snowflake-ml-python 1.0.2__py3-none-any.whl → 1.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +2 -1
- snowflake/ml/_internal/file_utils.py +29 -7
- snowflake/ml/_internal/telemetry.py +5 -8
- snowflake/ml/_internal/utils/uri.py +7 -2
- snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
- snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
- snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
- snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +24 -6
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py +5 -2
- snowflake/ml/model/_deployer.py +14 -27
- snowflake/ml/model/_env.py +4 -4
- snowflake/ml/model/_handlers/custom.py +14 -2
- snowflake/ml/model/_handlers/pytorch.py +186 -0
- snowflake/ml/model/_handlers/sklearn.py +14 -9
- snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
- snowflake/ml/model/_handlers/torchscript.py +180 -0
- snowflake/ml/model/_handlers/xgboost.py +19 -9
- snowflake/ml/model/_model.py +3 -2
- snowflake/ml/model/_model_meta.py +12 -7
- snowflake/ml/model/model_signature.py +446 -66
- snowflake/ml/model/type_hints.py +23 -4
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -26
- snowflake/ml/modeling/cluster/affinity_propagation.py +51 -26
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -26
- snowflake/ml/modeling/cluster/birch.py +51 -26
- snowflake/ml/modeling/cluster/bisecting_k_means.py +51 -26
- snowflake/ml/modeling/cluster/dbscan.py +51 -26
- snowflake/ml/modeling/cluster/feature_agglomeration.py +51 -26
- snowflake/ml/modeling/cluster/k_means.py +51 -26
- snowflake/ml/modeling/cluster/mean_shift.py +51 -26
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +51 -26
- snowflake/ml/modeling/cluster/optics.py +51 -26
- snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_clustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -26
- snowflake/ml/modeling/compose/column_transformer.py +51 -26
- snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -26
- snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -26
- snowflake/ml/modeling/covariance/empirical_covariance.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -26
- snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -26
- snowflake/ml/modeling/covariance/min_cov_det.py +51 -26
- snowflake/ml/modeling/covariance/oas.py +51 -26
- snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -26
- snowflake/ml/modeling/decomposition/dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/factor_analysis.py +51 -26
- snowflake/ml/modeling/decomposition/fast_ica.py +51 -26
- snowflake/ml/modeling/decomposition/incremental_pca.py +51 -26
- snowflake/ml/modeling/decomposition/kernel_pca.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/pca.py +51 -26
- snowflake/ml/modeling/decomposition/sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/truncated_svd.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/isolation_forest.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/stacking_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/voting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/voting_regressor.py +51 -26
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fdr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fpr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fwe.py +51 -26
- snowflake/ml/modeling/feature_selection/select_k_best.py +51 -26
- snowflake/ml/modeling/feature_selection/select_percentile.py +51 -26
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +51 -26
- snowflake/ml/modeling/feature_selection/variance_threshold.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -26
- snowflake/ml/modeling/impute/iterative_imputer.py +51 -26
- snowflake/ml/modeling/impute/knn_imputer.py +51 -26
- snowflake/ml/modeling/impute/missing_indicator.py +51 -26
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/nystroem.py +51 -26
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +51 -26
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ard_regression.py +51 -26
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/huber_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/lars.py +51 -26
- snowflake/ml/modeling/linear_model/lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -26
- snowflake/ml/modeling/linear_model/linear_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/perceptron.py +51 -26
- snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ridge.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_cv.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -26
- snowflake/ml/modeling/manifold/isomap.py +51 -26
- snowflake/ml/modeling/manifold/mds.py +51 -26
- snowflake/ml/modeling/manifold/spectral_embedding.py +51 -26
- snowflake/ml/modeling/manifold/tsne.py +51 -26
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -26
- snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -26
- snowflake/ml/modeling/model_selection/grid_search_cv.py +51 -26
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -26
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neighbors/kernel_density.py +51 -26
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -26
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -26
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
- snowflake/ml/modeling/preprocessing/polynomial_features.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -26
- snowflake/ml/modeling/svm/linear_svc.py +51 -26
- snowflake/ml/modeling/svm/linear_svr.py +51 -26
- snowflake/ml/modeling/svm/nu_svc.py +51 -26
- snowflake/ml/modeling/svm/nu_svr.py +51 -26
- snowflake/ml/modeling/svm/svc.py +51 -26
- snowflake/ml/modeling/svm/svr.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +51 -26
- snowflake/ml/registry/model_registry.py +74 -56
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +27 -8
- snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
- snowflake_ml_python-1.0.2.dist-info/RECORD +0 -246
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -28,6 +29,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
28
29
|
from snowflake.snowpark import DataFrame, Session
|
29
30
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
30
31
|
from snowflake.snowpark.types import PandasSeries
|
32
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
31
33
|
|
32
34
|
from snowflake.ml.model.model_signature import (
|
33
35
|
DataType,
|
@@ -192,7 +194,6 @@ class SelectKBest(BaseTransformer):
|
|
192
194
|
sample_weight_col: Optional[str] = None,
|
193
195
|
) -> None:
|
194
196
|
super().__init__()
|
195
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
196
197
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
197
198
|
|
198
199
|
self._deps = list(deps)
|
@@ -213,6 +214,15 @@ class SelectKBest(BaseTransformer):
|
|
213
214
|
self.set_drop_input_cols(drop_input_cols)
|
214
215
|
self.set_sample_weight_col(sample_weight_col)
|
215
216
|
|
217
|
+
def _get_rand_id(self) -> str:
|
218
|
+
"""
|
219
|
+
Generate random id to be used in sproc and stage names.
|
220
|
+
|
221
|
+
Returns:
|
222
|
+
Random id string usable in sproc, table, and stage names.
|
223
|
+
"""
|
224
|
+
return str(uuid4()).replace("-", "_").upper()
|
225
|
+
|
216
226
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
217
227
|
"""
|
218
228
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -291,7 +301,7 @@ class SelectKBest(BaseTransformer):
|
|
291
301
|
cp.dump(self._sklearn_object, local_transform_file)
|
292
302
|
|
293
303
|
# Create temp stage to run fit.
|
294
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
304
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
295
305
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
296
306
|
SqlResultValidator(
|
297
307
|
session=session,
|
@@ -304,11 +314,12 @@ class SelectKBest(BaseTransformer):
|
|
304
314
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
305
315
|
).validate()
|
306
316
|
|
307
|
-
|
317
|
+
# Use posixpath to construct stage paths
|
318
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
319
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
308
320
|
local_result_file_name = get_temp_file_path()
|
309
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
310
321
|
|
311
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
322
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
312
323
|
statement_params = telemetry.get_function_usage_statement_params(
|
313
324
|
project=_PROJECT,
|
314
325
|
subproject=_SUBPROJECT,
|
@@ -334,6 +345,7 @@ class SelectKBest(BaseTransformer):
|
|
334
345
|
replace=True,
|
335
346
|
session=session,
|
336
347
|
statement_params=statement_params,
|
348
|
+
anonymous=True
|
337
349
|
)
|
338
350
|
def fit_wrapper_sproc(
|
339
351
|
session: Session,
|
@@ -342,7 +354,8 @@ class SelectKBest(BaseTransformer):
|
|
342
354
|
stage_result_file_name: str,
|
343
355
|
input_cols: List[str],
|
344
356
|
label_cols: List[str],
|
345
|
-
sample_weight_col: Optional[str]
|
357
|
+
sample_weight_col: Optional[str],
|
358
|
+
statement_params: Dict[str, str]
|
346
359
|
) -> str:
|
347
360
|
import cloudpickle as cp
|
348
361
|
import numpy as np
|
@@ -409,15 +422,15 @@ class SelectKBest(BaseTransformer):
|
|
409
422
|
api_calls=[Session.call],
|
410
423
|
custom_tags=dict([("autogen", True)]),
|
411
424
|
)
|
412
|
-
sproc_export_file_name =
|
413
|
-
|
425
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
426
|
+
session,
|
414
427
|
query,
|
415
428
|
stage_transform_file_name,
|
416
429
|
stage_result_file_name,
|
417
430
|
identifier.get_unescaped_names(self.input_cols),
|
418
431
|
identifier.get_unescaped_names(self.label_cols),
|
419
432
|
identifier.get_unescaped_names(self.sample_weight_col),
|
420
|
-
statement_params
|
433
|
+
statement_params,
|
421
434
|
)
|
422
435
|
|
423
436
|
if "|" in sproc_export_file_name:
|
@@ -427,7 +440,7 @@ class SelectKBest(BaseTransformer):
|
|
427
440
|
print("\n".join(fields[1:]))
|
428
441
|
|
429
442
|
session.file.get(
|
430
|
-
|
443
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
431
444
|
local_result_file_name,
|
432
445
|
statement_params=statement_params
|
433
446
|
)
|
@@ -473,7 +486,7 @@ class SelectKBest(BaseTransformer):
|
|
473
486
|
|
474
487
|
# Register vectorized UDF for batch inference
|
475
488
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
476
|
-
safe_id=self.
|
489
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
477
490
|
|
478
491
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
479
492
|
# will try to pickle all of self which fails.
|
@@ -565,7 +578,7 @@ class SelectKBest(BaseTransformer):
|
|
565
578
|
return transformed_pandas_df.to_dict("records")
|
566
579
|
|
567
580
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
568
|
-
safe_id=self.
|
581
|
+
safe_id=self._get_rand_id()
|
569
582
|
)
|
570
583
|
|
571
584
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -730,11 +743,18 @@ class SelectKBest(BaseTransformer):
|
|
730
743
|
Transformed dataset.
|
731
744
|
"""
|
732
745
|
if isinstance(dataset, DataFrame):
|
746
|
+
expected_type_inferred = ""
|
747
|
+
# when it is classifier, infer the datatype from label columns
|
748
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
749
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
750
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
751
|
+
)
|
752
|
+
|
733
753
|
output_df = self._batch_inference(
|
734
754
|
dataset=dataset,
|
735
755
|
inference_method="predict",
|
736
756
|
expected_output_cols_list=self.output_cols,
|
737
|
-
expected_output_cols_type=
|
757
|
+
expected_output_cols_type=expected_type_inferred,
|
738
758
|
)
|
739
759
|
elif isinstance(dataset, pd.DataFrame):
|
740
760
|
output_df = self._sklearn_inference(
|
@@ -807,10 +827,10 @@ class SelectKBest(BaseTransformer):
|
|
807
827
|
|
808
828
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
809
829
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
810
|
-
Returns
|
830
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
811
831
|
"""
|
812
832
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
813
|
-
return []
|
833
|
+
return [output_cols_prefix]
|
814
834
|
|
815
835
|
classes = self._sklearn_object.classes_
|
816
836
|
if isinstance(classes, numpy.ndarray):
|
@@ -1035,7 +1055,7 @@ class SelectKBest(BaseTransformer):
|
|
1035
1055
|
cp.dump(self._sklearn_object, local_score_file)
|
1036
1056
|
|
1037
1057
|
# Create temp stage to run score.
|
1038
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1058
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1039
1059
|
session = dataset._session
|
1040
1060
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1041
1061
|
SqlResultValidator(
|
@@ -1049,8 +1069,9 @@ class SelectKBest(BaseTransformer):
|
|
1049
1069
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1050
1070
|
).validate()
|
1051
1071
|
|
1052
|
-
|
1053
|
-
|
1072
|
+
# Use posixpath to construct stage paths
|
1073
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1074
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1054
1075
|
statement_params = telemetry.get_function_usage_statement_params(
|
1055
1076
|
project=_PROJECT,
|
1056
1077
|
subproject=_SUBPROJECT,
|
@@ -1076,6 +1097,7 @@ class SelectKBest(BaseTransformer):
|
|
1076
1097
|
replace=True,
|
1077
1098
|
session=session,
|
1078
1099
|
statement_params=statement_params,
|
1100
|
+
anonymous=True
|
1079
1101
|
)
|
1080
1102
|
def score_wrapper_sproc(
|
1081
1103
|
session: Session,
|
@@ -1083,7 +1105,8 @@ class SelectKBest(BaseTransformer):
|
|
1083
1105
|
stage_score_file_name: str,
|
1084
1106
|
input_cols: List[str],
|
1085
1107
|
label_cols: List[str],
|
1086
|
-
sample_weight_col: Optional[str]
|
1108
|
+
sample_weight_col: Optional[str],
|
1109
|
+
statement_params: Dict[str, str]
|
1087
1110
|
) -> float:
|
1088
1111
|
import cloudpickle as cp
|
1089
1112
|
import numpy as np
|
@@ -1133,14 +1156,14 @@ class SelectKBest(BaseTransformer):
|
|
1133
1156
|
api_calls=[Session.call],
|
1134
1157
|
custom_tags=dict([("autogen", True)]),
|
1135
1158
|
)
|
1136
|
-
score =
|
1137
|
-
|
1159
|
+
score = score_wrapper_sproc(
|
1160
|
+
session,
|
1138
1161
|
query,
|
1139
1162
|
stage_score_file_name,
|
1140
1163
|
identifier.get_unescaped_names(self.input_cols),
|
1141
1164
|
identifier.get_unescaped_names(self.label_cols),
|
1142
1165
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1143
|
-
statement_params
|
1166
|
+
statement_params,
|
1144
1167
|
)
|
1145
1168
|
|
1146
1169
|
cleanup_temp_files([local_score_file_name])
|
@@ -1158,18 +1181,20 @@ class SelectKBest(BaseTransformer):
|
|
1158
1181
|
if self._sklearn_object._estimator_type == 'classifier':
|
1159
1182
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1160
1183
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1161
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1184
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1185
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1162
1186
|
# For regressor, the type of predict is float64
|
1163
1187
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1164
1188
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1165
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1166
|
-
|
1189
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1190
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1167
1191
|
for prob_func in PROB_FUNCTIONS:
|
1168
1192
|
if hasattr(self, prob_func):
|
1169
1193
|
output_cols_prefix: str = f"{prob_func}_"
|
1170
1194
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1171
1195
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1172
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1196
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1197
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1173
1198
|
|
1174
1199
|
@property
|
1175
1200
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -28,6 +29,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
28
29
|
from snowflake.snowpark import DataFrame, Session
|
29
30
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
30
31
|
from snowflake.snowpark.types import PandasSeries
|
32
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
31
33
|
|
32
34
|
from snowflake.ml.model.model_signature import (
|
33
35
|
DataType,
|
@@ -191,7 +193,6 @@ class SelectPercentile(BaseTransformer):
|
|
191
193
|
sample_weight_col: Optional[str] = None,
|
192
194
|
) -> None:
|
193
195
|
super().__init__()
|
194
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
195
196
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
196
197
|
|
197
198
|
self._deps = list(deps)
|
@@ -212,6 +213,15 @@ class SelectPercentile(BaseTransformer):
|
|
212
213
|
self.set_drop_input_cols(drop_input_cols)
|
213
214
|
self.set_sample_weight_col(sample_weight_col)
|
214
215
|
|
216
|
+
def _get_rand_id(self) -> str:
|
217
|
+
"""
|
218
|
+
Generate random id to be used in sproc and stage names.
|
219
|
+
|
220
|
+
Returns:
|
221
|
+
Random id string usable in sproc, table, and stage names.
|
222
|
+
"""
|
223
|
+
return str(uuid4()).replace("-", "_").upper()
|
224
|
+
|
215
225
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
216
226
|
"""
|
217
227
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -290,7 +300,7 @@ class SelectPercentile(BaseTransformer):
|
|
290
300
|
cp.dump(self._sklearn_object, local_transform_file)
|
291
301
|
|
292
302
|
# Create temp stage to run fit.
|
293
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
303
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
294
304
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
295
305
|
SqlResultValidator(
|
296
306
|
session=session,
|
@@ -303,11 +313,12 @@ class SelectPercentile(BaseTransformer):
|
|
303
313
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
304
314
|
).validate()
|
305
315
|
|
306
|
-
|
316
|
+
# Use posixpath to construct stage paths
|
317
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
318
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
307
319
|
local_result_file_name = get_temp_file_path()
|
308
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
309
320
|
|
310
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
321
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
311
322
|
statement_params = telemetry.get_function_usage_statement_params(
|
312
323
|
project=_PROJECT,
|
313
324
|
subproject=_SUBPROJECT,
|
@@ -333,6 +344,7 @@ class SelectPercentile(BaseTransformer):
|
|
333
344
|
replace=True,
|
334
345
|
session=session,
|
335
346
|
statement_params=statement_params,
|
347
|
+
anonymous=True
|
336
348
|
)
|
337
349
|
def fit_wrapper_sproc(
|
338
350
|
session: Session,
|
@@ -341,7 +353,8 @@ class SelectPercentile(BaseTransformer):
|
|
341
353
|
stage_result_file_name: str,
|
342
354
|
input_cols: List[str],
|
343
355
|
label_cols: List[str],
|
344
|
-
sample_weight_col: Optional[str]
|
356
|
+
sample_weight_col: Optional[str],
|
357
|
+
statement_params: Dict[str, str]
|
345
358
|
) -> str:
|
346
359
|
import cloudpickle as cp
|
347
360
|
import numpy as np
|
@@ -408,15 +421,15 @@ class SelectPercentile(BaseTransformer):
|
|
408
421
|
api_calls=[Session.call],
|
409
422
|
custom_tags=dict([("autogen", True)]),
|
410
423
|
)
|
411
|
-
sproc_export_file_name =
|
412
|
-
|
424
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
425
|
+
session,
|
413
426
|
query,
|
414
427
|
stage_transform_file_name,
|
415
428
|
stage_result_file_name,
|
416
429
|
identifier.get_unescaped_names(self.input_cols),
|
417
430
|
identifier.get_unescaped_names(self.label_cols),
|
418
431
|
identifier.get_unescaped_names(self.sample_weight_col),
|
419
|
-
statement_params
|
432
|
+
statement_params,
|
420
433
|
)
|
421
434
|
|
422
435
|
if "|" in sproc_export_file_name:
|
@@ -426,7 +439,7 @@ class SelectPercentile(BaseTransformer):
|
|
426
439
|
print("\n".join(fields[1:]))
|
427
440
|
|
428
441
|
session.file.get(
|
429
|
-
|
442
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
430
443
|
local_result_file_name,
|
431
444
|
statement_params=statement_params
|
432
445
|
)
|
@@ -472,7 +485,7 @@ class SelectPercentile(BaseTransformer):
|
|
472
485
|
|
473
486
|
# Register vectorized UDF for batch inference
|
474
487
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
475
|
-
safe_id=self.
|
488
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
476
489
|
|
477
490
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
478
491
|
# will try to pickle all of self which fails.
|
@@ -564,7 +577,7 @@ class SelectPercentile(BaseTransformer):
|
|
564
577
|
return transformed_pandas_df.to_dict("records")
|
565
578
|
|
566
579
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
567
|
-
safe_id=self.
|
580
|
+
safe_id=self._get_rand_id()
|
568
581
|
)
|
569
582
|
|
570
583
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -729,11 +742,18 @@ class SelectPercentile(BaseTransformer):
|
|
729
742
|
Transformed dataset.
|
730
743
|
"""
|
731
744
|
if isinstance(dataset, DataFrame):
|
745
|
+
expected_type_inferred = ""
|
746
|
+
# when it is classifier, infer the datatype from label columns
|
747
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
748
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
749
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
750
|
+
)
|
751
|
+
|
732
752
|
output_df = self._batch_inference(
|
733
753
|
dataset=dataset,
|
734
754
|
inference_method="predict",
|
735
755
|
expected_output_cols_list=self.output_cols,
|
736
|
-
expected_output_cols_type=
|
756
|
+
expected_output_cols_type=expected_type_inferred,
|
737
757
|
)
|
738
758
|
elif isinstance(dataset, pd.DataFrame):
|
739
759
|
output_df = self._sklearn_inference(
|
@@ -806,10 +826,10 @@ class SelectPercentile(BaseTransformer):
|
|
806
826
|
|
807
827
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
808
828
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
809
|
-
Returns
|
829
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
810
830
|
"""
|
811
831
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
812
|
-
return []
|
832
|
+
return [output_cols_prefix]
|
813
833
|
|
814
834
|
classes = self._sklearn_object.classes_
|
815
835
|
if isinstance(classes, numpy.ndarray):
|
@@ -1034,7 +1054,7 @@ class SelectPercentile(BaseTransformer):
|
|
1034
1054
|
cp.dump(self._sklearn_object, local_score_file)
|
1035
1055
|
|
1036
1056
|
# Create temp stage to run score.
|
1037
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1057
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1038
1058
|
session = dataset._session
|
1039
1059
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1040
1060
|
SqlResultValidator(
|
@@ -1048,8 +1068,9 @@ class SelectPercentile(BaseTransformer):
|
|
1048
1068
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1049
1069
|
).validate()
|
1050
1070
|
|
1051
|
-
|
1052
|
-
|
1071
|
+
# Use posixpath to construct stage paths
|
1072
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1073
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1053
1074
|
statement_params = telemetry.get_function_usage_statement_params(
|
1054
1075
|
project=_PROJECT,
|
1055
1076
|
subproject=_SUBPROJECT,
|
@@ -1075,6 +1096,7 @@ class SelectPercentile(BaseTransformer):
|
|
1075
1096
|
replace=True,
|
1076
1097
|
session=session,
|
1077
1098
|
statement_params=statement_params,
|
1099
|
+
anonymous=True
|
1078
1100
|
)
|
1079
1101
|
def score_wrapper_sproc(
|
1080
1102
|
session: Session,
|
@@ -1082,7 +1104,8 @@ class SelectPercentile(BaseTransformer):
|
|
1082
1104
|
stage_score_file_name: str,
|
1083
1105
|
input_cols: List[str],
|
1084
1106
|
label_cols: List[str],
|
1085
|
-
sample_weight_col: Optional[str]
|
1107
|
+
sample_weight_col: Optional[str],
|
1108
|
+
statement_params: Dict[str, str]
|
1086
1109
|
) -> float:
|
1087
1110
|
import cloudpickle as cp
|
1088
1111
|
import numpy as np
|
@@ -1132,14 +1155,14 @@ class SelectPercentile(BaseTransformer):
|
|
1132
1155
|
api_calls=[Session.call],
|
1133
1156
|
custom_tags=dict([("autogen", True)]),
|
1134
1157
|
)
|
1135
|
-
score =
|
1136
|
-
|
1158
|
+
score = score_wrapper_sproc(
|
1159
|
+
session,
|
1137
1160
|
query,
|
1138
1161
|
stage_score_file_name,
|
1139
1162
|
identifier.get_unescaped_names(self.input_cols),
|
1140
1163
|
identifier.get_unescaped_names(self.label_cols),
|
1141
1164
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1142
|
-
statement_params
|
1165
|
+
statement_params,
|
1143
1166
|
)
|
1144
1167
|
|
1145
1168
|
cleanup_temp_files([local_score_file_name])
|
@@ -1157,18 +1180,20 @@ class SelectPercentile(BaseTransformer):
|
|
1157
1180
|
if self._sklearn_object._estimator_type == 'classifier':
|
1158
1181
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1159
1182
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1160
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1183
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1184
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1161
1185
|
# For regressor, the type of predict is float64
|
1162
1186
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1163
1187
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1164
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1165
|
-
|
1188
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1189
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1166
1190
|
for prob_func in PROB_FUNCTIONS:
|
1167
1191
|
if hasattr(self, prob_func):
|
1168
1192
|
output_cols_prefix: str = f"{prob_func}_"
|
1169
1193
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1170
1194
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1171
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1195
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1196
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1172
1197
|
|
1173
1198
|
@property
|
1174
1199
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|