snowflake-ml-python 1.0.2__py3-none-any.whl → 1.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (189) hide show
  1. snowflake/ml/_internal/env_utils.py +2 -1
  2. snowflake/ml/_internal/file_utils.py +29 -7
  3. snowflake/ml/_internal/telemetry.py +5 -8
  4. snowflake/ml/_internal/utils/uri.py +7 -2
  5. snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
  6. snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
  7. snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
  8. snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
  9. snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
  10. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
  11. snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
  12. snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
  13. snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
  14. snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
  15. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
  16. snowflake/ml/model/_deploy_client/warehouse/deploy.py +24 -6
  17. snowflake/ml/model/_deploy_client/warehouse/infer_template.py +5 -2
  18. snowflake/ml/model/_deployer.py +14 -27
  19. snowflake/ml/model/_env.py +4 -4
  20. snowflake/ml/model/_handlers/custom.py +14 -2
  21. snowflake/ml/model/_handlers/pytorch.py +186 -0
  22. snowflake/ml/model/_handlers/sklearn.py +14 -9
  23. snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
  24. snowflake/ml/model/_handlers/torchscript.py +180 -0
  25. snowflake/ml/model/_handlers/xgboost.py +19 -9
  26. snowflake/ml/model/_model.py +3 -2
  27. snowflake/ml/model/_model_meta.py +12 -7
  28. snowflake/ml/model/model_signature.py +446 -66
  29. snowflake/ml/model/type_hints.py +23 -4
  30. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -26
  31. snowflake/ml/modeling/cluster/affinity_propagation.py +51 -26
  32. snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -26
  33. snowflake/ml/modeling/cluster/birch.py +51 -26
  34. snowflake/ml/modeling/cluster/bisecting_k_means.py +51 -26
  35. snowflake/ml/modeling/cluster/dbscan.py +51 -26
  36. snowflake/ml/modeling/cluster/feature_agglomeration.py +51 -26
  37. snowflake/ml/modeling/cluster/k_means.py +51 -26
  38. snowflake/ml/modeling/cluster/mean_shift.py +51 -26
  39. snowflake/ml/modeling/cluster/mini_batch_k_means.py +51 -26
  40. snowflake/ml/modeling/cluster/optics.py +51 -26
  41. snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -26
  42. snowflake/ml/modeling/cluster/spectral_clustering.py +51 -26
  43. snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -26
  44. snowflake/ml/modeling/compose/column_transformer.py +51 -26
  45. snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -26
  46. snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -26
  47. snowflake/ml/modeling/covariance/empirical_covariance.py +51 -26
  48. snowflake/ml/modeling/covariance/graphical_lasso.py +51 -26
  49. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -26
  50. snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -26
  51. snowflake/ml/modeling/covariance/min_cov_det.py +51 -26
  52. snowflake/ml/modeling/covariance/oas.py +51 -26
  53. snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -26
  54. snowflake/ml/modeling/decomposition/dictionary_learning.py +51 -26
  55. snowflake/ml/modeling/decomposition/factor_analysis.py +51 -26
  56. snowflake/ml/modeling/decomposition/fast_ica.py +51 -26
  57. snowflake/ml/modeling/decomposition/incremental_pca.py +51 -26
  58. snowflake/ml/modeling/decomposition/kernel_pca.py +51 -26
  59. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +51 -26
  60. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +51 -26
  61. snowflake/ml/modeling/decomposition/pca.py +51 -26
  62. snowflake/ml/modeling/decomposition/sparse_pca.py +51 -26
  63. snowflake/ml/modeling/decomposition/truncated_svd.py +51 -26
  64. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +51 -26
  65. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -26
  66. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -26
  67. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -26
  68. snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -26
  69. snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -26
  70. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -26
  71. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -26
  72. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -26
  73. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -26
  74. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -26
  75. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -26
  76. snowflake/ml/modeling/ensemble/isolation_forest.py +51 -26
  77. snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -26
  78. snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -26
  79. snowflake/ml/modeling/ensemble/stacking_regressor.py +51 -26
  80. snowflake/ml/modeling/ensemble/voting_classifier.py +51 -26
  81. snowflake/ml/modeling/ensemble/voting_regressor.py +51 -26
  82. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +51 -26
  83. snowflake/ml/modeling/feature_selection/select_fdr.py +51 -26
  84. snowflake/ml/modeling/feature_selection/select_fpr.py +51 -26
  85. snowflake/ml/modeling/feature_selection/select_fwe.py +51 -26
  86. snowflake/ml/modeling/feature_selection/select_k_best.py +51 -26
  87. snowflake/ml/modeling/feature_selection/select_percentile.py +51 -26
  88. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +51 -26
  89. snowflake/ml/modeling/feature_selection/variance_threshold.py +51 -26
  90. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -26
  91. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -26
  92. snowflake/ml/modeling/impute/iterative_imputer.py +51 -26
  93. snowflake/ml/modeling/impute/knn_imputer.py +51 -26
  94. snowflake/ml/modeling/impute/missing_indicator.py +51 -26
  95. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +51 -26
  96. snowflake/ml/modeling/kernel_approximation/nystroem.py +51 -26
  97. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +51 -26
  98. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +51 -26
  99. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +51 -26
  100. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -26
  101. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -26
  102. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -26
  103. snowflake/ml/modeling/linear_model/ard_regression.py +51 -26
  104. snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -26
  105. snowflake/ml/modeling/linear_model/elastic_net.py +51 -26
  106. snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -26
  107. snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -26
  108. snowflake/ml/modeling/linear_model/huber_regressor.py +51 -26
  109. snowflake/ml/modeling/linear_model/lars.py +51 -26
  110. snowflake/ml/modeling/linear_model/lars_cv.py +51 -26
  111. snowflake/ml/modeling/linear_model/lasso.py +51 -26
  112. snowflake/ml/modeling/linear_model/lasso_cv.py +51 -26
  113. snowflake/ml/modeling/linear_model/lasso_lars.py +51 -26
  114. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -26
  115. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -26
  116. snowflake/ml/modeling/linear_model/linear_regression.py +51 -26
  117. snowflake/ml/modeling/linear_model/logistic_regression.py +51 -26
  118. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -26
  119. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -26
  120. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -26
  121. snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -26
  122. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -26
  123. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -26
  124. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -26
  125. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -26
  126. snowflake/ml/modeling/linear_model/perceptron.py +51 -26
  127. snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -26
  128. snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -26
  129. snowflake/ml/modeling/linear_model/ridge.py +51 -26
  130. snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -26
  131. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -26
  132. snowflake/ml/modeling/linear_model/ridge_cv.py +51 -26
  133. snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -26
  134. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -26
  135. snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -26
  136. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -26
  137. snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -26
  138. snowflake/ml/modeling/manifold/isomap.py +51 -26
  139. snowflake/ml/modeling/manifold/mds.py +51 -26
  140. snowflake/ml/modeling/manifold/spectral_embedding.py +51 -26
  141. snowflake/ml/modeling/manifold/tsne.py +51 -26
  142. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -26
  143. snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -26
  144. snowflake/ml/modeling/model_selection/grid_search_cv.py +51 -26
  145. snowflake/ml/modeling/model_selection/randomized_search_cv.py +51 -26
  146. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -26
  147. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -26
  148. snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -26
  149. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -26
  150. snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -26
  151. snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -26
  152. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -26
  153. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -26
  154. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -26
  155. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -26
  156. snowflake/ml/modeling/neighbors/kernel_density.py +51 -26
  157. snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -26
  158. snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -26
  159. snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -26
  160. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +51 -26
  161. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -26
  162. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -26
  163. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +51 -26
  164. snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -26
  165. snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -26
  166. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
  167. snowflake/ml/modeling/preprocessing/polynomial_features.py +51 -26
  168. snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -26
  169. snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -26
  170. snowflake/ml/modeling/svm/linear_svc.py +51 -26
  171. snowflake/ml/modeling/svm/linear_svr.py +51 -26
  172. snowflake/ml/modeling/svm/nu_svc.py +51 -26
  173. snowflake/ml/modeling/svm/nu_svr.py +51 -26
  174. snowflake/ml/modeling/svm/svc.py +51 -26
  175. snowflake/ml/modeling/svm/svr.py +51 -26
  176. snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -26
  177. snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -26
  178. snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -26
  179. snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -26
  180. snowflake/ml/modeling/xgboost/xgb_classifier.py +51 -26
  181. snowflake/ml/modeling/xgboost/xgb_regressor.py +51 -26
  182. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +51 -26
  183. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +51 -26
  184. snowflake/ml/registry/model_registry.py +74 -56
  185. snowflake/ml/version.py +1 -1
  186. {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +27 -8
  187. snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
  188. snowflake_ml_python-1.0.2.dist-info/RECORD +0 -246
  189. {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -233,7 +235,6 @@ class KernelDensity(BaseTransformer):
233
235
  sample_weight_col: Optional[str] = None,
234
236
  ) -> None:
235
237
  super().__init__()
236
- self.id = str(uuid4()).replace("-", "_").upper()
237
238
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
238
239
 
239
240
  self._deps = list(deps)
@@ -261,6 +262,15 @@ class KernelDensity(BaseTransformer):
261
262
  self.set_drop_input_cols(drop_input_cols)
262
263
  self.set_sample_weight_col(sample_weight_col)
263
264
 
265
+ def _get_rand_id(self) -> str:
266
+ """
267
+ Generate random id to be used in sproc and stage names.
268
+
269
+ Returns:
270
+ Random id string usable in sproc, table, and stage names.
271
+ """
272
+ return str(uuid4()).replace("-", "_").upper()
273
+
264
274
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
265
275
  """
266
276
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -339,7 +349,7 @@ class KernelDensity(BaseTransformer):
339
349
  cp.dump(self._sklearn_object, local_transform_file)
340
350
 
341
351
  # Create temp stage to run fit.
342
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
352
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
343
353
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
344
354
  SqlResultValidator(
345
355
  session=session,
@@ -352,11 +362,12 @@ class KernelDensity(BaseTransformer):
352
362
  expected_value=f"Stage area {transform_stage_name} successfully created."
353
363
  ).validate()
354
364
 
355
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
365
+ # Use posixpath to construct stage paths
366
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
367
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
356
368
  local_result_file_name = get_temp_file_path()
357
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
358
369
 
359
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
370
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
360
371
  statement_params = telemetry.get_function_usage_statement_params(
361
372
  project=_PROJECT,
362
373
  subproject=_SUBPROJECT,
@@ -382,6 +393,7 @@ class KernelDensity(BaseTransformer):
382
393
  replace=True,
383
394
  session=session,
384
395
  statement_params=statement_params,
396
+ anonymous=True
385
397
  )
386
398
  def fit_wrapper_sproc(
387
399
  session: Session,
@@ -390,7 +402,8 @@ class KernelDensity(BaseTransformer):
390
402
  stage_result_file_name: str,
391
403
  input_cols: List[str],
392
404
  label_cols: List[str],
393
- sample_weight_col: Optional[str]
405
+ sample_weight_col: Optional[str],
406
+ statement_params: Dict[str, str]
394
407
  ) -> str:
395
408
  import cloudpickle as cp
396
409
  import numpy as np
@@ -457,15 +470,15 @@ class KernelDensity(BaseTransformer):
457
470
  api_calls=[Session.call],
458
471
  custom_tags=dict([("autogen", True)]),
459
472
  )
460
- sproc_export_file_name = session.call(
461
- fit_sproc_name,
473
+ sproc_export_file_name = fit_wrapper_sproc(
474
+ session,
462
475
  query,
463
476
  stage_transform_file_name,
464
477
  stage_result_file_name,
465
478
  identifier.get_unescaped_names(self.input_cols),
466
479
  identifier.get_unescaped_names(self.label_cols),
467
480
  identifier.get_unescaped_names(self.sample_weight_col),
468
- statement_params=statement_params,
481
+ statement_params,
469
482
  )
470
483
 
471
484
  if "|" in sproc_export_file_name:
@@ -475,7 +488,7 @@ class KernelDensity(BaseTransformer):
475
488
  print("\n".join(fields[1:]))
476
489
 
477
490
  session.file.get(
478
- os.path.join(stage_result_file_name, sproc_export_file_name),
491
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
479
492
  local_result_file_name,
480
493
  statement_params=statement_params
481
494
  )
@@ -521,7 +534,7 @@ class KernelDensity(BaseTransformer):
521
534
 
522
535
  # Register vectorized UDF for batch inference
523
536
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
524
- safe_id=self.id, method=inference_method)
537
+ safe_id=self._get_rand_id(), method=inference_method)
525
538
 
526
539
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
527
540
  # will try to pickle all of self which fails.
@@ -613,7 +626,7 @@ class KernelDensity(BaseTransformer):
613
626
  return transformed_pandas_df.to_dict("records")
614
627
 
615
628
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
616
- safe_id=self.id
629
+ safe_id=self._get_rand_id()
617
630
  )
618
631
 
619
632
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -778,11 +791,18 @@ class KernelDensity(BaseTransformer):
778
791
  Transformed dataset.
779
792
  """
780
793
  if isinstance(dataset, DataFrame):
794
+ expected_type_inferred = ""
795
+ # when it is classifier, infer the datatype from label columns
796
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
797
+ expected_type_inferred = convert_sp_to_sf_type(
798
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
799
+ )
800
+
781
801
  output_df = self._batch_inference(
782
802
  dataset=dataset,
783
803
  inference_method="predict",
784
804
  expected_output_cols_list=self.output_cols,
785
- expected_output_cols_type="",
805
+ expected_output_cols_type=expected_type_inferred,
786
806
  )
787
807
  elif isinstance(dataset, pd.DataFrame):
788
808
  output_df = self._sklearn_inference(
@@ -853,10 +873,10 @@ class KernelDensity(BaseTransformer):
853
873
 
854
874
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
855
875
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
856
- Returns an empty list if current object is not a classifier or not yet fitted.
876
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
857
877
  """
858
878
  if getattr(self._sklearn_object, "classes_", None) is None:
859
- return []
879
+ return [output_cols_prefix]
860
880
 
861
881
  classes = self._sklearn_object.classes_
862
882
  if isinstance(classes, numpy.ndarray):
@@ -1081,7 +1101,7 @@ class KernelDensity(BaseTransformer):
1081
1101
  cp.dump(self._sklearn_object, local_score_file)
1082
1102
 
1083
1103
  # Create temp stage to run score.
1084
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1104
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1085
1105
  session = dataset._session
1086
1106
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1087
1107
  SqlResultValidator(
@@ -1095,8 +1115,9 @@ class KernelDensity(BaseTransformer):
1095
1115
  expected_value=f"Stage area {score_stage_name} successfully created."
1096
1116
  ).validate()
1097
1117
 
1098
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1099
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1118
+ # Use posixpath to construct stage paths
1119
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1120
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1100
1121
  statement_params = telemetry.get_function_usage_statement_params(
1101
1122
  project=_PROJECT,
1102
1123
  subproject=_SUBPROJECT,
@@ -1122,6 +1143,7 @@ class KernelDensity(BaseTransformer):
1122
1143
  replace=True,
1123
1144
  session=session,
1124
1145
  statement_params=statement_params,
1146
+ anonymous=True
1125
1147
  )
1126
1148
  def score_wrapper_sproc(
1127
1149
  session: Session,
@@ -1129,7 +1151,8 @@ class KernelDensity(BaseTransformer):
1129
1151
  stage_score_file_name: str,
1130
1152
  input_cols: List[str],
1131
1153
  label_cols: List[str],
1132
- sample_weight_col: Optional[str]
1154
+ sample_weight_col: Optional[str],
1155
+ statement_params: Dict[str, str]
1133
1156
  ) -> float:
1134
1157
  import cloudpickle as cp
1135
1158
  import numpy as np
@@ -1179,14 +1202,14 @@ class KernelDensity(BaseTransformer):
1179
1202
  api_calls=[Session.call],
1180
1203
  custom_tags=dict([("autogen", True)]),
1181
1204
  )
1182
- score = session.call(
1183
- score_sproc_name,
1205
+ score = score_wrapper_sproc(
1206
+ session,
1184
1207
  query,
1185
1208
  stage_score_file_name,
1186
1209
  identifier.get_unescaped_names(self.input_cols),
1187
1210
  identifier.get_unescaped_names(self.label_cols),
1188
1211
  identifier.get_unescaped_names(self.sample_weight_col),
1189
- statement_params=statement_params,
1212
+ statement_params,
1190
1213
  )
1191
1214
 
1192
1215
  cleanup_temp_files([local_score_file_name])
@@ -1204,18 +1227,20 @@ class KernelDensity(BaseTransformer):
1204
1227
  if self._sklearn_object._estimator_type == 'classifier':
1205
1228
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1206
1229
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1207
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1230
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1231
+ ([] if self._drop_input_cols else inputs) + outputs)
1208
1232
  # For regressor, the type of predict is float64
1209
1233
  elif self._sklearn_object._estimator_type == 'regressor':
1210
1234
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1211
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1212
-
1235
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1236
+ ([] if self._drop_input_cols else inputs) + outputs)
1213
1237
  for prob_func in PROB_FUNCTIONS:
1214
1238
  if hasattr(self, prob_func):
1215
1239
  output_cols_prefix: str = f"{prob_func}_"
1216
1240
  output_column_names = self._get_output_column_names(output_cols_prefix)
1217
1241
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1218
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1242
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1243
+ ([] if self._drop_input_cols else inputs) + outputs)
1219
1244
 
1220
1245
  @property
1221
1246
  def model_signatures(self) -> Dict[str, ModelSignature]:
@@ -7,6 +7,7 @@
7
7
  #
8
8
  import inspect
9
9
  import os
10
+ import posixpath
10
11
  from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
11
12
  from uuid import uuid4
12
13
 
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
27
28
  from snowflake.snowpark import DataFrame, Session
28
29
  from snowflake.snowpark.functions import pandas_udf, sproc
29
30
  from snowflake.snowpark.types import PandasSeries
31
+ from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
30
32
 
31
33
  from snowflake.ml.model.model_signature import (
32
34
  DataType,
@@ -261,7 +263,6 @@ class LocalOutlierFactor(BaseTransformer):
261
263
  sample_weight_col: Optional[str] = None,
262
264
  ) -> None:
263
265
  super().__init__()
264
- self.id = str(uuid4()).replace("-", "_").upper()
265
266
  deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
266
267
 
267
268
  self._deps = list(deps)
@@ -289,6 +290,15 @@ class LocalOutlierFactor(BaseTransformer):
289
290
  self.set_drop_input_cols(drop_input_cols)
290
291
  self.set_sample_weight_col(sample_weight_col)
291
292
 
293
+ def _get_rand_id(self) -> str:
294
+ """
295
+ Generate random id to be used in sproc and stage names.
296
+
297
+ Returns:
298
+ Random id string usable in sproc, table, and stage names.
299
+ """
300
+ return str(uuid4()).replace("-", "_").upper()
301
+
292
302
  def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
293
303
  """
294
304
  Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
@@ -367,7 +377,7 @@ class LocalOutlierFactor(BaseTransformer):
367
377
  cp.dump(self._sklearn_object, local_transform_file)
368
378
 
369
379
  # Create temp stage to run fit.
370
- transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.id)
380
+ transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
371
381
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
372
382
  SqlResultValidator(
373
383
  session=session,
@@ -380,11 +390,12 @@ class LocalOutlierFactor(BaseTransformer):
380
390
  expected_value=f"Stage area {transform_stage_name} successfully created."
381
391
  ).validate()
382
392
 
383
- stage_transform_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
393
+ # Use posixpath to construct stage paths
394
+ stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
395
+ stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
384
396
  local_result_file_name = get_temp_file_path()
385
- stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
386
397
 
387
- fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.id)
398
+ fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
388
399
  statement_params = telemetry.get_function_usage_statement_params(
389
400
  project=_PROJECT,
390
401
  subproject=_SUBPROJECT,
@@ -410,6 +421,7 @@ class LocalOutlierFactor(BaseTransformer):
410
421
  replace=True,
411
422
  session=session,
412
423
  statement_params=statement_params,
424
+ anonymous=True
413
425
  )
414
426
  def fit_wrapper_sproc(
415
427
  session: Session,
@@ -418,7 +430,8 @@ class LocalOutlierFactor(BaseTransformer):
418
430
  stage_result_file_name: str,
419
431
  input_cols: List[str],
420
432
  label_cols: List[str],
421
- sample_weight_col: Optional[str]
433
+ sample_weight_col: Optional[str],
434
+ statement_params: Dict[str, str]
422
435
  ) -> str:
423
436
  import cloudpickle as cp
424
437
  import numpy as np
@@ -485,15 +498,15 @@ class LocalOutlierFactor(BaseTransformer):
485
498
  api_calls=[Session.call],
486
499
  custom_tags=dict([("autogen", True)]),
487
500
  )
488
- sproc_export_file_name = session.call(
489
- fit_sproc_name,
501
+ sproc_export_file_name = fit_wrapper_sproc(
502
+ session,
490
503
  query,
491
504
  stage_transform_file_name,
492
505
  stage_result_file_name,
493
506
  identifier.get_unescaped_names(self.input_cols),
494
507
  identifier.get_unescaped_names(self.label_cols),
495
508
  identifier.get_unescaped_names(self.sample_weight_col),
496
- statement_params=statement_params,
509
+ statement_params,
497
510
  )
498
511
 
499
512
  if "|" in sproc_export_file_name:
@@ -503,7 +516,7 @@ class LocalOutlierFactor(BaseTransformer):
503
516
  print("\n".join(fields[1:]))
504
517
 
505
518
  session.file.get(
506
- os.path.join(stage_result_file_name, sproc_export_file_name),
519
+ posixpath.join(stage_result_file_name, sproc_export_file_name),
507
520
  local_result_file_name,
508
521
  statement_params=statement_params
509
522
  )
@@ -549,7 +562,7 @@ class LocalOutlierFactor(BaseTransformer):
549
562
 
550
563
  # Register vectorized UDF for batch inference
551
564
  batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
552
- safe_id=self.id, method=inference_method)
565
+ safe_id=self._get_rand_id(), method=inference_method)
553
566
 
554
567
  # Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
555
568
  # will try to pickle all of self which fails.
@@ -641,7 +654,7 @@ class LocalOutlierFactor(BaseTransformer):
641
654
  return transformed_pandas_df.to_dict("records")
642
655
 
643
656
  batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
644
- safe_id=self.id
657
+ safe_id=self._get_rand_id()
645
658
  )
646
659
 
647
660
  pass_through_columns = self._get_pass_through_columns(dataset)
@@ -808,11 +821,18 @@ class LocalOutlierFactor(BaseTransformer):
808
821
  Transformed dataset.
809
822
  """
810
823
  if isinstance(dataset, DataFrame):
824
+ expected_type_inferred = ""
825
+ # when it is classifier, infer the datatype from label columns
826
+ if expected_type_inferred == "" and 'predict' in self.model_signatures:
827
+ expected_type_inferred = convert_sp_to_sf_type(
828
+ self.model_signatures['predict'].outputs[0].as_snowpark_type()
829
+ )
830
+
811
831
  output_df = self._batch_inference(
812
832
  dataset=dataset,
813
833
  inference_method="predict",
814
834
  expected_output_cols_list=self.output_cols,
815
- expected_output_cols_type="",
835
+ expected_output_cols_type=expected_type_inferred,
816
836
  )
817
837
  elif isinstance(dataset, pd.DataFrame):
818
838
  output_df = self._sklearn_inference(
@@ -883,10 +903,10 @@ class LocalOutlierFactor(BaseTransformer):
883
903
 
884
904
  def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
885
905
  """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
886
- Returns an empty list if current object is not a classifier or not yet fitted.
906
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
887
907
  """
888
908
  if getattr(self._sklearn_object, "classes_", None) is None:
889
- return []
909
+ return [output_cols_prefix]
890
910
 
891
911
  classes = self._sklearn_object.classes_
892
912
  if isinstance(classes, numpy.ndarray):
@@ -1113,7 +1133,7 @@ class LocalOutlierFactor(BaseTransformer):
1113
1133
  cp.dump(self._sklearn_object, local_score_file)
1114
1134
 
1115
1135
  # Create temp stage to run score.
1116
- score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1136
+ score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1117
1137
  session = dataset._session
1118
1138
  stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
1119
1139
  SqlResultValidator(
@@ -1127,8 +1147,9 @@ class LocalOutlierFactor(BaseTransformer):
1127
1147
  expected_value=f"Stage area {score_stage_name} successfully created."
1128
1148
  ).validate()
1129
1149
 
1130
- stage_score_file_name = os.path.join(score_stage_name, os.path.basename(local_score_file_name))
1131
- score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.id)
1150
+ # Use posixpath to construct stage paths
1151
+ stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
1152
+ score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
1132
1153
  statement_params = telemetry.get_function_usage_statement_params(
1133
1154
  project=_PROJECT,
1134
1155
  subproject=_SUBPROJECT,
@@ -1154,6 +1175,7 @@ class LocalOutlierFactor(BaseTransformer):
1154
1175
  replace=True,
1155
1176
  session=session,
1156
1177
  statement_params=statement_params,
1178
+ anonymous=True
1157
1179
  )
1158
1180
  def score_wrapper_sproc(
1159
1181
  session: Session,
@@ -1161,7 +1183,8 @@ class LocalOutlierFactor(BaseTransformer):
1161
1183
  stage_score_file_name: str,
1162
1184
  input_cols: List[str],
1163
1185
  label_cols: List[str],
1164
- sample_weight_col: Optional[str]
1186
+ sample_weight_col: Optional[str],
1187
+ statement_params: Dict[str, str]
1165
1188
  ) -> float:
1166
1189
  import cloudpickle as cp
1167
1190
  import numpy as np
@@ -1211,14 +1234,14 @@ class LocalOutlierFactor(BaseTransformer):
1211
1234
  api_calls=[Session.call],
1212
1235
  custom_tags=dict([("autogen", True)]),
1213
1236
  )
1214
- score = session.call(
1215
- score_sproc_name,
1237
+ score = score_wrapper_sproc(
1238
+ session,
1216
1239
  query,
1217
1240
  stage_score_file_name,
1218
1241
  identifier.get_unescaped_names(self.input_cols),
1219
1242
  identifier.get_unescaped_names(self.label_cols),
1220
1243
  identifier.get_unescaped_names(self.sample_weight_col),
1221
- statement_params=statement_params,
1244
+ statement_params,
1222
1245
  )
1223
1246
 
1224
1247
  cleanup_temp_files([local_score_file_name])
@@ -1236,18 +1259,20 @@ class LocalOutlierFactor(BaseTransformer):
1236
1259
  if self._sklearn_object._estimator_type == 'classifier':
1237
1260
  outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
1238
1261
  outputs = _rename_features(outputs, self.output_cols) # rename the output columns
1239
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1262
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1263
+ ([] if self._drop_input_cols else inputs) + outputs)
1240
1264
  # For regressor, the type of predict is float64
1241
1265
  elif self._sklearn_object._estimator_type == 'regressor':
1242
1266
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1243
- self._model_signature_dict["predict"] = ModelSignature(inputs, outputs)
1244
-
1267
+ self._model_signature_dict["predict"] = ModelSignature(inputs,
1268
+ ([] if self._drop_input_cols else inputs) + outputs)
1245
1269
  for prob_func in PROB_FUNCTIONS:
1246
1270
  if hasattr(self, prob_func):
1247
1271
  output_cols_prefix: str = f"{prob_func}_"
1248
1272
  output_column_names = self._get_output_column_names(output_cols_prefix)
1249
1273
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1250
- self._model_signature_dict[prob_func] = ModelSignature(inputs, outputs)
1274
+ self._model_signature_dict[prob_func] = ModelSignature(inputs,
1275
+ ([] if self._drop_input_cols else inputs) + outputs)
1251
1276
 
1252
1277
  @property
1253
1278
  def model_signatures(self) -> Dict[str, ModelSignature]: