snowflake-ml-python 1.0.2__py3-none-any.whl → 1.0.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +2 -1
- snowflake/ml/_internal/file_utils.py +29 -7
- snowflake/ml/_internal/telemetry.py +5 -8
- snowflake/ml/_internal/utils/uri.py +7 -2
- snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py +15 -0
- snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py +259 -0
- snowflake/ml/model/_deploy_client/image_builds/docker_context.py +89 -0
- snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh +24 -0
- snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py +118 -0
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +40 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +199 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy_options.py +88 -0
- snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template +24 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +47 -0
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +178 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +24 -6
- snowflake/ml/model/_deploy_client/warehouse/infer_template.py +5 -2
- snowflake/ml/model/_deployer.py +14 -27
- snowflake/ml/model/_env.py +4 -4
- snowflake/ml/model/_handlers/custom.py +14 -2
- snowflake/ml/model/_handlers/pytorch.py +186 -0
- snowflake/ml/model/_handlers/sklearn.py +14 -9
- snowflake/ml/model/_handlers/snowmlmodel.py +14 -9
- snowflake/ml/model/_handlers/torchscript.py +180 -0
- snowflake/ml/model/_handlers/xgboost.py +19 -9
- snowflake/ml/model/_model.py +3 -2
- snowflake/ml/model/_model_meta.py +12 -7
- snowflake/ml/model/model_signature.py +446 -66
- snowflake/ml/model/type_hints.py +23 -4
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +51 -26
- snowflake/ml/modeling/cluster/affinity_propagation.py +51 -26
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +51 -26
- snowflake/ml/modeling/cluster/birch.py +51 -26
- snowflake/ml/modeling/cluster/bisecting_k_means.py +51 -26
- snowflake/ml/modeling/cluster/dbscan.py +51 -26
- snowflake/ml/modeling/cluster/feature_agglomeration.py +51 -26
- snowflake/ml/modeling/cluster/k_means.py +51 -26
- snowflake/ml/modeling/cluster/mean_shift.py +51 -26
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +51 -26
- snowflake/ml/modeling/cluster/optics.py +51 -26
- snowflake/ml/modeling/cluster/spectral_biclustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_clustering.py +51 -26
- snowflake/ml/modeling/cluster/spectral_coclustering.py +51 -26
- snowflake/ml/modeling/compose/column_transformer.py +51 -26
- snowflake/ml/modeling/compose/transformed_target_regressor.py +51 -26
- snowflake/ml/modeling/covariance/elliptic_envelope.py +51 -26
- snowflake/ml/modeling/covariance/empirical_covariance.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso.py +51 -26
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +51 -26
- snowflake/ml/modeling/covariance/ledoit_wolf.py +51 -26
- snowflake/ml/modeling/covariance/min_cov_det.py +51 -26
- snowflake/ml/modeling/covariance/oas.py +51 -26
- snowflake/ml/modeling/covariance/shrunk_covariance.py +51 -26
- snowflake/ml/modeling/decomposition/dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/factor_analysis.py +51 -26
- snowflake/ml/modeling/decomposition/fast_ica.py +51 -26
- snowflake/ml/modeling/decomposition/incremental_pca.py +51 -26
- snowflake/ml/modeling/decomposition/kernel_pca.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +51 -26
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/pca.py +51 -26
- snowflake/ml/modeling/decomposition/sparse_pca.py +51 -26
- snowflake/ml/modeling/decomposition/truncated_svd.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/bagging_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/isolation_forest.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/stacking_regressor.py +51 -26
- snowflake/ml/modeling/ensemble/voting_classifier.py +51 -26
- snowflake/ml/modeling/ensemble/voting_regressor.py +51 -26
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fdr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fpr.py +51 -26
- snowflake/ml/modeling/feature_selection/select_fwe.py +51 -26
- snowflake/ml/modeling/feature_selection/select_k_best.py +51 -26
- snowflake/ml/modeling/feature_selection/select_percentile.py +51 -26
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +51 -26
- snowflake/ml/modeling/feature_selection/variance_threshold.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +51 -26
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +51 -26
- snowflake/ml/modeling/impute/iterative_imputer.py +51 -26
- snowflake/ml/modeling/impute/knn_imputer.py +51 -26
- snowflake/ml/modeling/impute/missing_indicator.py +51 -26
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/nystroem.py +51 -26
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +51 -26
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +51 -26
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +51 -26
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +51 -26
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ard_regression.py +51 -26
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/gamma_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/huber_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/lars.py +51 -26
- snowflake/ml/modeling/linear_model/lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +51 -26
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +51 -26
- snowflake/ml/modeling/linear_model/linear_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression.py +51 -26
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +51 -26
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +51 -26
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/perceptron.py +51 -26
- snowflake/ml/modeling/linear_model/poisson_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ransac_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/ridge.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +51 -26
- snowflake/ml/modeling/linear_model/ridge_cv.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_classifier.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +51 -26
- snowflake/ml/modeling/linear_model/sgd_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +51 -26
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +51 -26
- snowflake/ml/modeling/manifold/isomap.py +51 -26
- snowflake/ml/modeling/manifold/mds.py +51 -26
- snowflake/ml/modeling/manifold/spectral_embedding.py +51 -26
- snowflake/ml/modeling/manifold/tsne.py +51 -26
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +51 -26
- snowflake/ml/modeling/mixture/gaussian_mixture.py +51 -26
- snowflake/ml/modeling/model_selection/grid_search_cv.py +51 -26
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +51 -26
- snowflake/ml/modeling/multiclass/output_code_classifier.py +51 -26
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/complement_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +51 -26
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neighbors/kernel_density.py +51 -26
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_centroid.py +51 -26
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +51 -26
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +51 -26
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +51 -26
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_classifier.py +51 -26
- snowflake/ml/modeling/neural_network/mlp_regressor.py +51 -26
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +2 -0
- snowflake/ml/modeling/preprocessing/polynomial_features.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_propagation.py +51 -26
- snowflake/ml/modeling/semi_supervised/label_spreading.py +51 -26
- snowflake/ml/modeling/svm/linear_svc.py +51 -26
- snowflake/ml/modeling/svm/linear_svr.py +51 -26
- snowflake/ml/modeling/svm/nu_svc.py +51 -26
- snowflake/ml/modeling/svm/nu_svr.py +51 -26
- snowflake/ml/modeling/svm/svc.py +51 -26
- snowflake/ml/modeling/svm/svr.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/decision_tree_regressor.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_classifier.py +51 -26
- snowflake/ml/modeling/tree/extra_tree_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgb_regressor.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +51 -26
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +51 -26
- snowflake/ml/registry/model_registry.py +74 -56
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/METADATA +27 -8
- snowflake_ml_python-1.0.3.dist-info/RECORD +259 -0
- snowflake_ml_python-1.0.2.dist-info/RECORD +0 -246
- {snowflake_ml_python-1.0.2.dist-info → snowflake_ml_python-1.0.3.dist-info}/WHEEL +0 -0
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -211,7 +213,6 @@ class CategoricalNB(BaseTransformer):
|
|
211
213
|
sample_weight_col: Optional[str] = None,
|
212
214
|
) -> None:
|
213
215
|
super().__init__()
|
214
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
215
216
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
216
217
|
|
217
218
|
self._deps = list(deps)
|
@@ -235,6 +236,15 @@ class CategoricalNB(BaseTransformer):
|
|
235
236
|
self.set_drop_input_cols(drop_input_cols)
|
236
237
|
self.set_sample_weight_col(sample_weight_col)
|
237
238
|
|
239
|
+
def _get_rand_id(self) -> str:
|
240
|
+
"""
|
241
|
+
Generate random id to be used in sproc and stage names.
|
242
|
+
|
243
|
+
Returns:
|
244
|
+
Random id string usable in sproc, table, and stage names.
|
245
|
+
"""
|
246
|
+
return str(uuid4()).replace("-", "_").upper()
|
247
|
+
|
238
248
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
239
249
|
"""
|
240
250
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -313,7 +323,7 @@ class CategoricalNB(BaseTransformer):
|
|
313
323
|
cp.dump(self._sklearn_object, local_transform_file)
|
314
324
|
|
315
325
|
# Create temp stage to run fit.
|
316
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
326
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
317
327
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
318
328
|
SqlResultValidator(
|
319
329
|
session=session,
|
@@ -326,11 +336,12 @@ class CategoricalNB(BaseTransformer):
|
|
326
336
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
327
337
|
).validate()
|
328
338
|
|
329
|
-
|
339
|
+
# Use posixpath to construct stage paths
|
340
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
341
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
330
342
|
local_result_file_name = get_temp_file_path()
|
331
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
332
343
|
|
333
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
344
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
334
345
|
statement_params = telemetry.get_function_usage_statement_params(
|
335
346
|
project=_PROJECT,
|
336
347
|
subproject=_SUBPROJECT,
|
@@ -356,6 +367,7 @@ class CategoricalNB(BaseTransformer):
|
|
356
367
|
replace=True,
|
357
368
|
session=session,
|
358
369
|
statement_params=statement_params,
|
370
|
+
anonymous=True
|
359
371
|
)
|
360
372
|
def fit_wrapper_sproc(
|
361
373
|
session: Session,
|
@@ -364,7 +376,8 @@ class CategoricalNB(BaseTransformer):
|
|
364
376
|
stage_result_file_name: str,
|
365
377
|
input_cols: List[str],
|
366
378
|
label_cols: List[str],
|
367
|
-
sample_weight_col: Optional[str]
|
379
|
+
sample_weight_col: Optional[str],
|
380
|
+
statement_params: Dict[str, str]
|
368
381
|
) -> str:
|
369
382
|
import cloudpickle as cp
|
370
383
|
import numpy as np
|
@@ -431,15 +444,15 @@ class CategoricalNB(BaseTransformer):
|
|
431
444
|
api_calls=[Session.call],
|
432
445
|
custom_tags=dict([("autogen", True)]),
|
433
446
|
)
|
434
|
-
sproc_export_file_name =
|
435
|
-
|
447
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
448
|
+
session,
|
436
449
|
query,
|
437
450
|
stage_transform_file_name,
|
438
451
|
stage_result_file_name,
|
439
452
|
identifier.get_unescaped_names(self.input_cols),
|
440
453
|
identifier.get_unescaped_names(self.label_cols),
|
441
454
|
identifier.get_unescaped_names(self.sample_weight_col),
|
442
|
-
statement_params
|
455
|
+
statement_params,
|
443
456
|
)
|
444
457
|
|
445
458
|
if "|" in sproc_export_file_name:
|
@@ -449,7 +462,7 @@ class CategoricalNB(BaseTransformer):
|
|
449
462
|
print("\n".join(fields[1:]))
|
450
463
|
|
451
464
|
session.file.get(
|
452
|
-
|
465
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
453
466
|
local_result_file_name,
|
454
467
|
statement_params=statement_params
|
455
468
|
)
|
@@ -495,7 +508,7 @@ class CategoricalNB(BaseTransformer):
|
|
495
508
|
|
496
509
|
# Register vectorized UDF for batch inference
|
497
510
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
498
|
-
safe_id=self.
|
511
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
499
512
|
|
500
513
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
501
514
|
# will try to pickle all of self which fails.
|
@@ -587,7 +600,7 @@ class CategoricalNB(BaseTransformer):
|
|
587
600
|
return transformed_pandas_df.to_dict("records")
|
588
601
|
|
589
602
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
590
|
-
safe_id=self.
|
603
|
+
safe_id=self._get_rand_id()
|
591
604
|
)
|
592
605
|
|
593
606
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -754,11 +767,18 @@ class CategoricalNB(BaseTransformer):
|
|
754
767
|
Transformed dataset.
|
755
768
|
"""
|
756
769
|
if isinstance(dataset, DataFrame):
|
770
|
+
expected_type_inferred = ""
|
771
|
+
# when it is classifier, infer the datatype from label columns
|
772
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
773
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
774
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
775
|
+
)
|
776
|
+
|
757
777
|
output_df = self._batch_inference(
|
758
778
|
dataset=dataset,
|
759
779
|
inference_method="predict",
|
760
780
|
expected_output_cols_list=self.output_cols,
|
761
|
-
expected_output_cols_type=
|
781
|
+
expected_output_cols_type=expected_type_inferred,
|
762
782
|
)
|
763
783
|
elif isinstance(dataset, pd.DataFrame):
|
764
784
|
output_df = self._sklearn_inference(
|
@@ -829,10 +849,10 @@ class CategoricalNB(BaseTransformer):
|
|
829
849
|
|
830
850
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
831
851
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
832
|
-
Returns
|
852
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
833
853
|
"""
|
834
854
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
835
|
-
return []
|
855
|
+
return [output_cols_prefix]
|
836
856
|
|
837
857
|
classes = self._sklearn_object.classes_
|
838
858
|
if isinstance(classes, numpy.ndarray):
|
@@ -1061,7 +1081,7 @@ class CategoricalNB(BaseTransformer):
|
|
1061
1081
|
cp.dump(self._sklearn_object, local_score_file)
|
1062
1082
|
|
1063
1083
|
# Create temp stage to run score.
|
1064
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1084
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1065
1085
|
session = dataset._session
|
1066
1086
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1067
1087
|
SqlResultValidator(
|
@@ -1075,8 +1095,9 @@ class CategoricalNB(BaseTransformer):
|
|
1075
1095
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1076
1096
|
).validate()
|
1077
1097
|
|
1078
|
-
|
1079
|
-
|
1098
|
+
# Use posixpath to construct stage paths
|
1099
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1100
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1080
1101
|
statement_params = telemetry.get_function_usage_statement_params(
|
1081
1102
|
project=_PROJECT,
|
1082
1103
|
subproject=_SUBPROJECT,
|
@@ -1102,6 +1123,7 @@ class CategoricalNB(BaseTransformer):
|
|
1102
1123
|
replace=True,
|
1103
1124
|
session=session,
|
1104
1125
|
statement_params=statement_params,
|
1126
|
+
anonymous=True
|
1105
1127
|
)
|
1106
1128
|
def score_wrapper_sproc(
|
1107
1129
|
session: Session,
|
@@ -1109,7 +1131,8 @@ class CategoricalNB(BaseTransformer):
|
|
1109
1131
|
stage_score_file_name: str,
|
1110
1132
|
input_cols: List[str],
|
1111
1133
|
label_cols: List[str],
|
1112
|
-
sample_weight_col: Optional[str]
|
1134
|
+
sample_weight_col: Optional[str],
|
1135
|
+
statement_params: Dict[str, str]
|
1113
1136
|
) -> float:
|
1114
1137
|
import cloudpickle as cp
|
1115
1138
|
import numpy as np
|
@@ -1159,14 +1182,14 @@ class CategoricalNB(BaseTransformer):
|
|
1159
1182
|
api_calls=[Session.call],
|
1160
1183
|
custom_tags=dict([("autogen", True)]),
|
1161
1184
|
)
|
1162
|
-
score =
|
1163
|
-
|
1185
|
+
score = score_wrapper_sproc(
|
1186
|
+
session,
|
1164
1187
|
query,
|
1165
1188
|
stage_score_file_name,
|
1166
1189
|
identifier.get_unescaped_names(self.input_cols),
|
1167
1190
|
identifier.get_unescaped_names(self.label_cols),
|
1168
1191
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1169
|
-
statement_params
|
1192
|
+
statement_params,
|
1170
1193
|
)
|
1171
1194
|
|
1172
1195
|
cleanup_temp_files([local_score_file_name])
|
@@ -1184,18 +1207,20 @@ class CategoricalNB(BaseTransformer):
|
|
1184
1207
|
if self._sklearn_object._estimator_type == 'classifier':
|
1185
1208
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1186
1209
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1187
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1210
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1211
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1188
1212
|
# For regressor, the type of predict is float64
|
1189
1213
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1190
1214
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1191
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1192
|
-
|
1215
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1216
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1193
1217
|
for prob_func in PROB_FUNCTIONS:
|
1194
1218
|
if hasattr(self, prob_func):
|
1195
1219
|
output_cols_prefix: str = f"{prob_func}_"
|
1196
1220
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1197
1221
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1198
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1222
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1223
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1199
1224
|
|
1200
1225
|
@property
|
1201
1226
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|
@@ -7,6 +7,7 @@
|
|
7
7
|
#
|
8
8
|
import inspect
|
9
9
|
import os
|
10
|
+
