|
805
825
|
output_df = self._sklearn_inference(
|
@@ -870,10 +890,10 @@ class LarsCV(BaseTransformer):
|
|
870
890
|
|
871
891
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
872
892
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
873
|
-
Returns
|
893
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
874
894
|
"""
|
875
895
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
876
|
-
return []
|
896
|
+
return [output_cols_prefix]
|
877
897
|
|
878
898
|
classes = self._sklearn_object.classes_
|
879
899
|
if isinstance(classes, numpy.ndarray):
|
@@ -1098,7 +1118,7 @@ class LarsCV(BaseTransformer):
|
|
1098
1118
|
cp.dump(self._sklearn_object, local_score_file)
|
1099
1119
|
|
1100
1120
|
# Create temp stage to run score.
|
1101
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1121
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1102
1122
|
session = dataset._session
|
1103
1123
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1104
1124
|
SqlResultValidator(
|
@@ -1112,8 +1132,9 @@ class LarsCV(BaseTransformer):
|
|
1112
1132
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1113
1133
|
).validate()
|
1114
1134
|
|
1115
|
-
|
1116
|
-
|
1135
|
+
# Use posixpath to construct stage paths
|
1136
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1137
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1117
1138
|
statement_params = telemetry.get_function_usage_statement_params(
|
1118
1139
|
project=_PROJECT,
|
1119
1140
|
subproject=_SUBPROJECT,
|
@@ -1139,6 +1160,7 @@ class LarsCV(BaseTransformer):
|
|
1139
1160
|
replace=True,
|
1140
1161
|
session=session,
|
1141
1162
|
statement_params=statement_params,
|
1163
|
+
anonymous=True
|
1142
1164
|
)
|
1143
1165
|
def score_wrapper_sproc(
|
1144
1166
|
session: Session,
|
@@ -1146,7 +1168,8 @@ class LarsCV(BaseTransformer):
|
|
1146
1168
|
stage_score_file_name: str,
|
1147
1169
|
input_cols: List[str],
|
1148
1170
|
label_cols: List[str],
|
1149
|
-
sample_weight_col: Optional[str]
|
1171
|
+
sample_weight_col: Optional[str],
|
1172
|
+
statement_params: Dict[str, str]
|
1150
1173
|
) -> float:
|
1151
1174
|
import cloudpickle as cp
|
1152
1175
|
import numpy as np
|
@@ -1196,14 +1219,14 @@ class LarsCV(BaseTransformer):
|
|
1196
1219
|
api_calls=[Session.call],
|
1197
1220
|
custom_tags=dict([("autogen", True)]),
|
1198
1221
|
)
|
1199
|
-
score =
|
1200
|
-
|
1222
|
+
score = score_wrapper_sproc(
|
1223
|
+
session,
|
1201
1224
|
query,
|
1202
1225
|
stage_score_file_name,
|
1203
1226
|
identifier.get_unescaped_names(self.input_cols),
|
1204
1227
|
identifier.get_unescaped_names(self.label_cols),
|
1205
1228
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1206
|
-
statement_params
|
1229
|
+
statement_params,
|
1207
1230
|
)
|
1208
1231
|
|
1209
1232
|
cleanup_temp_files([local_score_file_name])
|
@@ -1221,18 +1244,20 @@ class LarsCV(BaseTransformer):
|
|
1221
1244
|
if self._sklearn_object._estimator_type == 'classifier':
|
1222
1245
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1223
1246
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1224
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1247
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1248
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1225
1249
|
# For regressor, the type of predict is float64
|
1226
1250
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1227
1251
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1228
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1229
|
-
|
1252
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1253
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1230
1254
|
for prob_func in PROB_FUNCTIONS:
|
1231
1255
|
if hasattr(self, prob_func):
|
1232
1256
|
output_cols_prefix: str = f"{prob_func}_"
|
1233
1257
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1234
1258
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1235
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1259
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1260
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1236
1261
|
|
1237
1262
|
@property
|
1238
1263
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -240,7 +242,6 @@ class Lasso(BaseTransformer):
|
|
240
242
|
sample_weight_col: Optional[str] = None,
|
241
243
|
) -> None:
|
242
244
|
super().__init__()
|
243
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
244
245
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
245
246
|
|
246
247
|
self._deps = list(deps)
|
@@ -269,6 +270,15 @@ class Lasso(BaseTransformer):
|
|
269
270
|
self.set_drop_input_cols(drop_input_cols)
|
270
271
|
self.set_sample_weight_col(sample_weight_col)
|
271
272
|
|
273
|
+
def _get_rand_id(self) -> str:
|
274
|
+
"""
|
275
|
+
Generate random id to be used in sproc and stage names.
