snowflake-ml-python 1.0.2__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (189) hide show
  1. snowflake/ml/_internal/env_utils.py +2 -1
  2. snowflake/ml/_internal/file_utils.py +29 -7
  3. snowflake/ml/_internal/telemetry.py +5 -8
  4. snowflake/ml/_internal/utils/uri.py +7 -2
  5. snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
  6. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
  7. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
  8. snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
  9. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
  10. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
  11. snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
  12. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
  13. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
  14. snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
  15. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
  16. snowflake/ml/model/_deploy_client/warehouse/deploy.py +24 -6
  17. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +5 -2
  18. snowflake/ml/model/_deployer.py +14 -27
  19. snowflake/ml/model/_env.py +4 -4
  20. snowflake/ml/model/_handlers/custom.py +14 -2
  21. snowflake/ml/model/_handlers/pytorch.py +186 -0
  22. snowflake/ml/model/_handlers/sklearn.py +14 -9
  23. snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
  24. snowflake/ml/model/_handlers/torchscript.py +180 -0
  25. snowflake/ml/model/_handlers/xgboost.py +19 -9
  26. snowflake/ml/model/_model.py +3 -2
  27. snowflake/ml/model/_model_meta.py +12 -7
  28. snowflake/ml/model/model_signature.py +446 -66
  29. snowflake/ml/model/type_hints.py +23 -4
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -26
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +51 -26
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -26
  33. snowflake/ml/modeling/cluster/birch.py +51 -26
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +51 -26
  35. snowflake/ml/modeling/cluster/dbscan.py +51 -26
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +51 -26
  37. snowflake/ml/modeling/cluster/k_means.py +51 -26
  38. snowflake/ml/modeling/cluster/mean_shift.py +51 -26
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +51 -26
  40. snowflake/ml/modeling/cluster/optics.py +51 -26
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -26
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +51 -26
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -26
  44. snowflake/ml/modeling/compose/column_transformer.py +51 -26
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -26
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -26
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +51 -26
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +51 -26
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -26
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -26
  51. snowflake/ml/modeling/covariance/min_cov_det.py +51 -26
  52. snowflake/ml/modeling/covariance/oas.py +51 -26
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -26
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +51 -26
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +51 -26
  56. snowflake/ml/modeling/decomposition/fast_ica.py +51 -26
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +51 -26
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +51 -26
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +51 -26
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +51 -26
  61. snowflake/ml/modeling/decomposition/pca.py +51 -26
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +51 -26
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +51 -26
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +51 -26
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -26
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -26
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -26
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -26
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -26
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -26
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -26
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -26
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -26
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -26
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -26
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +51 -26
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -26
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -26
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +51 -26
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +51 -26
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +51 -26
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +51 -26
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +51 -26
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +51 -26
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +51 -26
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +51 -26
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +51 -26
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +51 -26
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +51 -26
  90. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -26
  91. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -26
  92. snowflake/ml/modeling/impute/iterative_imputer.py +51 -26
  93. snowflake/ml/modeling/impute/knn_imputer.py +51 -26
  94. snowflake/ml/modeling/impute/missing_indicator.py +51 -26
  95. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +51 -26
  96. snowflake/ml/modeling/kernel_approximation/nystroem.py +51 -26
  97. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +51 -26
  98. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +51 -26
  99. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +51 -26
  100. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -26
  101. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -26
  102. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -26