import posixpath
|
10
11
|
from typing import Iterable, Optional, Union, List, Any, Dict, Callable, Set
|
11
12
|
from uuid import uuid4
|
12
13
|
|
@@ -27,6 +28,7 @@ from snowflake.ml._internal.utils.temp_file_utils import cleanup_temp_files, get
|
|
27
28
|
from snowflake.snowpark import DataFrame, Session
|
28
29
|
from snowflake.snowpark.functions import pandas_udf, sproc
|
29
30
|
from snowflake.snowpark.types import PandasSeries
|
31
|
+
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
30
32
|
|
31
33
|
from snowflake.ml.model.model_signature import (
|
32
34
|
DataType,
|
@@ -205,7 +207,6 @@ class ComplementNB(BaseTransformer):
|
|
205
207
|
sample_weight_col: Optional[str] = None,
|
206
208
|
) -> None:
|
207
209
|
super().__init__()
|
208
|
-
self.id = str(uuid4()).replace("-", "_").upper()
|
209
210
|
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
210
211
|
|
211
212
|
self._deps = list(deps)
|
@@ -229,6 +230,15 @@ class ComplementNB(BaseTransformer):
|
|
229
230
|
self.set_drop_input_cols(drop_input_cols)
|
230
231
|
self.set_sample_weight_col(sample_weight_col)
|
231
232
|
|
233
|
+
def _get_rand_id(self) -> str:
|
234
|
+
"""
|
235
|
+
Generate random id to be used in sproc and stage names.
|
236
|
+
|
237
|
+
Returns:
|
238
|
+
Random id string usable in sproc, table, and stage names.
|
239
|
+
"""
|
240
|
+
return str(uuid4()).replace("-", "_").upper()
|
241
|
+
|
232
242
|
def _infer_input_output_cols(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
233
243
|
"""
|
234
244
|
Infer `self.input_cols` and `self.output_cols` if they are not explicitly set.
|
@@ -307,7 +317,7 @@ class ComplementNB(BaseTransformer):
|
|
307
317
|
cp.dump(self._sklearn_object, local_transform_file)
|
308
318
|
|
309
319
|
# Create temp stage to run fit.
|
310
|
-
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self.
|
320
|
+
transform_stage_name = "SNOWML_TRANSFORM_{safe_id}".format(safe_id=self._get_rand_id())
|
311
321
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {transform_stage_name};"
|
312
322
|
SqlResultValidator(
|
313
323
|
session=session,
|
@@ -320,11 +330,12 @@ class ComplementNB(BaseTransformer):
|
|
320
330
|
expected_value=f"Stage area {transform_stage_name} successfully created."
|
321
331
|
).validate()
|
322
332
|
|
323
|
-
|
333
|
+
# Use posixpath to construct stage paths
|
334
|
+
stage_transform_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
335
|
+
stage_result_file_name = posixpath.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
324
336
|
local_result_file_name = get_temp_file_path()
|
325
|
-
stage_result_file_name = os.path.join(transform_stage_name, os.path.basename(local_transform_file_name))
|
326
337
|
|
327
|
-
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self.
|
338
|
+
fit_sproc_name = "SNOWML_FIT_{safe_id}".format(safe_id=self._get_rand_id())
|
328
339
|
statement_params = telemetry.get_function_usage_statement_params(
|
329
340
|
project=_PROJECT,
|
330
341
|
subproject=_SUBPROJECT,
|
@@ -350,6 +361,7 @@ class ComplementNB(BaseTransformer):
|
|
350
361
|
replace=True,
|
351
362
|
session=session,
|
352
363
|
statement_params=statement_params,
|
364
|
+
anonymous=True
|
353
365
|
)
|
354
366
|
def fit_wrapper_sproc(
|
355
367
|
session: Session,
|
@@ -358,7 +370,8 @@ class ComplementNB(BaseTransformer):
|
|
358
370
|
stage_result_file_name: str,
|
359
371
|
input_cols: List[str],
|
360
372
|
label_cols: List[str],
|
361
|
-
sample_weight_col: Optional[str]
|
373
|
+
sample_weight_col: Optional[str],
|
374
|
+
statement_params: Dict[str, str]
|
362
375
|
) -> str:
|
363
376
|
import cloudpickle as cp
|
364
377
|
import numpy as np
|
@@ -425,15 +438,15 @@ class ComplementNB(BaseTransformer):
|
|
425
438
|
api_calls=[Session.call],
|
426
439
|
custom_tags=dict([("autogen", True)]),
|
427
440
|
)
|
428
|
-
sproc_export_file_name =
|
429
|
-
|
441
|
+
sproc_export_file_name = fit_wrapper_sproc(
|
442
|
+
session,
|
430
443
|
query,
|
431
444
|
stage_transform_file_name,
|
432
445
|
stage_result_file_name,
|
433
446
|
identifier.get_unescaped_names(self.input_cols),
|
434
447
|
identifier.get_unescaped_names(self.label_cols),
|
435
448
|
identifier.get_unescaped_names(self.sample_weight_col),
|
436
|
-
statement_params
|
449
|
+
statement_params,
|
437
450
|
)
|
438
451
|
|
439
452
|
if "|" in sproc_export_file_name:
|
@@ -443,7 +456,7 @@ class ComplementNB(BaseTransformer):
|
|
443
456
|
print("\n".join(fields[1:]))
|
444
457
|
|
445
458
|
session.file.get(
|
446
|
-
|
459
|
+
posixpath.join(stage_result_file_name, sproc_export_file_name),
|
447
460
|
local_result_file_name,
|
448
461
|
statement_params=statement_params
|
449
462
|
)
|
@@ -489,7 +502,7 @@ class ComplementNB(BaseTransformer):
|
|
489
502
|
|
490
503
|
# Register vectorized UDF for batch inference
|
491
504
|
batch_inference_udf_name = "SNOWML_BATCH_INFERENCE_{safe_id}_{method}".format(
|
492
|
-
safe_id=self.
|
505
|
+
safe_id=self._get_rand_id(), method=inference_method)
|
493
506
|
|
494
507
|
# Need to do this since if we use self._sklearn_object directly in the UDF, Snowpark
|
495
508
|
# will try to pickle all of self which fails.
|
@@ -581,7 +594,7 @@ class ComplementNB(BaseTransformer):
|
|
581
594
|
return transformed_pandas_df.to_dict("records")
|
582
595
|
|
583
596
|
batch_inference_table_name = "SNOWML_BATCH_INFERENCE_INPUT_TABLE_{safe_id}".format(
|
584
|
-
safe_id=self.
|
597
|
+
safe_id=self._get_rand_id()
|
585
598
|
)
|
586
599
|
|
587
600
|
pass_through_columns = self._get_pass_through_columns(dataset)
|
@@ -748,11 +761,18 @@ class ComplementNB(BaseTransformer):
|
|
748
761
|
Transformed dataset.
|
749
762
|
"""
|
750
763
|
if isinstance(dataset, DataFrame):
|
764
|
+
expected_type_inferred = ""
|
765
|
+
# when it is classifier, infer the datatype from label columns
|
766
|
+
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
767
|
+
expected_type_inferred = convert_sp_to_sf_type(
|
768
|
+
self.model_signatures['predict'].outputs[0].as_snowpark_type()
|
769
|
+
)
|
770
|
+
|
751
771
|
output_df = self._batch_inference(
|
752
772
|
dataset=dataset,
|
753
773
|
inference_method="predict",
|
754
774
|
expected_output_cols_list=self.output_cols,
|
755
|
-
expected_output_cols_type=
|
775
|
+
expected_output_cols_type=expected_type_inferred,
|
756
776
|
)
|
757
777
|
elif isinstance(dataset, pd.DataFrame):
|
758
778
|
output_df = self._sklearn_inference(
|
@@ -823,10 +843,10 @@ class ComplementNB(BaseTransformer):
|
|
823
843
|
|
824
844
|
def _get_output_column_names(self, output_cols_prefix: str) -> List[str]:
|
825
845
|
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
826
|
-
Returns
|
846
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
827
847
|
"""
|
828
848
|
if getattr(self._sklearn_object, "classes_", None) is None:
|
829
|
-
return []
|
849
|
+
return [output_cols_prefix]
|
830
850
|
|
831
851
|
classes = self._sklearn_object.classes_
|
832
852
|
if isinstance(classes, numpy.ndarray):
|
@@ -1055,7 +1075,7 @@ class ComplementNB(BaseTransformer):
|
|
1055
1075
|
cp.dump(self._sklearn_object, local_score_file)
|
1056
1076
|
|
1057
1077
|
# Create temp stage to run score.
|
1058
|
-
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self.
|
1078
|
+
score_stage_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1059
1079
|
session = dataset._session
|
1060
1080
|
stage_creation_query = f"CREATE OR REPLACE TEMPORARY STAGE {score_stage_name};"
|
1061
1081
|
SqlResultValidator(
|
@@ -1069,8 +1089,9 @@ class ComplementNB(BaseTransformer):
|
|
1069
1089
|
expected_value=f"Stage area {score_stage_name} successfully created."
|
1070
1090
|
).validate()
|
1071
1091
|
|
1072
|
-
|
1073
|
-
|
1092
|
+
# Use posixpath to construct stage paths
|
1093
|
+
stage_score_file_name = posixpath.join(score_stage_name, os.path.basename(local_score_file_name))
|
1094
|
+
score_sproc_name = "SNOWML_SCORE_{safe_id}".format(safe_id=self._get_rand_id())
|
1074
1095
|
statement_params = telemetry.get_function_usage_statement_params(
|
1075
1096
|
project=_PROJECT,
|
1076
1097
|
subproject=_SUBPROJECT,
|
@@ -1096,6 +1117,7 @@ class ComplementNB(BaseTransformer):
|
|
1096
1117
|
replace=True,
|
1097
1118
|
session=session,
|
1098
1119
|
statement_params=statement_params,
|
1120
|
+
anonymous=True
|
1099
1121
|
)
|
1100
1122
|
def score_wrapper_sproc(
|
1101
1123
|
session: Session,
|
@@ -1103,7 +1125,8 @@ class ComplementNB(BaseTransformer):
|
|
1103
1125
|
stage_score_file_name: str,
|
1104
1126
|
input_cols: List[str],
|
1105
1127
|
label_cols: List[str],
|
1106
|
-
sample_weight_col: Optional[str]
|
1128
|
+
sample_weight_col: Optional[str],
|
1129
|
+
statement_params: Dict[str, str]
|
1107
1130
|
) -> float:
|
1108
1131
|
import cloudpickle as cp
|
1109
1132
|
import numpy as np
|
@@ -1153,14 +1176,14 @@ class ComplementNB(BaseTransformer):
|
|
1153
1176
|
api_calls=[Session.call],
|
1154
1177
|
custom_tags=dict([("autogen", True)]),
|
1155
1178
|
)
|
1156
|
-
score =
|
1157
|
-
|
1179
|
+
score = score_wrapper_sproc(
|
1180
|
+
session,
|
1158
1181
|
query,
|
1159
1182
|
stage_score_file_name,
|
1160
1183
|
identifier.get_unescaped_names(self.input_cols),
|
1161
1184
|
identifier.get_unescaped_names(self.label_cols),
|
1162
1185
|
identifier.get_unescaped_names(self.sample_weight_col),
|
1163
|
-
statement_params
|
1186
|
+
statement_params,
|
1164
1187
|
)
|
1165
1188
|
|
1166
1189
|
cleanup_temp_files([local_score_file_name])
|
@@ -1178,18 +1201,20 @@ class ComplementNB(BaseTransformer):
|
|
1178
1201
|
if self._sklearn_object._estimator_type == 'classifier':
|
1179
1202
|
outputs = _infer_signature(dataset[self.label_cols], "output") # label columns is the desired type for output
|
1180
1203
|
outputs = _rename_features(outputs, self.output_cols) # rename the output columns
|
1181
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1204
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1205
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1182
1206
|
# For regressor, the type of predict is float64
|
1183
1207
|
elif self._sklearn_object._estimator_type == 'regressor':
|
1184
1208
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1185
|
-
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1186
|
-
|
1209
|
+
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1210
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1187
1211
|
for prob_func in PROB_FUNCTIONS:
|
1188
1212
|
if hasattr(self, prob_func):
|
1189
1213
|
output_cols_prefix: str = f"{prob_func}_"
|
1190
1214
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1191
1215
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1192
|
-
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1216
|
+
self._model_signature_dict[prob_func] = ModelSignature(inputs,
|
1217
|
+
([] if self._drop_input_cols else inputs) + outputs)
|
1193
1218
|
|
1194
1219
|
@property
|
1195
1220
|
def model_signatures(self) -> Dict[str, ModelSignature]:
|