|
276
|
+
|
277
|
+
Returns:
|
278
|
+
Random id string usable in sproc, table, and stage names.
|
279
|
+
"""
|
280
|
+
return str(uuid4()).replace("-", "_").upper()
|
281
|
+
|
272
282
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
273
283
|
"""
|
274
284
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -347,7 +357,7 @@ class Lasso(BaseTransformer):
|
|
347
357
|
cp.dump(self._sklearn_object, local_transform_file)
|
348
358
|
|
349
359
|
# Create temp stage to run fit.
|
350
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
360
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
351
361
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
352
362
|
SqlResultValidator(
|
353
363
|
session=session,
|
@@ -360,11 +370,12 @@ class Lasso(BaseTransformer):
|
|
360
370
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
361
371
|
).validate()
|
362
372
|
|
363
|
-
|
373
|
+
# Use posixpath to construct stage paths
|
374
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
375
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
364
376
|
local_result_file_name = get_temp_file_path()
|
365
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
366
377
|
|
367
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
378
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
368
379
|
statement_params = telemetry.get_function_usage_statement_params(
|
369
380
|
project=_PROJECT,
|
370
381
|
subproject=_SUBPROJECT,
|
@@ -390,6 +401,7 @@ class Lasso(BaseTransformer):
|
|
390
401
|
replace=True,
|
391
402
|
session=session,
|
392
403
|
statement_params=statement_params,
|
404
|
+
anonymous=True
|
393
405
|
)
|
394
406
|
def fit_wrapper_sproc(
|
395
407
|
session: Session,
|
@@ -398,7 +410,8 @@ class Lasso(BaseTransformer):
|
|
398
410
|
stage_result_file_name: str,
|
399
411
|
input_cols: List[str],
|
400
412
|
label_cols: List[str],
|
401
|
-
sample_weight_col: Optional[str]
|
413
|
+
sample_weight_col: Optional[str],
|
414
|
+
statement_params: Dict[str, str]
|
402
415
|
) -> str:
|
403
416
|
import cloudpickle as cp
|
404
417
|
import numpy as np
|
@@ -465,15 +478,15 @@ class Lasso(BaseTransformer):
|
|
465
478
|
api_calls=[Session.call],
|
466
479
|
custom_tags=dict([("autogen", True)]),
|
467
480
|
)
|
468
|
-
sproc_export_file_name =
|
469
|
-
|
481
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
482
|
+
session,
|
470
483
|
query,
|
471
484
|
stage_transform_file_name,
|
472
485
|
stage_result_file_name,
|
473
486
|
identifier.get_unescaped_names(self.input_cols),
|
474
487
|
identifier.get_unescaped_names(self.label_cols),
|
475
488
|
identifier.get_unescaped_names(self.sample_weight_col),
|
476
|
-
statement_params
|
489
|
+
statement_params,
|
477
490
|
)
|
478
491
|
|
479
492
|
if "|" in sproc_export_file_name:
|
@@ -483,7 +496,7 @@ class Lasso(BaseTransformer):
|
|
483
496
|
print("\n".join(fields[1:]))
|
484
497
|
|
485
498
|
session.file.get(
|
486
|
-
|
499
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
487
500
|
local_result_file_name,
|
488
501
|
statement_params=statement_params
|
489
502
|
)
|
@@ -529,7 +542,7 @@ class Lasso(BaseTransformer):
|
|
529
542
|
|
530
543
|
# Register vectorized UDF for batch inference
|
531
544
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
532
|
-
safe_id=self.
|
545
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
533
546
|
|
534
547
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
535
548
|
# will try to pickle all of self which fails.
|
@@ -621,7 +634,7 @@ class Lasso(BaseTransformer):
|
|
621
634
|
return transformed_pandas_df.to_dict("records")
|
622
635
|
|
623
636
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
624
|
-
safe_id=self.
|
637
|
+
safe_id=self._get_rand_id()
|
625
638
|
)
|
626
639
|
|
627
640
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -788,11 +801,18 @@ class Lasso(BaseTransformer):
|
|
788
801
|
Transformed dataset.
|
789
802
|
"""
|
790
803
|
if isinstance(dataset, DataFrame):
|
804
|
+
expected_type_inferred = "float"
|
805
|
+
# when it is classifier, infer the datatype from label columns
|
806
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
807
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
808
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
809
|
+
)
|
810
|
+
|
791
811
|
output_df = self._batch_inference(
|
792
812
|
dataset=dataset,
|
793
813
|
inference_method="predict",
|
794
814
|
expected_output_cols_list=self.output_cols,
|
795
|
-
expected_output_cols_type=
|
815
|
+
expected_output_cols_type=expected_type_inferred,
|
796
816
|
)
|
797
817
|
elif isinstance(dataset, pd.DataFrame):
|
798
818
|
output_df = self._sklearn_inference(
|
@@ -863,10 +883,10 @@ class Lasso(BaseTransformer):
|
|
863
883
|
|
864
884
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
865
885
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
866
|
-
Returns
|
886
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
867
887
|
"""
|
868
888
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
869
|
-
return []
|
889
|
+
return [output_cols_prefix]
|
870
890
|
|
871
891
|
classes = self._sklearn_object.classes_
|
872
892
|
if isinstance(classes, numpy.ndarray):
|
@@ -1091,7 +1111,7 @@ class Lasso(BaseTransformer):
|
|
1091
1111
|
cp.dump(self._sklearn_object, local_score_file)
|
1092
1112
|
|
1093
1113
|
# Create temp stage to run score.
|
1094
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1114
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1095
1115
|
session = dataset._session
|
1096
1116
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1097
1117
|
SqlResultValidator(
|
@@ -1105,8 +1125,9 @@ class Lasso(BaseTransformer):
|
|
1105
1125
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1106
1126
|
).validate()
|
1107
1127
|
|
1108
|
-
|
1109
|
-
|
1128
|
+
# Use posixpath to construct stage paths
|
1129
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1130
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1110
1131
|
statement_params = telemetry.get_function_usage_statement_params(
|
1111
1132
|
project=_PROJECT,
|
1112
1133
|
subproject=_SUBPROJECT,
|
@@ -1132,6 +1153,7 @@ class Lasso(BaseTransformer):
|
|
1132
1153
|
replace=True,
|
1133
1154
|
session=session,
|
1134
1155
|
statement_params=statement_params,
|
1156
|
+
anonymous=True
|
1135
1157
|
)
|
1136
1158
|
def score_wrapper_sproc(
|
1137
1159
|
session: Session,
|
@@ -1139,7 +1161,8 @@ class Lasso(BaseTransformer):
|
|
1139
1161
|
stage_score_file_name: str,
|
1140
1162
|
input_cols: List[str],
|
1141
1163
|
label_cols: List[str],
|
1142
|
-
sample_weight_col: Optional[str]
|
1164
|
+
sample_weight_col: Optional[str],
|
1165
|
+
statement_params: Dict[str, str]
|
1143
1166
|
) -> float:
|
1144
1167
|
import cloudpickle as cp
|
1145
1168
|
import numpy as np
|
@@ -1189,14 +1212,14 @@ class Lasso(BaseTransformer):
|
|
1189
1212
|
api_calls=[Session.call],
|
1190
1213
|
custom_tags=dict([("autogen", True)]),
|
1191
1214
|
)
|
1192
|
-
score =
|
1193
|
-
|
1215
|
+
score = score_wrapper_sproc(
|
1216
|
+
session,
|
1194
1217
|
query,
|
1195
1218
|
stage_score_file_name,
|
1196
1219
|
identifier.get_unescaped_names(self.input_cols),
|
1197
1220
|
identifier.get_unescaped_names(self.label_cols),
|
1198
1221
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1199
|
-
statement_params
|
1222
|
+
statement_params,
|
1200
1223
|
)
|
1201
1224
|
|
1202
1225
|
cleanup_temp_files([local_score_file_name])
|
@@ -1214,18 +1237,20 @@ class Lasso(BaseTransformer):
|
|
1214
1237
|
if self._sklearn_object._estimator_type == 'classifier':
|
1215
1238
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1216
1239
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1217
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1240
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1241
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1218
1242
|
# For regressor, the type of predict is float64
|
1219
1243
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1220
1244
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1221
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1222
|
-
|
1245
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1246
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1223
1247
|
for prob_func in PROB_FUNCTIONS:
|
1224
1248
|
if hasattr(self, prob_func):
|
1225
1249
|
output_cols_prefix: str = f"{prob_func}_"
|
1226
1250
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1227
1251
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1228
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1252
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1253
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1229
1254
|
|
1230
1255
|
@property
|
1231
1256
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|