  103. snowflake/ml/modeling/linear_model/ard_regression.py +51 -26
  104. snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -26
  105. snowflake/ml/modeling/linear_model/elastic_net.py +51 -26
  106. snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -26
  107. snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -26
  108. snowflake/ml/modeling/linear_model/huber_regressor.py +51 -26
  109. snowflake/ml/modeling/linear_model/lars.py +51 -26
  110. snowflake/ml/modeling/linear_model/lars_cv.py +51 -26
  111. snowflake/ml/modeling/linear_model/lasso.py +51 -26
  112. snowflake/ml/modeling/linear_model/lasso_cv.py +51 -26
  113. snowflake/ml/modeling/linear_model/lasso_lars.py +51 -26
  114. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -26
  115. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -26
  116. snowflake/ml/modeling/linear_model/linear_regression.py +51 -26
  117. snowflake/ml/modeling/linear_model/logistic_regression.py +51 -26
  118. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -26
  119. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -26
  120. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -26
  121. snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -26
  122. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -26
  123. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -26
  124. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -26
  125. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -26
  126. snowflake/ml/modeling/linear_model/perceptron.py +51 -26
  127. snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -26
  128. snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -26
  129. snowflake/ml/modeling/linear_model/ridge.py +51 -26
  130. snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -26
  131. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -26
  132. snowflake/ml/modeling/linear_model/ridge_cv.py +51 -26
  133. snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -26
  134. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -26
  135. snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -26
  136. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -26
  137. snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -26
  138. snowflake/ml/modeling/manifold/isomap.py +51 -26
  139. snowflake/ml/modeling/manifold/mds.py +51 -26
  140. snowflake/ml/modeling/manifold/spectral_embedding.py +51 -26
  141. snowflake/ml/modeling/manifold/tsne.py +51 -26
  142. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -26
  143. snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -26
  144. snowflake/ml/modeling/model_selection/grid_search_cv.py +51 -26
  145. snowflake/ml/modeling/model_selection/randomized_search_cv.py +51 -26
  146. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -26
  147. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -26
  148. snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -26
  149. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -26
  150. snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -26
  151. snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -26
  152. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -26
  153. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -26
  154. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -26
  155. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -26
  156. snowflake/ml/modeling/neighbors/kernel_density.py +51 -26
  157. snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -26
  158. snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -26
  159. snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -26
  160. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +51 -26
  161. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -26
  162. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -26
  163. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +51 -26
  164. snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -26
  165. snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -26
  166. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
  167. snowflake/ml/modeling/preprocessing/polynomial_features.py +51 -26
  168. snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -26
  169. snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -26
  170. snowflake/ml/modeling/svm/linear_svc.py +51 -26
  171. snowflake/ml/modeling/svm/linear_svr.py +51 -26
  172. snowflake/ml/modeling/svm/nu_svc.py +51 -26
  173. snowflake/ml/modeling/svm/nu_svr.py +51 -26
  174. snowflake/ml/modeling/svm/svc.py +51 -26
  175. snowflake/ml/modeling/svm/svr.py +51 -26
  176. snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -26
  177. snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -26
  178. snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -26
  179. snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -26
  180. snowflake/ml/modeling/xgboost/xgb_classifier.py +51 -26
  181. snowflake/ml/modeling/xgboost/xgb_regressor.py +51 -26
  182. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +51 -26
  183. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +51 -26
  184. snowflake/ml/registry/model_registry.py +74 -56
  185. snowflake/ml/version.py +1 -1
  186. {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +27 -8
  187. snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
  188. snowflake_ml_python-1.0.2.dist-info/RECORD +0 -246
  189. {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -196,7 +198,6 @@ class OneVsOneClassifier(BaseTransformer):
196
198
  sample_weight_col: Optional[str] = None,
197
199
  ) -> None:
198
200
  super().__init__()
199
- self.id = str(uuid4()).replace("-", "_").upper()
200
201
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
201
202
  deps = deps | _gather_dependencies(estimator)
202
203
  self._deps = list(deps)
@@ -217,6 +218,15 @@ class OneVsOneClassifier(BaseTransformer):
217
218
  self.set_drop_input_cols(drop_input_cols)
218
219
  self.set_sample_weight_col(sample_weight_col)
219
220
 
