snowflake-ml-python 1.0.2__py3-none-any.whl → 1.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +2 -1
- snowflake/ml/_internal/file_utils.py +29 -7
- snowflake/ml/_internal/telemetry.py +5 -8
- snowflake/ml/_internal/utils/uri.py +7 -2
- snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
- snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
- snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
- snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +24 -6
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py +5 -2
- snowflake/ml/model/_deployer.py +14 -27
- snowflake/ml/model/_env.py +4 -4
- snowflake/ml/model/_handlers/custom.py +14 -2
- snowflake/ml/model/_handlers/pytorch.py +186 -0
- snowflake/ml/model/_handlers/sklearn.py +14 -9
- snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
- snowflake/ml/model/_handlers/torchscript.py +180 -0
- snowflake/ml/model/_handlers/xgboost.py +19 -9
- snowflake/ml/model/_model.py +3 -2
- snowflake/ml/model/_model_meta.py +12 -7
- snowflake/ml/model/model_signature.py +446 -66
- snowflake/ml/model/type_hints.py +23 -4
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -26
- snowflake/ml/modeling/cluster/affinity_propagation.py +51 -26
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -26
- snowflake/ml/modeling/cluster/birch.py +51 -26
- snowflake/ml/modeling/cluster/bisecting_k_means.py +51 -26
- snowflake/ml/modeling/cluster/dbscan.py +51 -26
- snowflake/ml/modeling/cluster/feature_agglomeration.py +51 -26
- snowflake/ml/modeling/cluster/k_means.py +51 -26
- snowflake/ml/modeling/cluster/mean_shift.py +51 -26
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +51 -26
- snowflake/ml/modeling/cluster/optics.py +51 -26
- snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_clustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -26
- snowflake/ml/modeling/compose/column_transformer.py +51 -26
- snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -26
- snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -26
- snowflake/ml/modeling/covariance/empirical_covariance.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -26
- snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -26
- snowflake/ml/modeling/covariance/min_cov_det.py +51 -26
- snowflake/ml/modeling/covariance/oas.py +51 -26
- snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -26
- snowflake/ml/modeling/decomposition/dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/factor_analysis.py +51 -26
- snowflake/ml/modeling/decomposition/fast_ica.py +51 -26
- snowflake/ml/modeling/decomposition/incremental_pca.py +51 -26
- snowflake/ml/modeling/decomposition/kernel_pca.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/pca.py +51 -26
- snowflake/ml/modeling/decomposition/sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/truncated_svd.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/isolation_forest.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/stacking_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/voting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/voting_regressor.py +51 -26
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fdr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fpr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fwe.py +51 -26
- snowflake/ml/modeling/feature_selection/select_k_best.py +51 -26
- snowflake/ml/modeling/feature_selection/select_percentile.py +51 -26
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +51 -26
- snowflake/ml/modeling/feature_selection/variance_threshold.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -26
- snowflake/ml/modeling/impute/iterative_imputer.py +51 -26
- snowflake/ml/modeling/impute/knn_imputer.py +51 -26
- snowflake/ml/modeling/impute/missing_indicator.py +51 -26
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/nystroem.py +51 -26
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +51 -26
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ard_regression.py +51 -26
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/huber_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/lars.py +51 -26
- snowflake/ml/modeling/linear_model/lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -26
- snowflake/ml/modeling/linear_model/linear_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/perceptron.py +51 -26
- snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ridge.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_cv.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -26
- snowflake/ml/modeling/manifold/isomap.py +51 -26
- snowflake/ml/modeling/manifold/mds.py +51 -26
- snowflake/ml/modeling/manifold/spectral_embedding.py +51 -26
- snowflake/ml/modeling/manifold/tsne.py +51 -26
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -26
- snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -26
- snowflake/ml/modeling/model_selection/grid_search_cv.py +51 -26
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -26
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neighbors/kernel_density.py +51 -26
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -26
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -26
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
- snowflake/ml/modeling/preprocessing/polynomial_features.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -26
- snowflake/ml/modeling/svm/linear_svc.py +51 -26
- snowflake/ml/modeling/svm/linear_svr.py +51 -26
- snowflake/ml/modeling/svm/nu_svc.py +51 -26
- snowflake/ml/modeling/svm/nu_svr.py +51 -26
- snowflake/ml/modeling/svm/svc.py +51 -26
- snowflake/ml/modeling/svm/svr.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +51 -26
- snowflake/ml/registry/model_registry.py +74 -56
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +27 -8
- snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
- snowflake_ml_python-1.0.2.dist-info/RECORD +0 -246
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -253,7 +255,6 @@ class KNeighborsClassifier(BaseTransformer):
|
|
253
255
|
sample_weight_col: Optional[str] = None,
|
254
256
|
) -> None:
|
255
257
|
super().__init__()
|
256
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
257
258
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
258
259
|
|
259
260
|
self._deps = list(deps)
|
@@ -280,6 +281,15 @@ class KNeighborsClassifier(BaseTransformer):
|
|
280
281
|
self.set_drop_input_cols(drop_input_cols)
|
281
282
|
self.set_sample_weight_col(sample_weight_col)
|
282
283
|
|
284
|
+
def _get_rand_id(self) -> str:
|
285
|
+
"""
|
286
|
+
Generate random id to be used in sproc and stage names.
|
287
|
+
|
288
|
+
Returns:
|
289
|
+
Random id string usable in sproc, table, and stage names.
|
290
|
+
"""
|
291
|
+
return str(uuid4()).replace("-", "_").upper()
|
292
|
+
|
283
293
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
284
294
|
"""
|
285
295
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -358,7 +368,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
358
368
|
cp.dump(self._sklearn_object, local_transform_file)
|
359
369
|
|
360
370
|
# Create temp stage to run fit.
|
361
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
371
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
362
372
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
363
373
|
SqlResultValidator(
|
364
374
|
session=session,
|
@@ -371,11 +381,12 @@ class KNeighborsClassifier(BaseTransformer):
|
|
371
381
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
372
382
|
).validate()
|
373
383
|
|
374
|
-
|
384
|
+
# Use posixpath to construct stage paths
|
385
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
386
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
375
387
|
local_result_file_name = get_temp_file_path()
|
376
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
377
388
|
|
378
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
389
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
379
390
|
statement_params = telemetry.get_function_usage_statement_params(
|
380
391
|
project=_PROJECT,
|
381
392
|
subproject=_SUBPROJECT,
|
@@ -401,6 +412,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
401
412
|
replace=True,
|
402
413
|
session=session,
|
403
414
|
statement_params=statement_params,
|
415
|
+
anonymous=True
|
404
416
|
)
|
405
417
|
def fit_wrapper_sproc(
|
406
418
|
session: Session,
|
@@ -409,7 +421,8 @@ class KNeighborsClassifier(BaseTransformer):
|
|
409
421
|
stage_result_file_name: str,
|
410
422
|
input_cols: List[str],
|
411
423
|
label_cols: List[str],
|
412
|
-
sample_weight_col: Optional[str]
|
424
|
+
sample_weight_col: Optional[str],
|
425
|
+
statement_params: Dict[str, str]
|
413
426
|
) -> str:
|
414
427
|
import cloudpickle as cp
|
415
428
|
import numpy as np
|
@@ -476,15 +489,15 @@ class KNeighborsClassifier(BaseTransformer):
|
|
476
489
|
api_calls=[Session.call],
|
477
490
|
custom_tags=dict([("autogen", True)]),
|
478
491
|
)
|
479
|
-
sproc_export_file_name =
|
480
|
-
|
492
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
493
|
+
session,
|
481
494
|
query,
|
482
495
|
stage_transform_file_name,
|
483
496
|
stage_result_file_name,
|
484
497
|
identifier.get_unescaped_names(self.input_cols),
|
485
498
|
identifier.get_unescaped_names(self.label_cols),
|
486
499
|
identifier.get_unescaped_names(self.sample_weight_col),
|
487
|
-
statement_params
|
500
|
+
statement_params,
|
488
501
|
)
|
489
502
|
|
490
503
|
if "|" in sproc_export_file_name:
|
@@ -494,7 +507,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
494
507
|
print("\n".join(fields[1:]))
|
495
508
|
|
496
509
|
session.file.get(
|
497
|
-
|
510
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
498
511
|
local_result_file_name,
|
499
512
|
statement_params=statement_params
|
500
513
|
)
|
@@ -540,7 +553,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
540
553
|
|
541
554
|
# Register vectorized UDF for batch inference
|
542
555
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
543
|
-
safe_id=self.
|
556
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
544
557
|
|
545
558
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
546
559
|
# will try to pickle all of self which fails.
|
@@ -632,7 +645,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
632
645
|
return transformed_pandas_df.to_dict("records")
|
633
646
|
|
634
647
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
635
|
-
safe_id=self.
|
648
|
+
safe_id=self._get_rand_id()
|
636
649
|
)
|
637
650
|
|
638
651
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -799,11 +812,18 @@ class KNeighborsClassifier(BaseTransformer):
|
|
799
812
|
Transformed dataset.
|
800
813
|
"""
|
801
814
|
if isinstance(dataset, DataFrame):
|
815
|
+
expected_type_inferred = ""
|
816
|
+
# when it is classifier, infer the datatype from label columns
|
817
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
818
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
819
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
820
|
+
)
|
821
|
+
|
802
822
|
output_df = self._batch_inference(
|
803
823
|
dataset=dataset,
|
804
824
|
inference_method="predict",
|
805
825
|
expected_output_cols_list=self.output_cols,
|
806
|
-
expected_output_cols_type=
|
826
|
+
expected_output_cols_type=expected_type_inferred,
|
807
827
|
)
|
808
828
|
elif isinstance(dataset, pd.DataFrame):
|
809
829
|
output_df = self._sklearn_inference(
|
@@ -874,10 +894,10 @@ class KNeighborsClassifier(BaseTransformer):
|
|
874
894
|
|
875
895
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
876
896
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
877
|
-
Returns
|
897
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
878
898
|
"""
|
879
899
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
880
|
-
return []
|
900
|
+
return [output_cols_prefix]
|
881
901
|
|
882
902
|
classes = self._sklearn_object.classes_
|
883
903
|
if isinstance(classes, numpy.ndarray):
|
@@ -1106,7 +1126,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
1106
1126
|
cp.dump(self._sklearn_object, local_score_file)
|
1107
1127
|
|
1108
1128
|
# Create temp stage to run score.
|
1109
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1129
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1110
1130
|
session = dataset._session
|
1111
1131
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1112
1132
|
SqlResultValidator(
|
@@ -1120,8 +1140,9 @@ class KNeighborsClassifier(BaseTransformer):
|
|
1120
1140
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1121
1141
|
).validate()
|
1122
1142
|
|
1123
|
-
|
1124
|
-
|
1143
|
+
# Use posixpath to construct stage paths
|
1144
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1145
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1125
1146
|
statement_params = telemetry.get_function_usage_statement_params(
|
1126
1147
|
project=_PROJECT,
|
1127
1148
|
subproject=_SUBPROJECT,
|
@@ -1147,6 +1168,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
1147
1168
|
replace=True,
|
1148
1169
|
session=session,
|
1149
1170
|
statement_params=statement_params,
|
1171
|
+
anonymous=True
|
1150
1172
|
)
|
1151
1173
|
def score_wrapper_sproc(
|
1152
1174
|
session: Session,
|
@@ -1154,7 +1176,8 @@ class KNeighborsClassifier(BaseTransformer):
|
|
1154
1176
|
stage_score_file_name: str,
|
1155
1177
|
input_cols: List[str],
|
1156
1178
|
label_cols: List[str],
|
1157
|
-
sample_weight_col: Optional[str]
|
1179
|
+
sample_weight_col: Optional[str],
|
1180
|
+
statement_params: Dict[str, str]
|
1158
1181
|
) -> float:
|
1159
1182
|
import cloudpickle as cp
|
1160
1183
|
import numpy as np
|
@@ -1204,14 +1227,14 @@ class KNeighborsClassifier(BaseTransformer):
|
|
1204
1227
|
api_calls=[Session.call],
|
1205
1228
|
custom_tags=dict([("autogen", True)]),
|
1206
1229
|
)
|
1207
|
-
score =
|
1208
|
-
|
1230
|
+
score = score_wrapper_sproc(
|
1231
|
+
session,
|
1209
1232
|
query,
|
1210
1233
|
stage_score_file_name,
|
1211
1234
|
identifier.get_unescaped_names(self.input_cols),
|
1212
1235
|
identifier.get_unescaped_names(self.label_cols),
|
1213
1236
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1214
|
-
statement_params
|
1237
|
+
statement_params,
|
1215
1238
|
)
|
1216
1239
|
|
1217
1240
|
cleanup_temp_files([local_score_file_name])
|
@@ -1229,18 +1252,20 @@ class KNeighborsClassifier(BaseTransformer):
|
|
1229
1252
|
if self._sklearn_object._estimator_type == 'classifier':
|
1230
1253
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1231
1254
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1232
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1255
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1256
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1233
1257
|
# For regressor, the type of predict is float64
|
1234
1258
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1235
1259
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1236
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1237
|
-
|
1260
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1261
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1238
1262
|
for prob_func in PROB_FUNCTIONS:
|
1239
1263
|
if hasattr(self, prob_func):
|
1240
1264
|
output_cols_prefix: str = f"{prob_func}_"
|
1241
1265
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1242
1266
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1243
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1267
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1268
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1244
1269
|
|
1245
1270
|
@property
|
1246
1271
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -255,7 +257,6 @@ class KNeighborsRegressor(BaseTransformer):
|
|
255
257
|
sample_weight_col: Optional[str] = None,
|
256
258
|
) -> None:
|
257
259
|
super().__init__()
|
258
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
259
260
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
260
261
|
|
261
262
|
self._deps = list(deps)
|
@@ -282,6 +283,15 @@ class KNeighborsRegressor(BaseTransformer):
|
|
282
283
|
self.set_drop_input_cols(drop_input_cols)
|
283
284
|
self.set_sample_weight_col(sample_weight_col)
|
284
285
|
|
286
|
+
def _get_rand_id(self) -> str:
|
287
|
+
"""
|
288
|
+
Generate random id to be used in sproc and stage names.
|
289
|
+
|
290
|
+
Returns:
|
291
|
+
Random id string usable in sproc, table, and stage names.
|
292
|
+
"""
|
293
|
+
return str(uuid4()).replace("-", "_").upper()
|
294
|
+
|
285
295
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
286
296
|
"""
|
287
297
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -360,7 +370,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
360
370
|
cp.dump(self._sklearn_object, local_transform_file)
|
361
371
|
|
362
372
|
# Create temp stage to run fit.
|
363
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
373
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
364
374
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
365
375
|
SqlResultValidator(
|
366
376
|
session=session,
|
@@ -373,11 +383,12 @@ class KNeighborsRegressor(BaseTransformer):
|
|
373
383
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
374
384
|
).validate()
|
375
385
|
|
376
|
-
|
386
|
+
# Use posixpath to construct stage paths
|
387
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
388
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
377
389
|
local_result_file_name = get_temp_file_path()
|
378
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
379
390
|
|
380
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
391
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
381
392
|
statement_params = telemetry.get_function_usage_statement_params(
|
382
393
|
project=_PROJECT,
|
383
394
|
subproject=_SUBPROJECT,
|
@@ -403,6 +414,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
403
414
|
replace=True,
|
404
415
|
session=session,
|
405
416
|
statement_params=statement_params,
|
417
|
+
anonymous=True
|
406
418
|
)
|
407
419
|
def fit_wrapper_sproc(
|
408
420
|
session: Session,
|
@@ -411,7 +423,8 @@ class KNeighborsRegressor(BaseTransformer):
|
|
411
423
|
stage_result_file_name: str,
|
412
424
|
input_cols: List[str],
|
413
425
|
label_cols: List[str],
|
414
|
-
sample_weight_col: Optional[str]
|
426
|
+
sample_weight_col: Optional[str],
|
427
|
+
statement_params: Dict[str, str]
|
415
428
|
) -> str:
|
416
429
|
import cloudpickle as cp
|
417
430
|
import numpy as np
|
@@ -478,15 +491,15 @@ class KNeighborsRegressor(BaseTransformer):
|
|
478
491
|
api_calls=[Session.call],
|
479
492
|
custom_tags=dict([("autogen", True)]),
|
480
493
|
)
|
481
|
-
sproc_export_file_name =
|
482
|
-
|
494
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
495
|
+
session,
|
483
496
|
query,
|
484
497
|
stage_transform_file_name,
|
485
498
|
stage_result_file_name,
|
486
499
|
identifier.get_unescaped_names(self.input_cols),
|
487
500
|
identifier.get_unescaped_names(self.label_cols),
|
488
501
|
identifier.get_unescaped_names(self.sample_weight_col),
|
489
|
-
statement_params
|
502
|
+
statement_params,
|
490
503
|
)
|
491
504
|
|
492
505
|
if "|" in sproc_export_file_name:
|
@@ -496,7 +509,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
496
509
|
print("\n".join(fields[1:]))
|
497
510
|
|
498
511
|
session.file.get(
|
499
|
-
|
512
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
500
513
|
local_result_file_name,
|
501
514
|
statement_params=statement_params
|
502
515
|
)
|
@@ -542,7 +555,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
542
555
|
|
543
556
|
# Register vectorized UDF for batch inference
|
544
557
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
545
|
-
safe_id=self.
|
558
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
546
559
|
|
547
560
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
548
561
|
# will try to pickle all of self which fails.
|
@@ -634,7 +647,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
634
647
|
return transformed_pandas_df.to_dict("records")
|
635
648
|
|
636
649
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
637
|
-
safe_id=self.
|
650
|
+
safe_id=self._get_rand_id()
|
638
651
|
)
|
639
652
|
|
640
653
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -801,11 +814,18 @@ class KNeighborsRegressor(BaseTransformer):
|
|
801
814
|
Transformed dataset.
|
802
815
|
"""
|
803
816
|
if isinstance(dataset, DataFrame):
|
817
|
+
expected_type_inferred = "float"
|
818
|
+
# when it is classifier, infer the datatype from label columns
|
819
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
820
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
821
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
822
|
+
)
|
823
|
+
|
804
824
|
output_df = self._batch_inference(
|
805
825
|
dataset=dataset,
|
806
826
|
inference_method="predict",
|
807
827
|
expected_output_cols_list=self.output_cols,
|
808
|
-
expected_output_cols_type=
|
828
|
+
expected_output_cols_type=expected_type_inferred,
|
809
829
|
)
|
810
830
|
elif isinstance(dataset, pd.DataFrame):
|
811
831
|
output_df = self._sklearn_inference(
|
@@ -876,10 +896,10 @@ class KNeighborsRegressor(BaseTransformer):
|
|
876
896
|
|
877
897
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
878
898
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
879
|
-
Returns
|
899
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
880
900
|
"""
|
881
901
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
882
|
-
return []
|
902
|
+
return [output_cols_prefix]
|
883
903
|
|
884
904
|
classes = self._sklearn_object.classes_
|
885
905
|
if isinstance(classes, numpy.ndarray):
|
@@ -1104,7 +1124,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
1104
1124
|
cp.dump(self._sklearn_object, local_score_file)
|
1105
1125
|
|
1106
1126
|
# Create temp stage to run score.
|
1107
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1127
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1108
1128
|
session = dataset._session
|
1109
1129
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1110
1130
|
SqlResultValidator(
|
@@ -1118,8 +1138,9 @@ class KNeighborsRegressor(BaseTransformer):
|
|
1118
1138
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1119
1139
|
).validate()
|
1120
1140
|
|
1121
|
-
|
1122
|
-
|
1141
|
+
# Use posixpath to construct stage paths
|
1142
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1143
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1123
1144
|
statement_params = telemetry.get_function_usage_statement_params(
|
1124
1145
|
project=_PROJECT,
|
1125
1146
|
subproject=_SUBPROJECT,
|
@@ -1145,6 +1166,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
1145
1166
|
replace=True,
|
1146
1167
|
session=session,
|
1147
1168
|
statement_params=statement_params,
|
1169
|
+
anonymous=True
|
1148
1170
|
)
|
1149
1171
|
def score_wrapper_sproc(
|
1150
1172
|
session: Session,
|
@@ -1152,7 +1174,8 @@ class KNeighborsRegressor(BaseTransformer):
|
|
1152
1174
|
stage_score_file_name: str,
|
1153
1175
|
input_cols: List[str],
|
1154
1176
|
label_cols: List[str],
|
1155
|
-
sample_weight_col: Optional[str]
|
1177
|
+
sample_weight_col: Optional[str],
|
1178
|
+
statement_params: Dict[str, str]
|
1156
1179
|
) -> float:
|
1157
1180
|
import cloudpickle as cp
|
1158
1181
|
import numpy as np
|
@@ -1202,14 +1225,14 @@ class KNeighborsRegressor(BaseTransformer):
|
|
1202
1225
|
api_calls=[Session.call],
|
1203
1226
|
custom_tags=dict([("autogen", True)]),
|
1204
1227
|
)
|
1205
|
-
score =
|
1206
|
-
|
1228
|
+
score = score_wrapper_sproc(
|
1229
|
+
session,
|
1207
1230
|
query,
|
1208
1231
|
stage_score_file_name,
|
1209
1232
|
identifier.get_unescaped_names(self.input_cols),
|
1210
1233
|
identifier.get_unescaped_names(self.label_cols),
|
1211
1234
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1212
|
-
statement_params
|
1235
|
+
statement_params,
|
1213
1236
|
)
|
1214
1237
|
|
1215
1238
|
cleanup_temp_files([local_score_file_name])
|
@@ -1227,18 +1250,20 @@ class KNeighborsRegressor(BaseTransformer):
|
|
1227
1250
|
if self._sklearn_object._estimator_type == 'classifier':
|
1228
1251
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1229
1252
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1230
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1253
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1254
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1231
1255
|
# For regressor, the type of predict is float64
|
1232
1256
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1233
1257
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1234
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1235
|
-
|
1258
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1259
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1236
1260
|
for prob_func in PROB_FUNCTIONS:
|
1237
1261
|
if hasattr(self, prob_func):
|
1238
1262
|
output_cols_prefix: str = f"{prob_func}_"
|
1239
1263
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1240
1264
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1241
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1265
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1266
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1242
1267
|
|
1243
1268
|
@property
|
1244
1269
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|