snowflake-ml-python 1.0.2__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (189) hide show
  1. snowflake/ml/_internal/env_utils.py +2 -1
  2. snowflake/ml/_internal/file_utils.py +29 -7
  3. snowflake/ml/_internal/telemetry.py +5 -8
  4. snowflake/ml/_internal/utils/uri.py +7 -2
  5. snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
  6. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
  7. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
  8. snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
  9. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
  10. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
  11. snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
  12. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
  13. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
  14. snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
  15. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
  16. snowflake/ml/model/_deploy_client/warehouse/deploy.py +24 -6
  17. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +5 -2
  18. snowflake/ml/model/_deployer.py +14 -27
  19. snowflake/ml/model/_env.py +4 -4
  20. snowflake/ml/model/_handlers/custom.py +14 -2
  21. snowflake/ml/model/_handlers/pytorch.py +186 -0
  22. snowflake/ml/model/_handlers/sklearn.py +14 -9
  23. snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
  24. snowflake/ml/model/_handlers/torchscript.py +180 -0
  25. snowflake/ml/model/_handlers/xgboost.py +19 -9
  26. snowflake/ml/model/_model.py +3 -2
  27. snowflake/ml/model/_model_meta.py +12 -7
  28. snowflake/ml/model/model_signature.py +446 -66
  29. snowflake/ml/model/type_hints.py +23 -4
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -26
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +51 -26
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -26
  33. snowflake/ml/modeling/cluster/birch.py +51 -26
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +51 -26
  35. snowflake/ml/modeling/cluster/dbscan.py +51 -26
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +51 -26
  37. snowflake/ml/modeling/cluster/k_means.py +51 -26
  38. snowflake/ml/modeling/cluster/mean_shift.py +51 -26
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +51 -26
  40. snowflake/ml/modeling/cluster/optics.py +51 -26
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -26
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +51 -26
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -26
  44. snowflake/ml/modeling/compose/column_transformer.py +51 -26
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -26
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -26
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +51 -26
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +51 -26
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -26
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -26
  51. snowflake/ml/modeling/covariance/min_cov_det.py +51 -26
  52. snowflake/ml/modeling/covariance/oas.py +51 -26
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -26
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +51 -26
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +51 -26
  56. snowflake/ml/modeling/decomposition/fast_ica.py +51 -26
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +51 -26
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +51 -26
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +51 -26
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +51 -26
  61. snowflake/ml/modeling/decomposition/pca.py +51 -26
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +51 -26
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +51 -26
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +51 -26
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -26
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -26
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -26
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -26
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -26
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -26
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -26
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -26
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -26
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -26
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -26
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +51 -26
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -26
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -26
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +51 -26
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +51 -26
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +51 -26
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +51 -26
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +51 -26
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +51 -26
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +51 -26
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +51 -26
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +51 -26
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +51 -26
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +51 -26
  90. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -26
  91. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -26
  92. snowflake/ml/modeling/impute/iterative_imputer.py +51 -26
  93. snowflake/ml/modeling/impute/knn_imputer.py +51 -26
  94. snowflake/ml/modeling/impute/missing_indicator.py +51 -26
  95. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +51 -26
  96. snowflake/ml/modeling/kernel_approximation/nystroem.py +51 -26
  97. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +51 -26
  98. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +51 -26
  99. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +51 -26
  100. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -26
  101. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -26
  102. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -26
  103. snowflake/ml/modeling/linear_model/ard_regression.py +51 -26
  104. snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -26
  105. snowflake/ml/modeling/linear_model/elastic_net.py +51 -26
  106. snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -26
  107. snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -26
  108. snowflake/ml/modeling/linear_model/huber_regressor.py +51 -26
  109. snowflake/ml/modeling/linear_model/lars.py +51 -26
  110. snowflake/ml/modeling/linear_model/lars_cv.py +51 -26
  111. snowflake/ml/modeling/linear_model/lasso.py +51 -26
  112. snowflake/ml/modeling/linear_model/lasso_cv.py +51 -26
  113. snowflake/ml/modeling/linear_model/lasso_lars.py +51 -26
  114. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -26
  115. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -26
  116. snowflake/ml/modeling/linear_model/linear_regression.py +51 -26
  117. snowflake/ml/modeling/linear_model/logistic_regression.py +51 -26
  118. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -26
  119. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -26
  120. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -26
  121. snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -26
  122. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -26
  123. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -26
  124. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -26
  125. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -26
  126. snowflake/ml/modeling/linear_model/perceptron.py +51 -26
  127. snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -26
  128. snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -26
  129. snowflake/ml/modeling/linear_model/ridge.py +51 -26
  130. snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -26
  131. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -26
  132. snowflake/ml/modeling/linear_model/ridge_cv.py +51 -26
  133. snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -26
  134. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -26
  135. snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -26
  136. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -26
  137. snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -26
  138. snowflake/ml/modeling/manifold/isomap.py +51 -26
  139. snowflake/ml/modeling/manifold/mds.py +51 -26
  140. snowflake/ml/modeling/manifold/spectral_embedding.py +51 -26
  141. snowflake/ml/modeling/manifold/tsne.py +51 -26
  142. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -26
  143. snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -26
  144. snowflake/ml/modeling/model_selection/grid_search_cv.py +51 -26
  145. snowflake/ml/modeling/model_selection/randomized_search_cv.py +51 -26
  146. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -26
  147. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -26
  148. snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -26
  149. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -26
  150. snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -26
  151. snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -26
  152. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -26
  153. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -26
  154. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -26
  155. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -26
  156. snowflake/ml/modeling/neighbors/kernel_density.py +51 -26
  157. snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -26
  158. snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -26
  159. snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -26
  160. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +51 -26
  161. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -26
  162. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -26
  163. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +51 -26
  164. snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -26
  165. snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -26
  166. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
  167. snowflake/ml/modeling/preprocessing/polynomial_features.py +51 -26
  168. snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -26
  169. snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -26
  170. snowflake/ml/modeling/svm/linear_svc.py +51 -26
  171. snowflake/ml/modeling/svm/linear_svr.py +51 -26
  172. snowflake/ml/modeling/svm/nu_svc.py +51 -26
  173. snowflake/ml/modeling/svm/nu_svr.py +51 -26
  174. snowflake/ml/modeling/svm/svc.py +51 -26
  175. snowflake/ml/modeling/svm/svr.py +51 -26
  176. snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -26
  177. snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -26
  178. snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -26
  179. snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -26
  180. snowflake/ml/modeling/xgboost/xgb_classifier.py +51 -26
  181. snowflake/ml/modeling/xgboost/xgb_regressor.py +51 -26
  182. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +51 -26
  183. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +51 -26
  184. snowflake/ml/registry/model_registry.py +74 -56
  185. snowflake/ml/version.py +1 -1
  186. {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +27 -8
  187. snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
  188. snowflake_ml_python-1.0.2.dist-info/RECORD +0 -246
  189. {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -206,7 +208,6 @@ class OutputCodeClassifier(BaseTransformer):
206
208
  sample_weight_col: Optional[str] = None,
207
209
  ) -> None:
208
210
  super().__init__()
209
- self.id = str(uuid4()).replace("-", "_").upper()
210
211
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
211
212
  deps = deps | _gather_dependencies(estimator)
212
213
  self._deps = list(deps)
@@ -229,6 +230,15 @@ class OutputCodeClassifier(BaseTransformer):
229
230
  self.set_drop_input_cols(drop_input_cols)
230
231
  self.set_sample_weight_col(sample_weight_col)
231
232
 