221
+ def _get_rand_id(self) -> str:
222
+ """
223
+ Generate random id to be used in sproc and stage names.
224
+
225
+ Returns:
226
+ Random id string usable in sproc, table, and stage names.
227
+ """
228
+ return str(uuid4()).replace("-", "_").upper()
229
+
220
230
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
221
231
  """
222
232
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -295,7 +305,7 @@ class OneVsOneClassifier(BaseTransformer):
295
305
  cp.dump(self._sklearn_object, local_transform_file)
296
306
 
297
307
  # Create temp stage to run fit.
298
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
308
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
299
309
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
300
310
  SqlResultValidator(
301
311
  session=session,
@@ -308,11 +318,12 @@ class OneVsOneClassifier(BaseTransformer):
308
318
  expected_value=f"Stage area {transform_stage_name} successfully created."
309
319
  ).validate()
310
320
 
311
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
321
+ # Use posixpath to construct stage paths
322
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
323
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
312
324
  local_result_file_name = get_temp_file_path()
313
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
314
325
 
315
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
326
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
316
327
  statement_params = telemetry.get_function_usage_statement_params(
317
328
  project=_PROJECT,
318
329
  subproject=_SUBPROJECT,
@@ -338,6 +349,7 @@ class OneVsOneClassifier(BaseTransformer):
338
349
  replace=True,
339
350
  session=session,
340
351
  statement_params=statement_params,
352
+ anonymous=True
341
353
  )
342
354
  def fit_wrapper_sproc(
343
355
  session: Session,
@@ -346,7 +358,8 @@ class OneVsOneClassifier(BaseTransformer):
346
358
  stage_result_file_name: str,
347
359
  input_cols: List[str],
348
360
  label_cols: List[str],
349
- sample_weight_col: Optional[str]
361
+ sample_weight_col: Optional[str],
362
+ statement_params: Dict[str, str]
350
363
  ) -> str:
351
364
  import cloudpickle as cp
352
365
  import numpy as np
@@ -413,15 +426,15 @@ class OneVsOneClassifier(BaseTransformer):
413
426
  api_calls=[Session.call],
414
427
  custom_tags=dict([("autogen", True)]),
415
428
  )
416
- sproc_export_file_name = session.call(
417
- fit_sproc_name,
429
+ sproc_export_file_name = fit_wrapper_sproc(
430
+ session,
418
431
  query,
419
432
  stage_transform_file_name,
420
433
  stage_result_file_name,
421
434
  identifier.get_unescaped_names(self.input_cols),
422
435
  identifier.get_unescaped_names(self.label_cols),
423
436
  identifier.get_unescaped_names(self.sample_weight_col),
424
- statement_params=statement_params,
437
+ statement_params,
425
438
  )
426
439
 
427
440
  if "|" in sproc_export_file_name:
@@ -431,7 +444,7 @@ class OneVsOneClassifier(BaseTransformer):
431
444
  print("\n".join(fields[1:]))
432
445
 
433
446
  session.file.get(
434
- os.path.join(stage_result_file_name, sproc_export_file_name),
447
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
435
448
  local_result_file_name,
436
449
  statement_params=statement_params
437
450
  )
@@ -477,7 +490,7 @@ class OneVsOneClassifier(BaseTransformer):
477
490
 
478
491
  # Register vectorized UDF for batch inference
479
492
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
480
- safe_id=self.id, method=inference_method)
493
+ safe_id=self._get_rand_id(), method=inference_method)
481
494
 
482
495
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
483
496
  # will try to pickle all of self which fails.
@@ -569,7 +582,7 @@ class OneVsOneClassifier(BaseTransformer):
569
582
  return transformed_pandas_df.to_dict("records")
570
583
 
571
584
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
572
- safe_id=self.id
585
+ safe_id=self._get_rand_id()
573
586
  )
574
587
 
575
588
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -736,11 +749,18 @@ class OneVsOneClassifier(BaseTransformer):
736
749
  Transformed dataset.
737
750
  """
738
751
  if isinstance(dataset, DataFrame):
752
+ expected_type_inferred = ""
753
+ # when it is classifier, infer the datatype from label columns
754
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
755
+ expected_type_inferred = convert_sp_to_sf_type(
756
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
757
+ )
758
+
739
759
  output_df = self._batch_inference(
740
760
  dataset=dataset,
741
761
  inference_method="predict",
742
762
  expected_output_cols_list=self.output_cols,
743
- expected_output_cols_type="",
763
+ expected_output_cols_type=expected_type_inferred,
744
764
  )
745
765
  elif isinstance(dataset, pd.DataFrame):
746
766
  output_df = self._sklearn_inference(
@@ -811,10 +831,10 @@ class OneVsOneClassifier(BaseTransformer):
811
831
 
812
832
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
813
833
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
814
- Returns an empty list if current object is not a classifier or not yet fitted.
834
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
815
835
  """
816
836
  if getattr(self._sklearn_object, "classes_", None) is None:
817
- return []
837
+ return [output_cols_prefix]
818
838
 
819
839
  classes = self._sklearn_object.classes_
820
840
  if isinstance(classes, numpy.ndarray):
@@ -1041,7 +1061,7 @@ class OneVsOneClassifier(BaseTransformer):
1041
1061
  cp.dump(self._sklearn_object, local_score_file)
1042
1062
 
1043
1063
  # Create temp stage to run score.
1044
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1064
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1045
1065
  session = dataset._session
1046
1066
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1047
1067
  SqlResultValidator(
@@ -1055,8 +1075,9 @@ class OneVsOneClassifier(BaseTransformer):
1055
1075
  expected_value=f"Stage area {score_stage_name} successfully created."
1056
1076
  ).validate()
1057
1077
 
1058
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1059
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1078
+ # Use posixpath to construct stage paths
1079
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1080
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1060
1081
  statement_params = telemetry.get_function_usage_statement_params(
1061
1082
  project=_PROJECT,
1062
1083
  subproject=_SUBPROJECT,
@@ -1082,6 +1103,7 @@ class OneVsOneClassifier(BaseTransformer):
1082
1103
  replace=True,
1083
1104
  session=session,
1084
1105
  statement_params=statement_params,
1106
+ anonymous=True
1085
1107
  )
1086
1108
  def score_wrapper_sproc(
1087
1109
  session: Session,
@@ -1089,7 +1111,8 @@ class OneVsOneClassifier(BaseTransformer):
1089
1111
  stage_score_file_name: str,
1090
1112
  input_cols: List[str],
1091
1113
  label_cols: List[str],
1092
- sample_weight_col: Optional[str]
1114
+ sample_weight_col: Optional[str],
1115
+ statement_params: Dict[str, str]
1093
1116
  ) -> float:
1094
1117
  import cloudpickle as cp
1095
1118
  import numpy as np
@@ -1139,14 +1162,14 @@ class OneVsOneClassifier(BaseTransformer):
1139
1162
  api_calls=[Session.call],
1140
1163
  custom_tags=dict([("autogen", True)]),
1141
1164
  )
1142
- score = session.call(
1143
- score_sproc_name,
1165
+ score = score_wrapper_sproc(
1166
+ session,
1144
1167
  query,
1145
1168
  stage_score_file_name,
1146
1169
  identifier.get_unescaped_names(self.input_cols),
1147
1170
  identifier.get_unescaped_names(self.label_cols),
1148
1171
  identifier.get_unescaped_names(self.sample_weight_col),
1149
- statement_params=statement_params,
1172
+ statement_params,
1150
1173
  )
1151
1174
 
1152
1175
  cleanup_temp_files([local_score_file_name])
@@ -1164,18 +1187,20 @@ class OneVsOneClassifier(BaseTransformer):
1164
1187
  if self._sklearn_object._estimator_type == 'classifier':
1165
1188
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1166
1189
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1167
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1190
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1191
+ ([] if self._drop_input_cols else inputs) + outputs)
1168
1192
  # For regressor, the type of predict is float64
1169
1193
  elif self._sklearn_object._estimator_type == 'regressor':
1170
1194
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1171
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1172
-
1195
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1196
+ ([] if self._drop_input_cols else inputs) + outputs)
1173
1197
  for prob_func in PROB_FUNCTIONS:
1174
1198
  if hasattr(self, prob_func):
1175
1199
  output_cols_prefix: str = f"{prob_func}_"
1176
1200
  output_column_names = self._get_output_column_names(output_cols_prefix)
1177
1201
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1178
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1202
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1203
+ ([] if self._drop_input_cols else inputs) + outputs)
1179
1204
 
1180
1205
  @property
1181
1206
  def model_signatures(self) -> Dict[str, ModelSignature]:
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -204,7 +206,6 @@ class OneVsRestClassifier(BaseTransformer):
204
206
  sample_weight_col: Optional[str] = None,
205
207
  ) -> None:
206
208
  super().__init__()
207
- self.id = str(uuid4()).replace("-", "_").upper()
208
209
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
209
210
  deps = deps | _gather_dependencies(estimator)
210
211
  self._deps = list(deps)
@@ -226,6 +227,15 @@ class OneVsRestClassifier(BaseTransformer):
226
227
  self.set_drop_input_cols(drop_input_cols)
227
228
  self.set_sample_weight_col(sample_weight_col)
228
229
 
230
+ def _get_rand_id(self) -> str:
231
+ """
232
+ Generate random id to be used in sproc and stage names.
233
+
234
+ Returns:
235
+ Random id string usable in sproc, table, and stage names.
236
+ """
237
+ return str(uuid4()).replace("-", "_").upper()
238
+
229
239
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
230
240
  """
231
241
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -304,7 +314,7 @@ class OneVsRestClassifier(BaseTransformer):
304
314
  cp.dump(self._sklearn_object, local_transform_file)
305
315
 
306
316
  # Create temp stage to run fit.
307
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
317
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
308
318
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
309
319
  SqlResultValidator(
310
320
  session=session,
@@ -317,11 +327,12 @@ class OneVsRestClassifier(BaseTransformer):
317
327
  expected_value=f"Stage area {transform_stage_name} successfully created."
318
328
  ).validate()
319
329
 
320
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
330
+ # Use posixpath to construct stage paths
331
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
332
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
321
333
  local_result_file_name = get_temp_file_path()
322
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
323
334
 
324
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
335
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
325
336
  statement_params = telemetry.get_function_usage_statement_params(
326
337
  project=_PROJECT,
327
338
  subproject=_SUBPROJECT,
@@ -347,6 +358,7 @@ class OneVsRestClassifier(BaseTransformer):
347
358
  replace=True,
348
359
  session=session,
349
360
  statement_params=statement_params,
361
+ anonymous=True
350
362
  )
351
363
  def fit_wrapper_sproc(
352
364
  session: Session,
@@ -355,7 +367,8 @@ class OneVsRestClassifier(BaseTransformer):
355
367
  stage_result_file_name: str,
356
368
  input_cols: List[str],
357
369
  label_cols: List[str],
358
- sample_weight_col: Optional[str]
370
+ sample_weight_col: Optional[str],
371
+ statement_params: Dict[str, str]
359
372
  ) -> str:
360
373
  import cloudpickle as cp
361
374
  import numpy as np
@@ -422,15 +435,15 @@ class OneVsRestClassifier(BaseTransformer):
422
435
  api_calls=[Session.call],
423
436
  custom_tags=dict([("autogen", True)]),
424
437
  )
425
- sproc_export_file_name = session.call(
426
- fit_sproc_name,
438
+ sproc_export_file_name = fit_wrapper_sproc(
439
+ session,
427
440
  query,
428
441
  stage_transform_file_name,
429
442
  stage_result_file_name,
430
443
  identifier.get_unescaped_names(self.input_cols),
431
444
  identifier.get_unescaped_names(self.label_cols),
432
445
  identifier.get_unescaped_names(self.sample_weight_col),
433
- statement_params=statement_params,
446
+ statement_params,
434
447
  )
435
448
 
436
449
  if "|" in sproc_export_file_name:
@@ -440,7 +453,7 @@ class OneVsRestClassifier(BaseTransformer):
440
453
  print("\n".join(fields[1:]))
441
454
 
442
455
  session.file.get(
443
- os.path.join(stage_result_file_name, sproc_export_file_name),
456
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
444
457
  local_result_file_name,
445
458
  statement_params=statement_params
446
459
  )
@@ -486,7 +499,7 @@ class OneVsRestClassifier(BaseTransformer):
486
499
 
487
500
  # Register vectorized UDF for batch inference
488
501
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
489
- safe_id=self.id, method=inference_method)
502
+ safe_id=self._get_rand_id(), method=inference_method)
490
503
 
491
504
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
492
505
  # will try to pickle all of self which fails.
@@ -578,7 +591,7 @@ class OneVsRestClassifier(BaseTransformer):
578
591
  return transformed_pandas_df.to_dict("records")
579
592
 
580
593
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
581
- safe_id=self.id
594
+ safe_id=self._get_rand_id()
582
595
  )
583
596
 
584
597
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -745,11 +758,18 @@ class OneVsRestClassifier(BaseTransformer):
745
758
  Transformed dataset.
746
759
  """
747
760
  if isinstance(dataset, DataFrame):
761
+ expected_type_inferred = ""
762
+ # when it is classifier, infer the datatype from label columns
763
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
764
+ expected_type_inferred = convert_sp_to_sf_type(
765
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
766
+ )
767
+
748
768
  output_df = self._batch_inference(
749
769
  dataset=dataset,
750
770
  inference_method="predict",
751
771
  expected_output_cols_list=self.output_cols,
752
- expected_output_cols_type="",
772
+ expected_output_cols_type=expected_type_inferred,
753
773
  )
754
774
  elif isinstance(dataset, pd.DataFrame):
755
775
  output_df = self._sklearn_inference(
@@ -820,10 +840,10 @@ class OneVsRestClassifier(BaseTransformer):
820
840
 
821
841
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
822
842
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
823
- Returns an empty list if current object is not a classifier or not yet fitted.
843
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
824
844
  """
825
845
  if getattr(self._sklearn_object, "classes_", None) is None:
826
- return []
846
+ return [output_cols_prefix]
827
847
 
828
848
  classes = self._sklearn_object.classes_
829
849
  if isinstance(classes, numpy.ndarray):
@@ -1054,7 +1074,7 @@ class OneVsRestClassifier(BaseTransformer):
1054
1074
  cp.dump(self._sklearn_object, local_score_file)
1055
1075
 
1056
1076
  # Create temp stage to run score.
1057
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1077
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1058
1078
  session = dataset._session
1059
1079
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1060
1080
  SqlResultValidator(
@@ -1068,8 +1088,9 @@ class OneVsRestClassifier(BaseTransformer):
1068
1088
  expected_value=f"Stage area {score_stage_name} successfully created."
1069
1089
  ).validate()
1070
1090
 
1071
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1072
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1091
+ # Use posixpath to construct stage paths
1092
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1093
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1073
1094
  statement_params = telemetry.get_function_usage_statement_params(
1074
1095
  project=_PROJECT,
1075
1096
  subproject=_SUBPROJECT,
@@ -1095,6 +1116,7 @@ class OneVsRestClassifier(BaseTransformer):
1095
1116
  replace=True,
1096
1117
  session=session,
1097
1118
  statement_params=statement_params,
1119
+ anonymous=True
1098
1120
  )
1099
1121
  def score_wrapper_sproc(
1100
1122
  session: Session,
@@ -1102,7 +1124,8 @@ class OneVsRestClassifier(BaseTransformer):
1102
1124
  stage_score_file_name: str,
1103
1125
  input_cols: List[str],
1104
1126
  label_cols: List[str],
1105
- sample_weight_col: Optional[str]
1127
+ sample_weight_col: Optional[str],
1128
+ statement_params: Dict[str, str]
1106
1129
  ) -> float:
1107
1130
  import cloudpickle as cp
1108
1131
  import numpy as np
@@ -1152,14 +1175,14 @@ class OneVsRestClassifier(BaseTransformer):
1152
1175
  api_calls=[Session.call],
1153
1176
  custom_tags=dict([("autogen", True)]),
1154
1177
  )
1155
- score = session.call(
1156
- score_sproc_name,
1178
+ score = score_wrapper_sproc(
1179
+ session,
1157
1180
  query,
1158
1181
  stage_score_file_name,
1159
1182
  identifier.get_unescaped_names(self.input_cols),
1160
1183
  identifier.get_unescaped_names(self.label_cols),
1161
1184
  identifier.get_unescaped_names(self.sample_weight_col),
1162
- statement_params=statement_params,
1185
+ statement_params,
1163
1186
  )
1164
1187
 
1165
1188
  cleanup_temp_files([local_score_file_name])
@@ -1177,18 +1200,20 @@ class OneVsRestClassifier(BaseTransformer):
1177
1200
  if self._sklearn_object._estimator_type == 'classifier':
1178
1201
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1179
1202
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1180
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1203
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1204
+ ([] if self._drop_input_cols else inputs) + outputs)
1181
1205
  # For regressor, the type of predict is float64
1182
1206
  elif self._sklearn_object._estimator_type == 'regressor':
1183
1207
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1184
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1185
-
1208
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1209
+ ([] if self._drop_input_cols else inputs) + outputs)
1186
1210
  for prob_func in PROB_FUNCTIONS:
1187
1211
  if hasattr(self, prob_func):
1188
1212
  output_cols_prefix: str = f"{prob_func}_"
1189
1213
  output_column_names = self._get_output_column_names(output_cols_prefix)
1190
1214
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1191
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1215
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1216
+ ([] if self._drop_input_cols else inputs) + outputs)
1192
1217
 
1193
1218
  @property
1194
1219
  def model_signatures(self) -> Dict[str, ModelSignature]: