snowflake-ml-python 1.0.2__py3-none-any.whl → 1.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +2 -1
- snowflake/ml/_internal/file_utils.py +29 -7
- snowflake/ml/_internal/telemetry.py +5 -8
- snowflake/ml/_internal/utils/uri.py +7 -2
- snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
- snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
- snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
- snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +24 -6
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py +5 -2
- snowflake/ml/model/_deployer.py +14 -27
- snowflake/ml/model/_env.py +4 -4
- snowflake/ml/model/_handlers/custom.py +14 -2
- snowflake/ml/model/_handlers/pytorch.py +186 -0
- snowflake/ml/model/_handlers/sklearn.py +14 -9
- snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
- snowflake/ml/model/_handlers/torchscript.py +180 -0
- snowflake/ml/model/_handlers/xgboost.py +19 -9
- snowflake/ml/model/_model.py +3 -2
- snowflake/ml/model/_model_meta.py +12 -7
- snowflake/ml/model/model_signature.py +446 -66
- snowflake/ml/model/type_hints.py +23 -4
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -26
- snowflake/ml/modeling/cluster/affinity_propagation.py +51 -26
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -26
- snowflake/ml/modeling/cluster/birch.py +51 -26
- snowflake/ml/modeling/cluster/bisecting_k_means.py +51 -26
- snowflake/ml/modeling/cluster/dbscan.py +51 -26
- snowflake/ml/modeling/cluster/feature_agglomeration.py +51 -26
- snowflake/ml/modeling/cluster/k_means.py +51 -26
- snowflake/ml/modeling/cluster/mean_shift.py +51 -26
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +51 -26
- snowflake/ml/modeling/cluster/optics.py +51 -26
- snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_clustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -26
- snowflake/ml/modeling/compose/column_transformer.py +51 -26
- snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -26
- snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -26
- snowflake/ml/modeling/covariance/empirical_covariance.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -26
- snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -26
- snowflake/ml/modeling/covariance/min_cov_det.py +51 -26
- snowflake/ml/modeling/covariance/oas.py +51 -26
- snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -26
- snowflake/ml/modeling/decomposition/dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/factor_analysis.py +51 -26
- snowflake/ml/modeling/decomposition/fast_ica.py +51 -26
- snowflake/ml/modeling/decomposition/incremental_pca.py +51 -26
- snowflake/ml/modeling/decomposition/kernel_pca.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/pca.py +51 -26
- snowflake/ml/modeling/decomposition/sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/truncated_svd.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/isolation_forest.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/stacking_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/voting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/voting_regressor.py +51 -26
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fdr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fpr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fwe.py +51 -26
- snowflake/ml/modeling/feature_selection/select_k_best.py +51 -26
- snowflake/ml/modeling/feature_selection/select_percentile.py +51 -26
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +51 -26
- snowflake/ml/modeling/feature_selection/variance_threshold.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -26
- snowflake/ml/modeling/impute/iterative_imputer.py +51 -26
- snowflake/ml/modeling/impute/knn_imputer.py +51 -26
- snowflake/ml/modeling/impute/missing_indicator.py +51 -26
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/nystroem.py +51 -26
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +51 -26
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ard_regression.py +51 -26
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/huber_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/lars.py +51 -26
- snowflake/ml/modeling/linear_model/lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -26
- snowflake/ml/modeling/linear_model/linear_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/perceptron.py +51 -26
- snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ridge.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_cv.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -26
- snowflake/ml/modeling/manifold/isomap.py +51 -26
- snowflake/ml/modeling/manifold/mds.py +51 -26
- snowflake/ml/modeling/manifold/spectral_embedding.py +51 -26
- snowflake/ml/modeling/manifold/tsne.py +51 -26
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -26
- snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -26
- snowflake/ml/modeling/model_selection/grid_search_cv.py +51 -26
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -26
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neighbors/kernel_density.py +51 -26
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -26
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -26
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
- snowflake/ml/modeling/preprocessing/polynomial_features.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -26
- snowflake/ml/modeling/svm/linear_svc.py +51 -26
- snowflake/ml/modeling/svm/linear_svr.py +51 -26
- snowflake/ml/modeling/svm/nu_svc.py +51 -26
- snowflake/ml/modeling/svm/nu_svr.py +51 -26
- snowflake/ml/modeling/svm/svc.py +51 -26
- snowflake/ml/modeling/svm/svr.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +51 -26
- snowflake/ml/registry/model_registry.py +74 -56
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +27 -8
- snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
- snowflake_ml_python-1.0.2.dist-info/RECORD +0 -246
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -206,7 +208,6 @@ class OutputCodeClassifier(BaseTransformer):
|
|
206
208
|
sample_weight_col: Optional[str] = None,
|
207
209
|
) -> None:
|
208
210
|
super().__init__()
|
209
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
210
211
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
211
212
|
deps = deps | _gather_dependencies(estimator)
|
212
213
|
self._deps = list(deps)
|
@@ -229,6 +230,15 @@ class OutputCodeClassifier(BaseTransformer):
|
|
229
230
|
self.set_drop_input_cols(drop_input_cols)
|
230
231
|
self.set_sample_weight_col(sample_weight_col)
|
231
232
|
|
233
|
+
def _get_rand_id(self) -> str:
|
234
|
+
"""
|
235
|
+
Generate random id to be used in sproc and stage names.
|
236
|
+
|
237
|
+
Returns:
|
238
|
+
Random id string usable in sproc, table, and stage names.
|
239
|
+
"""
|
240
|
+
return str(uuid4()).replace("-", "_").upper()
|
241
|
+
|
232
242
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
233
243
|
"""
|
234
244
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -307,7 +317,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
307
317
|
cp.dump(self._sklearn_object, local_transform_file)
|
308
318
|
|
309
319
|
# Create temp stage to run fit.
|
310
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
320
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
311
321
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
312
322
|
SqlResultValidator(
|
313
323
|
session=session,
|
@@ -320,11 +330,12 @@ class OutputCodeClassifier(BaseTransformer):
|
|
320
330
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
321
331
|
).validate()
|
322
332
|
|
323
|
-
|
333
|
+
# Use posixpath to construct stage paths
|
334
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
335
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
324
336
|
local_result_file_name = get_temp_file_path()
|
325
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
326
337
|
|
327
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
338
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
328
339
|
statement_params = telemetry.get_function_usage_statement_params(
|
329
340
|
project=_PROJECT,
|
330
341
|
subproject=_SUBPROJECT,
|
@@ -350,6 +361,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
350
361
|
replace=True,
|
351
362
|
session=session,
|
352
363
|
statement_params=statement_params,
|
364
|
+
anonymous=True
|
353
365
|
)
|
354
366
|
def fit_wrapper_sproc(
|
355
367
|
session: Session,
|
@@ -358,7 +370,8 @@ class OutputCodeClassifier(BaseTransformer):
|
|
358
370
|
stage_result_file_name: str,
|
359
371
|
input_cols: List[str],
|
360
372
|
label_cols: List[str],
|
361
|
-
sample_weight_col: Optional[str]
|
373
|
+
sample_weight_col: Optional[str],
|
374
|
+
statement_params: Dict[str, str]
|
362
375
|
) -> str:
|
363
376
|
import cloudpickle as cp
|
364
377
|
import numpy as np
|
@@ -425,15 +438,15 @@ class OutputCodeClassifier(BaseTransformer):
|
|
425
438
|
api_calls=[Session.call],
|
426
439
|
custom_tags=dict([("autogen", True)]),
|
427
440
|
)
|
428
|
-
sproc_export_file_name =
|
429
|
-
|
441
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
442
|
+
session,
|
430
443
|
query,
|
431
444
|
stage_transform_file_name,
|
432
445
|
stage_result_file_name,
|
433
446
|
identifier.get_unescaped_names(self.input_cols),
|
434
447
|
identifier.get_unescaped_names(self.label_cols),
|
435
448
|
identifier.get_unescaped_names(self.sample_weight_col),
|
436
|
-
statement_params
|
449
|
+
statement_params,
|
437
450
|
)
|
438
451
|
|
439
452
|
if "|" in sproc_export_file_name:
|
@@ -443,7 +456,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
443
456
|
print("\n".join(fields[1:]))
|
444
457
|
|
445
458
|
session.file.get(
|
446
|
-
|
459
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
447
460
|
local_result_file_name,
|
448
461
|
statement_params=statement_params
|
449
462
|
)
|
@@ -489,7 +502,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
489
502
|
|
490
503
|
# Register vectorized UDF for batch inference
|
491
504
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
492
|
-
safe_id=self.
|
505
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
493
506
|
|
494
507
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
495
508
|
# will try to pickle all of self which fails.
|
@@ -581,7 +594,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
581
594
|
return transformed_pandas_df.to_dict("records")
|
582
595
|
|
583
596
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
584
|
-
safe_id=self.
|
597
|
+
safe_id=self._get_rand_id()
|
585
598
|
)
|
586
599
|
|
587
600
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -748,11 +761,18 @@ class OutputCodeClassifier(BaseTransformer):
|
|
748
761
|
Transformed dataset.
|
749
762
|
"""
|
750
763
|
if isinstance(dataset, DataFrame):
|
764
|
+
expected_type_inferred = ""
|
765
|
+
# when it is classifier, infer the datatype from label columns
|
766
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
767
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
768
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
769
|
+
)
|
770
|
+
|
751
771
|
output_df = self._batch_inference(
|
752
772
|
dataset=dataset,
|
753
773
|
inference_method="predict",
|
754
774
|
expected_output_cols_list=self.output_cols,
|
755
|
-
expected_output_cols_type=
|
775
|
+
expected_output_cols_type=expected_type_inferred,
|
756
776
|
)
|
757
777
|
elif isinstance(dataset, pd.DataFrame):
|
758
778
|
output_df = self._sklearn_inference(
|
@@ -823,10 +843,10 @@ class OutputCodeClassifier(BaseTransformer):
|
|
823
843
|
|
824
844
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
825
845
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
826
|
-
Returns
|
846
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
827
847
|
"""
|
828
848
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
829
|
-
return []
|
849
|
+
return [output_cols_prefix]
|
830
850
|
|
831
851
|
classes = self._sklearn_object.classes_
|
832
852
|
if isinstance(classes, numpy.ndarray):
|
@@ -1051,7 +1071,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
1051
1071
|
cp.dump(self._sklearn_object, local_score_file)
|
1052
1072
|
|
1053
1073
|
# Create temp stage to run score.
|
1054
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1074
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1055
1075
|
session = dataset._session
|
1056
1076
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1057
1077
|
SqlResultValidator(
|
@@ -1065,8 +1085,9 @@ class OutputCodeClassifier(BaseTransformer):
|
|
1065
1085
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1066
1086
|
).validate()
|
1067
1087
|
|
1068
|
-
|
1069
|
-
|
1088
|
+
# Use posixpath to construct stage paths
|
1089
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1090
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1070
1091
|
statement_params = telemetry.get_function_usage_statement_params(
|
1071
1092
|
project=_PROJECT,
|
1072
1093
|
subproject=_SUBPROJECT,
|
@@ -1092,6 +1113,7 @@ class OutputCodeClassifier(BaseTransformer):
|
|
1092
1113
|
replace=True,
|
1093
1114
|
session=session,
|
1094
1115
|
statement_params=statement_params,
|
1116
|
+
anonymous=True
|
1095
1117
|
)
|
1096
1118
|
def score_wrapper_sproc(
|
1097
1119
|
session: Session,
|
@@ -1099,7 +1121,8 @@ class OutputCodeClassifier(BaseTransformer):
|
|
1099
1121
|
stage_score_file_name: str,
|
1100
1122
|
input_cols: List[str],
|
1101
1123
|
label_cols: List[str],
|
1102
|
-
sample_weight_col: Optional[str]
|
1124
|
+
sample_weight_col: Optional[str],
|
1125
|
+
statement_params: Dict[str, str]
|
1103
1126
|
) -> float:
|
1104
1127
|
import cloudpickle as cp
|
1105
1128
|
import numpy as np
|
@@ -1149,14 +1172,14 @@ class OutputCodeClassifier(BaseTransformer):
|
|
1149
1172
|
api_calls=[Session.call],
|
1150
1173
|
custom_tags=dict([("autogen", True)]),
|
1151
1174
|
)
|
1152
|
-
score =
|
1153
|
-
|
1175
|
+
score = score_wrapper_sproc(
|
1176
|
+
session,
|
1154
1177
|
query,
|
1155
1178
|
stage_score_file_name,
|
1156
1179
|
identifier.get_unescaped_names(self.input_cols),
|
1157
1180
|
identifier.get_unescaped_names(self.label_cols),
|
1158
1181
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1159
|
-
statement_params
|
1182
|
+
statement_params,
|
1160
1183
|
)
|
1161
1184
|
|
1162
1185
|
cleanup_temp_files([local_score_file_name])
|
@@ -1174,18 +1197,20 @@ class OutputCodeClassifier(BaseTransformer):
|
|
1174
1197
|
if self._sklearn_object._estimator_type == 'classifier':
|
1175
1198
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1176
1199
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1177
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1200
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1201
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1178
1202
|
# For regressor, the type of predict is float64
|
1179
1203
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1180
1204
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1181
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1182
|
-
|
1205
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1206
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1183
1207
|
for prob_func in PROB_FUNCTIONS:
|
1184
1208
|
if hasattr(self, prob_func):
|
1185
1209
|
output_cols_prefix: str = f"{prob_func}_"
|
1186
1210
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1187
1211
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1188
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1212
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1213
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1189
1214
|
|
1190
1215
|
@property
|
1191
1216
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -205,7 +207,6 @@ class BernoulliNB(BaseTransformer):
|
|
205
207
|
sample_weight_col: Optional[str] = None,
|
206
208
|
) -> None:
|
207
209
|
super().__init__()
|
208
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
209
210
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
210
211
|
|
211
212
|
self._deps = list(deps)
|
@@ -229,6 +230,15 @@ class BernoulliNB(BaseTransformer):
|
|
229
230
|
self.set_drop_input_cols(drop_input_cols)
|
230
231
|
self.set_sample_weight_col(sample_weight_col)
|
231
232
|
|
233
|
+
def _get_rand_id(self) -> str:
|
234
|
+
"""
|
235
|
+
Generate random id to be used in sproc and stage names.
|
236
|
+
|
237
|
+
Returns:
|
238
|
+
Random id string usable in sproc, table, and stage names.
|
239
|
+
"""
|
240
|
+
return str(uuid4()).replace("-", "_").upper()
|
241
|
+
|
232
242
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
233
243
|
"""
|
234
244
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -307,7 +317,7 @@ class BernoulliNB(BaseTransformer):
|
|
307
317
|
cp.dump(self._sklearn_object, local_transform_file)
|
308
318
|
|
309
319
|
# Create temp stage to run fit.
|
310
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
320
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
311
321
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
312
322
|
SqlResultValidator(
|
313
323
|
session=session,
|
@@ -320,11 +330,12 @@ class BernoulliNB(BaseTransformer):
|
|
320
330
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
321
331
|
).validate()
|
322
332
|
|
323
|
-
|
333
|
+
# Use posixpath to construct stage paths
|
334
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
335
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
324
336
|
local_result_file_name = get_temp_file_path()
|
325
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
326
337
|
|
327
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
338
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
328
339
|
statement_params = telemetry.get_function_usage_statement_params(
|
329
340
|
project=_PROJECT,
|
330
341
|
subproject=_SUBPROJECT,
|
@@ -350,6 +361,7 @@ class BernoulliNB(BaseTransformer):
|
|
350
361
|
replace=True,
|
351
362
|
session=session,
|
352
363
|
statement_params=statement_params,
|
364
|
+
anonymous=True
|
353
365
|
)
|
354
366
|
def fit_wrapper_sproc(
|
355
367
|
session: Session,
|
@@ -358,7 +370,8 @@ class BernoulliNB(BaseTransformer):
|
|
358
370
|
stage_result_file_name: str,
|
359
371
|
input_cols: List[str],
|
360
372
|
label_cols: List[str],
|
361
|
-
sample_weight_col: Optional[str]
|
373
|
+
sample_weight_col: Optional[str],
|
374
|
+
statement_params: Dict[str, str]
|
362
375
|
) -> str:
|
363
376
|
import cloudpickle as cp
|
364
377
|
import numpy as np
|
@@ -425,15 +438,15 @@ class BernoulliNB(BaseTransformer):
|
|
425
438
|
api_calls=[Session.call],
|
426
439
|
custom_tags=dict([("autogen", True)]),
|
427
440
|
)
|
428
|
-
sproc_export_file_name =
|
429
|
-
|
441
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
442
|
+
session,
|
430
443
|
query,
|
431
444
|
stage_transform_file_name,
|
432
445
|
stage_result_file_name,
|
433
446
|
identifier.get_unescaped_names(self.input_cols),
|
434
447
|
identifier.get_unescaped_names(self.label_cols),
|
435
448
|
identifier.get_unescaped_names(self.sample_weight_col),
|
436
|
-
statement_params
|
449
|
+
statement_params,
|
437
450
|
)
|
438
451
|
|
439
452
|
if "|" in sproc_export_file_name:
|
@@ -443,7 +456,7 @@ class BernoulliNB(BaseTransformer):
|
|
443
456
|
print("\n".join(fields[1:]))
|
444
457
|
|
445
458
|
session.file.get(
|
446
|
-
|
459
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
447
460
|
local_result_file_name,
|
448
461
|
statement_params=statement_params
|
449
462
|
)
|
@@ -489,7 +502,7 @@ class BernoulliNB(BaseTransformer):
|
|
489
502
|
|
490
503
|
# Register vectorized UDF for batch inference
|
491
504
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
492
|
-
safe_id=self.
|
505
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
493
506
|
|
494
507
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
495
508
|
# will try to pickle all of self which fails.
|
@@ -581,7 +594,7 @@ class BernoulliNB(BaseTransformer):
|
|
581
594
|
return transformed_pandas_df.to_dict("records")
|
582
595
|
|
583
596
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
584
|
-
safe_id=self.
|
597
|
+
safe_id=self._get_rand_id()
|
585
598
|
)
|
586
599
|
|
587
600
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -748,11 +761,18 @@ class BernoulliNB(BaseTransformer):
|
|
748
761
|
Transformed dataset.
|
749
762
|
"""
|
750
763
|
if isinstance(dataset, DataFrame):
|
764
|
+
expected_type_inferred = ""
|
765
|
+
# when it is classifier, infer the datatype from label columns
|
766
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
767
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
768
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
769
|
+
)
|
770
|
+
|
751
771
|
output_df = self._batch_inference(
|
752
772
|
dataset=dataset,
|
753
773
|
inference_method="predict",
|
754
774
|
expected_output_cols_list=self.output_cols,
|
755
|
-
expected_output_cols_type=
|
775
|
+
expected_output_cols_type=expected_type_inferred,
|
756
776
|
)
|
757
777
|
elif isinstance(dataset, pd.DataFrame):
|
758
778
|
output_df = self._sklearn_inference(
|
@@ -823,10 +843,10 @@ class BernoulliNB(BaseTransformer):
|
|
823
843
|
|
824
844
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
825
845
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
826
|
-
Returns
|
846
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
827
847
|
"""
|
828
848
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
829
|
-
return []
|
849
|
+
return [output_cols_prefix]
|
830
850
|
|
831
851
|
classes = self._sklearn_object.classes_
|
832
852
|
if isinstance(classes, numpy.ndarray):
|
@@ -1055,7 +1075,7 @@ class BernoulliNB(BaseTransformer):
|
|
1055
1075
|
cp.dump(self._sklearn_object, local_score_file)
|
1056
1076
|
|
1057
1077
|
# Create temp stage to run score.
|
1058
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1078
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1059
1079
|
session = dataset._session
|
1060
1080
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1061
1081
|
SqlResultValidator(
|
@@ -1069,8 +1089,9 @@ class BernoulliNB(BaseTransformer):
|
|
1069
1089
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1070
1090
|
).validate()
|
1071
1091
|
|
1072
|
-
|
1073
|
-
|
1092
|
+
# Use posixpath to construct stage paths
|
1093
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1094
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1074
1095
|
statement_params = telemetry.get_function_usage_statement_params(
|
1075
1096
|
project=_PROJECT,
|
1076
1097
|
subproject=_SUBPROJECT,
|
@@ -1096,6 +1117,7 @@ class BernoulliNB(BaseTransformer):
|
|
1096
1117
|
replace=True,
|
1097
1118
|
session=session,
|
1098
1119
|
statement_params=statement_params,
|
1120
|
+
anonymous=True
|
1099
1121
|
)
|
1100
1122
|
def score_wrapper_sproc(
|
1101
1123
|
session: Session,
|
@@ -1103,7 +1125,8 @@ class BernoulliNB(BaseTransformer):
|
|
1103
1125
|
stage_score_file_name: str,
|
1104
1126
|
input_cols: List[str],
|
1105
1127
|
label_cols: List[str],
|
1106
|
-
sample_weight_col: Optional[str]
|
1128
|
+
sample_weight_col: Optional[str],
|
1129
|
+
statement_params: Dict[str, str]
|
1107
1130
|
) -> float:
|
1108
1131
|
import cloudpickle as cp
|
1109
1132
|
import numpy as np
|
@@ -1153,14 +1176,14 @@ class BernoulliNB(BaseTransformer):
|
|
1153
1176
|
api_calls=[Session.call],
|
1154
1177
|
custom_tags=dict([("autogen", True)]),
|
1155
1178
|
)
|
1156
|
-
score =
|
1157
|
-
|
1179
|
+
score = score_wrapper_sproc(
|
1180
|
+
session,
|
1158
1181
|
query,
|
1159
1182
|
stage_score_file_name,
|
1160
1183
|
identifier.get_unescaped_names(self.input_cols),
|
1161
1184
|
identifier.get_unescaped_names(self.label_cols),
|
1162
1185
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1163
|
-
statement_params
|
1186
|
+
statement_params,
|
1164
1187
|
)
|
1165
1188
|
|
1166
1189
|
cleanup_temp_files([local_score_file_name])
|
@@ -1178,18 +1201,20 @@ class BernoulliNB(BaseTransformer):
|
|
1178
1201
|
if self._sklearn_object._estimator_type == 'classifier':
|
1179
1202
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1180
1203
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1181
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1204
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1205
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1182
1206
|
# For regressor, the type of predict is float64
|
1183
1207
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1184
1208
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1185
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1186
|
-
|
1209
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1210
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1187
1211
|
for prob_func in PROB_FUNCTIONS:
|
1188
1212
|
if hasattr(self, prob_func):
|
1189
1213
|
output_cols_prefix: str = f"{prob_func}_"
|
1190
1214
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1191
1215
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1192
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1216
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1217
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1193
1218
|
|
1194
1219
|
@property
|
1195
1220
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|