233
+ def _get_rand_id(self) -> str:
234
+ """
235
+ Generate random id to be used in sproc and stage names.
236
+
237
+ Returns:
238
+ Random id string usable in sproc, table, and stage names.
239
+ """
240
+ return str(uuid4()).replace("-", "_").upper()
241
+
232
242
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
233
243
  """
234
244
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -307,7 +317,7 @@ class OutputCodeClassifier(BaseTransformer):
307
317
  cp.dump(self._sklearn_object, local_transform_file)
308
318
 
309
319
  # Create temp stage to run fit.
310
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
320
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
311
321
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
312
322
  SqlResultValidator(
313
323
  session=session,
@@ -320,11 +330,12 @@ class OutputCodeClassifier(BaseTransformer):
320
330
  expected_value=f"Stage area {transform_stage_name} successfully created."
321
331
  ).validate()
322
332
 
323
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
333
+ # Use posixpath to construct stage paths
334
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
335
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
324
336
  local_result_file_name = get_temp_file_path()
325
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
326
337
 
327
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
338
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
328
339
  statement_params = telemetry.get_function_usage_statement_params(
329
340
  project=_PROJECT,
330
341
  subproject=_SUBPROJECT,
@@ -350,6 +361,7 @@ class OutputCodeClassifier(BaseTransformer):
350
361
  replace=True,
351
362
  session=session,
352
363
  statement_params=statement_params,
364
+ anonymous=True
353
365
  )
354
366
  def fit_wrapper_sproc(
355
367
  session: Session,
@@ -358,7 +370,8 @@ class OutputCodeClassifier(BaseTransformer):
358
370
  stage_result_file_name: str,
359
371
  input_cols: List[str],
360
372
  label_cols: List[str],
361
- sample_weight_col: Optional[str]
373
+ sample_weight_col: Optional[str],
374
+ statement_params: Dict[str, str]
362
375
  ) -> str:
363
376
  import cloudpickle as cp
364
377
  import numpy as np
@@ -425,15 +438,15 @@ class OutputCodeClassifier(BaseTransformer):
425
438
  api_calls=[Session.call],
426
439
  custom_tags=dict([("autogen", True)]),
427
440
  )
428
- sproc_export_file_name = session.call(
429
- fit_sproc_name,
441
+ sproc_export_file_name = fit_wrapper_sproc(
442
+ session,
430
443
  query,
431
444
  stage_transform_file_name,
432
445
  stage_result_file_name,
433
446
  identifier.get_unescaped_names(self.input_cols),
434
447
  identifier.get_unescaped_names(self.label_cols),
435
448
  identifier.get_unescaped_names(self.sample_weight_col),
436
- statement_params=statement_params,
449
+ statement_params,
437
450
  )
438
451
 
439
452
  if "|" in sproc_export_file_name:
@@ -443,7 +456,7 @@ class OutputCodeClassifier(BaseTransformer):
443
456
  print("\n".join(fields[1:]))
444
457
 
445
458
  session.file.get(
446
- os.path.join(stage_result_file_name, sproc_export_file_name),
459
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
447
460
  local_result_file_name,
448
461
  statement_params=statement_params
449
462
  )
@@ -489,7 +502,7 @@ class OutputCodeClassifier(BaseTransformer):
489
502
 
490
503
  # Register vectorized UDF for batch inference
491
504
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
492
- safe_id=self.id, method=inference_method)
505
+ safe_id=self._get_rand_id(), method=inference_method)
493
506
 
494
507
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
495
508
  # will try to pickle all of self which fails.
@@ -581,7 +594,7 @@ class OutputCodeClassifier(BaseTransformer):
581
594
  return transformed_pandas_df.to_dict("records")
582
595
 
583
596
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
584
- safe_id=self.id
597
+ safe_id=self._get_rand_id()
585
598
  )
586
599
 
587
600
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -748,11 +761,18 @@ class OutputCodeClassifier(BaseTransformer):
748
761
  Transformed dataset.
749
762
  """
750
763
  if isinstance(dataset, DataFrame):
764
+ expected_type_inferred = ""
765
+ # when it is classifier, infer the datatype from label columns
766
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
767
+ expected_type_inferred = convert_sp_to_sf_type(
768
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
769
+ )
770
+
751
771
  output_df = self._batch_inference(
752
772
  dataset=dataset,
753
773
  inference_method="predict",
754
774
  expected_output_cols_list=self.output_cols,
755
- expected_output_cols_type="",
775
+ expected_output_cols_type=expected_type_inferred,
756
776
  )
757
777
  elif isinstance(dataset, pd.DataFrame):
758
778
  output_df = self._sklearn_inference(
@@ -823,10 +843,10 @@ class OutputCodeClassifier(BaseTransformer):
823
843
 
824
844
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
825
845
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
826
- Returns an empty list if current object is not a classifier or not yet fitted.
846
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
827
847
  """
828
848
  if getattr(self._sklearn_object, "classes_", None) is None:
829
- return []
849
+ return [output_cols_prefix]
830
850
 
831
851
  classes = self._sklearn_object.classes_
832
852
  if isinstance(classes, numpy.ndarray):
@@ -1051,7 +1071,7 @@ class OutputCodeClassifier(BaseTransformer):
1051
1071
  cp.dump(self._sklearn_object, local_score_file)
1052
1072
 
1053
1073
  # Create temp stage to run score.
1054
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1074
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1055
1075
  session = dataset._session
1056
1076
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1057
1077
  SqlResultValidator(
@@ -1065,8 +1085,9 @@ class OutputCodeClassifier(BaseTransformer):
1065
1085
  expected_value=f"Stage area {score_stage_name} successfully created."
1066
1086
  ).validate()
1067
1087
 
1068
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1069
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1088
+ # Use posixpath to construct stage paths
1089
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1090
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1070
1091
  statement_params = telemetry.get_function_usage_statement_params(
1071
1092
  project=_PROJECT,
1072
1093
  subproject=_SUBPROJECT,
@@ -1092,6 +1113,7 @@ class OutputCodeClassifier(BaseTransformer):
1092
1113
  replace=True,
1093
1114
  session=session,
1094
1115
  statement_params=statement_params,
1116
+ anonymous=True
1095
1117
  )
1096
1118
  def score_wrapper_sproc(
1097
1119
  session: Session,
@@ -1099,7 +1121,8 @@ class OutputCodeClassifier(BaseTransformer):
1099
1121
  stage_score_file_name: str,
1100
1122
  input_cols: List[str],
1101
1123
  label_cols: List[str],
1102
- sample_weight_col: Optional[str]
1124
+ sample_weight_col: Optional[str],
1125
+ statement_params: Dict[str, str]
1103
1126
  ) -> float:
1104
1127
  import cloudpickle as cp
1105
1128
  import numpy as np
@@ -1149,14 +1172,14 @@ class OutputCodeClassifier(BaseTransformer):
1149
1172
  api_calls=[Session.call],
1150
1173
  custom_tags=dict([("autogen", True)]),
1151
1174
  )
1152
- score = session.call(
1153
- score_sproc_name,
1175
+ score = score_wrapper_sproc(
1176
+ session,
1154
1177
  query,
1155
1178
  stage_score_file_name,
1156
1179
  identifier.get_unescaped_names(self.input_cols),
1157
1180
  identifier.get_unescaped_names(self.label_cols),
1158
1181
  identifier.get_unescaped_names(self.sample_weight_col),
1159
- statement_params=statement_params,
1182
+ statement_params,
1160
1183
  )
1161
1184
 
1162
1185
  cleanup_temp_files([local_score_file_name])
@@ -1174,18 +1197,20 @@ class OutputCodeClassifier(BaseTransformer):
1174
1197
  if self._sklearn_object._estimator_type == 'classifier':
1175
1198
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1176
1199
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1177
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1200
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1201
+ ([] if self._drop_input_cols else inputs) + outputs)
1178
1202
  # For regressor, the type of predict is float64
1179
1203
  elif self._sklearn_object._estimator_type == 'regressor':
1180
1204
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1181
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1182
-
1205
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1206
+ ([] if self._drop_input_cols else inputs) + outputs)
1183
1207
  for prob_func in PROB_FUNCTIONS:
1184
1208
  if hasattr(self, prob_func):
1185
1209
  output_cols_prefix: str = f"{prob_func}_"
1186
1210
  output_column_names = self._get_output_column_names(output_cols_prefix)
1187
1211
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1188
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1212
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1213
+ ([] if self._drop_input_cols else inputs) + outputs)
1189
1214
 
1190
1215
  @property
1191
1216
  def model_signatures(self) -> Dict[str, ModelSignature]:
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -205,7 +207,6 @@ class BernoulliNB(BaseTransformer):
205
207
  sample_weight_col: Optional[str] = None,
206
208
  ) -> None:
207
209
  super().__init__()
208
- self.id = str(uuid4()).replace("-", "_").upper()
209
210
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
210
211
 
211
212
  self._deps = list(deps)
@@ -229,6 +230,15 @@ class BernoulliNB(BaseTransformer):
229
230
  self.set_drop_input_cols(drop_input_cols)
230
231
  self.set_sample_weight_col(sample_weight_col)
231
232
 
233
+ def _get_rand_id(self) -> str:
234
+ """
235
+ Generate random id to be used in sproc and stage names.
236
+
237
+ Returns:
238
+ Random id string usable in sproc, table, and stage names.
239
+ """
240
+ return str(uuid4()).replace("-", "_").upper()
241
+
232
242
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
233
243
  """
234
244
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -307,7 +317,7 @@ class BernoulliNB(BaseTransformer):
307
317
  cp.dump(self._sklearn_object, local_transform_file)
308
318
 
309
319
  # Create temp stage to run fit.
310
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
320
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
311
321
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
312
322
  SqlResultValidator(
313
323
  session=session,
@@ -320,11 +330,12 @@ class BernoulliNB(BaseTransformer):
320
330
  expected_value=f"Stage area {transform_stage_name} successfully created."
321
331
  ).validate()
322
332
 
323
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
333
+ # Use posixpath to construct stage paths
334
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
335
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
324
336
  local_result_file_name = get_temp_file_path()
325
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
326
337
 
327
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
338
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
328
339
  statement_params = telemetry.get_function_usage_statement_params(
329
340
  project=_PROJECT,
330
341
  subproject=_SUBPROJECT,
@@ -350,6 +361,7 @@ class BernoulliNB(BaseTransformer):
350
361
  replace=True,
351
362
  session=session,
352
363
  statement_params=statement_params,
364
+ anonymous=True
353
365
  )
354
366
  def fit_wrapper_sproc(
355
367
  session: Session,
@@ -358,7 +370,8 @@ class BernoulliNB(BaseTransformer):
358
370
  stage_result_file_name: str,
359
371
  input_cols: List[str],
360
372
  label_cols: List[str],
361
- sample_weight_col: Optional[str]
373
+ sample_weight_col: Optional[str],
374
+ statement_params: Dict[str, str]
362
375
  ) -> str:
363
376
  import cloudpickle as cp
364
377
  import numpy as np
@@ -425,15 +438,15 @@ class BernoulliNB(BaseTransformer):
425
438
  api_calls=[Session.call],
426
439
  custom_tags=dict([("autogen", True)]),
427
440
  )
428
- sproc_export_file_name = session.call(
429
- fit_sproc_name,
441
+ sproc_export_file_name = fit_wrapper_sproc(
442
+ session,
430
443
  query,
431
444
  stage_transform_file_name,
432
445
  stage_result_file_name,
433
446
  identifier.get_unescaped_names(self.input_cols),
434
447
  identifier.get_unescaped_names(self.label_cols),
435
448
  identifier.get_unescaped_names(self.sample_weight_col),
436
- statement_params=statement_params,
449
+ statement_params,
437
450
  )
438
451
 
439
452
  if "|" in sproc_export_file_name:
@@ -443,7 +456,7 @@ class BernoulliNB(BaseTransformer):
443
456
  print("\n".join(fields[1:]))
444
457
 
445
458
  session.file.get(
446
- os.path.join(stage_result_file_name, sproc_export_file_name),
459
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
447
460
  local_result_file_name,
448
461
  statement_params=statement_params
449
462
  )
@@ -489,7 +502,7 @@ class BernoulliNB(BaseTransformer):
489
502
 
490
503
  # Register vectorized UDF for batch inference
491
504
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
492
- safe_id=self.id, method=inference_method)
505
+ safe_id=self._get_rand_id(), method=inference_method)
493
506
 
494
507
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
495
508
  # will try to pickle all of self which fails.
@@ -581,7 +594,7 @@ class BernoulliNB(BaseTransformer):
581
594
  return transformed_pandas_df.to_dict("records")
582
595
 
583
596
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
584
- safe_id=self.id
597
+ safe_id=self._get_rand_id()
585
598
  )
586
599
 
587
600
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -748,11 +761,18 @@ class BernoulliNB(BaseTransformer):
748
761
  Transformed dataset.
749
762
  """
750
763
  if isinstance(dataset, DataFrame):
764
+ expected_type_inferred = ""
765
+ # when it is classifier, infer the datatype from label columns
766
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
767
+ expected_type_inferred = convert_sp_to_sf_type(
768
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
769
+ )
770
+
751
771
  output_df = self._batch_inference(
752
772
  dataset=dataset,
753
773
  inference_method="predict",
754
774
  expected_output_cols_list=self.output_cols,
755
- expected_output_cols_type="",
775
+ expected_output_cols_type=expected_type_inferred,
756
776
  )
757
777
  elif isinstance(dataset, pd.DataFrame):
758
778
  output_df = self._sklearn_inference(
@@ -823,10 +843,10 @@ class BernoulliNB(BaseTransformer):
823
843
 
824
844
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
825
845
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
826
- Returns an empty list if current object is not a classifier or not yet fitted.
846
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
827
847
  """
828
848
  if getattr(self._sklearn_object, "classes_", None) is None:
829
- return []
849
+ return [output_cols_prefix]
830
850
 
831
851
  classes = self._sklearn_object.classes_
832
852
  if isinstance(classes, numpy.ndarray):
@@ -1055,7 +1075,7 @@ class BernoulliNB(BaseTransformer):
1055
1075
  cp.dump(self._sklearn_object, local_score_file)
1056
1076
 
1057
1077
  # Create temp stage to run score.
1058
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1078
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1059
1079
  session = dataset._session
1060
1080
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1061
1081
  SqlResultValidator(
@@ -1069,8 +1089,9 @@ class BernoulliNB(BaseTransformer):
1069
1089
  expected_value=f"Stage area {score_stage_name} successfully created."
1070
1090
  ).validate()
1071
1091
 
1072
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1073
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1092
+ # Use posixpath to construct stage paths
1093
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1094
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1074
1095
  statement_params = telemetry.get_function_usage_statement_params(
1075
1096
  project=_PROJECT,
1076
1097
  subproject=_SUBPROJECT,
@@ -1096,6 +1117,7 @@ class BernoulliNB(BaseTransformer):
1096
1117
  replace=True,
1097
1118
  session=session,
1098
1119
  statement_params=statement_params,
1120
+ anonymous=True
1099
1121
  )
1100
1122
  def score_wrapper_sproc(
1101
1123
  session: Session,
@@ -1103,7 +1125,8 @@ class BernoulliNB(BaseTransformer):
1103
1125
  stage_score_file_name: str,
1104
1126
  input_cols: List[str],
1105
1127
  label_cols: List[str],
1106
- sample_weight_col: Optional[str]
1128
+ sample_weight_col: Optional[str],
1129
+ statement_params: Dict[str, str]
1107
1130
  ) -> float:
1108
1131
  import cloudpickle as cp
1109
1132
  import numpy as np
@@ -1153,14 +1176,14 @@ class BernoulliNB(BaseTransformer):
1153
1176
  api_calls=[Session.call],
1154
1177
  custom_tags=dict([("autogen", True)]),
1155
1178
  )
1156
- score = session.call(
1157
- score_sproc_name,
1179
+ score = score_wrapper_sproc(
1180
+ session,
1158
1181
  query,
1159
1182
  stage_score_file_name,
1160
1183
  identifier.get_unescaped_names(self.input_cols),
1161
1184
  identifier.get_unescaped_names(self.label_cols),
1162
1185
  identifier.get_unescaped_names(self.sample_weight_col),
1163
- statement_params=statement_params,
1186
+ statement_params,
1164
1187
  )
1165
1188
 
1166
1189
  cleanup_temp_files([local_score_file_name])
@@ -1178,18 +1201,20 @@ class BernoulliNB(BaseTransformer):
1178
1201
  if self._sklearn_object._estimator_type == 'classifier':
1179
1202
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1180
1203
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1181
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1204
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1205
+ ([] if self._drop_input_cols else inputs) + outputs)
1182
1206
  # For regressor, the type of predict is float64
1183
1207
  elif self._sklearn_object._estimator_type == 'regressor':
1184
1208
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1185
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1186
-
1209
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1210
+ ([] if self._drop_input_cols else inputs) + outputs)
1187
1211
  for prob_func in PROB_FUNCTIONS:
1188
1212
  if hasattr(self, prob_func):
1189
1213
  output_cols_prefix: str = f"{prob_func}_"
1190
1214
  output_column_names = self._get_output_column_names(output_cols_prefix)
1191
1215
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1192
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1216
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1217
+ ([] if self._drop_input_cols else inputs) + outputs)
1193
1218
 
1194
1219
  @property
1195
1220
  def model_signatures(self) -> Dict[str, ModelSignature]: